DE102005045385A1 - Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces - Google Patents
Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces Download PDFInfo
- Publication number
- DE102005045385A1 DE102005045385A1 DE200510045385 DE102005045385A DE102005045385A1 DE 102005045385 A1 DE102005045385 A1 DE 102005045385A1 DE 200510045385 DE200510045385 DE 200510045385 DE 102005045385 A DE102005045385 A DE 102005045385A DE 102005045385 A1 DE102005045385 A1 DE 102005045385A1
- Authority
- DE
- Germany
- Prior art keywords
- changing
- contact forces
- yaw rate
- differential lock
- drive torque
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
- 239000003381 stabilizer Substances 0.000 claims description 2
- 239000000725 suspension Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/22—Conjoint control of vehicle sub-units of different type or different function including control of suspension systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/0195—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the regulation being combined with other vehicle control systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/02—Spring characteristics, e.g. mechanical springs and mechanical adjusting means
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/02—Spring characteristics, e.g. mechanical springs and mechanical adjusting means
- B60G17/021—Spring characteristics, e.g. mechanical springs and mechanical adjusting means the mechanical spring being a coil spring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G21/00—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces
- B60G21/02—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected
- B60G21/04—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically
- B60G21/05—Interconnection systems for two or more resiliently-suspended wheels, e.g. for stabilising a vehicle body with respect to acceleration, deceleration or centrifugal forces permanently interconnected mechanically between wheels on the same axle but on different sides of the vehicle, i.e. the left and right wheel suspensions being interconnected
- B60G21/055—Stabiliser bars
- B60G21/0551—Mounting means therefor
- B60G21/0553—Mounting means therefor adjustable
- B60G21/0555—Mounting means therefor adjustable including an actuator inducing vehicle roll
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W30/00—Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
- B60W30/02—Control of vehicle driving stability
- B60W30/045—Improving turning performance
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2500/00—Indexing codes relating to the regulated action or device
- B60G2500/20—Spring action or springs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/21—Traction, slip, skid or slide control
- B60G2800/214—Traction, slip, skid or slide control by varying the load distribution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2800/00—Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
- B60G2800/90—System Controller type
- B60G2800/95—Automatic Traction or Slip Control [ATC]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
- B60W10/12—Conjoint control of vehicle sub-units of different type or different function including control of differentials
- B60W10/16—Axle differentials, e.g. for dividing torque between left and right wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W2710/00—Output or target parameters relating to a particular sub-units
- B60W2710/22—Suspension systems
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Retarders (AREA)
- Arrangement And Driving Of Transmission Devices (AREA)
Abstract
Description
Die Erfindung betrifft ein Fahrdynamik-Regelsystem für ein zweispuriges, mehrachsiges Kraftfahrzeug mit einer regelbaren Differentialsperre zur Veränderung der Aufteilung des Antriebsmomentes auf die beiden angetriebenen Räder einer Achse, sowie mit einem System zur Veränderung der Radaufstandskräfte.The The invention relates to a vehicle dynamics control system for a two-lane, multiaxial Motor vehicle with a variable differential lock for change the division of the drive torque to the two driven Wheels one Axis, as well as with a system for changing the wheel contact forces.
Grundsätzlich bestehen vielfältige Möglichkeiten, auf die Fahrdynamik eines zweispurigen Kraftfahrzeugs Einfluss zu nehmen bzw. diese insbesondere in instabilen Fahrzuständen möglichst sicher und stabil zu gestalten. Insbesondere soll hierbei die Abweichung zwischen der tatsächlichen Ist-Gierrate und der sich aus dem Lenkwunsch des Fahrers und der Fzg.-Längsgeschwindigkeit ergebenden Soll-Gierrate minimal sein. Ein entsprechender Regelvorgang zur Minimierung der Gierraten-Abweichung soll dabei in einer für den Fahrer bzw. die Fahrzeug-Insassen komfortablen Weise erfolgen, d.h. die allgemein verwendete Methode durch gezielten asymmetrischen Bremseneingriff oder Herabsetzung des vom Kfz-Antriebsaggregat abgegebenen Antriebsmoments (wie beim bekannten ESP) ist dabei weniger wünschenswert, wenngleich äußerst effizient.Basically exist diverse Options, on the driving dynamics of a two-lane motor vehicle influence Take this or possible, especially in unstable driving conditions as possible safe and stable. In particular, this is the deviation between the actual Actual yaw rate and based on the driver's steering wish and the Fzg. longitudinal speed resulting target yaw rate be minimal. A corresponding control process to minimize the yaw rate deviation is intended in one for the driver or the vehicle occupants are comfortable, i. e. the commonly used method through targeted asymmetric brake intervention or reduction of the output from the motor vehicle drive torque (as in the known ESP) is less desirable, albeit extremely efficient.
