EP1402977A1 - Shielding gas device for pressure die casting machines - Google Patents

Shielding gas device for pressure die casting machines Download PDF

Info

Publication number
EP1402977A1
EP1402977A1 EP02021445A EP02021445A EP1402977A1 EP 1402977 A1 EP1402977 A1 EP 1402977A1 EP 02021445 A EP02021445 A EP 02021445A EP 02021445 A EP02021445 A EP 02021445A EP 1402977 A1 EP1402977 A1 EP 1402977A1
Authority
EP
European Patent Office
Prior art keywords
shielding gas
pressure
gas device
inlet nozzles
mixing chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02021445A
Other languages
German (de)
French (fr)
Other versions
EP1402977B1 (en
Inventor
Norbert Dr.-Ing. Erhard
Ulrich Schrägle
Gerd Mentel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oskar Frech GmbH and Co KG
Original Assignee
Oskar Frech GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to ES02021445T priority Critical patent/ES2302776T3/en
Application filed by Oskar Frech GmbH and Co KG filed Critical Oskar Frech GmbH and Co KG
Priority to EP02021445A priority patent/EP1402977B1/en
Priority to AT02021445T priority patent/ATE389483T1/en
Priority to DE50211923T priority patent/DE50211923D1/en
Priority to PCT/EP2003/010450 priority patent/WO2004030849A1/en
Priority to CZ2005153A priority patent/CZ2005153A3/en
Priority to JP2004540657A priority patent/JP4537204B2/en
Priority to PL375750A priority patent/PL206577B1/en
Priority to US10/529,080 priority patent/US7290588B2/en
Priority to AU2003262517A priority patent/AU2003262517A1/en
Publication of EP1402977A1 publication Critical patent/EP1402977A1/en
Priority to HK04104452A priority patent/HK1061541A1/en
Application granted granted Critical
Publication of EP1402977B1 publication Critical patent/EP1402977B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/002Castings of light metals
    • B22D21/007Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D17/00Pressure die casting or injection die casting, i.e. casting in which the metal is forced into a mould under high pressure
    • B22D17/20Accessories: Details
    • B22D17/30Accessories for supplying molten metal, e.g. in rations

Definitions

  • the invention relates to a protective gas device for die casting machines, in particular for processing magnesium melts, with a melting furnace with openings for supplying the protective gases, with various gas sources and with a container connected downstream for receiving a mixture of the individual protective gas components, which via at least one metering device with the Openings of the furnace are connected.
  • the magnesium melts contained in the melting furnace of die casting machines must be covered with an inert gas mixture.
  • Mixtures of carrier gases and sulfur hexafluoride (SF 6 ) or sulfur dioxide (SO 2 ), such as N 2 and SF 6 , dry air and SF 6 or dry air with SO 2, are used for this purpose .
  • the aim is to keep the concentration of the inert gas in the mixture as low as possible.
  • the individual constituents are filled into a container at a relatively low pressure (0.8 to 1.5 bar) by means of a quantity-matched supply, from which the gas mixture is removed and fed to the melt surface.
  • the gas mixture is fed into the furnace via one or more inlet openings with the lowest possible flow resistance, the amount to be metered being set via the volume flow. If several inlet openings are connected to one dosing device, there are large differences in the dosing, depending on the distance between the openings.
  • inlet openings are combined as a group and connected to different dosing devices, for example for one or more ovens
  • changes in the dosage of one inlet opening have an influence on the dosing at the other inlet openings.
  • the setting is usually very difficult.
  • local overdosing or underdosing can also occur in the oven in this way. Areas of SF 6 enrichment can be found in the furnace chamber above the melt and places of SF 6 depletion occur, which is referred to as concentration shadow.
  • concentration shadow Areas of SF 6 enrichment can be found in the furnace chamber above the melt and places of SF 6 depletion occur, which is referred to as concentration shadow.
  • the present invention is therefore based on the object of designing an inert gas device of the type mentioned at the outset in such a way that simple and non-reactive inert gas exposure to the melts is achieved and the aforementioned problems are avoided.
  • a protective gas device of the type mentioned at the outset that the container is a pressure accumulator, that the openings of the melting furnace are provided with inlet nozzles and that these inlet nozzles are acted upon by a metering device whose operating pressure is equal to or less than the pressure in the pressure accumulator, however, is high enough to cause the protective gas mixture to expand behind the inlet nozzles.
  • the metering process can be carried out continuously or discontinuously, ie pulsating. In the latter case, i.e. when the inlet nozzle is acted on intermittently, small amounts can also be metered in a controlled manner without running the risk that no jet expansion will occur due to insufficient pressure, i.e. no more "spraying" takes place. As you know, you need an arrangement with which to "atomize", two prerequisites:
  • a certain pressure on the other hand, a certain volume, which creates a back pressure from the nozzle. Will that Volume so small that this dynamic pressure cannot be maintained, the atomizing effect would also be gone. For this reason, the metering device according to the invention can switch the gas intermittently, ie pulsating, and thus further reduce the amount of fumigation on average, although the system still works in the fumigation mode. A mechanical adaptation of the nozzles themselves to this minimum quantity dosage is therefore not necessary.
  • the inlet nozzles on the melting furnace are arranged so that a gas flow to the already existing leak points of the furnace arises, so that a uniform concentration distribution is ensured in this way. Under "leaks" all wanted and unwanted openings of the furnace, such as Charging openings, cleaning openings and actually leaks can be understood.
  • the inlet nozzles are also arranged to protect them from contamination or clogging.
  • the operating pressure of the metering device which is kept constant, is matched to the type of inlet nozzle and thus also to the desired distribution principle of the gas mixture in the furnace.
  • the inlet pressure at the metering unit that is to say the pressure in the pressure accumulator, is also monitored so that the operating pressure for the metering device can be maintained. If the pressure drops for any reason, the dosing unit can be switched to emergency fumigation and open the gas outlet via appropriate signals that also trigger visual displays.
  • the dosage i.e. the desired amount of gas
  • the dosage is completely independent of other consumers on the same gas mixing unit.
  • Different groups of inlet nozzles can thus be operated without reaction via several dosing units. Adjusting the amount on one group of inlet nozzles does not affect the amount of the other group and has no influence on the mixture formation, i.e. on the concentration of the protective gas.
  • a plurality of metering devices can also be connected in parallel to one another for different furnaces and can be supplied by the pressure accumulator.
  • Each dosing unit can be provided with a device for setting the dosing amount, with each dosing unit being easily assigned an operating mode button via which the operator can determine the dosing amount.
  • each dosing unit can also be provided with control logic which receives signals about the furnace status. In this way, automatic regulation of the protective gas concentration can also be achieved.
  • the pressure accumulator is preceded by a mixing device with a mixing chamber in which the gases forming the protective gas mixture are brought together under pressure.
  • the system pressure of this mixing device can be matched to the operating pressure of the metering devices.
  • the system pressure of the mixing device must be selected to be sufficiently higher than the operating pressure of the metering devices.
  • pressure nozzles for supplying the mixed gases can also be arranged on the mixing chamber, pressure control devices being assigned to the supply lines to the mixing chamber and pressure regulators for maintaining the same Pressure can be provided to achieve a constant pressure control between the carrier gas and protective gas.
  • This configuration has the advantage that the mixed gases, i.e. the components of the protective gas are formed in the mixing chamber under turbulent flow in the set mixing ratio and are then fed to the pressure vessel.
  • the mixing of the gases works without any electrical energy expenditure. Even in the event of a power failure, the mixture can therefore be generated as long as there are sufficient mixed gases.
  • the concentration is not changed.
  • the system of mixing device and metering device is also able to maintain the concentration precisely even in the event of a power failure. Only the dosing quantity is based on permanently set, continuously dosed emergency gassing quantities. Emergency operation can be carried out in a de-energized state, which is of course indicated by signaling devices.
  • a mixing device with a pressure accumulator can supply several metering units, which either apply different groups of inlet nozzles to one furnace or also several melting furnaces, the metering quantities of which are independent.
  • the change in the operating state of a melting furnace and the necessary changes in its dosage have no effect on the other melting furnaces.
  • a pressure monitoring device can be provided, for example, in the connecting line between the mixing chamber and the pressure accumulator.
  • a gas analysis device can be assigned to the mixing chamber with which the concentration the gas mixture is controllable.
  • This gas analyzer can easily compare the gas mixture of the mixing chamber with a reference gas mixture and, in the event of deviations, send a signal to the mixing device, via which the supply of the mixed gases can be controlled.
  • the gas mixing and dosing unit provided to apply protective gas to the melting furnace 1 initially exists from a gas mixing unit 2, the structure of which is shown in FIG. 2.
  • This gas mixing unit is supplied, on the one hand, with the protective gas used, ie SF 6 or SO 2 in the direction of arrow 3, and a carrier gas, for example nitrogen N 2 in the direction of arrow 4.
  • the mixing of these two constituents is carried out under pressure, as described in detail will be explained with reference to FIG. 2.
  • the shielding gas mixture thus formed is then held within the gas mixing unit in a pressure accumulator, from which shielding gas is passed on via the connecting lines 5 and 6 to metering devices 7 and 7a.
  • the structure of these metering devices can be seen from FIG. 3. Further metering devices can be connected to the further line 6 '.
  • the protective gas is fed from the metering devices 7 and 7a via the connecting lines 8 and 8a to inlet nozzles 9 and 9a, where it enters the space of the melting furnace 1 above the melt. This is described in detail with reference to FIGS. 4 and 5.
  • FIG. 2 shows that the protective gas, for example SF 6 , is fed through the connection 3 and carrier gas, for example N 2, through the connection 4 into the mixing device 2, both mixed gases entering the lines 11 and 12 via a filter 10.
  • An input pressure monitor 14 is carried out by a central monitoring logic 13 and the pressure in these input lines 11 and 12 is indicated by corresponding manometer arrangements 15.
  • a pneumatic constant pressure control 16 ensures that the pressure in the two feed lines 11 and 12 of the mixed gases supplied is the same in each case.
  • the gases are kept under a pressure of at least 5 bar.
  • the concentration setting of the protective gas led through line 11 takes place at point 17.
  • the parallel feed line 12 of the carrier gas there is a corresponding throttle point 18 and both Pressure lines 11 and 12 are led to a mixing chamber 19, in which the two gases each emerge under pressure from nozzles 20 and can be led to a homogeneous mixture in the resulting turbulent flow.
  • This homogeneous gas mixture is then passed to a pressure accumulator 21 via line 22, the pressure of which is monitored by an output pressure monitor 23 of the monitoring logic 13 and is again displayed by a manometer 15.
  • a homogeneous mixed gas is thus stored in the pressure accumulator 21 as a function of the inlet pressure (here 4-5 bar), which can then be passed via the further line 5 to one or more metering devices 7.
  • FIG. 3 shows, as an exemplary embodiment, the metering device 7 of FIG. 1, to which the mixed gas is fed under pressure through line 5.
  • a filter 10 is connected upstream of a further line 24, the pressure of which is monitored via the device 25 and a central dosing logic and monitoring device 26 and is also regulated centrally via the devices 27 and 28 and the central control 29 to a specific operating pressure, which is approximately in is in the order of 1.8 to 3.0 bar.
  • This pressure can be made visible via a manometer 10.
  • lines 30, 31 and 32 branch off from line 24 in the exemplary embodiment, which lines can optionally be switched to the outlet line 8 in order to continue the gas mixture and each allow a different amount of the gas to flow out.
  • a device 33 for determining the respective operating mode i.e. Provided for determining the dosage, wherein in a practical embodiment various buttons can be provided which can be operated by the operator. These keys are symbolized by the arrows 34.
  • the central dosing logic is also provided with signal inputs 35 from the die casting machine and from the melting furnace 1, and corresponding ones Signal outputs to the furnace and to the die casting machine are indicated by the arrows 36. Finally, the central dosing logic also has a device 37 for signaling the operating state and for indicating any faults. In the exemplary embodiment, the outlet line 8 is provided with an optical display device 38 for displaying the flow.
  • the melting furnace 1 shown in the exemplary embodiment has a removal chamber 39 and a storage chamber 40 which are separated from one another by a wall 41. In both chambers there is melt up to level 42 and the space 43 and 43a above the melt level is exposed to the protective gas mixture.
  • the melt removal device 44 is located in the removal chamber 39 in a known manner - it is a hot chamber die casting machine.
  • the pressure lines 8 and 8a, which each lead the protective gas mixture to inlet nozzles 9 and 9a, are here (pressure line 8) of the removal chamber 39 and (pressure line 8a) assigned to the melt chamber 40.
  • Fig. 6 shows an example of one of these pressure inlet nozzles 9, which is provided with a screw thread 48 for attachment to corresponding pressure lines and with a throttle 49 or with an orifice, behind which the gas flowing out under pressure undergoes a jet expansion which leads to a turbulent and ensures an even distribution of blurring in rooms 43 and 43a.
  • a protective gas application according to the invention is also possible in furnaces of other types, for example in single-chamber furnaces or in furnaces that are not used for hot-chamber die casting machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Furnace Details (AREA)
  • Fluid-Damping Devices (AREA)
  • Presses And Accessory Devices Thereof (AREA)
  • Moulding By Coating Moulds (AREA)
  • Coating With Molten Metal (AREA)

