EP1403492B1 - Method for operating a direct injection engine - Google Patents

Method for operating a direct injection engine Download PDF

Info

Publication number
EP1403492B1
EP1403492B1 EP03021026A EP03021026A EP1403492B1 EP 1403492 B1 EP1403492 B1 EP 1403492B1 EP 03021026 A EP03021026 A EP 03021026A EP 03021026 A EP03021026 A EP 03021026A EP 1403492 B1 EP1403492 B1 EP 1403492B1
Authority
EP
European Patent Office
Prior art keywords
mode
homogeneous
operating
characteristic map
catalytic converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03021026A
Other languages
German (de)
French (fr)
Other versions
EP1403492A3 (en
EP1403492A2 (en
Inventor
Ekkehard Dr. Pott
Helmut Sperling
Bernd Dr. Stiebels
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Publication of EP1403492A2 publication Critical patent/EP1403492A2/en
Publication of EP1403492A3 publication Critical patent/EP1403492A3/en
Application granted granted Critical
Publication of EP1403492B1 publication Critical patent/EP1403492B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0814Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with catalytic converters, e.g. NOx absorption/storage reduction catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3076Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/027Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus
    • F02D41/0275Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to purge or regenerate the exhaust gas treating apparatus the exhaust gas treating apparatus being a NOx trap or adsorbent

Definitions

  • the invention relates to a method for operating a direct-injection internal combustion engine, which has a catalyst system with a NOx storage catalytic converter, in various operating modes, with NOx being stored in the NOx storage catalytic converter in at least one first operating mode and NOx being removed from the NOx converter in at least one second operating mode.
  • Storage catalyst is discharged, according to the preamble of claim 1.
  • each point in a load-speed map of the internal combustion engine is assigned a specific operating license:
  • the aim is to select the operating point-dependent most fuel-efficient operating mode. For various reasons, however, this is not always possible: With a cold engine and catalyst system, only stoichiometric homogeneous operation is initially permitted until the catalyst system has reached or exceeded a certain minimum temperature. Additionally, for example, stratified operation and homogeneous lean operation must be periodically exited for NOx regeneration or desulfurization.
  • the invention has for its object to modify a method of the above type with respect to.
  • the mode switch so that while maintaining a total of low-emission operation, a reduction in consumption is achieved.
  • At least one point in a load-speed characteristic map of the internal combustion engine is assigned a predetermined, maximum period of time for each first operating mode, after which a switch is made to a second operating mode assigned to this point.
  • a third map area is provided in which the internal combustion engine only for a predetermined Duration is operated in the first mode and is switched after the expiration of the predetermined period of time in the second mode of the second map area.
  • the first operating mode comprises a lean operation, in particular a stratified operation and / or a homogeneous lean operation, with a value lambda for an air-fuel ratio greater than 1.1 and the second operating mode a stoichiometrically homogeneous operation with a value lambda for an air Fuel ratio equal to 1.
  • a third operating mode with a NOx regeneration of the NOx storage catalytic converter and a lambda value for an air-fuel ratio smaller than 1 is provided, which is switched depending on an operating state of the internal combustion engine and a loading state of the NOx storage catalytic converter to this third mode ,
  • the predetermined maximum period of time is less than or equal to 80% of the time that elapses between two NO x regeneration in a continuous operation in the first mode associated with that point.
  • the predetermined, maximum period of time has a value between 0 and 20 seconds, in particular a value between 0 and 5 seconds.
  • Fig. 3 1 illustrates graphically a first preferred embodiment of a load-speed characteristic diagram of an internal combustion engine for a method according to the invention, wherein a rotational speed is plotted on the horizontal axis 10 and an engine torque (Nm) on the vertical axis 12.
  • the load-speed map is divided into areas 14, 15, 16 and 18.
  • a stoichiometrically homogeneous operation is in the region 14, in the region 16 a homogeneous lean operation and in the region 18 a shift operation is permitted.
  • the modes stoichiometric homogeneous and homogeneous-lean are also in the respective underlying areas 15, 16 and 18 authorized.
  • Fig. 4 graphically illustrates an associated progression of travel speed 20 and requested torque 22 plotted on vertical axis 24 versus time (sec) plotted on horizontal axis 26.
  • the aforementioned modes of stoichiometric homogeneous, homogeneous-lean and stratified charge operation are subject to a certain hierarchical order.
  • the shift operation represents the lowest hierarchy, followed by the homogeneous-lean operation.
  • the highest hierarchical level is stoichiometrically homogeneous.
  • the size and shape of the operating windows depend on different requirements. An important criterion is to favor the mode with the lowest consumption. As further criteria exhaust gas composition, smoothness, exhaust gas temperature, tendency to knock etc. are used. If, in dynamic operation, an operating mode range 16 or 18 is left in the direction of higher speeds and / or loads, the system switches over to a higher-priority operating mode, i. for example, from shift operation (area 18) to homogeneous lean operation (area 16) or stoichiometrically homogeneous operation (area 14) and from homogeneous lean operation (area 16) to stoichiometric homogeneous operation (area 14).
  • the operating mode limit of homogeneous-lean operation is largely defined by the exhaust gas composition.
  • the NOx storage catalytic converter commonly used in lean-running gasoline engines requires to achieve optimum NOx storage efficiency an admission with the lowest possible NOx mass flow with the lowest possible exhaust gas mass flow and at the same time maintaining a working temperature window of about 250 ° C to a maximum of about 500 ° C.
  • the NOx mass flow increases significantly and can exceed values of 50 g / h.
  • the NOx storage catalyst is saturated very quickly at these NOx mass flows, so that either a very frequent NOx regeneration is required, which fuel consumption disadvantages and also emission disadvantages brings with it, with each NOx regeneration, a small pollutant breakthrough, or at higher acceptance NOx breakthroughs the required pollutant conversion is not achievable.
  • the area 15 is provided in which only a temporary residence is provided in an operating mode in which NOx stores itself in the NOx storage catalytic converter.
  • a load belt 15 of 1 to 4 bar width and / or a speed belt of max. 1000 / min inserted into the operating window 14 for the stoichiometric homogeneous operation.
  • the homogeneous-lean operation is allowed for a predetermined period of time, for example, 0.5 s to 20 s, in particular 2 s to 5 s.
  • the power demand at 34 leads to a change of the operating state of the internal combustion engine in the transition region 15 between approval of homogeneous-lean operation (area 16) and stoichiometric homogeneous operation (area 14).
  • area 16 homogeneous-lean operation
  • area 14 stoichiometric homogeneous operation
  • the mode of operation is continued homogeneous-lean and not immediately requested the stoichiometric homogeneous operation, which also does not lead to a NOx regeneration. Since the load request remains at 34 with approximately 1.5 s in time under the predetermined time for the region 15 time, is not switched to the stoichiometric homogeneous operation.
  • the operating state of the internal combustion engine at 36 is again in the range 18 for the shift operation and the internal combustion engine is accordingly operated in stratified operation, since the NOx storage catalyst is not yet completely saturated.
  • the emission behavior is also more favorable overall because, because of the very short residence time in the area 15, the increased NOx raw emissions do not yet lead to a supersaturation of the NOx storage catalytic converter and thus to NOx breakthroughs.
  • the emission peaks occurring during NOx regeneration are eliminated.
  • a third region is provided in which the first mode (homogeneous lean operation) is allowed only for a predetermined period of time.
  • the third area (belt 15) Only when exceeding this predetermined period of time, ie, when the operating condition of the internal combustion engine is longer than the predetermined period in the third area (belt 15) is switched from the first mode (homogeneous-lean operation) in the second mode (stoichiometric homogeneous operation).
  • the third area (belt 15) lies in a region of the load-speed characteristic map in which actually the first operating mode (homogeneous-lean operation) would not be permitted.
  • the hard boundary between regions 14 and 16 is softened in favor of the first mode (homogeneous-lean operation).
  • FIG Fig. 5 An alternative embodiment of the invention is shown in FIG Fig. 5 shown.
  • engine map an internal combustion engine
  • Nm the engine torque
  • an extremely high value is entered at the operating point 38 for the stratified operation and the homogeneous lean operation, for example 100,000 seconds.
  • the value 0 seconds is entered for the stratified operation and again 100,000 seconds for the homogeneous lean operation.
  • the value "0 seconds" at an operating point for an operating mode essentially means that this mode is not permitted at the corresponding operating point.
  • a high value for the residence time means that the corresponding operating mode is unrestrictedly permitted at this operating point.
  • the value 0 seconds is again entered for the shift operation and, for example, the value 3 seconds for the homogeneous lean operation.
  • a corresponding number of such operating points in the engine map generates an area in which the first operating mode is permitted only temporarily, ie for a maximum of the predetermined time period or dwell time.
  • the dashed lines define boundaries at which the predetermined periods of time for the first operating modes (lean operation or homogeneous lean operation) change. However, within these limits, changes in the predetermined time periods are possible. So is at the operating point 44 next the value 0 seconds for the shift operation a value deviating from the operating point 42 for the homogeneous-lean operation of, for example, 7 seconds entered. At operating point 46, the value 0 seconds is entered for stratified operation and homogeneous lean operation.
  • the predetermined period of time or residence time is, for example, less than or equal to 80% of the time interval which lies between two successive NOx regenerations during operation with the first operating mode (lean operation: stratified operation and / or homogeneous lean operation).