Hiermit soll nun ein Fahrdynamik-Regelsystem für ein Kraftfahrzeug nach dem Oberbegriff des Anspruchs 1 aufgezeigt werden, das eine komfortablere Stabilisierung ohne spürbare Veränderung der Fzg.-Längsdynamik ermöglicht, zumindest soweit, als die hiermit vorgeschlagenen Maßnahmen für eine erfolgreiche Fzg.-Stabilisierung ausreichend sind (=Aufgabe der vorliegenden Erfindung.Herewith is now a driving dynamics control system for a motor vehicle after the The preamble of claim 1 are shown, which is a more comfortable Stabilization without noticeable change longitudinal vehicle dynamics allows at least as far as the measures proposed herewith for a successful one Fzg. Stabilization are sufficient (= task of the present Invention.
Die Lösung dieser Aufgabe dadurch gekennzeichnet, dass bei Auftreten von Antriebs-Schlupf an den angetriebenen Rädern dieser mittels geeigneter Ansteuerung der Differentialsperre reduziert wird und dass danach eine Abweichung zwischen der Ist-Gierrate und der Soll-Gierrate des Fahrzeugs durch geeignete Veränderung der Radaufstandskräfte insbesondere an den angetriebenen Rädern reduziert wird. Vorzugsweise kann oder können dabei der Antriebsschlupf und/oder die Gierraten-Abweichung nicht nur reduziert, sondern soweit als möglich minimiert werden.The solution this task characterized in that when occurrence of drive slip on the driven wheels this reduced by means of suitable control of the differential lock and that thereafter a deviation between the actual yaw rate and the desired yaw rate of the vehicle by appropriate change the wheelwright forces is reduced in particular on the driven wheels. Preferably can or can while the drive slip and / or the yaw rate deviation is not only reduced, but minimized as much as possible.
Grundsätzlich bekannt sind sowohl eine Schlupfregelung als auch eine Fahrdynamikregelung durch aktive Radlastverteilung, ferner sowohl eine Fahrdynamikregelung als auch eine Schlupfregelung durch Veränderung Antriebskraftverteilung zwischen der linken und der rechten Fzg-Seite (bzw. zwischen den entsprechenden Rädern, vorzugsweise mittels eines grundsätzlich bekannten regelbaren Differentialsperren-Systems), jedoch werden bislang diese einzelnen Ansätze jeweils für sich behandelt und können daher in Kombination zu Störungen untereinander führen. Auch müssen bislang bei der Auslegung der Einzelsysteme Kompromisse gemacht werden, wohingegen individuelle Stärken, die erst im Systemverbund hervortreten können, nicht ausgeschöpft werden können, so dass die Leistung des Systemverbundes nicht mehr oder sogar weniger als die Summe der Einzelleistungen ist. So kann beispielsweise das Giermoment über Reifenlängskräfte, das von einem Differentialsperren-System erzeugt wird, in gesperrtem Zustand nicht beeinflusst werden, sondern hängt von den äußeren Gegebenheiten, wie Radschlupf, Reibwert, Radlast, etc. ab.Basically known are both a slip control and a vehicle dynamics control by active wheel load distribution, furthermore both a vehicle dynamics control as well as a slip control by changing driving force distribution between the left and right sides of the vehicle (or between the corresponding wheels, preferably by means of a generally known controllable Differential lock system), but so far these individual approaches each for treated and can therefore in combination to disorders lead one another. Also need So far compromises have been made in the design of individual systems individual strengths, which are only in the system network can emerge not exhausted can be so that the performance of the system network no longer or even less than the sum of the individual services. For example, the Yaw moment over Tire longitudinal forces, the is generated by a differential lock system in locked Condition can not be influenced, but depends on the external conditions, like wheel slip, coefficient of friction, wheel load, etc.
