EP1412967A1 - Method for the production of a lens - Google Patents

Method for the production of a lens

Info

Publication number
EP1412967A1
EP1412967A1 EP02754425A EP02754425A EP1412967A1 EP 1412967 A1 EP1412967 A1 EP 1412967A1 EP 02754425 A EP02754425 A EP 02754425A EP 02754425 A EP02754425 A EP 02754425A EP 1412967 A1 EP1412967 A1 EP 1412967A1
Authority
EP
European Patent Office
Prior art keywords
etching
substrate
gas component
mask
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02754425A
Other languages
German (de)
French (fr)
Inventor
Frank Singer
Guido Weiss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1412967A1 publication Critical patent/EP1412967A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/04Simple or compound lenses with non-spherical faces with continuous faces that are rotationally symmetrical but deviate from a true sphere, e.g. so called "aspheric" lenses

Definitions

  • the invention relates to a method for producing a lens, in particular from a semiconductor material, such as silicon.
  • Such lenses made of silicon are used, for example, to focus the beam of a laser emitting in the infrared wavelength range onto one point.
  • the beam In order to couple the laser beam into an optical fiber with as little loss as possible or to achieve a high resolution when writing or reading out a magneto-optical storage medium, the beam must be focused as precisely as possible.
  • a method used to manufacture the lenses must therefore lead to lenses that comply with the specification with great accuracy.
  • the processes known from the processing of semiconductor materials should be used in such a method if possible.
  • the object of the invention is to specify an economical and precise method for producing lenses from a semiconductor material.
  • this object is achieved by a method with the following method steps:
  • Figure 1 is a schematic representation of a cross section through a silicon lens with a spherical profile
  • Figure 2 is a schematic representation of a cross section through a silicon lens with an aspherical profile
  • FIGS. 3a to 3e show a schematic step-by-step illustration of a process sequence for producing a silicon lens
  • FIG. 4 shows a diagram with the measured profile of an aspherical lens and the deviation of the measurement curve from an ideal profile fitted to the measurement curve.
  • FIG. 1 shows a cross section through a lens 1 made of silicon, which is used to direct light emanating from a radiation source 2 onto a focus 3 if possible to concentrate.
  • the lens 1 shown in FIG. 1 has a planar rear side 4 and a front side 5 which is spherical in the region of the beam path - that is to say in the region of a beam surface 6. This means that the front side 5 has an arcuate cross-sectional profile in the region of the beam path.
  • the front side 5 is aspherical. This means that the lens 6 has a cross-sectional profile that deviates from a circular arc.
  • the height h of the radiation surface 6 as a function of the distance x from the optical axis is determined by the following formula:
  • a photoresist layer 9 is first applied, exposed and developed to a substrate 8, for example made of silicon, as shown in FIG. 3a, so that individual photoresist cylinders 10 (FIG. 3b) remain on the substrate 8 .
  • the substrate 8 with the photoresist cylinders 10 is heat-treated for a time between 0.5 and 1 hours at temperatures around 200 ° C.
  • the photoresist cylinder 10 is rounded off to form a photoresist cap 11 (FIG. 3c), the structure of which is transferred to the substrate 8 below using an anisotropic etching process (indicated by the arrows 15 in FIG. 3d).
  • the remaining substrate 8 can subsequently be thinned, for example by mechanical means, or completely removed from the lens 1.
  • Reactive ion etching is particularly suitable as the etching method.
  • etching processes such as anodically coupled plasma etching in the parallel plate reactor, triode-reactive ion etching, inductively coupled plasma etching, reactive ion beam etching or similar processes which allow multiple gas components with different selectivity with respect to the photoresist layer 9 and the substrate 8 are also suitable use.
  • the gas reactor must contain a gas component that removes the photoresist cap 11 and a further gas component that etches back the substrate 8.
  • the substrate 8 is made of silicon
  • oxygen can be used for the gas component that etches the photoresist cap 11.
  • Sulfur hexafluoride for example, is suitable as the gas component that etches back the substrate 8 from silicon.
  • the radius of the radiation surface 6 can be adjusted by the ratio of the gas flows of the two etching gas components.
  • the ratio of the gas flows is kept constant.
  • the radius of the radiation surface 6 is smaller the greater the gas flow of sulfur hexafluoride in relation to the oxygen gas flow.
  • the radiation surface 6 of the aspherical lens 7 can also be etched.
  • An example of the control of the gas flows is given in Table 1.
  • FIG. 4 finally shows a measured profile of an aspherical lens 7, with an aspherical factor of -4, a radius R of 594.3 ⁇ m, a height H of 37.3 ⁇ m and a diameter of 440.6 ⁇ m.
  • the measured cross-sectional profile 12 was recorded with the help of a laser, the front 5 scans. A height measurement value was recorded in each case at a distance of 1 ⁇ m.
  • a fit curve 13 in the form of a hyperbolic function with the aspheric factor -4 was adapted to the measured cross-sectional profile 12.
  • the difference between the cross-sectional profile 12 and the fit curve 13 ' is represented in FIG. 4 by an error curve 14.
  • the fit errors were squared at the measuring points and added up. There was a fit error of 3 ⁇ m 2 . However, only the radiation area 6, that is to say approximately 40% of the diameter of the lens 7, was evaluated.
  • the measurement shows that aspherical lenses 7 in particular can be manufactured with great accuracy using the described method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