Abstract

Process for operating a direct injection I.C. engine containing a catalyst system with a nitrogen oxides storage catalyst comprises storing nitrogen oxides in the storage catalyst under a first operating condition, and releasing the nitrogen oxides from the catalyst under a second operating condition. A predetermined maximum time duration is assigned to each point in a load rotational speed mapping for each first operating condition which then switches to a second operating condition assigned to this point. The first operating condition comprises a lean operation, especially a shift operation and/or homogeneous lean operation. The lambda value for an air-fuel ratio in the first operating condition is more than 1.1. The second operating condition comprises a stoichiometric operation with a lambda value for an air-fuel ratio equal to 1. The predetermined maximum time duration is 0-20 seconds, preferably 0-5 seconds.

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine, welche ein Katalysatorsystem mit einem NOx-Speicherkatalysator aufweist, in verschiedenen Betriebsarten, wobei sich in wenigstens einer ersten Betriebsart NOx in den NOx-Speicherkatalysator einlagert und in wenigstens einer zweiten Betriebsart NOx aus dem NOx-Speicherkatalysator abgegeben wird, gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for operating a direct-injection internal combustion engine, which has a catalyst system with a NOx storage catalytic converter, in various operating modes, with NOx being stored in the NOx storage catalytic converter in at least one first operating mode and NOx being removed from the NOx converter in at least one second operating mode. Storage catalyst is discharged, according to the preamble of claim 1.

Bei direkteinspritzenden, schichtladefähigen Ottomotoren mit Katalysatorsystem sind mehrere Betriebsarten möglich, wobei jedem Punkt in einem Last-Drehzahl-Kennfeld der Brennkraftmaschine eine bestimmte Betriebsartenzulassung zugeordnet ist: Ein stöchiometrischer Homogenbetrieb mit Lambda gleich 1,0 im gesamten Kennfeldbereich; ein Schichtbetrieb bei kleinen Lasten und Drehzahlen sowie ein Homogen-Magerbetrieb mit Lambda bis maximal 1,6 bis in den Bereich mittlerer Lasten und Drehzahlen. Grundsätzlich wird angestrebt, die betriebspunktabhängig verbrauchsgünstigste Betriebsart zu wählen. Aus verschiedenen Gründen ist dies jedoch nicht immer möglich: Bei kaltem Motor und Katalysatorsystem wird zunächst nur der stöchiometrische Homogenbetrieb zugelassen, bis das Katalysatorsystem eine gewisse Mindesttemperatur erreicht bzw. überschritten hat. Zusätzlich muß beispielsweise der Schichtbetrieb und der Homogen-Magerbetrieb periodisch zur NOx-Regeneration oder Entschwefelung verlassen werden.In direct injection, stratified charge gasoline engines with catalyst system several modes are possible, each point in a load-speed map of the internal combustion engine is assigned a specific operating license: A stoichiometric homogeneous operation with lambda equal to 1.0 in the entire map area; a shift operation at low loads and speeds as well as a homogeneous lean operation with lambda up to 1.6 in the range of average loads and speeds. In principle, the aim is to select the operating point-dependent most fuel-efficient operating mode. For various reasons, however, this is not always possible: With a cold engine and catalyst system, only stoichiometric homogeneous operation is initially permitted until the catalyst system has reached or exceeded a certain minimum temperature. Additionally, for example, stratified operation and homogeneous lean operation must be periodically exited for NOx regeneration or desulfurization.