Hiermit wird nun vorgeschlagen, die Rad-Aufstandskraft insbesondere an den angetriebenen Rädern (also bei einem Fahrzeug mit Heckantrieb an der Hinterachse) und ferner die Antriebs-Momente an den angetriebenen Rädern (bspw. an den beiden Hinterrädern) in Kombination so zu verteilen, dass eine Schlupfregelung (durch die Antriebsmoment-Verteilung) für optimale Traktion bei gleichzeitiger, unabhängiger Aufprägung eines Giermomentes durch unterschiedliche Reifenlängskräfte möglich ist, um somit auch die Gierrate regeln zu können. Die gezielte Verteilung der Reifen-Längskräfte zwischen linker und rechter Fzg.-Seite erfolgt dabei durch gezielte Einstellung des Verhältnisses der jeweiligen Radaufstandskräfte. Auf diese Weise kann der bislang vorliegende Zielkonflikt zwischen optimaler Querdynamikregelung und optimaler Längsdynamikregelung aufgelöst werden.Herewith It is now proposed that the wheel rioting force in particular to the driven wheels (So in a vehicle with rear-wheel drive on the rear axle) and Furthermore, the driving moments on the driven wheels (eg. at the two rear wheels) in combination so that a slip control (by the drive torque distribution) for optimal Traction with simultaneous, independent imprint of a Giermomentes by different tire longitudinal forces is possible, thus also the To regulate yaw rate. The targeted distribution of tire longitudinal forces between on the left and right side of the vehicle, this is done by selective adjustment of the relationship the respective wheel contact forces. In this way, the hitherto existing conflict of objectives between optimal lateral dynamics control and optimal longitudinal dynamics control are resolved.
Während – wie bereits erwähnt – als System zur gezielten Verteilung des Antriebsmoments zwischen dem rechten und linken Fzg.-Antriebsrad eine geregelte Differentialsperre eingesetzt werden soll, kann zur Veränderung der einzelnen Radaufstandskräfte ein System mit Fußpunktverschiebung der zwischen den Rädern und dem Fzg.-Aufbau vorgesehenen Tragfeder(n) vorgesehen sein oder es können vorzugsweise an beiden Achsen des Fahrzeugs geteilte Querstabilisatoren mit gegeneinander tordierbaren Stabilisatorhälften vorgesehen sein.While - as already mentioned - as a system for targeted distribution of the drive torque between the right and left Fzg. Drive wheel used a regulated differential lock should be, can change the individual wheel-upforce a system with base shift the between the wheels and the Fzg. structure provided suspension spring (s) to be provided or it can preferably divided on both axles of the vehicle anti-roll bars with each other twistable stabilizer halves be provided.
Betrachtet werde im folgenden eine Fahrsituation, bei welcher der Fahrzustand vom Sollverhalten abweicht und das heckgetriebene Fahrzeug gleichzeitig beschleunigt wird, wobei zunächst der Fall des Untersteuerns (=Ist-Gierrate ist kleiner als die Soll-Gierrate) erläutert wird. Bei Auftreten von Radschlupf an den angetriebenen Hinterrädern wird dann zunächst die regelbare Differentialsperre soweit geschlossen, dass der Radschlupf minimiert wird, wobei dann also Antriebs-Moment von einem Rad auf das andere Rad der angetriebenen Achse übertragen wird. Daraufhin werden die Radlasten an den angetriebenen Rädern derart eingestellt, dass das angetriebene äußere Rad belastet wird, so dass an diesem Rad eine höhere Längskraft und folglich bezüglich des Gesamtfahrzeugs ein eindrehendes Moment generiert wird. Auf diese Weise kann das Ist-Giermoment dem Soll-Giermoment des Fahrzeugs angeglichen werden.Considered below is a driving situation in which the driving state deviates from the nominal behavior and the rear-wheel drive vehicle is accelerated simultaneously, wherein first the case of understeer (= actual yaw rate is smaller than the target yaw rate) is explained. When wheel slippage occurs on the driven rear wheels, the controllable differential lock is then closed to the extent that the wheel slip is minimized, in which case the drive torque of one wheel is then reduced the other wheel of the driven axle is transmitted. Thereafter, the wheel loads on the driven wheels are adjusted so that the driven outer wheel is loaded, so that a higher longitudinal force and consequently with respect to the entire vehicle a einrehendes moment is generated on this wheel. In this way, the actual yaw moment can be adjusted to the desired yaw moment of the vehicle.
