EP1404554B1 - System for controlling driving dynamics - Google Patents

System for controlling driving dynamics Download PDF

Info

Publication number
EP1404554B1
EP1404554B1 EP02751123A EP02751123A EP1404554B1 EP 1404554 B1 EP1404554 B1 EP 1404554B1 EP 02751123 A EP02751123 A EP 02751123A EP 02751123 A EP02751123 A EP 02751123A EP 1404554 B1 EP1404554 B1 EP 1404554B1
Authority
EP
European Patent Office
Prior art keywords
drive
vehicle
moment
braking
wheel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02751123A
Other languages
German (de)
French (fr)
Other versions
EP1404554A1 (en
Inventor
Frank Einig
Elmar Hoffmann
Josef Knechtges
Michael Bleser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ZF Active Safety GmbH
Original Assignee
Lucas Automotive GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lucas Automotive GmbH filed Critical Lucas Automotive GmbH
Publication of EP1404554A1 publication Critical patent/EP1404554A1/en
Application granted granted Critical
Publication of EP1404554B1 publication Critical patent/EP1404554B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/1755Brake regulation specially adapted to control the stability of the vehicle, e.g. taking into account yaw rate or transverse acceleration in a curve
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2270/00Further aspects of brake control systems not otherwise provided for
    • B60T2270/30ESP control system
    • B60T2270/303Stability control with active acceleration

Definitions

  • the invention relates to a system for vehicle dynamics control, which acts via the braking system and the drive train of a vehicle to prevent lateral breaking of the vehicle.
  • a Vehicle Dynamics Control (FDR) system significantly improves driving safety through the advantages of the anti-lock braking system (ABS), which prevents wheel locking when braking, and traction control (ASR), which avoids wheel spin when driving Driver actively supported in lateral dynamic critical situations.
  • ABS anti-lock braking system
  • ASR traction control
  • the vehicle dynamics control system acts in the brake system to actively restore driving stability in the event of under- or oversteering driving behavior by braking of individual wheels that is independent of the driver. For example, the rear wheel on the inside of the curve is actively decelerated when understeering and the front wheel on the outside of the curve is actively braked when oversteering.
  • the vehicle dynamics control engages in the drive train to reduce by withdrawing the engine torque, the drive torque or the traction on the driven wheels, when driving front-wheel drive understeer or in rear-wheel drive vehicles to counteract oversteer.
  • the EP-A-0 842 836 describes a system for vehicle dynamics control.
  • a drive force is generated based on a braking force, which at least partially compensates for the braking force.
  • a vehicle can be controlled from a current vehicle movement to a destination movement that corresponds to the steering direction.
  • this control system when the vehicle brake pedal is actuated by a vehicle driver, adequate braking of the vehicle can be achieved while vehicle stability is maintained.
  • the object of the invention has been set to design an aforementioned system for vehicle dynamics control even more efficient in the event that an oversteer of the vehicle is to be compensated.
  • a braking torque is generated and via the drive train to the driven wheels an additional drive torque is built up.
  • the additional drive torque is built up on the driven wheels, and only when the oversteer of the vehicle does not decrease after a predetermined period of time, the braking torque is generated at the curve outer front wheel. It is therefore a certain period of time to wait, whether the driving behavior stabilized solely due to the built-up on the driven wheels additional drive torque.
  • the great advantage of the invention is that the additional drive torque generates a further component which counteracts the yawing motion of the vehicle when oversteer. It is of significant advantage in this case that the additional component generated by the additional drive torque acts on a different wheel of the vehicle than the curve outer front wheel loaded with the braking torque. As a result, the counter torques for intercepting the yaw motion of the vehicle during oversteer are shifted to several wheels. Overall, this results in both a safety gain, as the system performance increases, as well as a gain in comfort, as the control process is more harmonious and thus less reactive for the driver.
  • the braking torque generated on the outer curve of the curve is only built up when the additional drive torque at the driven wheels has reached a predetermined value.
  • the braking torque generated on the curve-outer front wheel is of the order of magnitude twice as large as the drive torque previously additionally built up on a driven wheel.
  • the inventive system is equally applicable for vehicles with front or rear or all-wheel drive.
  • the braking torque additionally generated on the curve-outer rear wheel is set to the same magnitude as the drive torque previously built up on the inside rear wheel.
  • the additional braking torque on the curve outer rear wheel can only be generated if oversteering of the vehicle does not decrease after a predetermined period of time.
  • the schematically illustrated vehicle 1 is in Fig. 1 to 3 each identical.
  • the vehicle 1 has a left and a right steerable front wheel 2, 3 and a left and right rear wheel 4, 5.
  • the forward movement of the vehicle 1 takes place in the direction of travel X, wherein the steerable front wheels 2, 3 are turned to the left, so that the vehicle 1 drives a left turn for the embodiment.
  • the rear of the vehicle 1 breaks when oversteer sideways to the right, so that the vehicle 1 a smaller radius of curvature than he corresponds to the steering angle of the front wheels 2, 3, drives.
  • the yaw moment M yawl of the vehicle 1 about its vertical axis 6 and the steering angle predetermined by the driver or steering angle of the front wheels 2, 3 are detected and evaluated in order to detect oversteer at an early stage. If an oversteer is detected, a brake torque M BRAKE is set up via the brake system on the curve outer front wheel, which counteracts the yaw moment M GIER of the vehicle 1 about its vertical axis 6 in order to stabilize the vehicle behavior .
  • a braking torque M BRAKE, VR is built on the right-hand front wheel 3.
  • a drive torque M DRIVE is built up on the driven wheels on the outer wheel outside the curve. How this is done with the different drive types is explained below.
  • a drive torque M DRIVE, VL In a front-wheel drive vehicle, a drive torque M DRIVE, VL , and on the right front wheel 3, a drive torque M DRIVE, VR is additionally generated on the left front wheel 2.
  • a drive torque M DRIVE, HL and at the right rear wheel 5 a drive torque M DRIVE, HR is additionally generated on the left rear wheel 4. Due to the additional drive torque M DRIVE, HL on the left rear wheel 4, a further component is generated, which counteracts the yaw moment M yawl of the vehicle 1 about its vertical axis 6. In this case, the drive torque M DRIVE, HR generated at the right rear wheel 5 weakens the further component generated by the additional drive torque M DRIVE, HL on the left rear wheel 4 in a "certain mass".
  • the drive torque M DRIVE, HR generated at the right rear wheel 5 can at least be compensated, in which an additional braking torque M BRAKE, HR is built up on the right rear wheel 5, so that drive torque M DRIVE, HL generated at the left rear wheel 4 the yaw moment M yaw of the vehicle 1 counteracts about its vertical axis 6 even stronger.
  • an additional counter-yawing moment is made available by the drive torque M DRIVE, HL generated at the inside rear wheel 4.
  • a drive torque M DRIVE, VL on the left front wheel 2
  • a drive torque M DRIVE, VR on the right front wheel 3
  • a drive torque on the right rear wheel 5 M DRIVE, HR additionally generated.
  • the additional drive torques M DRIVE, VL , M DRIVE, HL on the left front and rear wheels 2, 4 additional components are generated, which counteract the yaw moment M yawl of the vehicle 1 about its vertical axis 6.
  • the additional drive torque M AHTRIEB, VR , M DRIVE, HR on the right front and rear wheels 3, 5 weaken the counter components in a "certain mass".
  • an additional braking torque M BRAKE, VR can also be built up here on the right-hand rear wheel 5.
  • a weakening of the drive torque (s) can take place in a "certain measure”.
  • This measure is essentially determined by vehicle parameters in the stationary and dynamic state, such as track width, center distance, steering angle, center of gravity and axle load distribution, as well as external influences, such as the nature of the road surface.
  • braking torque additionally generated at the outside of the curve wheel and the drive torque additionally built up on the driven wheels are adjusted both in terms of order of magnitude and progressively (eg jump-shaped or ramp-shaped) is determined from the deviation of the driver's steering angle from the actual yawing motion of the driver Vehicle around its vertical axis, whereby the time derivatives (yaw rate) of this deviation are used.
  • the aforementioned vehicle parameters are considered in the stationary and dynamic state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Steroid Compounds (AREA)