Aus der EP 0 894 962 A2 ist eine Katalysatoranordnung bekannt, bei der eine Gemischanfettung nur dann zugelassen wird, wenn die Brennkraftmaschine nach einer gewissen Zeitdauer nach Umschaltung der Betriebsart einen stabilen Zustand erreicht hat. DE 100 01 837 und US 2002128116 repräsentierenden nächten Stand der Technik.From the EP 0 894 962 A2 a catalyst arrangement is known in which a Gemischanfettung is allowed only if the internal combustion engine has reached a stable state after a certain period of time after switching the mode. DE 100 01 837 and US 2002128116 representing the prior art.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren der obengenannten Art bzgl. der Betriebsartenumschaltung so zu modifizieren, daß unter Beibehaltung eines insgesamt emissionsgünstigen Betriebes eine Verbrauchsminderung erzielt wird.The invention has for its object to modify a method of the above type with respect to. The mode switch so that while maintaining a total of low-emission operation, a reduction in consumption is achieved.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren der o.g. Art mit den in Anspruch 1 bzw. 2 gekennzeichneten Merkmalen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den abhängigen Ansprüchen angegeben.This object is achieved by a method of o.g. Art solved with the features characterized in claim 1 or 2 features. Advantageous embodiments of the invention are specified in the dependent claims.

Dazu ist es erfindungsgemäß vorgesehen, daß wenigstens einem Punkt in einem Last-Drehzahl-Kennfeld der Brennkraftmaschine eine vorbestimmte, maximale Zeitspanne für jede erste Betriebsart zugeordnet ist, nach der in eine, diesem Punkt zugeordnete zweite Betriebsart umgeschaltet wird.For this purpose, it is provided according to the invention that at least one point in a load-speed characteristic map of the internal combustion engine is assigned a predetermined, maximum period of time for each first operating mode, after which a switch is made to a second operating mode assigned to this point.

Alternativ ist in einem Last-Drehzahl-Kennfeld der Brennkraftmaschine zwischen einem ersten Kennfeldbereich, in dem die erste Betriebsart zugelassen ist, und einem zweiten Kennfeldbereich, in dem die zweite Betriebsart zugelassen ist, ein dritter Kennfeldbereich vorgesehen, in dem die Brennkraftmaschine lediglich für eine vorbestimmte Zeitdauer in der ersten Betriebsart betrieben wird und nach Ablauf der vorbestimmten Zeitdauer in die zweite Betriebsart des zweiten Kennfeldbereichs umgeschaltet wird.Alternatively, in a load-speed map of the internal combustion engine between a first map area in which the first mode is permitted, and a second map area in which the second mode is permitted, a third map area is provided in which the internal combustion engine only for a predetermined Duration is operated in the first mode and is switched after the expiration of the predetermined period of time in the second mode of the second map area.

Dies hat den Vorteil, daß bei einem nur kurzfristigen Wechsel des Zustandes der Brennkraftmaschine von einem ersten Betriebszustand, in dem die Brennkraftmaschine in der ersten Betriebsart betrieben wird, in einen zweiten Betriebszustand, in dem die Brennkraftmaschine in der zweiten Betriebsart betrieben werden soll, nicht sofort in die zweite Betriebsart und ggf. in eine NOx-Regeneration umgeschaltet wird, welche eine Ausführung einer verbrauchsgünstigen ersten Betriebsart für eine gewisse nachfolgende Zeit blockieren würde, so daß sich insgesamt eine Verbrauchsminderung bei keiner wesentlichen Verschlechterung der Emissionseigenschaften einstellt.This has the advantage that in a short-term change of the state of the internal combustion engine from a first operating state in which the internal combustion engine is operated in the first mode, in a second operating state in which the internal combustion engine is to be operated in the second mode, not immediately is switched to the second mode and possibly in a NOx regeneration, which would block an execution of a low-consumption first mode for a certain subsequent time, so that overall sets a consumption reduction with no significant deterioration of the emission characteristics.

Beispielsweise umfaßt die erste Betriebsart einen Magerbetrieb, insbesondere einen Schichtbetrieb und/oder einen Homogen-Magerbetrieb, mit einem Wert Lambda für ein Luft-Kraftstoff-Verhältnis größer 1,1 und die zweite Betriebsart einen stöchiometrisch homogenen Betrieb mit einem Wert Lambda für ein Luft-Kraftstoff-Verhältnis gleich 1.For example, the first operating mode comprises a lean operation, in particular a stratified operation and / or a homogeneous lean operation, with a value lambda for an air-fuel ratio greater than 1.1 and the second operating mode a stoichiometrically homogeneous operation with a value lambda for an air Fuel ratio equal to 1.

Zweckmäßigerweise ist eine dritte Betriebsart mit einer NOx-Regeneration des NOx-Speicherkatalysators und einem Wert Lambda für ein Luft-Kraftstoff-Verhältnis kleiner 1 vorgesehen, wobei in Abhängigkeit von einem Betriebszustand der Brennkraftmaschine und einem Beladungszustand des NOx-Speicherkatalysators zu dieser dritten Betriebsart umgeschaltet wird.Expediently, a third operating mode with a NOx regeneration of the NOx storage catalytic converter and a lambda value for an air-fuel ratio smaller than 1 is provided, which is switched depending on an operating state of the internal combustion engine and a loading state of the NOx storage catalytic converter to this third mode ,

Beispielsweise ist die vorbestimmte, maximale Zeitspanne kleiner oder gleich 80% derjenigen Zeitspanne, welche zwischen zwei NOx-Regeneration bei einem ununterbrochenen Betrieb in der diesem Punkt zugeordneten ersten Betriebsart vergeht.For example, the predetermined maximum period of time is less than or equal to 80% of the time that elapses between two NO x regeneration in a continuous operation in the first mode associated with that point.

In einer bevorzugten Ausführungsform weist die vorbestimmte, maximale Zeitspanne einen Wert zwischen 0 und 20 Sekunden, insbesondere einen Wert zwischen 0 und 5 Sekunden auf.In a preferred embodiment, the predetermined, maximum period of time has a value between 0 and 20 seconds, in particular a value between 0 and 5 seconds.

Weitere Merkmale, Vorteile und vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den abhängigen Ansprüchen, sowie aus der nachstehenden Beschreibung der Erfindung anhand der beigefügten Zeichnungen. Diese zeigen in

Fig. 1
eine grafische Darstellung eines Last-Drehzahl-Kennfeldes gemäß dem Stand der Technik,
Fig. 2
eine grafische Darstellung von Fahrgeschwindigkeit und angefordertem Moment, welche über eine Zeit aufgetragen sind, gemäß dem Stand der Technik,
Fig. 3
eine grafische Darstellung eines Last-Drehzahl-Kennfeldes gemäß einer ersten bevorzugten Ausführungsform der Erfindung,
Fig. 4
eine grafische Darstellung von Fahrgeschwindigkeit und angefordertem Moment, welche über eine Zeit aufgetragen sind, gemäß der ersten bevorzugten Ausführungsform der Erfindung von Fig. 3,
Fig. 5
eine grafische Darstellung eines Last-Drehzahl-Kennfeldes gemäß einer zweiten bevorzugten Ausführungsform der Erfindung.
Further features, advantages and advantageous embodiments of the invention will become apparent from the dependent claims, and from the following description of the invention with reference to the accompanying drawings. These show in
Fig. 1
a graphical representation of a load-speed characteristic diagram according to the prior art,
Fig. 2
FIG. 4 is a graphical representation of vehicle speed and requested torque plotted over time according to the prior art. FIG.
Fig. 3
FIG. 2 is a graphical representation of a load-speed map according to a first preferred embodiment of the invention; FIG.
Fig. 4
a graphical representation of vehicle speed and requested torque, which are plotted over a time, according to the first preferred embodiment of the invention of Fig. 3 .
Fig. 5
a graphical representation of a load-speed map according to a second preferred embodiment of the invention.