The production of aspherical lenses on a semiconductor material is disclosed, whereby the structure of a photo-resist segment is transferred to a semiconductor substrate therebelow, by means of a reactive ion-etching process. A gas component which etches the photoresist and a further gas component which etches the semiconductor substrate therebelow are used. The ratio of the gas streams is altered during the etching process. The result is an aspherical lens, the measured cross-sectional profile (12) of which has only minor deviations (14) from an ideal curve (13).

Description

Beschreibungdescription
Verfahren zur Herstellung einer LinseProcess for making a lens
Die Erfindung betrifft ein Verfahren zur Herstellung einer Linse, insbesondere aus einem Halbleitermaterial, wie zum Beispiel Silizium.The invention relates to a method for producing a lens, in particular from a semiconductor material, such as silicon.
Derartige Linsen aus Silizium werden beispielsweise dazu ver- wendet, das Strahlenbündel eines im infraroten Wellenlängenbereich emittierenden Lasers auf einen Punkt zu fokussieren. Um das Strahlenbündel des Lasers möglichst verlustfrei in eine Lichtleitfaser einzukoppeln oder um ein hohes Auflösungsvermögen beim Beschreiben oder Auslesen eines magneto- optischen Speichermediums zu erzielen, ist eine möglichst präzise Fokussierung des Strahlenbündels erforderlich.Such lenses made of silicon are used, for example, to focus the beam of a laser emitting in the infrared wavelength range onto one point. In order to couple the laser beam into an optical fiber with as little loss as possible or to achieve a high resolution when writing or reading out a magneto-optical storage medium, the beam must be focused as precisely as possible.
Ein zur Herstellung der Linsen verwendetes Verfahren muß daher zu Linsen führen, die die Spezifikation mit großer Genau- igkeit einhalten. Daneben sollen bei einem derartigen Verfahren möglichst die aus der Verarbeitung von Halbleitermaterialien bekannten Prozesse verwendet werden.A method used to manufacture the lenses must therefore lead to lenses that comply with the specification with great accuracy. In addition, the processes known from the processing of semiconductor materials should be used in such a method if possible.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein wirtschaftliches und präzises Verfahren zur Herstellung von Linsen aus einem Halbleitermaterial anzugeben.Proceeding from this prior art, the object of the invention is to specify an economical and precise method for producing lenses from a semiconductor material.
Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den folgenden Verfahrensschritten gelöst:According to the invention, this object is achieved by a method with the following method steps:
- Ausbilden einer kugelsegmentartigen Maske auf einem Sub strat; und- Form a spherical segment-like mask on a sub strat; and
- Übertragen der Struktur der Maske auf das darunterliegende Substrat mit Hilfe eines Trockenätzverfahrens auf der Basis einer überwiegend das Substrat ätzenden Gaskomponente und einer überwiegend die Maske ätzenden weiteren Gaskomponente . Durch dieses Verfahren wird die Struktur der Maske auf das darunterliegende Substrat übertragen. Demnach wird die Form der Linse durch die Struktur der Maske bestimmt . Es hat sich gezeigt, daß sich mit diesem Verfahren Linsen hoher Präzision fertigen lassen. Darüber hinaus kommen bei diesem Verfahren nur Prozesse zur Anwendung, die üblicherweise bei der Bearbeitung von Halbleitermaterialien in der Halbleitertechnik verwendet werden. Daher kann auf die üblichen Prozeßschritte zurückgegriffen werden, und es werden keine zusätzlichen An- lagen zur Herstellung der Linsen benötigt.