Abstract

The performance of a system for controlling vehicle-movement dynamics, which operates the braking system and the drive train of a vehicle in order to prevent lateral breakaway of the vehicle, is improved yet further for the case in which oversteering of the vehicle is to be compensated. To this end it is proposed, according to the invention, that a braking moment be produced on the front wheel on the outside of the bend by the braking system, and an additional drive moment be built up by the drive train on the driven wheels.

Description

Die Erfindung betrifft ein System zur Fahrdynamikregelung, das über das Bremssystem und den Antriebsstrang eines Fahrzeugs wirkt, um ein seitliches Ausbrechen des Fahrzeugs zu verhindern.The invention relates to a system for vehicle dynamics control, which acts via the braking system and the drive train of a vehicle to prevent lateral breaking of the vehicle.

Ein System zur Fahrdynamikregelung (FDR) verbessert über die Vorteile des Antiblockiersystems (ABS), das ein Blockieren der Räder beim Bremsen verhindern, und der Antriebsschlupfregelung (ASR), die das Durchdrehen der Räder beim Antreiben vermeidet, hinaus die Fahrsicherheit wesentlich, da es den Fahrer in querdynamisch kritischen Situationen aktiv unterstützt. Bekannterweise wirkt die Fahrdynamikregelung im Bremssystem, um bei unter- oder übersteuernden Fahrverhalten durch vom Fahrer unabhängiges Abbremsen einzelner Räder die Fahrstabilität aktiv wiederherzustellen. So wird beim Untersteuern das kurveninnere Hinterrad und beim Übersteuern das kurvenäussere Vorderrad aktiv abgebremst. Es ist auch bekannt, dass die Fahrdynamikregelung dabei im Antriebsstrang eingreift, um durch Zurücknahme des Motormomentes das Antriebsmoment bzw. den Antriebsschlupf an den angetriebenen Rädern zu reduzieren, wenn bei frontgetriebenen Fahrzeugen einem Untersteuern oder bei heckgetriebenen Fahrzeugen einem Übersteuern entgegenzuwirken ist.A Vehicle Dynamics Control (FDR) system significantly improves driving safety through the advantages of the anti-lock braking system (ABS), which prevents wheel locking when braking, and traction control (ASR), which avoids wheel spin when driving Driver actively supported in lateral dynamic critical situations. As is known, the vehicle dynamics control system acts in the brake system to actively restore driving stability in the event of under- or oversteering driving behavior by braking of individual wheels that is independent of the driver. For example, the rear wheel on the inside of the curve is actively decelerated when understeering and the front wheel on the outside of the curve is actively braked when oversteering. It is also known that the vehicle dynamics control engages in the drive train to reduce by withdrawing the engine torque, the drive torque or the traction on the driven wheels, when driving front-wheel drive understeer or in rear-wheel drive vehicles to counteract oversteer.

Die EP-A-0 842 836 beschreibt ein System zur Fahrdynamikregelung. Beim Bremsvorgang wird ausgehend von einer Bremskraft eine Antriebskraft erzeugt, die die Bremskraft zumindest teilweise kompensiert. Dadurch kann ein Fahrzeug von einer aktuellen Fahrzeugbewegung in eine Zielbewegung, die der Lenkrichtung entspricht, gesteuert werden. Durch dieses Regelsystem kann bei Betätigung des Fahrzeugbremspedals durch einen Fahrzeugführer eine ausreichende Abbremsung des Fahrzeugs erreicht werden, wobei die Fahrzeugstabilität beibehalten wird.The EP-A-0 842 836 describes a system for vehicle dynamics control. During braking, a drive force is generated based on a braking force, which at least partially compensates for the braking force. Thereby, a vehicle can be controlled from a current vehicle movement to a destination movement that corresponds to the steering direction. By means of this control system, when the vehicle brake pedal is actuated by a vehicle driver, adequate braking of the vehicle can be achieved while vehicle stability is maintained.

Die Erfindung hat sich die Aufgabe gestellt ein vorgenanntes System zur Fahrdynamikregelung noch leistungsfähiger für den Fall auszugestalten, dass ein Übersteuern des Fahrzeugs auszugleichen ist.The object of the invention has been set to design an aforementioned system for vehicle dynamics control even more efficient in the event that an oversteer of the vehicle is to be compensated.