Fig. 3 veranschaulicht grafisch eine erste bevorzugte Ausführungsform eines Last-Drehzahl-Kennfelds einer Brennkraftmaschine für ein erfindungsgemäßes Verfahren, wobei auf der horizontalen Achse 10 eine Drehzahl und auf der vertikalen Achse 12 ein Motormoment (Nm) aufgetragen sind. Das Last-Drehzahl-Kennfeld ist in Bereiche 14, 15, 16 und 18 aufgeteilt. Im Bereich 14 ist ein stöchiometrisch homogener Betrieb, im Bereich 16 ist ein homogen-mager Betrieb und im Bereich 18 ist ein Schichtbetrieb zugelassen. Die Betriebsarten stöchiometrisch homogen und homogen-mager sind auch in den jeweils darunter liegenden Bereichen 15, 16 und 18 zugelassen. Fig. 4 veranschaulicht grafisch einen zugehörigen Verlauf von Fahrgeschwindigkeit 20 und angefordertem Moment 22, welche auf der vertikalen Achse 24 aufgetragen sind, über die Zeit (sec), welche auf der horizontalen Achse 26 aufgetragen ist. Es sind in Fig. 3 und 4 besondere Betriebspunkte 28, 30, 32, 34 und 36 gekennzeichnet. Fig. 3 1 illustrates graphically a first preferred embodiment of a load-speed characteristic diagram of an internal combustion engine for a method according to the invention, wherein a rotational speed is plotted on the horizontal axis 10 and an engine torque (Nm) on the vertical axis 12. The load-speed map is divided into areas 14, 15, 16 and 18. A stoichiometrically homogeneous operation is in the region 14, in the region 16 a homogeneous lean operation and in the region 18 a shift operation is permitted. The modes stoichiometric homogeneous and homogeneous-lean are also in the respective underlying areas 15, 16 and 18 authorized. Fig. 4 graphically illustrates an associated progression of travel speed 20 and requested torque 22 plotted on vertical axis 24 versus time (sec) plotted on horizontal axis 26. There are in 3 and 4 special operating points 28, 30, 32, 34 and 36 marked.

Die vorgenannten Betriebsarten stöchiometrisch homogen, homogen-mager und Schichtladebetrieb unterliegen einer gewissen hierarchischen Ordnung. Dabei stellt der Schichtbetrieb die niedrigste Hierarchie dar, gefolgt vom homogen-mager Betrieb. Die höchste Hierarchiestufe hat der stöchiometrisch homogene Betrieb. Dies bedeutet, daß die Betriebsart mit der niedrigsten Hierarchie, der Schichtbetrieb, nur in dem entsprechend zugewiesenen Betriebsfenster (Bereich 18) zugelassen wird, während die höher eingeordneten Betriebsarten auch in den Betriebsfenstern (Bereiche 15, 16 und 18) der niedriger eingeordneten Betriebsarten vorkommen können. So kann bei kleinen Lasten und Drehzahlen (Bereich 18) sowohl der Schichtbetrieb als auch beispielsweise der homogen-mager Betrieb zugelassen werden, während bei hohen Lasten und Drehzahlen (Bereiche 14, 15 und 16) keinesfalls der Schichtbetrieb zulässig ist.The aforementioned modes of stoichiometric homogeneous, homogeneous-lean and stratified charge operation are subject to a certain hierarchical order. The shift operation represents the lowest hierarchy, followed by the homogeneous-lean operation. The highest hierarchical level is stoichiometrically homogeneous. This means that the mode with the lowest hierarchy, the shift operation, is allowed only in the correspondingly assigned operation window (area 18), while the higher order modes may also occur in the operation windows (areas 15, 16 and 18) of the lower order modes , Thus, at low loads and speeds (range 18), both the shift operation and, for example, the homogeneous-lean operation can be permitted, while at high loads and speeds (ranges 14, 15 and 16) the shift operation is by no means permitted.

Größe und Form der Betriebsfenster (Bereiche 14, 15, 16 und 18) richten sich nach verschiedenen Anforderungen. Ein wichtiges Kriterium liegt darin, die Betriebsart mit dem günstigsten Verbrauch zu bevorzugen. Als weitere Kriterien werden Abgaszusammensetzung, Laufruhe, Abgastemperatur, Klopfneigung usw. herangezogen. Wird im dynamischen Betrieb ein Betriebsartenbereich 16 oder 18 in Richtung höhere Drehzahlen und/oder Lasten verlassen, so wird auf eine höher priorisierte Betriebsart umgeschaltet, d.h. beispielsweise vom Schichtbetrieb (Bereich 18) in den homogen-mager Betrieb (Bereich 16) oder den stöchiometrisch homogenen Betrieb (Bereich 14) und vom homogen-mager Betrieb (Bereich 16) in den stöchiometrisch homogenen Betrieb (Bereich 14).The size and shape of the operating windows (areas 14, 15, 16 and 18) depend on different requirements. An important criterion is to favor the mode with the lowest consumption. As further criteria exhaust gas composition, smoothness, exhaust gas temperature, tendency to knock etc. are used. If, in dynamic operation, an operating mode range 16 or 18 is left in the direction of higher speeds and / or loads, the system switches over to a higher-priority operating mode, i. for example, from shift operation (area 18) to homogeneous lean operation (area 16) or stoichiometrically homogeneous operation (area 14) and from homogeneous lean operation (area 16) to stoichiometric homogeneous operation (area 14).