Abstract

Protective gas device comprises a melting furnace (1) with openings for introducing a protective gas, different gas sources, and a pressure storage container for receiving a mixture of the individual protective gas components. The openings of the melting furnace are provided with inlet nozzles (9, 9a) which are impinged by a dosing unit (7) having an operating pressure equal to or lower than the pressure in the container but high enough to effect beam widening behind the inlet nozzles.

Description

Die Erfindung betrifft eine Schutzgaseinrichtung für Druckgussmaschinen, insbesondere zur Verarbeitung von Magnesium-Schmelzen, mit einem Schmelzofen mit Öffnungen zur Zufuhr der Schutzgase, mit verschiedenen Gasquellen und mit einem diesen nachgeschalteten Behälter zur Aufnahme einer Mischung der einzelnen Schutzgasbestandteile, der über mindestens eine Dosiereinrichtung mit den Öffnungen des Schmelzofens in Verbindung steht.The invention relates to a protective gas device for die casting machines, in particular for processing magnesium melts, with a melting furnace with openings for supplying the protective gases, with various gas sources and with a container connected downstream for receiving a mixture of the individual protective gas components, which via at least one metering device with the Openings of the furnace are connected.

Zur Unterbindung der Reaktion von Magnesium mit dem in der Luft enthaltenen Sauerstoff müssen die im Schmelzofen von Druckgussmaschinen enthaltenen Magnesium-Schmelzen mit einem Inertgasgemisch abgedeckt werden. Zu diesem Zweck werden Gemische von Trägergasen, und Schwefelhexafluorid (SF6) oder Schwefeldioxid (SO2) eingesetzt, wie z.B. N2 und SF6, trockene Luft und SF6 oder trockene Luft mit SO2. Dabei wird angestrebt, die Konzentration der Inertgasanteile im Gemisch so gering wie möglich zu halten.To prevent the reaction of magnesium with the oxygen contained in the air, the magnesium melts contained in the melting furnace of die casting machines must be covered with an inert gas mixture. Mixtures of carrier gases and sulfur hexafluoride (SF 6 ) or sulfur dioxide (SO 2 ), such as N 2 and SF 6 , dry air and SF 6 or dry air with SO 2, are used for this purpose . The aim is to keep the concentration of the inert gas in the mixture as low as possible.