Zur Lösung der Aufgabe wird vorgeschlagen, dass zum Verhindern eines Übersteuern des Fahrzeugs über das Bremssystem an dem kurvenäusseren Vorderrad ein Bremsmoment erzeugt wird und über den Antriebsstrang an den angetriebenen Rädern ein zusätzliches Antriebsmoment aufgebaut wird. Zuerst wird das zusätzliche Antriebsmoment an den angetriebenen Rädern aufgebaut und erst dann, wenn das Übersteuern des Fahrzeugs nach einer vorherbestimmten Zeitdauer nicht abnimmt, wird das Bremsmoment an dem kurvenäusseren Vorderrad erzeugt. Es wird also eine bestimmte Zeitdauer abgewartet, ob sich das Fahrverhalten allein aufgrund des an den angetriebenen Rädern aufgebauten zusätzliche Antriebsmomentes stabilisiert.To solve the problem it is proposed that to prevent oversteer of the vehicle over the Braking system on the outside of the curve outside a braking torque is generated and via the drive train to the driven wheels an additional drive torque is built up. First, the additional drive torque is built up on the driven wheels, and only when the oversteer of the vehicle does not decrease after a predetermined period of time, the braking torque is generated at the curve outer front wheel. It is therefore a certain period of time to wait, whether the driving behavior stabilized solely due to the built-up on the driven wheels additional drive torque.

Grundsätzlich könnten das Erzeugen des Bremsmomentes an dem kurvenäusseren Vorderrad und das Aufbauen des zusätzlichen Antriebsmomentes an den angetriebenen Rädern gleichzeitig erfolgen.In principle, the generation of the braking torque on the outer curve-side front wheel and the build-up of the additional drive torque on the driven wheels could take place simultaneously.

Der grosse Vorteil der Erfindung besteht darin, dass durch das zusätzliche Antriebsmoment eine weitere Komponente erzeugt wird, die der Gierbewegung des Fahrzeugs beim Übersteuern entgegenwirkt. Von wesentlichem Vorteil ist dabei, dass die durch das zusätzliche Antriebsmoment erzeugte weitere Komponente an einem anderen Rad des Fahrzeugs, als dem mit dem Bremsmoment beaufschlagten kurvenäusseren Vorderrad, wirkt. Dadurch werden die Gegenmomente zum Abfangen der Gierbewegung des Fahrzeugs beim Übersteuern auf mehrere Räder verlagert. Insgesamt betrachtet resultiert daraus sowohl ein Sicherheitsgewinn, da sich die Systemleistung erhöht, als auch ein Komfortgewinn, da der Regelvorgang harmonischer und somit für den Fahrer rückwirkungsfreier abläuft.The great advantage of the invention is that the additional drive torque generates a further component which counteracts the yawing motion of the vehicle when oversteer. It is of significant advantage in this case that the additional component generated by the additional drive torque acts on a different wheel of the vehicle than the curve outer front wheel loaded with the braking torque. As a result, the counter torques for intercepting the yaw motion of the vehicle during oversteer are shifted to several wheels. Overall, this results in both a safety gain, as the system performance increases, as well as a gain in comfort, as the control process is more harmonious and thus less reactive for the driver.

Auch besteht kein Risiko, dass aufgrund des zusätzlich aufgebauten Antriebsmomentes an einem oder mehreren angetriebenen Rädern ein zu hoher Schlupf auftritt, der die Traktion und die Fahrzeugstabilität wieder nachteilig beeinflussen würde. Weil die Fahrdynamikregelung auf der Antriebsschlupfregelung aufbaut und deren ohnehin vorhandene Komponenten mitverwendet, kann eine der Fahrdynamikregelung je nach Systemauslegung über-oder untergeordnete Antriebsschlupfregelung eingreifen, wenn aufgrund des zusätzlich aufgebauten Antriebsmomentes der Schlupf an einem oder mehreren angetriebenen Rädern einen vorherbestimmten Wert überschreitet.There is also no risk that too high a slip occurs due to the additionally constructed drive torque at one or more driven wheels, which would adversely affect traction and vehicle stability again. Because the vehicle dynamics control builds on the traction control system and also uses their already existing components, one of the vehicle dynamics control can intervene depending on the system design over or subordinate traction control if due to the additionally constructed drive torque of the slip on one or more driven wheels exceeds a predetermined value.

Um den harmonischen Regelvorgang durch für den Fahrer wahrnehmbare Lastwechselreaktionen nicht zu stören, wird das an dem kurvenäusseren Vorderrrad erzeugte Bremsmoment erst dann aufgebaut, wenn das zusätzliche Antriebsmoment an den angetriebenen Rädern einen vorherbestimmten Wert erreicht hat.In order not to disturb the harmonic control process by the load change reactions perceptible to the driver, the braking torque generated on the outer curve of the curve is only built up when the additional drive torque at the driven wheels has reached a predetermined value.

Vorzugsweise ist das an dem kurvenäusseren Vorderrad erzeugte Bremsmoment grössenordnungsmässig doppelt so gross, wie das an einem angetriebenen Rad zuvor zusätzlich aufgebaute Antriebsmoment.Preferably, the braking torque generated on the curve-outer front wheel is of the order of magnitude twice as large as the drive torque previously additionally built up on a driven wheel.

Das erfindungsgemässe System ist für Fahrzeuge mit Front- oder Heck-oder Allradantrieb gleichermassen einsetzbar.The inventive system is equally applicable for vehicles with front or rear or all-wheel drive.

Insbesondere bei Fahrzeugen mit Allradantrieb braucht zur Fahrdynamikregelung nicht mehr durch Umschaltung des Mitteldifferentials auf Frontantrieb umgeschaltet werden, so dass die Vorteile des erfindungsgemässen Systems besonders zum Tragen kommen, da für Allradantrieb im Prinzip die für Front-und Heckantrieb implementierten Regelvorgänge superponiert werden können.In particular, in vehicles with all-wheel drive need not be switched to driving dynamics control by switching the center differential to front-wheel drive, so that the benefits of the inventive system particularly come to fruition because for four-wheel drive in principle implemented for front and rear wheel drive control operations can be superimposed.