Die Betriebsartengrenze des homogen-mager Betriebs ist in hohem Maße durch die Abgaszusammensetzung definiert. Der bei magerlauffähigen Ottomotoren üblicherweise eingesetzte NOx-Speicherkatalysator benötigt zum Erreichen optimaler NOx-Einlagerungswirkungsgrade eine Beaufschlagung mit einem möglichst niedrigen NOx-Massenstrom bei möglichst niedrigem Abgasmassenstrom und zugleich die Einhaltung eines Arbeitstemperaturfensters von ca. 250°C bis maximal ca. 500°C. Bei höheren Lasten (> ca. 5 bar effektiver Mitteldruck) nimmt der NOx-Massenstrom deutlich zu und kann Werte von 50 g/h überschreiten. Bei einem länger andauernden Betrieb wird der NOx-Speicherkatalysator bei diesen NOx-Massenströmen sehr schnell gesättigt, so daß entweder eine sehr häufige NOx-Regeneration erforderlich ist, was Verbrauchsnachteile und auch Emissionsnachteile mit sich bringt, da bei jeder NOx-Regeneration ein kleiner Schadstoffdurchbruch erfolgt, oder bei Inkaufnahme höherer NOx-Durchbrüche die erforderliche Schadstoffkonvertierung nicht erreichbar ist.The operating mode limit of homogeneous-lean operation is largely defined by the exhaust gas composition. The NOx storage catalytic converter commonly used in lean-running gasoline engines requires to achieve optimum NOx storage efficiency an admission with the lowest possible NOx mass flow with the lowest possible exhaust gas mass flow and at the same time maintaining a working temperature window of about 250 ° C to a maximum of about 500 ° C. At higher loads (> approx. 5 bar effective mean pressure) the NOx mass flow increases significantly and can exceed values of 50 g / h. For a longer lasting operation the NOx storage catalyst is saturated very quickly at these NOx mass flows, so that either a very frequent NOx regeneration is required, which fuel consumption disadvantages and also emission disadvantages brings with it, with each NOx regeneration, a small pollutant breakthrough, or at higher acceptance NOx breakthroughs the required pollutant conversion is not achievable.

Erfindungsgemäß ist im Last-Drehzahl-Kennfeld gemäß Fig. 3 zusätzlich der Bereich 15 vorgesehen, in dem nur ein temporärer Aufenthalt in einer Betriebsart vorgesehen ist, bei der sich NOx im NOx-Speicherkatalysator einlagert. In dem dargestellten Ausführungsbeispiel ist um den Bereich 16, in dem der homogen-mager Betrieb zugelassen ist, ein Lastgürtel 15 von 1 bis 4 bar Breite und/oder ein Drehzahlgürtel von max. 1000/min in das Betriebsfenster 14 für den stöchiometrisch homogenen Betrieb eingefügt. In diesem Bereich 15 ist für eine vorbestimmte Zeitdauer von beispielsweise 0,5 s bis 20 s, insbesondere 2 s bis 5 s, der homogen-mager Betrieb zugelassen. Bei Überschreiten dieses Zeitfensters, d.h. wenn sich der aktuelle Betriebszustand der Brennkraftmaschine länger als die vorbestimmte Zeitdauer in dem Bereich 15 befindet, wird der homogen-mager Betrieb zugunsten des stöchiometrisch homogenen Betriebs verlassen. Dieser Gürtel 15 ist im wesentlichen wegen der hohen NOx-Rohemissionen für einen dauernden homogen-mager Betrieb ungeeignet.According to the invention in accordance with the load-speed map Fig. 3 In addition, the area 15 is provided in which only a temporary residence is provided in an operating mode in which NOx stores itself in the NOx storage catalytic converter. In the illustrated embodiment, around the region 16 in which the homogeneous-lean operation is permitted, a load belt 15 of 1 to 4 bar width and / or a speed belt of max. 1000 / min inserted into the operating window 14 for the stoichiometric homogeneous operation. In this region 15, the homogeneous-lean operation is allowed for a predetermined period of time, for example, 0.5 s to 20 s, in particular 2 s to 5 s. When this time window is exceeded, ie when the current operating state of the internal combustion engine is longer than the predetermined time period in the region 15, the homogeneous-lean operation is left in favor of the stoichiometric homogeneous operation. This belt 15 is essentially unsuitable for continuous homogeneous lean operation due to the high NOx raw emissions.

Um den besonderen Vorteil der Erfindung darzulegen, ist in den Fig. 3 und 4 beispielhaft ein Betriebsverlauf über Betriebspunkte 28, 30, 32, 34 und 36 dargestellt, der mit einem entsprechenden Betriebsverlauf bei herkömmlichem Last-Drehzahl-Kennfeld gemäß Fig. 1 und 2 verglichen wird. In Fig. 1 und 2 sind gleiche Teile mit gleichen Bezugszeichen gekennzeichnet, wie in den Fig. 3 und 4. Nach längerem Magerbetrieb (28 bis 32) wird die Lastgrenze für homogen-mager Betrieb kurzzeitig überschritten (Betriebspunkt 34) und anschließend befindet sich der Betriebszustand der Brennkraftmaschine wieder im Betriebsfenster 18 für den Schichtbetrieb (Betriebspunkt 36).To set out the particular advantage of the invention, is in the 3 and 4 By way of example, a course of operation over operating points 28, 30, 32, 34 and 36 is shown, which corresponds to a corresponding course of operation in the case of a conventional load / speed characteristic map according to FIG Fig. 1 and 2 is compared. In Fig. 1 and 2 the same parts are marked with the same reference numerals as in the 3 and 4 , After prolonged lean operation (28 to 32), the load limit for homogeneous-lean operation is briefly exceeded (operating point 34) and then the operating state of the internal combustion engine is again in the operating window 18 for the shift operation (operating point 36).

Wie sich aus den Fig. 1 und 2 ergibt, wird bei einem derartigen Betriebsverlauf am Betriebspunkt 34 sofort der stöchiometrisch homogen Betrieb angefordert. Da der NOx-Speicherkatalysator zu diesem Zeitpunkt bereits eine gewisse NOx-Masse eingelagert hat, wird unmittelbar eine NOx-Regeneration angefordert, da ohne diese NOx-Regeneration im Betrieb mit Lambda = 1 die vorher eingelagerten Stickoxide (NOx) weitgehend unkonvertiert wieder ausgetrieben würden. Die kurze Lastanforderung bei 34 bewirkt somit einen längeren Betrieb in einer Betriebsart mit NOx-Regeneration, wie durch eine fette Linie angedeutet. Da jedoch der Betriebszustand der Brennkraftmaschine unmittelbar nach der kurzen Lastanforderung bei 34 wieder in das Betriebsfenster 18 für den Schichtbetrieb fällt und eine NOx-Regeneration wegen eines noch nicht gesättigten NOx-Speicherkatalysators noch nicht notwendig gewesen wäre, führt die erzwungene NOx-Regeneration zu einem emissions- und verbrauchsungünstigeren Betrieb, da von den motorischen Parametern statt der NOx-Regeneration überwiegend ein Betrieb im Mager- oder Schichtbetrieb möglich gewesen wäre.As is clear from the Fig. 1 and 2 results in such a course of operation at the operating point 34 immediately stoichiometric homogeneous operation requested. Since the NOx storage catalytic converter has already stored a certain amount of NOx at this time, a NOx regeneration is requested immediately, since without this NOx regeneration in operation with lambda = 1, the previously stored nitrogen oxides (NOx) would be expelled largely unconverted again. The short load request at 34 thus causes longer operation in a NOx regeneration mode, such as indicated by a bold line. However, since the operating state of the internal combustion engine immediately after the short load request at 34 again falls into the operating window 18 for the shift operation and a NOx regeneration because of a not yet saturated NOx storage catalyst would not have been necessary, the forced NOx regeneration leads to emissions - and consumption-poorer operation, because of the engine parameters instead of the NOx regeneration mainly operation in lean or shift operation would have been possible.