- Transfer the structure of the mask to the underlying substrate with the aid of a dry etching method based on a gas component which predominantly etches the substrate and a further gas component which predominantly etches the mask. With this method, the structure of the mask is transferred to the underlying substrate. Accordingly, the shape of the lens is determined by the structure of the mask. It has been shown that high-precision lenses can be produced using this method. In addition, this method only uses processes that are usually used in the processing of semiconductor materials in semiconductor technology. The usual process steps can therefore be used, and no additional systems for the production of the lenses are required.
Weitere vorteilhafte Ausgestaltungen des Verfahrens sind Gegenstand der abhängigen Ansprüche .Further advantageous refinements of the method are the subject of the dependent claims.
Nachfolgend wird die Erfindung im einzelnen anhand der beigefügten Zeichnung erläutert. Es zeigen:The invention is explained in detail below with reference to the accompanying drawing. Show it:
Figur 1 eine schematische Darstellung eines Querschnitts durch eine Siliziumlinse mit sphä- rischem Profil; undFigure 1 is a schematic representation of a cross section through a silicon lens with a spherical profile; and
Figur 2 eine schematische Darstellung eines Querschnitts durch eine Siliziumlinse mit asphärischem Profil; undFigure 2 is a schematic representation of a cross section through a silicon lens with an aspherical profile; and
Figur 3a bis 3e eine schematische schrittweise Darstellung eines des Verfahrensablauf zur Herstellung einer Siliziumlinse;FIGS. 3a to 3e show a schematic step-by-step illustration of a process sequence for producing a silicon lens;
Figur 4 ein Diagramm mit dem gemessenen Profil einer asphärischen Linse und der Abweichung der Meßkurve von einem an die Meßkurve angefit- teten idealen Profil .FIG. 4 shows a diagram with the measured profile of an aspherical lens and the deviation of the measurement curve from an ideal profile fitted to the measurement curve.
In Figur 1 ist ein Querschnitt durch eine aus Silizium gefertigte Linse 1 dargestellt, die dazu dient, von einer Strahlungsquelle 2 ausgehendes Licht möglichst auf einen Fokus 3 zu konzentrieren. Die in Figur 1 dargestellte Linse 1 weist eine planare Rückseite 4 und eine Vorderseite 5 auf, die im Bereich des Strahlengangs - also im Bereich einer Strahlenfläche 6 - sphärisch ausgebildet ist. Das bedeutet, daß die Vorderseite 5 im Bereich des Strahlengangs ein kreisbogenförmiges Querschnittsprofil aufweist .FIG. 1 shows a cross section through a lens 1 made of silicon, which is used to direct light emanating from a radiation source 2 onto a focus 3 if possible to concentrate. The lens 1 shown in FIG. 1 has a planar rear side 4 and a front side 5 which is spherical in the region of the beam path - that is to say in the region of a beam surface 6. This means that the front side 5 has an arcuate cross-sectional profile in the region of the beam path.
Bei der in Figur 2 dargestellten Linse 7 dagegen ist die Vorderseite 5 asphärisch ausgebildet. Das bedeutet, daß die Linse 6 ein von einem Kreisbogen abweichendes Querschnitts- profil aufweist .In contrast, in the case of the lens 7 shown in FIG. 2, the front side 5 is aspherical. This means that the lens 6 has a cross-sectional profile that deviates from a circular arc.