Insbesondere dann, wenn das zusätzliche Antriebsmoment an den Hinterrädern aufgebaut wird, was bei einem Fahrzeug mit Heck-oder Allradantrieb der Fall ist, kann an dem kurvenäusseren Hinterrad ein zusätzliches Bremsmoment erzeugt werden. Dadurch wird das an dem kurvenäusseren Hinterrad zusätzlich aufgebaute Antriebsmoment kompensiert, so dass das am kurveninneren Hinterrad zusätzlich aufgebaute Antriebsmoment das am kurvenäusseren Vorderrad erzeugte Bremsmoment noch stärker unterstützt, um der Gierbewegung des Fahrzeugs beim Übersteuern entgegenzuwirken.In particular, when the additional drive torque is built up on the rear wheels, which is the case in a vehicle with rear or all-wheel drive, an additional braking torque can be generated on the curve outer rear wheel. As a result, the drive torque additionally built up on the outer rear wheel is compensated for, so that the rear wheel on the inside of the curve additionally built-drive torque supports the braking torque generated at the outer curve front even more to counteract the yawing motion of the vehicle when oversteer.

Um das an dem kurvenäusseren Hinterrad zusätzlich aufgebaute Antriebsmoment vollständig zu kompensieren, wird das an dem kurvenäusseren Hinterrad zusätzlich erzeugte Bremsmoment grössenordnungsmässig gleich gross eingestellt, wie das an dem kurveninneren Hinterrad zuvor aufgebaute Antriebsmoment.In order to completely compensate for the drive torque which is additionally built up on the curve-outer rear wheel, the braking torque additionally generated on the curve-outer rear wheel is set to the same magnitude as the drive torque previously built up on the inside rear wheel.

Wenn abgewartet werden soll, ob sich das Fahrverhalten ohne das zusätzliche Bremsmoment an dem kurvenäusseren Hinterrad zu erzeugen stabilisiert, kann das zusätzliche Bremsmoment an dem kurvenäusseren Hinterrad erst dann erzeugt werden, wenn das Übersteuern des Fahrzeugs nach einer vorherbestimmten Zeitdauer nicht abnimmt.If it is to be awaited whether the driving behavior stabilizes without generating the additional braking torque on the curve outer rear wheel, the additional braking torque on the curve outer rear wheel can only be generated if oversteering of the vehicle does not decrease after a predetermined period of time.

Zum Vermeiden von für den Fahrer wahrnehmbaren Lastwechselreaktionen besteht die Möglichkeit, dass das zusätzliche Bremsmoment an dem kurvenäusseren Hinterrad erst dann erzeugt wird, wenn das an dem kurvenäusseren Hinterrad erzeugte Antriebsmoment einen vorherbestimmten Wert erreicht hat.In order to avoid noticeable to the driver load change reactions, there is the possibility that the additional braking torque is generated at the curve outer rear wheel only when the drive torque generated at the curve outer rear wheel has reached a predetermined value.

Nachfolgend werden die Erfindung und deren weitere Merkmale anhand eines Ausführungsbeispiels mit Zeichnung näher erläutert. Dazu zeigt

Fig. 1
das Ausführungsbeispiel für ein frontgetriebenes,
Fig. 2
das Ausführungsbeispiel für ein heckgetriebenes,
Fig. 3
das Ausführungsbeispiel für ein allradgetriebenes Fahrzeug.
The invention and its further features will be explained in more detail with reference to an embodiment with drawing. In addition shows
Fig. 1
the embodiment of a front-wheel drive,
Fig. 2
the embodiment of a rear-drive,
Fig. 3
the embodiment of a four-wheel drive Vehicle.

Das schematisch dargestellte Fahrzeug 1 ist in Fig. 1 bis 3 jeweils identisch. Das Fahrzeug 1 weist ein linkes und ein rechtes lenkbares Vorderrad 2, 3 sowie ein linkes und rechtes Hinterrad 4, 5 auf. Die Vorwärtsbewegung des Fahrzeugs 1 erfolgt in Fahrtrichtung X, wobei die lenkbaren Vorderräder 2, 3 nach links eingeschlagen sind, so dass das Fahrzeug 1 für das Ausführungsbeispiel eine Linkskurve fährt. In diesem Fall bricht das Heck des Fahrzeugs 1 beim Übersteuern seitlich nach rechts aus, so dass das Fahrzeug 1 einen kleineren Kurvenradius, als er dem Lenkeinschlag der Vorderräder 2, 3 entspricht, fährt.The schematically illustrated vehicle 1 is in Fig. 1 to 3 each identical. The vehicle 1 has a left and a right steerable front wheel 2, 3 and a left and right rear wheel 4, 5. The forward movement of the vehicle 1 takes place in the direction of travel X, wherein the steerable front wheels 2, 3 are turned to the left, so that the vehicle 1 drives a left turn for the embodiment. In this case, the rear of the vehicle 1 breaks when oversteer sideways to the right, so that the vehicle 1 a smaller radius of curvature than he corresponds to the steering angle of the front wheels 2, 3, drives.

Bei einer Fahrdynamikregelung wird unter anderem das Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 und der vom Fahrere vorgegebene Lenkeinschlag bzw, Lenkwinkel der Vorderräder 2, 3 erfasst und ausgewertet, um ein Übersteuern frühzeitig zu erkennen. Wenn ein Übersteuern erkannt ist, wird über das Bremssystem an dem kurvenäusseren Vorderrad ein Bremsmoment MBREMS aufgebaut, das dem Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 entgegenwirkt, um das Fahrzeugverhalten zu stabilisieren.In a vehicle dynamics control, among other things, the yaw moment M yawl of the vehicle 1 about its vertical axis 6 and the steering angle predetermined by the driver or steering angle of the front wheels 2, 3 are detected and evaluated in order to detect oversteer at an early stage. If an oversteer is detected, a brake torque M BRAKE is set up via the brake system on the curve outer front wheel, which counteracts the yaw moment M GIER of the vehicle 1 about its vertical axis 6 in order to stabilize the vehicle behavior .

Da das Fahrzeug 1 im Ausführungsbeispiel eine Linkskurve fährt, wird an dem rechten Vorderrad 3 ein Bremsmoment MBREMS,VR aufgebaut.Since the vehicle 1 runs a left-hand bend in the exemplary embodiment, a braking torque M BRAKE, VR is built on the right-hand front wheel 3.