Im Vergleich mit Fig. 3 und 4 zeigt sich, daß die Erfindung hier deutliche Vorteile bietet. Die Leistungsanforderung bei 34 führt zu einem Wechsel des Betriebszustandes der Brennkraftmaschine in den Übergangsbereich 15 zwischen Zulassung von homogen-mager Betrieb (Bereich 16) und stöchiometrisch homogenen Betrieb (Bereich 14). Dadurch wird zunächst weiter die Betriebsart homogen-mager fortgesetzt und nicht sofort der stöchiometrisch homogenen Betrieb angefordert, wodurch es auch nicht zu einer NOx-Regeneration kommt. Da die Lastanforderung bei 34 mit ca. 1,5 s zeitlich unter der für den Bereich 15 vorbestimmten Zeitdauer bleibt, wird nicht in den stöchiometrisch homogenen Betrieb umgeschaltet. Vielmehr befindet sich der Betriebszustand der Brennkraftmaschine bei 36 wieder im Bereich 18 für den Schichtbetrieb und die Brennkraftmaschine wird dementsprechend im Schichtbetrieb betrieben, da der NOx-Speicherkatalysator noch nicht vollständig gesättigt ist. Insgesamt entfällt ein Mehrverbrauch für einen stöchiometrisch homogenen Betrieb und die vorgezogene NOx-Regeneration. Auch das Emissionsverhalten ist insgesamt günstiger, da wegen der sehr kurzen Verweildauer im Bereich 15 die erhöhten NOx-Rohemissionen noch nicht zu einer Übersättigung des NOx-Speicherkatalysators und damit zu NOx-Durchbrüchen führen. Zusätzlich entfallen die bei der NOx-Regeneration anfallenden Emissionsspitzen.In comparison with 3 and 4 shows that the invention offers significant advantages here. The power demand at 34 leads to a change of the operating state of the internal combustion engine in the transition region 15 between approval of homogeneous-lean operation (area 16) and stoichiometric homogeneous operation (area 14). As a result, the mode of operation is continued homogeneous-lean and not immediately requested the stoichiometric homogeneous operation, which also does not lead to a NOx regeneration. Since the load request remains at 34 with approximately 1.5 s in time under the predetermined time for the region 15 time, is not switched to the stoichiometric homogeneous operation. Rather, the operating state of the internal combustion engine at 36 is again in the range 18 for the shift operation and the internal combustion engine is accordingly operated in stratified operation, since the NOx storage catalyst is not yet completely saturated. Overall, an additional consumption for a stoichiometric homogeneous operation and the advanced NOx regeneration is eliminated. The emission behavior is also more favorable overall because, because of the very short residence time in the area 15, the increased NOx raw emissions do not yet lead to a supersaturation of the NOx storage catalytic converter and thus to NOx breakthroughs. In addition, the emission peaks occurring during NOx regeneration are eliminated.

Wie der unmittelbare Vergleich der Fig. 3 und 1 ergibt, ist erfindungsgemäß im Last-Drehzahl-Kennfeld zusätzlich an einem Übergang von einem ersten Bereich (Bereich 16) mit einer ersten Betriebsart mit NOx-Einlagerung in den NOx-Speicherkatalysator (homogen-mager Betrieb) zu einem zweiten Bereich (Bereich 14) mit einer zweiten Betriebsart mit NOx-Abgabe aus dem NOx-Speicherkatalysator (stöchiometrisch homogener Betrieb) ein dritter Bereich (Gürtel 15) vorgesehen, in dem die erste Betriebsart (homogen-mager Betrieb) nur für eine vorbestimmte Zeitdauer zugelassen ist. Erst bei Überschreiten dieser vorbestimmten Zeitdauer, d.h., wenn sich der Betriebszustand der Brennkraftmaschine länger als die vorbestimmte Zeitdauer in dem dritten Bereich (Gürtel 15) befindet, wird von der ersten Betriebsart (homogen-mager Betrieb) in die zweite Betriebsart (stöchiometrisch homogener Betrieb) umgeschaltet. Der dritte Bereich (Gürtel 15) liegt dabei in einem Bereich des Last-Drehzahl-Kennfeldes, in dem eigentlich die erste Betriebsart (homogen-mager Betrieb) nicht zugelassen wäre. Es wird somit die harte Grenze zwischen den Bereichen 14 und 16 zugunsten der ersten Betriebsart (homogen-mager Betrieb) aufgeweicht.Like the immediate comparison of Fig. 3 and 1 results, according to the invention in the load-speed map in addition to a transition from a first area (area 16) with a first mode with NOx storage in the NOx storage catalyst (homogeneous-lean operation) to a second area (area 14) In a second mode with NOx output from the NOx storage catalyst (stoichiometric homogeneous operation), a third region (belt 15) is provided in which the first mode (homogeneous lean operation) is allowed only for a predetermined period of time. Only when exceeding this predetermined period of time, ie, when the operating condition of the internal combustion engine is longer than the predetermined period in the third area (belt 15) is switched from the first mode (homogeneous-lean operation) in the second mode (stoichiometric homogeneous operation). The third area (belt 15) lies in a region of the load-speed characteristic map in which actually the first operating mode (homogeneous-lean operation) would not be permitted. Thus, the hard boundary between regions 14 and 16 is softened in favor of the first mode (homogeneous-lean operation).