Allgemein wird die Höhe h der Strahlenfläche 6 in Abhängigkeit vom Abstand x von der optischen Achse durch die folgende Formel festgelegt:In general, the height h of the radiation surface 6 as a function of the distance x from the optical axis is determined by the following formula:
wobei R der Radius und k der Asphärenfaktor ist. Falls der Asphärenfaktor k=0 ist, ist die Strahlenfläche 6 sphärisch ausgebildet. Falls dagegen für den Asphärenfaktor k«0 gilt, ist die Strahlenfläche 6 asphärisch.where R is the radius and k is the aspherical factor. If the aspherical factor k = 0, the radiation surface 6 is spherical. If, on the other hand, k «0 applies to the aspherical factor, the radiation surface 6 is aspherical.
Zur Herstellung der sphärischen Linse 1 und der asphärischen Linse 7 wird gemäß Figur 3a zunächst auf ein Substrat 8, bei- spielsweise aus Silizium, eine Photolackschicht 9 aufgebracht, belichtet und entwickelt, so daß einzelne Photolackzylinder 10 (Figur 3b) auf dem Substrat 8 zurückbleiben. Anschließend wird das Substrat 8 mit den Photolackzylindern 10 für eine Zeit zwischen 0,5 und 1 Stunden bei Temperaturen um 200 °C wärmebehandelt. Dadurch wird der Photolackzylinder 10 zu einer Photolackkalotte 11 verrundet (Figur 3c) , deren Struktur mit Hilfe eines anisotropen Ätzverfahrens (angedeutet durch die Pfeile 15 in Figur 3d) auf das darunterliegende Substrat 8 übertragen wird. Dadurch wird aus einem Teil des Substrats 8 eine Linse 1 herausgebildet (Figur 3e) . Das übrige Substrat 8 kann nachfolgend beispielsweise mit mechanischen Mitteln gedünnt oder vollständig von der Linse 1 entfernt werden.To produce the spherical lens 1 and the aspherical lens 7, a photoresist layer 9 is first applied, exposed and developed to a substrate 8, for example made of silicon, as shown in FIG. 3a, so that individual photoresist cylinders 10 (FIG. 3b) remain on the substrate 8 , Subsequently, the substrate 8 with the photoresist cylinders 10 is heat-treated for a time between 0.5 and 1 hours at temperatures around 200 ° C. As a result, the photoresist cylinder 10 is rounded off to form a photoresist cap 11 (FIG. 3c), the structure of which is transferred to the substrate 8 below using an anisotropic etching process (indicated by the arrows 15 in FIG. 3d). This turns part of the Substrate 8 formed a lens 1 (Figure 3e). The remaining substrate 8 can subsequently be thinned, for example by mechanical means, or completely removed from the lens 1.
Als Ätzverfahren kommt insbesondere reaktives Ionen-Ätzen in Frage. Daneben eignen sich auch Ätzverfahren wie anodisch gekoppeltes Plasmaätzen im Parallelplattenreaktor, Trioden-Re- aktives-Ionenätzen, induktiv gekoppeltes Plasmaätzen, reakti- ves lonenstrahlatzen oder ähnliche Verfahren, die es gestatten, mehrere Gaskomponenten mit unterschiedlicher Selektivität gegenüber der Photolackschicht 9 und dem Substrat 8 zu verwenden .Reactive ion etching is particularly suitable as the etching method. In addition, etching processes such as anodically coupled plasma etching in the parallel plate reactor, triode-reactive ion etching, inductively coupled plasma etching, reactive ion beam etching or similar processes which allow multiple gas components with different selectivity with respect to the photoresist layer 9 and the substrate 8 are also suitable use.