Im übrigen findet bei einer solchen Verlagerung von Radlast zum angetriebenen hinteren kurvenäußeren Rad selbsttätig eine Radlast-Verlagerung zum vorderen kurven-inneren Rad statt oder anders ausgedrückt wird hierdurch die Gewichtung der Wankmomentverteilung nach hinten verschoben. Dadurch ergibt sich auch ein neutraleres Eigenlenkverhalten, was gleichsinnig zu dem aus den unterschiedlichen Längskräften gewonnenen Giermoment wirkt. Ist am regelbaren Sperrdifferential zur Schlupf-Reduzierung die maximale Sperrwirkung von 100% erforderlich, so ergibt sich die gleiche Drehzahl für das linke und rechte Rad und übermäßiger Schlupf wird auch so vermieden, jedoch hängt dann die Verteilung der Längskräfte noch vom Schlupf und von der Aufstandskraft ab. Der radindividuelle Schlupf ist in diesem Fall u.a. abhängig vom Kurvenradius und kann bei vollständig gesperrtem Differential nicht beeinflusst werden. Jedoch können dann, wenn wie vorgeschlagen zusätzlich die Radlasten verändert werden, die Längskräfte an den angetriebenen Rädern und somit das Giermoment immer noch in Grenzen beeinflusst werden.Otherwise finds at such a shift from wheel load to driven rear outside wheel automatic a wheel load shift to the front curve-inner wheel instead of or in other words This makes the weighting of the roll moment distribution to the rear postponed. This also results in a more neutral self-steering behavior, what in the same direction to that obtained from the different longitudinal forces Yaw moment acts. Is the maximum at the controllable locking differential for slip reduction Blocking effect of 100% required, the result is the same speed for the left and right wheel and excessive slippage is also avoided, but hangs then the distribution of longitudinal forces still from slippage and riotousness. The wheel-specific slip is in this case u.a. dependent from the radius of curvature and can with fully locked differential not affected. However, if so, as suggested additionally changed the wheel loads be, the longitudinal forces to the driven wheels and thus the yaw moment is still limited.
Tritt bei angetriebenen Hinterrädern unter Schlupf sog. Übersteuern auf, d.h. ist die tatsächliche Gierrate größer als die Soll-Gierrate, so werden erfindungsgemäß nach entsprechendem schlupfminimierendem Schließen der Differentialsperre die jeweiligen Radlasten so eingestellt, dass das angetriebene kurveninnere Rad stärker belastet wird, damit so eine höhere Längskraft an diesem Rad und folglich ein ausdrehendes Moment generiert wird, um die Ist-Gierrate zu reduzieren. Auch bei dieser Verlagerung von Radlast zum angetriebenen Rad hinten kurveninnen verlagert sich selbsttätig Radlast zum vorderen kurvenäußeren Rad oder anders ausgedrückt wird die Gewichtung der Wankmomentverteilung nach vorne verschoben. Dadurch ergibt sich ein untersteuerndes Eigenlenkverhalten, was ebenfalls gleichsinnig zum Giermoment aus den Längskräften wirkt Allgemein beschrieben erfolgt also zunächst eine Fahrzustandserkennung, d.h. eine Überprüfung dahingehend, ob Antriebsschlupf vorliegt und ob eine Gierraten-Abweichung vorliegt. Im Falle derartiger Abweichungen vom Sollverhalten wird zunächst die Differentialsperre soweit geschlossen, dass übermäßiger Schlupf vermieden und somit eine Übertragung des Antriebsmoments zwischen den angetriebenen Rädern und der Fahrbahn bestmöglich erfolgt, wonach über die Radlastverteilung eine Gierratenregelung durchgeführt wird.kick with driven rear wheels under slip so-called oversteer on, i. is the actual yaw rate greater than the desired yaw rate, so according to the invention according to appropriate schlupfminimierendem Shut down the differential lock set the respective wheel loads so that the driven inside wheel is more heavily loaded, so so a higher one longitudinal force on this wheel and consequently a spinning moment is generated to reduce the actual yaw rate. Even with this shift of Wheel load to the driven wheel at the rear turns inside automatic Wheel load to the front outside wheel or in other words shifted the weighting of the rolling moment distribution forward. Thereby results in an understeering self-steering behavior, which also in the same direction to yaw moment from the longitudinal forces acts General Thus, a description is first made Driving condition detection, i. a check as to whether traction slip is present and whether a yaw rate deviation exists. In case of such deviations from the target behavior is first the differential lock closed so far that excessive slippage avoided and thus a transfer of the Drive torque between the driven wheels and the roadway is best possible, what about the wheel load distribution a yaw rate control is performed.