Gemäss der Erfindung wird zusätzlich zu dem Bremsmoment MBREMS an dem kurvenäusseren Vorderrad ein Antriebsmoment MANTRIEB an den angetriebenen Rädern aufgebaut. Wie sich dies bei den verschiedenen Antriebsarten verhält, wird im folgenden erläutert.According to the invention, in addition to the braking torque M BRAKE , a drive torque M DRIVE is built up on the driven wheels on the outer wheel outside the curve. How this is done with the different drive types is explained below.

Fig. 1 - FrontantriebFig. 1 - front-wheel drive

Bei einem frontgetriebenen Fahrzeug wird an dem linken Vorderrad 2 ein Antriebsmoment MANTRIEB,VL, und an dem rechten Vorderrad 3 ein Antriebsmoment MANTRIEB,VR zusätzlich erzeugt. Zwar wird an dem rechten Vorderrad 3 das Bremsmoment MBREMS,VR durch das zusätzliche Antriebsmoment MANTRIEB,VR in einem "bestimmten Masse" geschwächt, allerdings wird durch das zusätzliche Antriebsmoment MANTRIEB,VL am linken Vorderrad 2 eine weitere Komponente erzeugt, die dem Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 entgegenwirkt.In a front-wheel drive vehicle, a drive torque M DRIVE, VL , and on the right front wheel 3, a drive torque M DRIVE, VR is additionally generated on the left front wheel 2. Although at the right front wheel 3, the braking torque M BRAKE, VR weakened by the additional drive torque M DRIVE, VR in a "certain mass", however, is generated by the additional drive torque M DRIVE, VL on the left front wheel 2, a further component that the Yaw moment M yaw of the vehicle 1 counteracts about its vertical axis 6.

Vorzugsweise wird an den angetriebenen Vorderrädern 2, 3 ein zusätzliches Gesamtantriebsmoment MANTRIEB,GESAMT aufgebaut, das dem an dem kurvenäusseren Vorderrad 3 eingestellten Bremsmoment MBREMS,VR entspricht, also MANTRIEB,GESAMT = MBREMS,vR ist. Das Gesamtantriebsmoment MANTRIEB,GESAMT verteilt sich zu gleichen Teilen auf die angetriebenen Vorderräder 2, 3, so dass für die Radantriebsmomente MANTRIEB,VL = MANTRIEB,VR = ½ MBREMS,VR gilt. Folglich wird an dem kurvenäusseren Vorderrad 3 das Bremsmoment MBREMS,VR durch das zusätzliche Antriebsmoment MANTRIEB,VR um die Hälfte reduziert. Da parallel an dem kurveninneren Vorderrad 2 ein zusätzliches Antriebsmoment MANTRIEB,VL zur Verfügung steht, das der Reduktion des Bremsmomentes MBREMS,VR an dem kurvenäusseren Vorderrad 3 entspricht, verhält sich die Momentenbilanz insgesamt zumindest neutral, um dem Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 entgegenzuwirken. Auch wenn nicht unbedingt ein höheres Gegengiermoment erzeugt wird, ist für die Erfindung wesentlich, dass das Giermoment MGIER des Fahrzeugs 1 beim Übersteuern gleichermassen über beide Vorderräder 2,3 statt nur über das kurvenäussere Vorderrad 3 abgefangen wird. Dadurch wird nicht nur die Fahrstabilität schneller wiederhergestellt, sondern der Regelvorgang läuft insgesamt harmonischer ab.Preferably, an additional total drive torque M DRIVE , TOTAL is set up on the driven front wheels 2, 3, which corresponds to the brake torque M BRAKE, VR set on the outer wheel 3 on the outside of the curve, that is M DRIVE, TOTAL = M BRAKE, vR . The total drive torque M DRIVE, TOTAL distributed in equal parts to the driven front wheels 2, 3, so that for the wheel drive torque M DRIVE, VL = M DRIVE, VR = ½ M BRAKE, VR applies. Consequently, the braking torque M BRAKE is at the kurvenäusseren front wheel 3 is reduced by half VR by the additional drive moment M DRIVE, VR. Since an additional drive torque M DRIVE, VL is available parallel to the curve- inward front wheel 2, which corresponds to the reduction of the braking torque M BRAKE, VR on the curve-outside front wheel 3, the moment balance overall behaves at least neutral to the yaw moment M yawl of the vehicle 1 to counteract its vertical axis 6. Although not necessarily a higher Gegengiermoment is generated, it is essential for the invention that the yaw moment M yaw of the vehicle 1 when oversteer equally over both Front wheels 2,3 is intercepted instead of only on the outside of the curve 3 front wheel. As a result, not only the driving stability is restored faster, but the control process is more harmonious overall.

Fig. 2 - HeckantriebFig. 2 - rear-wheel drive

Bei einem heckgetriebenen Fahrzeug wird an dem linken Hinterrad 4 ein Antriebsmoment MANTRIEB,HL und an dem rechten Hinterrad 5 ein Antriebsmoment MANTRIEB,HR zusätzlich erzeugt. Durch das zusätzliche Antriebsmoment MANTRIEB,HL an dem linken Hinterrad 4 wird eine weitere Komponente erzeugt, die dem Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 entgegenwirkt. Dabei schwächt das an dem rechten Hinterrad 5 erzeugte Antriebsmoment MANTRIEB,HR die von dem zusätzlichen Antriebsmoment MANTRIEB,HL an dem linken Hinterrad 4 erzeugte weitere Komponente in einem "bestimmten Masse". Um dem entgegenzuwirken kann das an dem rechten Hinterrad 5 erzeugte Antriebsmoment MANTRIEB,HR zumindest kompensiert werden, in dem an dem rechten Hinterrad 5 ein zusätzliches Bremmoment MBREMS,HR aufgebaut wird, so dass an dem linken Hinterrad 4 erzeugte Antriebsmoment MANTRIEB,HL dem Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 noch stärker entgegenwirkt.In a rear-wheel drive vehicle, a drive torque M DRIVE, HL and at the right rear wheel 5, a drive torque M DRIVE, HR is additionally generated on the left rear wheel 4. Due to the additional drive torque M DRIVE, HL on the left rear wheel 4, a further component is generated, which counteracts the yaw moment M yawl of the vehicle 1 about its vertical axis 6. In this case, the drive torque M DRIVE, HR generated at the right rear wheel 5 weakens the further component generated by the additional drive torque M DRIVE, HL on the left rear wheel 4 in a "certain mass". To counteract this, the drive torque M DRIVE, HR generated at the right rear wheel 5 can at least be compensated, in which an additional braking torque M BRAKE, HR is built up on the right rear wheel 5, so that drive torque M DRIVE, HL generated at the left rear wheel 4 the yaw moment M yaw of the vehicle 1 counteracts about its vertical axis 6 even stronger.