Bei den bekannten Einrichtungen zur Erzeugung des Schutzgasgemisches werden die einzelnen Bestandteile bei relativ niedrigem Druck (0,8 bis 1,5 bar) durch mengenmäßig abgestimmte Zufuhr in einen Behälter eingefüllt, aus dem das Gasgemisch entnommen und der Schmelzenoberfläche zugeführt wird.In the known devices for producing the protective gas mixture, the individual constituents are filled into a container at a relatively low pressure (0.8 to 1.5 bar) by means of a quantity-matched supply, from which the gas mixture is removed and fed to the melt surface.

Bei den heute bekannten Geräten führt die Art des Mischvorgangs in der Regel zu Schichtung bzw. es kann nicht sichergestellt werden, dass es dazu nicht kommt. Schichtenbildung kann auch auftreten, wenn das Gas sich nicht richtig vermischt hat und dann sich durch Schwerkrafteinfluss absetzt. Ein homogenes Gemisch wird nicht gebildet. Bei der Gasentnahme haben dabei die so entstehenden Konzentrationsschwankungen Einfluss auf die Inert-Wirkung. Zu niedrige Inertgas-Konzentration führt zum Brennen; zu hohe Konzentration zu Korrosionsverhalten am Schmelzen-Ofen und an der Gießeinheit sowie zu unnötig hoher schadhafter Emission.In the devices known today, the type of mixing process generally leads to stratification or it cannot be ensured that this will not happen. Layering can also occur if the gas has not mixed properly and then settles under the influence of gravity. A homogeneous mixture is not formed. When gas is withdrawn, the resulting fluctuations in concentration have an influence on the inert effect. Too low an inert gas concentration leads to burning; too high a concentration on corrosion behavior on the melting furnace and on the casting unit as well as on unnecessarily high harmful emissions.

Die Zufuhr des Gasgemisches in den Ofen erfolgt über eine oder mehrere Einlassöffnungen mit möglichst niedrigem Strömungswiderstand, wobei die zu dosierende Menge über den Volumenstrom eingestellt wird. Sind mehrere Einlassöffnungen an einer Dosiervorrichtung angeschlossen, so ergeben sich starke Unterschiede in der Dosierung und zwar abhängig vom Abstandsmaß der Öffnungen.The gas mixture is fed into the furnace via one or more inlet openings with the lowest possible flow resistance, the amount to be metered being set via the volume flow. If several inlet openings are connected to one dosing device, there are large differences in the dosing, depending on the distance between the openings.

Werden die Einlassöffnungen als Gruppe zusammengefasst und an verschiedenen Dosiergeräten angeschlossen, z.B. für einen oder für mehrere Öfen, so haben Veränderungen der Dosierung einer Einlassöffnung Einfluss auf die Dosierung an den anderen Einlassöffnungen. Die Einstellung wird in der Regel sehr schwierig. Dazu kommt, dass auf diese Weise auch lokale Über- bzw. Unterdosierungen im Ofen auftreten können. Es können im Ofenraum über der Schmelze Bereiche einer SF6-Anreicherung und Stellen der SF6-Verarmung auftreten, was als Konzentrationsschatten bezeichnet wird. Wird bei den bekannten Bauarten eine Änderung der Dosierung gewünscht, beispielsweise bei unterschiedlichen Betriebsarten, (Normalbetrieb, Reinigen, Notbetrieb), dann muss die Einstellung jeweils ermittelt und eingeregelt werden. In aufwendiger Weise muss dabei die Menge der Mischgase jeweils dem Betriebszustand angepasst werden.If the inlet openings are combined as a group and connected to different dosing devices, for example for one or more ovens, changes in the dosage of one inlet opening have an influence on the dosing at the other inlet openings. The setting is usually very difficult. In addition, local overdosing or underdosing can also occur in the oven in this way. Areas of SF 6 enrichment can be found in the furnace chamber above the melt and places of SF 6 depletion occur, which is referred to as concentration shadow. If a change in the dosage is desired in the known types, for example in the case of different operating modes (normal operation, cleaning, emergency operation), then the setting must be determined and adjusted in each case. The amount of mixed gases must be adapted to the operating state in a complex manner.

Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, eine Schutzgaseinrichtung der eingangs genannten Art so auszugestalten, dass eine einfache und rückwirkungsfreie Schutzgasbeaufschlagung der Schmelzen erreicht wird und die vorher erwähnten Probleme vermieden sind.The present invention is therefore based on the object of designing an inert gas device of the type mentioned at the outset in such a way that simple and non-reactive inert gas exposure to the melts is achieved and the aforementioned problems are avoided.

Zur Lösung dieser Aufgabe wird bei einer Schutzgaseinrichtung der eingangs genannten Art vorgesehen, dass der Behälter ein Druckspeicher ist, dass die Öffnungen des Schmelzen-Ofens mit Einlassdüsen versehen sind und dass diese Einlassdüsen von einer Dosiereinrichtung beaufschlagt sind, deren Betriebsdruck gleich oder kleiner als der Druck im Druckspeicher aber jedenfalls hoch genug ist, um eine Strahlaufweitung des Schutzgasgemisches hinter den Einlassdüsen zu bewirken.To achieve this object, it is provided in a protective gas device of the type mentioned at the outset that the container is a pressure accumulator, that the openings of the melting furnace are provided with inlet nozzles and that these inlet nozzles are acted upon by a metering device whose operating pressure is equal to or less than the pressure in the pressure accumulator, however, is high enough to cause the protective gas mixture to expand behind the inlet nozzles.

In Ausgestaltung der Erfindung kann der Dosiervorgang kontinuierlich oder diskontinuierlich, also pulsierend erfolgen. Im letzteren Fall, also bei intermittierender Beaufschlag der Einlassdüse, können auch kleine Mengen gesteuert dosiert werden, ohne die Gefahr einzugehen dass dann wegen zu geringen Druckes keine Strahlaufweitung, d.h. keine "Verdüsung" mehr stattfindet. Bekanntlich benötigen sie eine Anordnung, mit der "verdüst" werden soll, zwei Vorraussetzungen :In an embodiment of the invention, the metering process can be carried out continuously or discontinuously, ie pulsating. In the latter case, i.e. when the inlet nozzle is acted on intermittently, small amounts can also be metered in a controlled manner without running the risk that no jet expansion will occur due to insufficient pressure, i.e. no more "spraying" takes place. As you know, you need an arrangement with which to "atomize", two prerequisites:

Zum einen einen gewissen Druck, zum anderen auch ein gewisses Volumen, durch das sich ein Staudruck von der Düse einstellt. Wird das Volumen derart gering, dass dieser Staudruck nicht gehalten werden kann, wäre auch der Verdüsungseffekt weg. Aus diesem Grund kann die erfindungsgemäße Dosiereinrichtung intermittierend, also pulsierend, das Gas stellen und so im Mittel die Begasungsmenge weiter reduzieren, obwohl das System in der Begasungsart noch funktioniert. Eine mechanische Anpassung der Düsen selbst an diese Geringstmengen-Dosierung ist damit nicht notwendig.On the one hand, a certain pressure, on the other hand, a certain volume, which creates a back pressure from the nozzle. Will that Volume so small that this dynamic pressure cannot be maintained, the atomizing effect would also be gone. For this reason, the metering device according to the invention can switch the gas intermittently, ie pulsating, and thus further reduce the amount of fumigation on average, although the system still works in the fumigation mode. A mechanical adaptation of the nozzles themselves to this minimum quantity dosage is therefore not necessary.