Hiermit ist die erzielbare Leistung des Gesamtverbundes höher als die Summe der Einzelsysteme, da eine Gierratenregelung auch bei größtmöglicher Traktion durchgeführt werden kann. Dadurch müssen bspw. ein das Fahrverhalten ebenfalls stabilisierender Eingriff in das Fzg.-Bremssystem oder eine Reduktion des vom Fzg.-Antriebsaggregat abgegebenen Antriebsmoments überhaupt nicht durchgeführt werden oder zumindest erst nennenswert später, nämlich wenn sich herausstellt, dass das Potential der Gierraten-Regelung durch die vorgeschlagene geeignete Veränderung der Radaufstandskräfte nicht ausreicht, wobei noch darauf hingewiesen sei, dass durchaus eine Vielzahl von Details abweichend von obigen Erläuterungen gestaltet sein kann, ohne den Inhalt der Patentansprüche zu verlassen.Herewith the achievable performance of the overall network is higher than the sum of the individual systems, since a yaw rate control also at utmost Traction performed can be. Thereby have to For example, a driving behavior also stabilizing engagement in the Fzg. braking system or a reduction of the Fzg. drive unit delivered drive torque at all not done or at least not until later, when it turns out that the potential of yaw rate regulation by the proposed suitable change the wheelwright forces is not sufficient, although it should be noted that quite a variety of details differ from the above explanations may be designed without departing from the content of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510045385 DE102005045385A1 (en) | 2005-09-23 | 2005-09-23 | Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200510045385 DE102005045385A1 (en) | 2005-09-23 | 2005-09-23 | Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces |
Publications (1)
Publication Number | Publication Date |
---|---|
DE102005045385A1 true DE102005045385A1 (en) | 2007-03-29 |
Family
ID=37832541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
DE200510045385 Ceased DE102005045385A1 (en) | 2005-09-23 | 2005-09-23 | Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces |
Country Status (1)
Country | Link |
---|---|
DE (1) | DE102005045385A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008003901A1 (en) * | 2008-01-10 | 2009-07-16 | Bayerische Motoren Werke Aktiengesellschaft | Wheel load adjusting device for use in double-track, two-axle motor vehicle, involves increasing vertical-load of wheel of driven axle supplying large drive torque during appropriate distribution of drive torque by traction control system |
EP1995091A3 (en) * | 2007-05-17 | 2010-07-07 | Aisin Seiki Kabushiki Kaisha | Apparatus for controlling load for vehicle driving wheel |
DE102015213956A1 (en) * | 2015-07-23 | 2017-01-26 | Audi Ag | Method for operating a four-wheel drive vehicle with active Federfußpunktverstellung |
DE102018201191A1 (en) * | 2018-01-25 | 2019-07-25 | Audi Ag | Method for operating a driver assistance system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3637820A1 (en) * | 1985-11-08 | 1987-05-14 | Nissan Motor | METHOD AND DEVICE FOR CONTROLLING THE SLIP LIMIT IN A MOTOR VEHICLE DIFFERENTIAL GEARBOX |
DE19749005A1 (en) * | 1997-06-30 | 1999-01-07 | Bosch Gmbh Robert | Method and device for regulating movement variables representing vehicle movement |
-
2005
- 2005-09-23 DE DE200510045385 patent/DE102005045385A1/en not_active Ceased
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3637820A1 (en) * | 1985-11-08 | 1987-05-14 | Nissan Motor | METHOD AND DEVICE FOR CONTROLLING THE SLIP LIMIT IN A MOTOR VEHICLE DIFFERENTIAL GEARBOX |
DE19749005A1 (en) * | 1997-06-30 | 1999-01-07 | Bosch Gmbh Robert | Method and device for regulating movement variables representing vehicle movement |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1995091A3 (en) * | 2007-05-17 | 2010-07-07 | Aisin Seiki Kabushiki Kaisha | Apparatus for controlling load for vehicle driving wheel |
DE102008003901A1 (en) * | 2008-01-10 | 2009-07-16 | Bayerische Motoren Werke Aktiengesellschaft | Wheel load adjusting device for use in double-track, two-axle motor vehicle, involves increasing vertical-load of wheel of driven axle supplying large drive torque during appropriate distribution of drive torque by traction control system |