Denn im Plasmareaktor muß eine Gaskomponente enthalten sein, die die Photolackkalotte 11 abträgt und eine weitere Gaskomponente, die das Substrat 8 zurückätzt. Wenn das Substrat 8 aus Silizium hergestellt ist, kann für die Gaskomponente, die die Photolackkalotte 11 ätzt, Sauerstoff verwendet werden. Als Gaskomponente, das das Substrat 8 aus Silizium zurückätzt, eignet sich beispielsweise Schwefelhexafluorid. Durch das Verhältnis der Gasflüsse der beiden Ätzgaskomponenten kann dabei der Radius der Strahlenfläche 6 eingestellt werden .This is because the gas reactor must contain a gas component that removes the photoresist cap 11 and a further gas component that etches back the substrate 8. If the substrate 8 is made of silicon, oxygen can be used for the gas component that etches the photoresist cap 11. Sulfur hexafluoride, for example, is suitable as the gas component that etches back the substrate 8 from silicon. The radius of the radiation surface 6 can be adjusted by the ratio of the gas flows of the two etching gas components.
Zur Herstellung der sphärischen Linse 1 wird das Verhältnis der Gasflüsse konstant gehalten. Der Radius der Strahlenfläche 6 ist dabei umso kleiner je größer der Gasfluß an Schwe- felhexafluorid im Verhältnis zum Sauerstoffgasfluß ist.To produce the spherical lens 1, the ratio of the gas flows is kept constant. The radius of the radiation surface 6 is smaller the greater the gas flow of sulfur hexafluoride in relation to the oxygen gas flow.
Durch eine Veränderung des Verhältnisses der beiden Gasflüsse während des Ätzvorgangs läßt sich auch die Strahlenfläche 6 der asphärischen Linse 7 ätzen. Ein Beispiel für die Steuerung der Gasflüsse ist in Tabelle 1 angegeben. By changing the ratio of the two gas flows during the etching process, the radiation surface 6 of the aspherical lens 7 can also be etched. An example of the control of the gas flows is given in Table 1.
Tabelle 1Table 1
Figur 4 zeigt schließlich ein gemessenes Profil einer asphärischen Linse 7, mit einem Asphärenfaktor von -4, einem Radius R von 594,3 μm, einer Höhe H von 37,3 μ und einem Durchmesser von 440,6 μm. Das gemessene Querschnittsprofil 12 wurde mit Hilfe eines Lasers aufgenommen, der die Vorderseite 5 abtastet. Dabei wurde jeweils im Abstand von 1 μm jeweils ein Hδhenmeßwert aufgenommen. An das gemessene Querschnitts- profil 12 wurde eine Fitkurve 13 in der Form einer Hyperbolischen Funktion mit dem Asphärenfaktor -4 angepaßt. Die Diffe- renz zwischen dem Querschnittsprofil 12 und der Fitkurve 13' ist in Figur 4 durch eine Fehlerkurve 14 dargestellt. Um den Fitfehler zu bestimmten, wurden die Fitfehler an den Meßpunkten quadriert und aufsummiert. Es ergab sich ein Fitfehler von 3 μm2. Dabei wurde jedoch nur die Strahlenfläche 6, also in etwa 40% des Durchmessers der Linse 7, bewertet.FIG. 4 finally shows a measured profile of an aspherical lens 7, with an aspherical factor of -4, a radius R of 594.3 μm, a height H of 37.3 μm and a diameter of 440.6 μm. The measured cross-sectional profile 12 was recorded with the help of a laser, the front 5 scans. A height measurement value was recorded in each case at a distance of 1 μm. A fit curve 13 in the form of a hyperbolic function with the aspheric factor -4 was adapted to the measured cross-sectional profile 12. The difference between the cross-sectional profile 12 and the fit curve 13 ' is represented in FIG. 4 by an error curve 14. In order to determine the fit error, the fit errors were squared at the measuring points and added up. There was a fit error of 3 μm 2 . However, only the radiation area 6, that is to say approximately 40% of the diameter of the lens 7, was evaluated.
Die Messung zeigt, daß sich insbesondere asphärische Linsen 7 durch das beschriebene Verfahren mit großer Genauigkeit fertigen lassen. The measurement shows that aspherical lenses 7 in particular can be manufactured with great accuracy using the described method.