Durch diese Ausgestaltung wird eine schnelle und gleichmäßige Verteilung über der Schmelze erreicht, so dass keine Konzentrationsschatten oder Anreicherungen von Schutzgas auftreten. In Weiterbildung der Erfindung werden dabei die Einlassdüsen am Schmelzofen so verteilt angeordnet, dass eine Gasströmung zu den ohnehin vorhandenen Leckstellen des Ofens entsteht, so dass auf diese Weise eine gleichmäßige Konzentrationsverteilung gewährleistet ist. Unter "Leckstellen" sollen hier sämtliche gewollten und ungewollten Öffnungen des Ofens, wie z.B. Chargieröffnungen, Reinigungsöffnungen und tatsächlich undichte Stellen verstanden werden. Die Einlassdüsen werden auch so angeordnet, dass sie vor einer Verschmutzung oder Verstopfung geschützt sind.With this configuration, a rapid and uniform distribution over the melt is achieved, so that no concentration shadows or enrichments of protective gas occur. In a further development of the invention, the inlet nozzles on the melting furnace are arranged so that a gas flow to the already existing leak points of the furnace arises, so that a uniform concentration distribution is ensured in this way. Under "leaks" all wanted and unwanted openings of the furnace, such as Charging openings, cleaning openings and actually leaks can be understood. The inlet nozzles are also arranged to protect them from contamination or clogging.

Der Betriebsdruck der Dosiereinrichtung, der konstant gehalten wird, ist auf die Art der Einlassdüsen abgestimmt und damit auch auf das gewünschte Verteilungsprinzip des Gasgemisches im Ofen. Zu diesem Zweck ist es natürlich vorteilhaft, wenn der Eingangsdruck an der Dosiereinheit, d.h. also der Druck im Druckspeicher ebenfalls überwacht wird, so dass der Betriebsdruck für die Dosiereinrichtung eingehalten werden kann. Fällt der Druck aus irgend einem Grund ab, so kann über entsprechende Signale, die auch optische Anzeigen auslösen, die Dosiereinheit auf Notbegasung geschaltet werden und den Gasauslass öffnen.The operating pressure of the metering device, which is kept constant, is matched to the type of inlet nozzle and thus also to the desired distribution principle of the gas mixture in the furnace. For this purpose, it is of course advantageous if the inlet pressure at the metering unit, that is to say the pressure in the pressure accumulator, is also monitored so that the operating pressure for the metering device can be maintained. If the pressure drops for any reason, the dosing unit can be switched to emergency fumigation and open the gas outlet via appropriate signals that also trigger visual displays.

Durch die Regelung des Betriebsdruckes ist die Dosierung, also die gewünschte Gasmenge, völlig unabhängig von anderen Verbrauchern an der gleichen Gasmischeinheit. Rückwirkungsfrei können so über mehrere Dosiereinheiten verschiedene Gruppen von Einlassdüsen betrieben werden. Ein Verstellen der Menge an einer Gruppe von Einlassdüsen wirkt sich nicht auf die Menge der anderen Gruppe aus und hat auch keinen Einfluss auf die Gemischbildung, d.h. auf die Konzentration des Schutzgases.By regulating the operating pressure, the dosage, i.e. the desired amount of gas, is completely independent of other consumers on the same gas mixing unit. Different groups of inlet nozzles can thus be operated without reaction via several dosing units. Adjusting the amount on one group of inlet nozzles does not affect the amount of the other group and has no influence on the mixture formation, i.e. on the concentration of the protective gas.

Auf diese Weise können in Ausgestaltung der Erfindung mehrere Dosiereinrichtungen auch für verschiedene Ofen parallel zueinander geschaltet und vom Druckspeicher versorgt werden. Jede Dosiereinheit kann dabei mit einer Einrichtung zur Einstellung der Dosiermenge versehen sein, wobei in einfacher Weise jeder Dosiereinheit ein Betriebsartentaster zugeordnet wird, über den die Bedienungsperson die Dosiermenge bestimmen kann. Jede Dosiereinheit kann außerdem in Weiterbildung der Erfindung mit einer Steuerlogik versehen werden, die Signale über den Ofenstatus erhält. Auf diese Weise kann auch eine automatische Regelung der Schutzgaskonzentration erreicht werden.In this way, in one embodiment of the invention, a plurality of metering devices can also be connected in parallel to one another for different furnaces and can be supplied by the pressure accumulator. Each dosing unit can be provided with a device for setting the dosing amount, with each dosing unit being easily assigned an operating mode button via which the operator can determine the dosing amount. In a further development of the invention, each dosing unit can also be provided with control logic which receives signals about the furnace status. In this way, automatic regulation of the protective gas concentration can also be achieved.

In Ausgestaltung der Erfindung ist dem Druckspeicher eine Mischeinrichtung mit einer Mischkammer vorgeschaltet, in der die die Schutzgasmischung bildenden Gase unter Druck zusammengeführt werden. Der Systemdruck dieser Mischeinrichtung kann dabei auf den Betriebsdruck der Dosiereinrichtungen abgestimmt werden. Der Systemdruck der Mischeinrichtung muss ausreichend höher als der Betriebsdruck der Dosiereinrichtungen gewählt werden.In an embodiment of the invention, the pressure accumulator is preceded by a mixing device with a mixing chamber in which the gases forming the protective gas mixture are brought together under pressure. The system pressure of this mixing device can be matched to the operating pressure of the metering devices. The system pressure of the mixing device must be selected to be sufficiently higher than the operating pressure of the metering devices.

In Ausgestaltung der Erfindung können auch an der Mischkammer Druckdüsen für die Zufuhr der Mischgase angeordnet sein, wobei den Zuführleitungen zur Mischkammer jeweils Druckregelungseinrichtungen zugeordnet werden und auch Druckregler zur Aufrechterhaltung gleichen Druckes zur Erzielung einer Gleichdruckregelung zwischen Trägergas und Schutzgas vorgesehen sein können.In an embodiment of the invention, pressure nozzles for supplying the mixed gases can also be arranged on the mixing chamber, pressure control devices being assigned to the supply lines to the mixing chamber and pressure regulators for maintaining the same Pressure can be provided to achieve a constant pressure control between the carrier gas and protective gas.

Diese Ausgestaltung weist den Vorteil auf, dass die Mischgase, d.h. die Bestandteile des Schutzgases unter turbulenter Strömung im eingestellten Mischungsverhältnis in der Mischkammer gebildet werden und dann dem Druckbehälter zugeführt werden. Das Mischen der Gase funktioniert ohne jeden elektrischen Energieaufwand. Auch bei Stromausfall kann daher so lange exakt das Gemisch erzeugt werden, wie ausreichend Mischgase vorhanden sind. Die Konzentration wird dabei nicht verändert. Auch das System Mischeinrichtung und Dosiereinrichtung, ist somit in der Lage, auch bei Stromausfall die Konzentration exakt zu halten. Nur die Dosiermenge geht auf fest eingestellte kontinuierlich dosierte Notbegasungsmengen zurück. Der Notbetrieb kann in stromlosen Zustand gefahren werden, was durch Signaleinrichtungen natürlich angezeigt wird.This configuration has the advantage that the mixed gases, i.e. the components of the protective gas are formed in the mixing chamber under turbulent flow in the set mixing ratio and are then fed to the pressure vessel. The mixing of the gases works without any electrical energy expenditure. Even in the event of a power failure, the mixture can therefore be generated as long as there are sufficient mixed gases. The concentration is not changed. The system of mixing device and metering device is also able to maintain the concentration precisely even in the event of a power failure. Only the dosing quantity is based on permanently set, continuously dosed emergency gassing quantities. Emergency operation can be carried out in a de-energized state, which is of course indicated by signaling devices.

Eine Mischeinrichtung mit einem Druckspeicher kann, wie bereits erwähnt, mehrere Dosiereinheiten versorgen, die entweder verschiedene Einlassdüsengruppen an einem Ofen beaufschlagen oder auch mehrere Schmelzöfen, deren Dosiermengen unabhängig sind. Die Veränderung des Betriebszustandes an einem Schmelzofen und damit notwendige Änderungen seiner Dosierung, haben dabei keinen Einfluss auf die anderen Schmelzöfen.As already mentioned, a mixing device with a pressure accumulator can supply several metering units, which either apply different groups of inlet nozzles to one furnace or also several melting furnaces, the metering quantities of which are independent. The change in the operating state of a melting furnace and the necessary changes in its dosage have no effect on the other melting furnaces.