DE102015213956A1 (en) * | 2015-07-23 | 2017-01-26 | Audi Ag | Method for operating a four-wheel drive vehicle with active Federfußpunktverstellung |
DE102015213956B4 (en) | 2015-07-23 | 2020-07-30 | Audi Ag | Method for operating a four-wheel drive vehicle with active spring base adjustment |
DE102018201191A1 (en) * | 2018-01-25 | 2019-07-25 | Audi Ag | Method for operating a driver assistance system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102006026188B4 (en) | Method for distributing drive torque | |
EP2571703B1 (en) | Method for operating a motor vehicle and motor vehicle | |
EP1843906B1 (en) | Driving dynamics control or regulating system for a two track, two axle motor vehicle | |
DE102007051590A1 (en) | Method for distributing drive or drag torques on the driven wheels of a motor vehicle | |
EP1997715A2 (en) | Active suspension system of a double tracked vehicle and its operating procedure | |
DE102009007357B4 (en) | Method for controlling an active chassis of a two-axle, two-lane motor vehicle | |
EP4093650B1 (en) | Method for controlling a motor vehicle at low speeds by means of differential drive torque at the rear axle | |
DE112013001485T5 (en) | Braking force control device | |
DE102009046423A1 (en) | Method for operating a vehicle and vehicle | |
DE3627550C2 (en) | ||
DE102009022302A1 (en) | Two-tracked motor vehicle control/regulation method, involves adjusting rolling moment support at axles, and enabling wheel- and/or axle-individual control/regulation of drive moment by vehicle regulation system depending on variable | |
DE102005045385A1 (en) | Driving dynamics-regulation system for double-track, multi-axle motor vehicle, has differential lock changing distribution of drive torque, where difference between actual and reference- sheer rates is reduced by changing contact forces | |
EP2398682A1 (en) | Yaw rate control having simultaneous maximum deceleration | |
DE102012223984A1 (en) | Method for influencing driving dynamics of motor vehicle by using active actuators variable suspension, involves performing control of actuators based on detection of dynamic driving maneuver | |
EP0873257B1 (en) | Method for the increase of yawing moment of a vehicle | |
WO2017220270A1 (en) | Steering device for a motor vehicle | |
DE102012202684A1 (en) | Method for vehicle and/or driving stability control for motor car, involves changing control strategy of vehicle and/or driving stability control in response to intensity of detected yaw moment distribution between axle wheels | |
EP1759946B1 (en) | Vehicle dynamic control system with a system for adjusting drive torque distribution between drive wheels on the same axle | |
EP1529718B1 (en) | Motor vehicle with steerable front wheels and steering function of rear wheels | |
DE10132576B4 (en) | System for driving dynamics control | |
DE10128690A1 (en) | Driving stability control for vehicle involves electronic stability program intervention at front wheel on inside of bend if force transfer threshold value is reached during intervention at rear wheel | |
EP1462292B1 (en) | Variable torque distribution control system | |
DE102014216229A1 (en) | Method for improving a vehicle yaw stability control | |
DE102016201809B4 (en) | Method for improving the driving behavior of a motor vehicle by means of at least one adaptive wheel | |
DE102008046259A1 (en) | Driving stability determining method for use during braking of e.g. passenger car, involves determining position of center of gravity of vehicle and side coefficients of wheels, and determining value for driving stability of vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
OM8 | Search report available as to paragraph 43 lit. 1 sentence 1 patent law | ||
R012 | Request for examination validly filed |
Effective date: 20120615 |
|
R016 | Response to examination communication | ||
R002 | Refusal decision in examination/registration proceedings | ||
R003 | Refusal decision now final |