Vorzugsweise wird an den angetriebenen Hinterrädern 4, 5 ein zusätzliches Gesamtantriebsmoment MANTRIEB,GESAMT aufgebaut, das dem an dem kurvenäusseren Vorderrad 3 eingestellten Bremsmoment MBREMS,VR entspricht, also MANTRIEB,GESAMT = MBREMS,VR ist. Das Gesamtantriebsmoment MANTRIEB,GEAMT verteilt sich zu gleichen Teilen auf die angetriebenen Hinterräder 4, 5, so dass für die Radantriebsmomente MANTRIEB,HL = MANTRIEB,HR = ½ MBREMS,VR gilt. Um das an dem kurvenäusseren Hinterrad 5 erzeugte Antriebsmoment MANTRIEB,HR zu kompensieren, wird vorzugsweise an dem kurvenäusseren Hinterrad 5 ein zusätzliches Bremsmoment MBREMS,HR aufgebaut, das der Hälfte des an dem kurvenäusseren Vorderrad 3 eingestellten Bremsmomentes MBPEMS,VR entspricht, also MBREMS,HR = MANTRIEB,HR = ½ MBREMS,VR ist. Dadurch wird durch das an dem kurveninneren Hinterrad 4 erzeugte Antriebsmoment MANTRIEB,HL ein zusätzliches Gegengiermoment zur Verfügung gestellt. Wesentlich für die Erfindung ist aber, dass das Giermoment MGIER des Fahrzeugs 1 beim Übersteuern über beide Hinterräder 4, 5 bzw. wenigstens das kurveninnere Hinterrad 4 und das kurvenäussere Vorderrad 3 statt nur über das kurvenäussere Vorderrad 3 abgefangen wird, so dass der Regelvorgang insgesamt harmonischer abläuft und die Fahrstabilität schneller wiederhergestellt wird.Preferably, an additional total drive torque M DRIVE, TOTAL is constructed on the driven rear wheels 4, 5, which corresponds to the set on the outside of the curve front wheel 3 braking torque M BRAKE, VR , ie M DRIVE, TOTAL = M BRAKE, VR is. The total drive torque M DRIVE, GEAMT distributed in equal parts on the driven rear wheels 4, 5, so that for the wheel drive torque M DRIVE, HL = M DRIVE, HR = ½ M BRAKE, VR applies. Around To compensate for the drive torque M DRIVE, HR generated at the curve outer rear wheel 5, an additional braking torque M BRAKE, HR is preferably constructed on the curve outer rear wheel 5, which corresponds to half of the adjusted braking torque M BPEMS, VR , ie M BRAKE, HR = M DRIVE, HR = ½ M BRAKE, VR . As a result, an additional counter-yawing moment is made available by the drive torque M DRIVE, HL generated at the inside rear wheel 4. Essential for the invention, however, is that the yaw moment M yawl of the vehicle 1 when oversteer over both rear wheels 4, 5 or at least the inside rear wheel 4 and the curve outer front wheel 3 is intercepted instead of only on the outside wheel 3, so that the overall control process more harmonious and the driving stability is restored faster.

Fig. 3 - AllradantriebFig. 3 - four-wheel drive

Bei einem allradgetriebenen Fahrzeug werden an dem linken Vorderrad 2 ein Antriebsmoment MANTRIENB,VL), an dem rechten Vorderrad 3 ein Antriebsmoment MANTRIEB,VR), an dem linken Hinterrad 4 ein Antriebsmoment MANTRIEB,HL und an dem rechten Hinterrad 5 ein Antriebsmoment MANTRIEB,HR zusätzlich erzeugt. Durch die zusätzlichen Antriebsmomente MANTRIEB,VL, MANTRIEB,HL an dem linken Vorder- und Hinterrad 2, 4 werden weitere Komponenten erzeugt, die dem Giermoment MGIER des Fahrzeugs 1 um seine Hochachse 6 entgegenwirken. Auch hier schwächen die zusätzlichen Antriebsmomente MAHTRIEB,VR, MANTRIEB,HR an dem rechten Vorder- und Hinterrad 3, 5 die Gegenkomponenten in einem "bestimmten Masse". Um dies zumindest zu kompensieren, kann auch hier an dem rechten Hinterrad 5 ein zusätzliches Bremmoment MBREMS,VR aufgebaut werden.In a four -wheel drive vehicle, a drive torque M DRIVE, VL ) on the left front wheel 2, a drive torque M DRIVE, VR ) on the right front wheel 3, a drive torque M DRIVE, HL on the left rear wheel 4, and a drive torque on the right rear wheel 5 M DRIVE, HR additionally generated. The additional drive torques M DRIVE, VL , M DRIVE, HL on the left front and rear wheels 2, 4 additional components are generated, which counteract the yaw moment M yawl of the vehicle 1 about its vertical axis 6. Again, the additional drive torque M AHTRIEB, VR , M DRIVE, HR on the right front and rear wheels 3, 5 weaken the counter components in a "certain mass". In order to compensate for this at least, an additional braking torque M BRAKE, VR can also be built up here on the right-hand rear wheel 5.

Insgesamt betrachtet werden bei einem Fahrzeug mit Allradantrieb die Regelvorgänge bei Front- und Heckantrieb superponiert. Dadurch wird das Giermoment MCIER des Fahrzeugs 1 beim Übersteuern über beide Vorderräder 2,3 und beide Hinterräder 4, 5 bzw. wenigstens das kurveninnere Hinterrad 4 statt nur über das kurvenäussere Vorderrad 3 abgefangen, so dass ein harmonischer Regelvorgang ergibt und die Fahrstabilität schneller wiederhergestellt wird.Overall, in a vehicle with all-wheel drive, the control processes are superimposed on the front and rear wheel drive. As a result, the yaw moment M CIER of the vehicle 1 when oversteering over both front wheels 2, 3 and both rear wheels 4, 5 or at least the inside rear wheel 4 is intercepted instead of only on the outside front wheel 3, so that a harmonious control process results and the driving stability is restored more quickly becomes.