Wie vorher schon erwähnt, wird der Druck im Druckspeicher überwacht und zu diesem Zweck kann beispielsweise in der Verbindungsleitung zwischen Mischkammer und Druckspeicher eine Drucküberwachungseinrichtung vorgesehen sein.As previously mentioned, the pressure in the pressure accumulator is monitored and for this purpose a pressure monitoring device can be provided, for example, in the connecting line between the mixing chamber and the pressure accumulator.

In weiterer Ausgestaltung der Erfindung schließlich kann der Mischkammer ein Gasanalysegerät zugeordnet werden, mit dem die Konzentration des Gasgemisches kontrollierbar ist. Dieses Gasanalysegerät kann in einfacher Weise das Gasgemisch der Mischkammer mit einem Referenzgasgemisch vergleichen und bei Abweichungen ein Signal an die Mischeinrichtung abgeben, über das die Zufuhr der Mischgase gesteuert werden kann.Finally, in a further embodiment of the invention, a gas analysis device can be assigned to the mixing chamber with which the concentration the gas mixture is controllable. This gas analyzer can easily compare the gas mixture of the mixing chamber with a reference gas mixture and, in the event of deviations, send a signal to the mixing device, via which the supply of the mixed gases can be controlled.

Die Erfindung ist anhand eines Ausführungsbeispieles in den Zeichnungen dargestellt und wird im folgenden erläutert. Es zeigen:

Fig. 1
eine Blockbilddarstellung einer erfindungsgemäßen Schutzgaseinrichtung,
Fig. 2
die schaltbildartige Darstellung der in der Schutzgaseinrichtung der Fig. 1 verwendeten Mischeinrichtung,
Fig. 3
die schaltbildartige Darstellung einer Dosiereinrichtung aus Fig. 1,
Fig. 4
einen schematischen Längsschnitt durch den Schmelzofen der Fig. 1,
Fig. 5
die Draufsicht auf den Schmelzofen der Fig. 4 und
Fig.6
schließlich eine vergrößerte Darstellung einer der für die Schutzgasbeaufschlagung vorgesehenen Einlassdüsen aus den Fig. 4 bzw. 5.
The invention is illustrated in the drawings using an exemplary embodiment and is explained below. Show it:
Fig. 1
2 shows a block diagram of an inert gas device according to the invention,
Fig. 2
1 shows the circuit diagram-like representation of the mixing device used in the protective gas device of FIG. 1,
Fig. 3
1 shows the circuit diagram-like representation of a metering device from FIG. 1,
Fig. 4
2 shows a schematic longitudinal section through the melting furnace of FIG. 1,
Fig. 5
the top view of the melting furnace of FIGS. 4 and
Figure 6
Finally, an enlarged representation of one of the inlet nozzles provided for the protective gas application from FIGS. 4 and 5.

Die Fig. 1 lässt strichpunktförmig umrahmt einen Schmelzofen 1 erkennen, dessen Schmelzbad mit Schutzgas abgedeckt werden soll. Dieser Schmelzofen 1 ist im einzelnen aus den Fig. 4 und 5 ersichtlich und wird dort näher erläutert. Die zur Beaufschlagung des Schmelzofens 1 mit Schutzgas vorgesehene Gasmisch- und Dosiereinheit besteht zunächst aus einer Gasmischeinheit 2, deren Aufbau anhand von Fig. 2 dargestellt ist. Dieser Gasmischeinheit wird zum einen das verwendete Schutzgas, d.h. also SF6 oder SO2 im Sinn des Pfeiles 3 zugeführt, sowie ein Trägergas, beispielsweise Stickstoff N2 im Sinn des Pfeiles 4. Die Vermischung dieser beiden Bestandteile erfolgt unter Druck, wie noch im einzelnen anhand von Fig. 2 erläutert werden wird. Das so gebildete Schutzgasgemisch wird dann innerhalb der Gasmischeinheit in einem Druckspeicher gehalten, von dem aus Schutzgas über die Verbindungsleitung 5 und 6 zu Dosiereinrichtungen 7 und 7a weitergeführt wird. Der Aufbau dieser Dosiereinrichtungen ist aus Fig. 3 erkennbar. Weitere Dosiereinrichtungen können an die weiterführende Leitung 6' angeschlossen werden. Aus den Dosiereinrichtungen 7 bzw. 7a wird das Schutzgas über die Anschlussleitungen 8 und 8a zu Einlassdüsen 9 bzw. 9a geführt und tritt dort in den Raum des Schmelzofens 1 oberhalb der Schmelze ein. Dies wird im einzelnen anhand der Fig. 4 und 5 beschrieben.1 shows a smelting furnace 1 framed by a dot-dash line, the melting bath of which is to be covered with protective gas. This melting furnace 1 can be seen in detail from FIGS. 4 and 5 and is explained in more detail there. The gas mixing and dosing unit provided to apply protective gas to the melting furnace 1 initially exists from a gas mixing unit 2, the structure of which is shown in FIG. 2. This gas mixing unit is supplied, on the one hand, with the protective gas used, ie SF 6 or SO 2 in the direction of arrow 3, and a carrier gas, for example nitrogen N 2 in the direction of arrow 4. The mixing of these two constituents is carried out under pressure, as described in detail will be explained with reference to FIG. 2. The shielding gas mixture thus formed is then held within the gas mixing unit in a pressure accumulator, from which shielding gas is passed on via the connecting lines 5 and 6 to metering devices 7 and 7a. The structure of these metering devices can be seen from FIG. 3. Further metering devices can be connected to the further line 6 '. The protective gas is fed from the metering devices 7 and 7a via the connecting lines 8 and 8a to inlet nozzles 9 and 9a, where it enters the space of the melting furnace 1 above the melt. This is described in detail with reference to FIGS. 4 and 5.

Fig. 2 zeigt, dass das Schutzgas, also beispielsweise SF6 durch den Anschluss 3 und Trägergas z.B. N2 durch den Anschluss 4 in die Mischeinrichtung 2 gegeben wird, wobei beide Mischgase jeweils über einen Filter 10 in die Leitungen 11 und 12 gelangen. Von einer zentralen Überwachungslogik 13 aus wird dabei eine Eingangsdrucküberwachung 14 vorgenommen und der Druck in diesen Eingangsleitungen 11 und 12 jeweils durch entsprechende Manometeranordnungen 15 angezeigt. Mit einer pneumatischen Gleichdruckregelung 16 wird dafür gesorgt, dass der Druck in den beiden Zuführleitungen 11 und 12 der zugeführten Mischgase jeweils gleich hoch ist. Die Gase werden dabei unter einem Druck von mindestens 5 bar gehalten.FIG. 2 shows that the protective gas, for example SF 6 , is fed through the connection 3 and carrier gas, for example N 2, through the connection 4 into the mixing device 2, both mixed gases entering the lines 11 and 12 via a filter 10. An input pressure monitor 14 is carried out by a central monitoring logic 13 and the pressure in these input lines 11 and 12 is indicated by corresponding manometer arrangements 15. A pneumatic constant pressure control 16 ensures that the pressure in the two feed lines 11 and 12 of the mixed gases supplied is the same in each case. The gases are kept under a pressure of at least 5 bar.