Eine alternative Ausführungsform der Erfindung ist in Fig. 5 dargestellt. Diese illustriert wieder ein Last-Drehzahl-Kennfeld einer Brennkraftmaschine (Motorkennfeld), wobei analog zu Fig. 3 auf der horizontalen Achse 10 die Drehzahl und auf der vertikalen Achse 12 das Motormoment (Nm) aufgetragen ist. Für jeden Betriebspunkt dieses Motorkennfeldes ist erfindungsgemäß eine maximale Verweildauer in der ersten Betriebsart mit NOx-Einlagerung in den Speicherkatalysator (Schichtbetrieb und/oder homogen-mager Betrieb) festgelegt, bevor die emissionssichere zweite Betriebsart (stöchiometrisch homogener Betrieb) angefordert wird, wenn sich die Brennkraftmaschine länger als die Verweildauer an bzw. nahe dem Betriebspunkt oder in einem entsprechenden Bereich des Motorkennfeldes befindet. Hierdurch werden die nur mit gepunkteten Linien angedeuteten harten Grenzen zwischen verschiedenen Bereichen des Motorkennfeldes mit unterschiedlicher Betriebsartenzulassung aufgeweicht. So ist in dem dargestellten Beispiel an dem Betriebspunkt 38 für den Schichtbetrieb und den homogen-mager Betrieb jeweils ein extrem hoher Wert eingetragen, beispielsweise 100.000 Sekunden. Am Betriebspunkt 40 ist für den Schichtbetrieb der Wert 0 Sekunden und für den homogen-mager Betrieb wiederum beispielsweise 100.000 Sekunden eingetragen. Der Wert "0 Sekunden" an einem Betriebspunkt für eine Betriebsart bedeutet dabei im wesentlichen, daß diese Betriebsart an dem entsprechenden Betriebspunkt nicht zugelassen ist. Ein hoher Wert für die Verweildauer bedeutet, daß an diesem Betriebspunkt die entsprechende Betriebsart uneingeschränkt zugelassen ist. Am Betriebspunkt 42 ist für den Schichtbetrieb wieder der Wert 0 Sekunden und für den homogen-mager Betrieb beispielsweise der Wert 3 Sekunden eingetragen. Eine entsprechende Anzahl derartiger Betriebspunkte im Motorkennfeld erzeugt einen Bereich, in dem die erste Betriebsart nur temporär, d.h. maximal für die vorbestimmte Zeitdauer oder Verweildauer zugelassen wird. Zweckmäßigerweise definieren die gestrichelten Linien Grenzen, an denen sich die vorbestimmten Zeitdauern für die ersten Betriebsarten (Magerbetrieb bzw. homogen-mager Betrieb) ändern. Jedoch sind auch innerhalb dieser Grenzlinien Änderungen der vorbestimmten Zeitdauern möglich. So ist am Betriebspunkt 44 neben dem Wert 0 Sekunden für der Schichtbetrieb ein vom Betriebspunkt 42 abweichender Wert für den homogen-mager Betrieb von beispielsweise 7 Sekunden eingetragen. Am Betriebspunkt 46 ist für den Schichtbetrieb und den homogen-mager Betrieb jeweils der Wert 0 Sekunden eingetragen.An alternative embodiment of the invention is shown in FIG Fig. 5 shown. This again illustrates a load-speed characteristic map of an internal combustion engine (engine map), analogous to Fig. 3 on the horizontal axis 10, the speed and on the vertical axis 12, the engine torque (Nm) is plotted. For each operating point of this engine map according to the invention a maximum residence time in the first mode with NOx storage in the storage catalytic converter (stratified and / or homogeneous-lean operation) set before the emission-safe second mode (stoichiometric homogeneous operation) is requested when the internal combustion engine is longer than the dwell time at or near the operating point or in a corresponding region of the engine map. As a result, the indicated only with dotted lines hard boundaries between different areas of the engine map are softened with different mode approval. Thus, in the illustrated example, an extremely high value is entered at the operating point 38 for the stratified operation and the homogeneous lean operation, for example 100,000 seconds. At the operating point 40, the value 0 seconds is entered for the stratified operation and again 100,000 seconds for the homogeneous lean operation. The value "0 seconds" at an operating point for an operating mode essentially means that this mode is not permitted at the corresponding operating point. A high value for the residence time means that the corresponding operating mode is unrestrictedly permitted at this operating point. At the operating point 42, the value 0 seconds is again entered for the shift operation and, for example, the value 3 seconds for the homogeneous lean operation. A corresponding number of such operating points in the engine map generates an area in which the first operating mode is permitted only temporarily, ie for a maximum of the predetermined time period or dwell time. Expediently, the dashed lines define boundaries at which the predetermined periods of time for the first operating modes (lean operation or homogeneous lean operation) change. However, within these limits, changes in the predetermined time periods are possible. So is at the operating point 44 next the value 0 seconds for the shift operation a value deviating from the operating point 42 for the homogeneous-lean operation of, for example, 7 seconds entered. At operating point 46, the value 0 seconds is entered for stratified operation and homogeneous lean operation.

In beiden zuvor erläuterten Alternativen ist die vorbestimmte Zeitdauer bzw. Verweildauer beispielsweise kleiner oder gleich 80% desjenigen Zeitintervalls, welches zwischen zwei aufeinander folgenden NOx-Regenerationen bei Betrieb mit erster Betriebsart (Magerbetrieb: Schichtbetrieb und/oder homogen-mager Betrieb) liegt. In konkreten Zahlen bedeutet dies einen Wert für die vorbestimmte Zeitdauer bzw. Verweildauer von beispielsweise im Bereich zwischen 0,5 s bis 20 s oder im Bereich zwischen 2 s bis 5 s.In both alternatives explained above, the predetermined period of time or residence time is, for example, less than or equal to 80% of the time interval which lies between two successive NOx regenerations during operation with the first operating mode (lean operation: stratified operation and / or homogeneous lean operation). In concrete numbers, this means a value for the predetermined period of time or residence time of, for example, in the range between 0.5 s to 20 s or in the range between 2 s to 5 s.

Claims (5)

  1. Method for operating a direct-injection internal combustion engine, which has a catalytic converter system with a NOx storage catalytic converter, in various operating modes, with NOx being accumulated in the NOx storage catalytic converter in a homogeneous lean mode, and with NOx being discharged out of the NOx storage catalytic converter in a stoichiometric homogeneous mode, characterized in that, in a load-speed characteristic map of the internal combustion engine, between a first characteristic map region in which the homogeneous lean mode is permitted and a second characteristic map region in which the stoichiometric homogeneous mode is permitted, a third characteristic map region is provided in which the internal combustion engine is operated only for a predetermined time period in the homogeneous lean mode and is switched into the stoichiometric homogeneous mode of the second characteristic map region after the predetermined time period has elapsed, with the third characteristic map region being inserted, as a load belt of 1 to 4 bar width and/or as a speed belt of a maximum of 1000 rpm, into the second characteristic map region around the first characteristic map region in which the homogeneous lean mode is permitted.
  2. Method according to Claim 1, characterized in that, in the homogeneous lean mode, a value lambda for an air/fuel ratio is greater than 1.1.
  3. Method according to at least one of the preceding claims, characterized in that a third operating mode is provided with a NOx regeneration of the NOx storage catalytic converter and a value lambda for an air/fuel ratio less than 1, with a switch being made to said third operating mode as a function of an operating state of the internal combustion engine and a loading state of the NOx storage catalytic converter.
  4. Method according to Claim 3, characterized in that the predetermined maximum time period is less than or equal to 80% of the time interval which elapses between two NOx regenerations during uninterrupted operation in the first operating mode assigned to said point.
  5. Method according to at least one of the preceding claims, characterized in that the predetermined maximum time period has a value of between 0 and 20 seconds, in particular a value of between 0 and 5 seconds.
EP03021026A 2002-09-24 2003-09-17 Method for operating a direct injection engine Expired - Lifetime EP1403492B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10244391 2002-09-24
DE10244391A DE10244391A1 (en) 2002-09-24 2002-09-24 Method for operating a direct injection internal combustion engine