Claims

Patentansprüche claims
1. Verfahren zur Herstellung einer Linse (1, 7) mit den Verfahrensschritten: - Ausbilden einer kugelSegmentartigen Maske (11) auf einem Substrat (8) und1. Method for producing a lens (1, 7) with the method steps: - Forming a spherical segment-like mask (11) on a substrate (8) and
Übertragen der Struktur der Maske (11) auf das darunterliegende Substrat (8) mit Hilfe eines Trockenätzverfahrens auf der Basis einer überwiegend das Substrat (8) ätzenden Gaskomponente und einer überwiegend die Maske (11) ätzenden weiteren Gaskomponente.Transfer the structure of the mask (11) to the underlying substrate (8) with the aid of a dry etching method based on a gas component predominantly etching the substrate (8) and a further gas component predominantly etching the mask (11).
2. Verfahren nach Anspruch 1 , bei dem als Atzvefahren ein reaktives lonen-Atzverfahren ver- wendet wird.2. The method according to claim 1, in which a reactive ion etching method is used as the etching method.
3. Verf hren nach Anspruch 1 oder 2 , bei dem während des Ätzvorgangs das Verhältnis der Gasflüsse der überwiegend das Substrat (8) ätzenden Gaskomponente und der überwiegend die Maske (11) ätzenden Gaskomponente zur3. The method according to claim 1 or 2, wherein during the etching process the ratio of the gas flows of the gas component predominantly etching the substrate (8) and the gas component predominantly etching the mask (11)
Herstellung einer asphärischen Linse variiert wird.Manufacturing an aspherical lens is varied.
4. Verfahren nach Anspruch 3 , bei dem während des Ätzvorgangs das Verhältnis der Gasflüsse der überwiegend das Substrat (8) ätzenden Gaskomponente zu der überwiegend die Maske (11) ätzenden Gaskomponente zur Herstellung einer asphärischen Linse gesenkt wird.4. The method according to claim 3, wherein during the etching process, the ratio of the gas flows of the gas component predominantly etching the substrate (8) to the gas component predominantly etching the mask (11) is reduced to produce an aspherical lens.
5. Verfahren nach einem der Ansprüche 1 bis 4, bei dem ein Substrat auf der Basis von Silizium verwendet wird.5. The method according to any one of claims 1 to 4, in which a substrate based on silicon is used.
6. Verfahren nach einem der Ansprüche 1 bis 5, bei dem zur Herstellung der Maske (11) zunächst eine Photo- lackschicht (9) auf das Substrat (8) aufgebracht und anschließend strukturiert wird. 6. The method according to any one of claims 1 to 5, in which for the production of the mask (11) first a photo-lacquer layer (9) is applied to the substrate (8) and then structured.
7. Verfahren nach Anspruch 6 , bei dem die Strukturen (10) der Photolackschicht (9) durch eine Wärmebehandlung verrundet werden.7. The method according to claim 6, wherein the structures (10) of the photoresist layer (9) are rounded by a heat treatment.
8. Verfahren nach einem der Ansprüche 1 bis 7, bei dem für die die Maske (11) überwiegend ätzende Gaskomponente Sauerstoff und für die das Substrat (8) überwiegend ätzende Gaskomponente Schwefelhexafluorid verwendet wird. 8. The method according to any one of claims 1 to 7, in which for the mask (11) predominantly caustic gas component oxygen and for the substrate (8) predominantly caustic gas component sulfur hexafluoride is used.
EP02754425A 2001-07-24 2002-07-24 Method for the production of a lens Withdrawn EP1412967A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10135872A DE10135872A1 (en) 2001-07-24 2001-07-24 Method of making a lens
DE10135872 2001-07-24
PCT/DE2002/002714 WO2003012829A1 (en) 2001-07-24 2002-07-24 Method for the production of a lens

Publications (1)

Publication Number Publication Date
EP1412967A1 true EP1412967A1 (en) 2004-04-28

Family

ID=7692822

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02754425A Withdrawn EP1412967A1 (en) 2001-07-24 2002-07-24 Method for the production of a lens

Country Status (4)

Country Link
US (1) US20040251233A1 (en)
EP (1) EP1412967A1 (en)
DE (1) DE10135872A1 (en)
WO (1) WO2003012829A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10315898A1 (en) * 2003-04-08 2004-10-28 Forschungszentrum Karlsruhe Gmbh An X-ray lens for focusing X-rays in two dimensions including a material permeable to X-ray radiation including a resist layer from a crosslinked polymer strongly bonded to the substrate
DE102005006052A1 (en) 2004-12-21 2006-07-06 Osram Opto Semiconductors Gmbh Lens, laser assembly and method of making a laser assembly
CN102730629B (en) * 2012-06-21 2015-01-28 华中科技大学 Microlens preparation method and its product