Die Konzentrationseinstellung des durch die Leitung 11 geführten Schutzgases erfolgt an der Stelle 17. In der parallelen Zuleitung 12 des Trägergases befindet sich eine entsprechende Drosselstelle 18 und beide Druckleitungen 11 und 12 werden zu einer Mischkammer 19 geführt, in der die beiden Gase jeweils aus Düsen 20 unter Druck austreten und sich in der dadurch entstehenden turbulenten Strömung zu einem homogenen Gemisch führen lassen. Dieses homogene Gasgemisch wird dann einem Druckspeicher 21 über die Leitung 22 geführt, deren Druck über eine Ausgangsdrucküberwachung 23 der Überwachungslogik 13 kontrolliert und wiederum über ein Manometer 15 angezeigt wird. Im Druckspeicher 21 wird somit ein homogenes Mischgas abhängig vom Eingangsdruck (hier 4 - 5 bar) gespeichert, das dann über die weiterführende Leitung 5 zu einer oder mehreren Dosiereinrichtungen 7 geleitet werden kann.The concentration setting of the protective gas led through line 11 takes place at point 17. In the parallel feed line 12 of the carrier gas there is a corresponding throttle point 18 and both Pressure lines 11 and 12 are led to a mixing chamber 19, in which the two gases each emerge under pressure from nozzles 20 and can be led to a homogeneous mixture in the resulting turbulent flow. This homogeneous gas mixture is then passed to a pressure accumulator 21 via line 22, the pressure of which is monitored by an output pressure monitor 23 of the monitoring logic 13 and is again displayed by a manometer 15. A homogeneous mixed gas is thus stored in the pressure accumulator 21 as a function of the inlet pressure (here 4-5 bar), which can then be passed via the further line 5 to one or more metering devices 7.

Die Fig. 3 zeigt als Ausführungsbeispiel die Dosiereinrichtung 7 der Fig.1, der das Mischgas unter Druck durch die Leitung 5 zugeführt wird. Auch hier wird ein Filter 10 einer weiterführenden Leitung 24 vorgeschaltet, deren Druck über die Einrichtung 25 und eine zentrale Dosierlogik und Überwachungseinrichtung 26 überwacht und ebenfalls zentral über die Einrichtungen 27 und 28 und die zentrale Steuerung 29 auf einen bestimmten Betriebsdruck eingeregelt wird, der etwa in der Größenordnung von 1,8 bis 3,0 bar liegt. Dieser Druck kann über ein Manometer 10 sichtbar gemacht werden. Von der Leitung 24 aus zweigen beim Ausführungsbeispiel 3 Leitungen 30, 31 und 32 ab, die wahlweise zur Weiterführung des Gasgemisches zur Austrittsleitung 8 geschaltet werden können und jeweils eine unterschiedliche Menge des Gases ausströmen lassen. In der zentralen Dosierlogik 26 ist eine Einrichtung 33 zur Bestimmung der jeweiligen Betriebsart, d.h. zur Bestimmung der Dosierung vorgesehen, wobei bei einer praktischen Ausführungsform verschiedene Taster vorgesehen sein können, die von der Bedienungsperson betätigbar sind. Diese Tasten sind durch die Pfeile 34 symbolisiert.3 shows, as an exemplary embodiment, the metering device 7 of FIG. 1, to which the mixed gas is fed under pressure through line 5. Here, too, a filter 10 is connected upstream of a further line 24, the pressure of which is monitored via the device 25 and a central dosing logic and monitoring device 26 and is also regulated centrally via the devices 27 and 28 and the central control 29 to a specific operating pressure, which is approximately in is in the order of 1.8 to 3.0 bar. This pressure can be made visible via a manometer 10. 3, lines 30, 31 and 32 branch off from line 24 in the exemplary embodiment, which lines can optionally be switched to the outlet line 8 in order to continue the gas mixture and each allow a different amount of the gas to flow out. In the central dosing logic 26 there is a device 33 for determining the respective operating mode, i.e. Provided for determining the dosage, wherein in a practical embodiment various buttons can be provided which can be operated by the operator. These keys are symbolized by the arrows 34.

Die zentrale Dosierlogik ist außerdem noch mit Signaleingängen 35 von der Druckgussmaschine und vom Schmelzofen 1 her versehen und entsprechende Signalausgänge zum Ofen und zu der Druckgussmaschine sind mit den Pfeilen 36 angedeutet. Die zentrale Dosierlogik weist schließlich auch eine Einrichtung 37 zur Signalisierung des Betriebszustandes und zur Anzeige eventueller Störungen auf. Die Austrittsleitung 8 ist beim Ausführungsbeispiel mit einer optischen Anzeigevorrichtung 38 zur Anzeige des Durchflusses versehen.The central dosing logic is also provided with signal inputs 35 from the die casting machine and from the melting furnace 1, and corresponding ones Signal outputs to the furnace and to the die casting machine are indicated by the arrows 36. Finally, the central dosing logic also has a device 37 for signaling the operating state and for indicating any faults. In the exemplary embodiment, the outlet line 8 is provided with an optical display device 38 for displaying the flow.

Die Fig. 4 und 5 lassen nun zunächst deutlich werden, dass der im Ausführungsbeispiel gezeigte Schmelzofen 1 eine Entnahmekammer 39 und eine Speicherkammer 40 besitzt, die durch eine Wand 41 voneinander getrennt sind. In beiden Kammern befindet sich Schmelze bis zum Niveau 42 und der Raum 43 und 43a oberhalb des Schmelzenspiegels wird mit dem Schutzgasgemisch beaufschlagt. In der Entnahmekammer 39 befindet sich in bekannter Weise - es handelt sich um Warmkammerdruckgießmaschine - die Schmelzenentnahmeeinrichtung 44. Die Druckleitungen 8 und 8a, die das Schutzgasgemisch jeweils zu Einlassdüsen 9 bzw. 9a führen, sind hier (Druckleitung 8) der Entnahmekammer 39 und (Druckleitung 8a) der Schmelzenkammer 40 zugeordnet. Die Einlassdüsen 9 für die Entnahme, sind, wie Fig. 5 zeigt, vor der Schmelzenentnahmeeinrichtung 44 so angeordnet, dass das unter Druck austretende und sich erweiternde Gasgemisch in einer Strömung um die Schmelzenentnahmeeinrichtung 44 herum zu der über der Entnahmekammer 39 angeordneten Reinigungsöffnung 45 strömt, die insofern eine unvermeidlich Leckstelle im Raum 43 bildet. Durch die Anordnung der Druckdüsen und der geometrischen Verteilung dieser Düsen 9, die der Geometrie der Entnahmekammer angepasst ist, wird eine gleichmäßige Strömung im Raum 43 erreicht, durch die Konzentrationsschatten oder örtliche Überkonzentrationen des Schutzgases vermieden werden können.4 and 5 now make it clear that the melting furnace 1 shown in the exemplary embodiment has a removal chamber 39 and a storage chamber 40 which are separated from one another by a wall 41. In both chambers there is melt up to level 42 and the space 43 and 43a above the melt level is exposed to the protective gas mixture. The melt removal device 44 is located in the removal chamber 39 in a known manner - it is a hot chamber die casting machine. The pressure lines 8 and 8a, which each lead the protective gas mixture to inlet nozzles 9 and 9a, are here (pressure line 8) of the removal chamber 39 and (pressure line 8a) assigned to the melt chamber 40. 5, are arranged in front of the melt removal device 44 such that the gas mixture which escapes and expands under pressure flows in a flow around the melt removal device 44 to the cleaning opening 45 arranged above the removal chamber 39, which thus forms an inevitable leak in room 43. Due to the arrangement of the pressure nozzles and the geometric distribution of these nozzles 9, which is adapted to the geometry of the removal chamber, a uniform flow in the space 43 is achieved, through which concentration shadows or local over-concentrations of the protective gas can be avoided.

Gleiches gilt für die Speicherkammer 40, deren über dem Schmelzenniveau 42 liegender Raum 43a durch die Druckdüsen 9a beaufschlagt wird, die hier in größerem Abstand zueinander seitlich im Raum 43a auf der Seite angeordnet sind, die der Reinigungs- und Chargierröffnung 46 gegenüberliegt. Auch auf diese Weise wird, wie durch die Pfeile 47 jeweils angedeutet ist, eine gleichmäßige Strömung im Raum 43a erreicht, welche zusammen mit der gewählten Druckbeaufschlagung durch die Einlassdüsen 9, 9a zu einer gleichmäßigen Schutzgaskonzentration oberhalb des Schmelzenspiegels sorgt.The same applies to the storage chamber 40, whose space 43a above the melt level 42 is acted upon by the pressure nozzles 9a which are arranged laterally at a greater distance from one another laterally in the space 43a on the side opposite the cleaning and charging opening 46. In this way too, as indicated by the arrows 47, a uniform flow in the space 43a is achieved, which together with the selected pressurization through the inlet nozzles 9, 9a ensures a uniform protective gas concentration above the melt level.