Im Zusammenhang mit der Erläuterung von Fig. 1 bis 3 wird erwähnt, dass eine Schwächung der/des Antriebsmomente(s) in einem "bestimmten Mass" erfolgen kann. Dieses Mass ist im wesentlichen bestimmt von Fahrzeugparametern im stationären und dynamischen Zustand, wie beipielsweise Spurweite, Achsabstand, Lenkwinkel, Schwerpunktslage und Achslastverteilung, sowie aüsseren Einflüssen, wie beispielsweise der Beschaffenheit der Fahrbahnoberfläche.In connection with the explanation of Fig. 1 to 3 it is mentioned that a weakening of the drive torque (s) can take place in a "certain measure". This measure is essentially determined by vehicle parameters in the stationary and dynamic state, such as track width, center distance, steering angle, center of gravity and axle load distribution, as well as external influences, such as the nature of the road surface.

Wie das zusätzlich an dem kurvenäusseren Vorderrad erzeugte Bremsmoment und das an den angetriebenen Rädern zusätzlich aufgebaute Antriebsmoment sowohl grössenordnungsmässig als auch verlaufsmässig (z.B. sprungförmig oder rampenförmig) eingestellt werden, wird bestimmt aus der Abweichung des vom Fahrer vorgegebenen Lenkeinschlags bzw. Lenkwinkels von der tatsächlichen Gierbewegung des Fahrzeugs um seine Hochachse, wobei auch die zeitlichen Ableitungen (Giergeschwindigkeit) dieser Abweichung herangezogen werden. Darüberhinaus werden vorgenannte Fahrzeugparameter im stationären und dynamischen Zustand berücksichtigt.How the braking torque additionally generated at the outside of the curve wheel and the drive torque additionally built up on the driven wheels are adjusted both in terms of order of magnitude and progressively (eg jump-shaped or ramp-shaped) is determined from the deviation of the driver's steering angle from the actual yawing motion of the driver Vehicle around its vertical axis, whereby the time derivatives (yaw rate) of this deviation are used. In addition, the aforementioned vehicle parameters are considered in the stationary and dynamic state.

Auch wenn im Ausführungsbeispiel das Fahren einer Linkskurve betrachtet wird, so ist jedenfalls einem Fachmann ohne weiteres verständlich, wie sich die Erfindung beim Fahren einer Rechtskurve auswirkt, wobei das Heck des Fahrzeugs beim Übersteuern seitlich nach links ausbricht und zum Stabilisieren des Fahrverhaltens zunächst an dem linken Vorderrad ein Bremsmoment aufgebaut wird.Although in the embodiment, the driving of a left turn is considered, so anyway one It will be readily understood by those skilled in the art how the invention works when driving a right turn, with the rear of the vehicle breaking sideways to the left when oversteer and braking torque initially being established on the left front wheel to stabilize driveability.

Claims (7)

  1. System for controlling vehicle-movement dynamics, which operates by means of the braking system and the drive train (6) of a vehicle (1) in order to prevent lateral breakaway of the vehicle (1), wherein a braking moment (MBRAKE,FR) is produced, by means of the braking system, on the front wheel (3) on the outside of the bend, and an additional drive moment (MDRIVE,FR, MDRIVE,FL, MDRIVE,RR, MDRIVE,RL) is built up, by means of the drive train (6), on the driven wheels (2, 3, 4, 5), for the purpose of preventing oversteering of the vehicle (1), and wherein a higher-order or lower-order drive-slip control comes into action if the slip on one or more driven wheels (2, 3, 4, 5) exceeds a predetermined value due to the additionally built-up drive moment (MDRIVE,FR, MDRNE,FL, MDRIVE,RR, MDRIVE,RL), characterized in that the additional drive moment (MDRIVE,FR, MDRIVE,FL, MDRIVE,RR, MDRIVE,RL) is first built up on the driven wheels (2, 3, 4, 5), and the braking moment (MBRAKE,FR) is produced on the front wheel (3) on the outside of the bend only if the oversteer of the vehicle (1) does not decrease after a predetermined period of time.
  2. System according to claim 1, characterized in that the braking moment (MBRA-KE,FR) produced on the front wheel (3) on the outside of the bend is built up only if the additional drive moment (MDRIVE,FR, MDRIVE,FL, MDRIVE,RR, MDRNE,RL) on the driven wheels (2, 3, 4, 5) has attained a predetermined value.
  3. System according to claim 1 or 2, characterized in that the braking moment (MBRAKE,FR) produced on the front wheel (3) on the outside of the bend is of an order of magnitude which is double that of the drive moment (MDRIVE,FR, MDRIVE,FL, MDRIVE,RR, MDRIVE,RL) previously built up additionally on a driven wheel (2, 3, 4, 5).
  4. System for controlling vehicle-movement dynamics, which operates by means of the braking system and the drive train (6) of a vehicle (1) in order to prevent lateral breakaway of the vehicle (1), wherein a braking moment (MBRAKE,FR) is produced, by means of the braking system, on the front wheel (3) on the outside of the bend, and an additional drive moment (MDRIVE,FR, MDPIVE,FL, MDRIVE,RR, MDRIVE,RL) is built up, by means of the drive train (6), on the driven wheels (2, 3, 4, 5), for the purpose of preventing oversteering of the vehicle (1), and wherein a higher-order or lower-order drive-slip control comes into action if the slip on one or more driven wheels (2, 3, 4, 5) exceeds a predetermined value due to the additionally built-up drive moment (MDRIVE,FR, MDRIVE,FL, MDRIVE,RR, MDRIVE,RL), characterized in that an additional braking moment (MBRAKE,RR) is produced on the rear wheel (5) on the outside of the bend when the additional drive moment (MDRIVE,RR, MDRIVE,RL) is built up on the rear wheels (4, 5).
  5. System according to claim 4, characterized in that the braking moment (MBRAKE,RR) additionally produced on the rear wheel (5) on the outside of the bend is of an order of magnitude which is equal to that of the drive moment (MDRIVE,RL) previously built up on the rear wheel (4) on the inside of the bend.
  6. System according to claim 4 or 5, characterized in that the additional braking moment (MBRAKE,RR) is produced on the rear wheel (5) on the outside of the bend only if the oversteer of the vehicle does not decrease after a predetermined period of time.
  7. System according to any one of claims 4 to 6, characterized in that the additional braking moment (MBRAKE,RR) is produced on the rear wheel (5) on the outside of the bend only if the drive moment (MDRIVE,RR) produced on the rear wheel (5) on the outside of the bend has attained a predetermined value.
EP02751123A 2001-07-10 2002-07-09 System for controlling driving dynamics Expired - Lifetime EP1404554B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10132576 2001-07-10
DE10132576A DE10132576B4 (en) 2001-07-10 2001-07-10 System for driving dynamics control
PCT/EP2002/007652 WO2003006292A1 (en) 2001-07-10 2002-07-09 System for controlling driving dynamics