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2117199C3 (en) * 1971-04-08 1974-08-22 Philips Patentverwaltung Gmbh, 2000 Hamburg Process for the production of etched patterns in thin layers with defined edge profiles
NL8303316A (en) * 1983-09-28 1985-04-16 Philips Nv METHOD FOR MANUFACTURING LIGHT EMISSION DEVICE
JPS61158143A (en) * 1984-12-29 1986-07-17 Fujitsu Ltd Etching method for insulating film
US5119235A (en) * 1989-12-21 1992-06-02 Nikon Corporation Focusing screen and method of manufacturing same
US5286338A (en) * 1993-03-01 1994-02-15 At&T Bell Laboratories Methods for making microlens arrays
US5346583A (en) * 1993-09-02 1994-09-13 At&T Bell Laboratories Optical fiber alignment techniques
US5370768A (en) * 1993-10-14 1994-12-06 At&T Corp. Method for making microstructures
EP0706070A3 (en) * 1994-10-04 1997-04-02 Siemens Ag Process for dry-etching a semiconductor substrate
GB9600469D0 (en) * 1996-01-10 1996-03-13 Secr Defence Three dimensional etching process
US5718830A (en) * 1996-02-15 1998-02-17 Lucent Technologies Inc. Method for making microlenses
DE19630050B4 (en) * 1996-07-25 2005-03-10 Infineon Technologies Ag Production method for a resist mask on a substrate with a trench
US5948281A (en) * 1996-08-30 1999-09-07 Sony Corporation Microlens array and method of forming same and solid-state image pickup device and method of manufacturing same
JP2000206310A (en) * 1999-01-19 2000-07-28 Matsushita Electric Ind Co Ltd Lens array
DE19904307C2 (en) * 1999-01-28 2001-09-20 Bosch Gmbh Robert Process for the production of three-dimensional structures by means of an etching process
FR2803396B1 (en) * 1999-12-30 2002-02-08 Commissariat Energie Atomique METHOD OF FORMING A CONCEIVED MICRORELIEF IN A SUBSTRATE, AND IMPLEMENTATION OF THE METHOD FOR PRODUCING OPTICAL COMPONENTS
JP4123667B2 (en) * 2000-01-26 2008-07-23 凸版印刷株式会社 Manufacturing method of solid-state imaging device
US6420202B1 (en) * 2000-05-16 2002-07-16 Agere Systems Guardian Corp. Method for shaping thin film resonators to shape acoustic modes therein
TWI236543B (en) * 2000-09-04 2005-07-21 Sony Corp Optical device, its producing method, as well as recording and reproducing apparatus that employing the optical device
US6869754B2 (en) * 2001-10-23 2005-03-22 Digital Optics Corp. Transfer of optical element patterns on a same side of a substrate already having a feature thereon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03012829A1 *

Also Published As

Publication number Publication date
WO2003012829A1 (en) 2003-02-13
US20040251233A1 (en) 2004-12-16
DE10135872A1 (en) 2003-02-27

Similar Documents

Publication Publication Date Title
DE2905636C2 (en) Method for copying masks onto a workpiece
WO2021078772A1 (en) Segmented beamforming element and laser working system
DE4134291C2 (en)
DE2913843A1 (en) METHOD FOR PRODUCING MICRO LENSES AND COUPLING ELEMENT WITH A MICRO LENS PRODUCED BY THIS METHOD
DE4413575B4 (en) Process for producing an optical element
DE4234740C2 (en) Process for the production of optical elements
DE3404063C2 (en)
DE102006013560A1 (en) Projection lens for micro lithographic projection illumination system, has lens , to characterizes symmetry axis of another lens by rotation of orientation of crystal axes, where lenses are separated by gap filled with liquid
CH643941A5 (en) Method and device for producing optical scales, and scale produced according to the method
EP1412967A1 (en) Method for the production of a lens
DE2614871B2 (en) Process for the production of thin-film light guide structures
DE2123887C3 (en)
DE19904307C2 (en) Process for the production of three-dimensional structures by means of an etching process
DE102022116694A1 (en) Method for producing a base body of an optical element, base body and projection exposure system for semiconductor lithography
DE102006031995B4 (en) Lens blanks and lens elements and process for their preparation
DE10116500A1 (en) Photonic crystals
DE19545721C2 (en) Method and device for producing and precisely positioning optical microcomponents on top of an optical device
DE102019204345A1 (en) METHOD FOR PRODUCING AN OPTICAL ELEMENT
EP0104684A2 (en) Mask for obtaining textured patterns in resist layers using X-ray lithography and method of manufacturing the same
EP0398082A1 (en) Method for optical lens production
DE102008054737A1 (en) Object lens for microlithographic projection exposition system, is designed for operation with wide-band wavelength spectrum specified by illumination system, where lens extends around center wavelength
EP1500975A2 (en) Process for the fabrication of optical microstructures
DE19502624A1 (en) Mask for three-dimensional structuring
WO2022002967A1 (en) Optical unit, manufacturing device and method for additively manufacturing an object
DE102019130532A1 (en) Arrangement and method for producing a dielectric graduated filter

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20040115

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEISS, GUIDO

Inventor name: SINGER, FRANK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

17Q First examination report despatched

Effective date: 20091119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100202