Die Fig. 6 zeigt beispielhaft eine dieser Druckeinlassdüsen 9, die mit einem Schraubgewinde 48 zum Ansetzen an entsprechende Druckleitungen und mit einer Drossel 49 bzw. mit einer Blende versehen ist, hinter der das unter Druck ausströmende Gas eine Strahlaufweitung erfährt, die zu einer turbulenten und für eine gleichmäßige Verteilung sorgende Verwischung in den Räumen 43 und 43a sorgt.Fig. 6 shows an example of one of these pressure inlet nozzles 9, which is provided with a screw thread 48 for attachment to corresponding pressure lines and with a throttle 49 or with an orifice, behind which the gas flowing out under pressure undergoes a jet expansion which leads to a turbulent and ensures an even distribution of blurring in rooms 43 and 43a.

Natürlich ist eine Schutzgasbeaufschlagung nach der Erfindung auch bei Öfen anderer Art möglich, beispielsweise bei Einkammeröfen oder bei Öfen, die nicht für Warmkammer-Druckgiessmaschinen verwendet werden.Of course, a protective gas application according to the invention is also possible in furnaces of other types, for example in single-chamber furnaces or in furnaces that are not used for hot-chamber die casting machines.

Claims (18)

Schutzgaseinrichtung für Druckgussmaschinen, insbesondere zur Verarbeitung von Magnesium-Schmelzen, mit einem Schmelzofen (1) und mit Öffnungen zur Zufuhr der Schutzgase, mit verschiedenen Gasquellen und mit einem diesen nachgeschalteten Behälter (21) zur Aufnahme einer Mischung der einzelnen Schutzgasbestandteile, der über mindestens eine Dosiereinrichtung (7) mit den Öffnungen des Schmelzofens in Verbindung steht, dadurch gekennzeichnet, - dass der Behälter ein Druckspeicher (21) ist, - dass die Öffnungen des Schmelzofens (1) mit Einlassdüsen (9, 9a) versehen sind und - dass diese Einlassdüsen von einer Dosiereinrichtung (7) beaufschlagt sind, deren Betriebsdruck gleich oder kleiner als der Druck im Druckspeicher (21), aber hoch genug ist, um eine Strahlaufweitung hinter den Einlassdüsen (9, 9a) zu bewirken. Shielding gas device for die casting machines, in particular for processing magnesium melts, with a melting furnace (1) and with openings for the supply of the shielding gases, with various gas sources and with a container (21) connected downstream for receiving a mixture of the individual shielding gas components, which has at least one Dosing device (7) communicates with the openings of the melting furnace, characterized in that - That the container is a pressure accumulator (21), - That the openings of the melting furnace (1) are provided with inlet nozzles (9, 9a) and - That these inlet nozzles are acted upon by a metering device (7), the operating pressure of which is equal to or less than the pressure in the pressure accumulator (21), but is high enough to cause a beam expansion behind the inlet nozzles (9, 9a). Schutzgaseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Dosiervorgang kontinuierlich oder diskontinuierlich erfolgt.Shielding gas device according to claim 1, characterized in that the metering process takes place continuously or discontinuously. Schutzgaseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Einlassdüsen (9, 9a) am Schmelzofen (1) so verteilt angeordnet sind, dass eine schnelle und gleichmäßige Verteilung des Schutzgasgemisches eintritt.Shielding gas device according to claim 1, characterized in that the inlet nozzles (9, 9a) on the melting furnace (1) are arranged such that the shielding gas mixture is distributed quickly and uniformly. Schutzgaseinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Einlassdüsen (9, 9a) am Ofen (1) so gesetzt sind, dass eine Gasströmung zu den unvermeidlich vorhandenen Leckstellen (45, 46) des Ofens (1) entsteht.Shielding gas device according to claim 3, characterized in that the inlet nozzles (9, 9a) are set on the furnace (1) in such a way that a gas flow to the inevitably present leak points (45, 46) of the furnace (1) is created. Schutzgaseinrichtung nach Anspruch 3, dadurch gekennzeichnet, dass die Einlassdüsen (9, 9a) so angeordnet sind, dass sie gegen ein Benetzen durch Schmelze, also gegen Verschmutzung oder Verstopfung geschützt sind.Shielding gas device according to Claim 3, characterized in that the inlet nozzles (9, 9a) are arranged in such a way that they are protected against wetting by the melt, that is to say against contamination or blockage. Schutzgaseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Betriebsdruck der Dosiereinrichtung (7, 7a) auf die Art der Einlassdüsen (9, 9a) abgestimmt ist,Shielding gas device according to claim 1, characterized in that the operating pressure of the metering device (7, 7a) is matched to the type of inlet nozzles (9, 9a), Schutzgaseinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass der Betriebsdruck geregelt und überwacht ist und dass bei Abweichungen vom gewünschten Betriebsdruck eine Signaleinrichtung (37) wirksam ist.Shielding gas device according to claim 6, characterized in that the operating pressure is regulated and monitored and that a signal device (37) is effective in the event of deviations from the desired operating pressure. Schutzgaseinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass. mehrere Dosiereinrichtungen für verschiedene Ofenabschnitte (39, 40) oder für verschiedene Ofen parallel zueinander geschaltet und vom Druckspeicher (21) versorgt sind.Shielding gas device according to claim 6, characterized in that . several metering devices for different furnace sections (39, 40) or for different furnaces are connected in parallel to one another and are supplied by the pressure accumulator (21). Schutzgaseinrichtung nach Anspruch 8, dadurch gekennzeichnet, dass jede Dosiereinheit (7, 7a) mit einer Einrichtung (33, 34) zur Einstellung der Dosiermenge versehen ist.Shielding gas device according to claim 8, characterized in that each metering unit (7, 7a) is provided with a device (33, 34) for setting the metered amount. Schutzgaseinrichtung nach Anspruch 9, dadurch gekennzeichnet, dass jeder Dosiereinheit ein Betriebsartentaster (34) für die Bestimmung der Dosiermenge zugeordnet ist.Shielding gas device according to claim 9, characterized in that each metering unit is assigned an operating mode button (34) for determining the metered amount. Schutzgaseinrichtung nach Anspruch 6, dadurch gekennzeichnet, dass jede Dosiereinheit (7, 7a) mit einer Steuerlogik (26) versehen ist, die Signale (35) über den Ofenstatus erhält.Shielding gas device according to claim 6, characterized in that each metering unit (7, 7a) is provided with a control logic (26) which receives signals (35) about the furnace status. Schutzgaseinrichtung nach Anspruch 1, dadurch gekennzeichnet, dass dem Druckspeicher (21) eine Mischeinrichtung (2) mit einer Mischkammer (19) zugeordnet ist, in der die das Schutzgasgemisch bildenden Gase unter Druck zusammengeführt werden.Shielding gas device according to claim 1, characterized in that the pressure accumulator (21) is assigned a mixing device (2) with a mixing chamber (19) in which the gases forming the shielding gas mixture are brought together under pressure. Schutzgaseinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass an der Mischkammer (19) Druckdüsen (20) für die Zufuhr der Mischgase angeordnet sind.Shielding gas device according to claim 12, characterized in that pressure nozzles (20) for supplying the mixed gases are arranged on the mixing chamber (19). Schutzgaseinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass den Zuführleitungen (11, 12) zur Mischkammer (19) Druckregelungseinrichtungen (14, 16) zugeordnet sind.Shielding gas device according to Claim 12, characterized in that pressure control devices (14, 16) are assigned to the feed lines (11, 12) to the mixing chamber (19). Schutzgaseinrichtung nach Anspruch 13, dadurch gekennzeichnet, dass den Zuführleitungen (11, 12) zur Mischkammer (19) eine Druckregeleinrichtung (16) zur Aufrechterhaltung gleichen Druckes zugeordnet ist.Shielding gas device according to claim 13, characterized in that a pressure control device (16) for maintaining the same pressure is assigned to the supply lines (11, 12) to the mixing chamber (19). Schutzgaseinrichtung nach Anspruch 13, dadurch gekennzeichnet, dass in der Verbindungsleitung (22) zwischen Mischkammer (19) und Druckspeicher (21) eine Einrichtung (23) zur Überwachung des Druckes vorgesehen ist.Shielding gas device according to claim 13, characterized in that a device (23) for monitoring the pressure is provided in the connecting line (22) between the mixing chamber (19) and the pressure accumulator (21). Schutzgaseinrichtung nach Anspruch 12, dadurch gekennzeichnet, dass Mischkammer (19) ein Gasanalysegerät zugeordnet ist, mit dem die Konzentration des Gasgemisches kontrollierbar ist.Shielding gas device according to claim 12, characterized in that the mixing chamber (19) is assigned a gas analysis device with which the concentration of the gas mixture can be controlled. Schutzgaseinrichtung nach Anspruch 17, dadurch gekennzeichnet, dass das Gasanalysegerät das Gasgemisch der Mischkammer (19) mit einem Referenzgemisch vergleicht und bei Abweichungen ein Signal an die Mischeinrichtung (2) abgibt.Protective gas device according to claim 17, characterized in that the gas analysis device compares the gas mixture of the mixing chamber (19) with a reference mixture and emits a signal to the mixing device (2) in the event of deviations.
EP02021445A 2002-09-25 2002-09-25 Shielding gas device for pressure die casting machines Expired - Lifetime EP1402977B1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
EP02021445A EP1402977B1 (en) 2002-09-25 2002-09-25 Shielding gas device for pressure die casting machines
AT02021445T ATE389483T1 (en) 2002-09-25 2002-09-25 PROTECTIVE GAS DEVICE FOR DIE CASTING MACHINES
DE50211923T DE50211923D1 (en) 2002-09-25 2002-09-25 Inert gas device for die casting machines
ES02021445T ES2302776T3 (en) 2002-09-25 2002-09-25 GAS PROTECTION DEVICE FOR PRESSURE COLADA MACHINES.
CZ2005153A CZ2005153A3 (en) 2002-09-25 2003-09-19 Protective gas device for pressure die-casting machines
JP2004540657A JP4537204B2 (en) 2002-09-25 2003-09-19 Protective gas equipment for die casting machine
PCT/EP2003/010450 WO2004030849A1 (en) 2002-09-25 2003-09-19 Protective gas device for pressure die-casting machines
PL375750A PL206577B1 (en) 2002-09-25 2003-09-19 Protective gas device for pressure die-casting machines
US10/529,080 US7290588B2 (en) 2002-09-25 2003-09-19 Protective gas device for pressure die-casting machines
AU2003262517A AU2003262517A1 (en) 2002-09-25 2003-09-19 Protective gas device for pressure die-casting machines
HK04104452A HK1061541A1 (en) 2002-09-25 2004-06-18 Shielding gas device for pressure die casting machines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP02021445A EP1402977B1 (en) 2002-09-25 2002-09-25 Shielding gas device for pressure die casting machines