Publications (3)

Publication Number Publication Date
EP1403492A2 EP1403492A2 (en) 2004-03-31
EP1403492A3 EP1403492A3 (en) 2006-09-06
EP1403492B1 true EP1403492B1 (en) 2008-08-27

Family

ID=31969502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03021026A Expired - Lifetime EP1403492B1 (en) 2002-09-24 2003-09-17 Method for operating a direct injection engine

Country Status (3)

Country Link
EP (1) EP1403492B1 (en)
AT (1) ATE406514T1 (en)
DE (2) DE10244391A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008057930A1 (en) * 2008-11-19 2010-05-20 Bayerische Motoren Werke Aktiengesellschaft Control method for an internal combustion engine
CN104204434B (en) 2013-02-20 2016-12-07 丰田自动车株式会社 The emission-control equipment of internal combustion engine
DE102021102240A1 (en) 2021-02-01 2022-08-04 Volkswagen Aktiengesellschaft Exhaust aftertreatment in an internal combustion engine

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR960002348B1 (en) * 1991-10-03 1996-02-16 도요다 지도오샤 가부시끼가이샤 Device for purifying exhaust of internal combustion engine
JPH10184417A (en) * 1996-12-25 1998-07-14 Hitachi Ltd Controller of cylinder injection type internal combustion engine
DE19712356C1 (en) * 1997-03-25 1998-07-09 Daimler Benz Ag Pollution-reduction method for direct-injection petrol engine
JP3496468B2 (en) * 1997-08-08 2004-02-09 日産自動車株式会社 Apparatus for determining evaporated fuel concentration of internal combustion engine
DE19824915C1 (en) * 1998-06-04 1999-02-18 Daimler Benz Ag Method of controlling fuel injection for motor vehicle internal combustion engine
JP3854013B2 (en) * 1999-06-10 2006-12-06 三菱電機株式会社 Exhaust gas purification device for internal combustion engine
JP3607983B2 (en) * 1999-09-10 2005-01-05 トヨタ自動車株式会社 Combustion control device for internal combustion engine
DE10035406C2 (en) * 2000-07-19 2002-07-18 Lic Tec Ag Cham Top jaw for chucks

Also Published As

Publication number Publication date
EP1403492A3 (en) 2006-09-06
EP1403492A2 (en) 2004-03-31
DE50310403D1 (en) 2008-10-09
DE10244391A1 (en) 2004-04-01
ATE406514T1 (en) 2008-09-15

Similar Documents

Publication Publication Date Title
EP1183453B1 (en) METHOD FOR DESULFURIZATION OF AT LEAST ONE NOx STORAGE CATALYST MOUNTED IN THE EXHAUST GAS DUCT OF AN INTERNAL COMBUSTION ENGINE
EP1088157B1 (en) METHOD FOR DESULPHATIZING AN NO x? ACCUMULATOR CATALYTIC CONVERTER
EP1194683B1 (en) Method for controlling the operating mode of an internal combustion engine
DE19706607B4 (en) Process for the regeneration of a nitrogen oxide trap with reduced torque jump in the exhaust system of an internal combustion engine and device for carrying out the process
EP0937876B1 (en) Method to regenerate a nitrogen oxide trap in the exhaust system of a combustion engine
EP1403492B1 (en) Method for operating a direct injection engine
DE10226873B4 (en) Method for controlling the mode selection of an internal combustion engine
DE10003903B4 (en) Device and method for controlling an operation of a multi-cylinder engine for motor vehicles with a multi-flow exhaust gas purification system
DE19735011B4 (en) Internal combustion engine with exhaust gas catalytic converter and method for operating an internal combustion engine
DE10130053B4 (en) Method and device for desulphurisation of a NOX storage catalytic converter
WO2004059151A1 (en) Method and device for adjusting the fuel/ air ratio in an internal combustion engine
DE10305451A1 (en) Method and device for operating an internal combustion engine
DE10253614B4 (en) Method for operating an internal combustion engine of a vehicle, in particular of a motor vehicle
DE10010031B4 (en) Method and device for carrying out a NOx regeneration of an arranged in an exhaust passage of an internal combustion engine NOx storage catalyst
EP1491749B1 (en) Method for operating an internal combustion engine
EP1200715B1 (en) Method for regulating the regeneration of a storage catalyst located in an exhaust gas channel of an internal combustion engine
DE10321311B4 (en) Method for heating a catalytic converter and engine with control unit
EP1210509B1 (en) Method for regulating a combustion process in an internal combustion engine during the regeneration of a storage catalyst
DE10223595A1 (en) Method for operating a motor vehicle with a NOx storage catalytic converter
DE10103557A1 (en) Removing sulfur from catalyst device connected to lean-burn internal combustion engine comprises slightly greasing engine exhaust gas on exceeding lowest possible temperature and lowest sulfur charge of catalyst device
DE10253613B4 (en) Method for operating an internal combustion engine of a vehicle, in particular a motor vehicle
DE10310672B4 (en) Method and apparatus for adjusting an air-fuel ratio for an internal combustion engine
DE10235732B4 (en) Process for heating a catalyst system
DE102007030562B4 (en) Method for operating an internal combustion engine
EP1426582B1 (en) Method to operate an internal combustion engine with direct injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20070306

17Q First examination report despatched

Effective date: 20070412

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50310403

Country of ref document: DE

Date of ref document: 20081009

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

BERE Be: lapsed

Owner name: VOLKSWAGEN A.G.

Effective date: 20080930

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081127

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090127

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

26N No opposition filed

Effective date: 20090528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080917

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081127

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080917

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081027

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 50310403

Country of ref document: DE

Effective date: 20130516

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20170929

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20170930

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50310403

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310403

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917