Publications (2)

Publication Number Publication Date
EP1404554A1 EP1404554A1 (en) 2004-04-07
EP1404554B1 true EP1404554B1 (en) 2009-12-09

Family

ID=7690692

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02751123A Expired - Lifetime EP1404554B1 (en) 2001-07-10 2002-07-09 System for controlling driving dynamics

Country Status (5)

Country Link
US (1) US6953230B2 (en)
EP (1) EP1404554B1 (en)
AT (1) ATE451282T1 (en)
DE (2) DE10132576B4 (en)
WO (1) WO2003006292A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2869014B1 (en) * 2004-04-19 2006-07-07 Messier Bugatti Sa METHOD FOR BRAKING AN AIRCRAFT WITH SEVERAL BRAKE WHEELS
DE102005026729A1 (en) * 2005-06-09 2006-12-21 Lucas Automotive Gmbh Controlling method e.g. for driving conditions of vehicle, involves having controlling procedure for under steering driving conditions of vehicle with wheels of vehicle steered and brakes and or power controlled
DE102006031511A1 (en) * 2006-07-07 2008-01-17 Robert Bosch Gmbh Method for compensating the braking deceleration in a vehicle control
FR2916717A3 (en) * 2007-05-30 2008-12-05 Renault Sas Yawing moment application controlling device for motor vehicle, has front axle with wheels, where device emits setpoint towards piloting unit and control system respectively for applying brake and motor torques on wheels
DE102011082034A1 (en) * 2011-09-02 2013-03-07 Robert Bosch Gmbh Temporary compensation of unwanted deceleration by braking intervention of ESP functions

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW330182B (en) * 1995-09-26 1998-04-21 Honda Motor Co Ltd Process for controlling yaw moment in a vehicle
JPH09207736A (en) * 1996-02-02 1997-08-12 Aisin Seiki Co Ltd Motion control device of vehicle
JP3454011B2 (en) * 1996-04-02 2003-10-06 トヨタ自動車株式会社 Rear-wheel drive vehicle braking force control system
EP0842836B1 (en) * 1996-07-24 2003-06-04 Denso Corporation Vehicular motion controlling system
GB9711170D0 (en) * 1997-05-31 1997-07-23 Rover Group Vehicle steering control
DE19733674A1 (en) * 1997-08-04 1999-02-11 Itt Mfg Enterprises Inc Method for increasing the driving stability of a motor vehicle
US6415215B1 (en) * 2000-02-23 2002-07-02 Koyo Seiko Co., Ltd. Vehicle attitude control apparatus

Also Published As

Publication number Publication date
ATE451282T1 (en) 2009-12-15
EP1404554A1 (en) 2004-04-07
US6953230B2 (en) 2005-10-11
DE10132576A1 (en) 2003-01-30
DE10132576B4 (en) 2006-06-29
DE50214073D1 (en) 2010-01-21
WO2003006292A1 (en) 2003-01-23
US20040160121A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
EP1562810B1 (en) Method and device for stabilising a semi-trailer
EP0495797B1 (en) Wheel slip regulating system
DE60127922T2 (en) Device and method for controlling vehicle movement
EP2040962B1 (en) Method for compensating the braking deceleration during stability control
DE4404098C2 (en) Vehicle control device
DE19649660C2 (en) Vehicle motion control system
DE102005018519B4 (en) Method for driving dynamics control of motor vehicles
EP1406799B1 (en) Vehicle braking system
DE102018107612A1 (en) Motor vehicle with rear-wheel steering and torque vectoring on the rear wheel axle
EP1843906A1 (en) Driving dynamics control or regulating system for a two track, two axle motor vehicle
EP4051554A1 (en) Method for controlling a motor vehicle in emergency steering mode by means of front wheel brake-based torque vectoring
EP2398682A1 (en) Yaw rate control having simultaneous maximum deceleration
WO2001019652A1 (en) Method and device for stabilising a vehicle equipped with a slip-controlled brake system
EP1521688A2 (en) Method for regulating the handling of a vehicle
EP1404554B1 (en) System for controlling driving dynamics
EP1399345A1 (en) Method for controlling driving stability
DE102005029716B4 (en) Method for increasing the driving stability of a vehicle
WO1997026165A1 (en) Method for the increase of yawing moment of a vehicle
EP1759946B1 (en) Vehicle dynamic control system with a system for adjusting drive torque distribution between drive wheels on the same axle
EP1250250A1 (en) Method for increasing the manoeuvrability and driving stability of a vehicle during cornering
DE102005045385A1 (en) Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces
DE102014216229A1 (en) Method for improving a vehicle yaw stability control
DE10207378A1 (en) Improving vehicle braking characteristics involves maintaining or reducing maximum permissible braking pressure difference between wheels on axle if unstable behavior detected
DE69834307T2 (en) Method for vehicle wheel brake pressure control when braking in a curve
WO2021223919A1 (en) Method and device for regulating the driving dynamics in a motor vehicle which is electrically driven at the rear axle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20080326

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 50214073

Country of ref document: DE

Date of ref document: 20100121

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100409

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100320

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100309

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100310

26N No opposition filed

Effective date: 20100910

BERE Be: lapsed

Owner name: LUCAS AUTOMOTIVE G.M.B.H.

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091209

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180710

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180727

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50214073

Country of ref document: DE

Owner name: ZF ACTIVE SAFETY GMBH, DE

Free format text: FORMER OWNER: LUCAS AUTOMOTIVE GMBH, 56070 KOBLENZ, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200729

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50214073

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220201