Publications (2)

Publication Number Publication Date
EP1402977A1 true EP1402977A1 (en) 2004-03-31
EP1402977B1 EP1402977B1 (en) 2008-03-19

Family

ID=31970309

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02021445A Expired - Lifetime EP1402977B1 (en) 2002-09-25 2002-09-25 Shielding gas device for pressure die casting machines

Country Status (11)

Country Link
US (1) US7290588B2 (en)
EP (1) EP1402977B1 (en)
JP (1) JP4537204B2 (en)
AT (1) ATE389483T1 (en)
AU (1) AU2003262517A1 (en)
CZ (1) CZ2005153A3 (en)
DE (1) DE50211923D1 (en)
ES (1) ES2302776T3 (en)
HK (1) HK1061541A1 (en)
PL (1) PL206577B1 (en)
WO (1) WO2004030849A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004026082A1 (en) * 2004-05-25 2005-12-15 Bühler AG Process for pressure casting of an Al melt or melt containing Al alloy with degassing by nitrogen or a nitrogen containing mixture with improvement of the rheological properties of the melt
US8932385B2 (en) 2011-10-26 2015-01-13 Air Liquide Industrial U.S. Lp Apparatus and method for metal surface inertion by backfilling
CN111360228B (en) * 2020-04-08 2021-09-21 秦皇岛信能能源设备有限公司 Furnace body of hub die casting machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE736766C (en) * 1940-02-22 1943-06-28 Erich Herrmann & Co K G Casting machine, in particular for casting or pressing magnesium
JPS57177871A (en) * 1981-04-28 1982-11-01 Tomoya Noguchi Method and device for low pressure casting
JPH03258448A (en) * 1990-03-09 1991-11-18 Toshiba Mach Co Ltd Electromagnetic molten metal supplying device for die casting machine
US5205346A (en) * 1992-06-11 1993-04-27 Cmi International Method and apparatus for countergravity casting molten metal
JPH06328227A (en) * 1993-05-14 1994-11-29 Sintokogio Ltd Method and device for supplying gas into reverberatory furnace
WO1999002287A1 (en) * 1997-07-07 1999-01-21 Norsk Hydro Asa Method of fluxless melting of magnesium
FR2809643A1 (en) * 2000-05-31 2001-12-07 Brochot Sa METHOD AND DEVICE FOR PROTECTING NON-FERROUS FUSED METAL

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4065299A (en) * 1975-10-23 1977-12-27 Teledyne Industries, Inc. Magnesium reclamation process and apparatus
JPS6334564U (en) * 1986-08-20 1988-03-05
US4846402A (en) * 1988-02-03 1989-07-11 Wheelabrator Air Pollution Control, Inc. Spray nozzle and method of preventing solids build-up thereon
US5388633A (en) * 1992-02-13 1995-02-14 The Dow Chemical Company Method and apparatus for charging metal to a die cast
JP3174856B2 (en) * 1993-05-07 2001-06-11 日本エア・リキード株式会社 Mixed gas supply device
US5540077A (en) * 1994-06-10 1996-07-30 Scott Specialty Gases, Inc. Method and gas mixture for calibrating an analyzer
JPH08143985A (en) * 1994-11-24 1996-06-04 Tokai Rika Co Ltd Device for introducing protective gas for preventing combustion of molten magnesium
JP2002512889A (en) * 1998-04-27 2002-05-08 オットー ユンカー ゲゼルシャフト ミット ベシュレンクテル ハフツング Method for treating molten metal, particularly light metal molten metal, and closed-type measuring and holding furnace pressurized with protective gas
JP2001259400A (en) * 2000-03-16 2001-09-25 Air Water Inc Gas mixing device and its control method
US6742568B2 (en) * 2001-05-29 2004-06-01 Alcoa Inc. Casting apparatus including a gas driven molten metal injector and method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE736766C (en) * 1940-02-22 1943-06-28 Erich Herrmann & Co K G Casting machine, in particular for casting or pressing magnesium
JPS57177871A (en) * 1981-04-28 1982-11-01 Tomoya Noguchi Method and device for low pressure casting
JPH03258448A (en) * 1990-03-09 1991-11-18 Toshiba Mach Co Ltd Electromagnetic molten metal supplying device for die casting machine
US5205346A (en) * 1992-06-11 1993-04-27 Cmi International Method and apparatus for countergravity casting molten metal
JPH06328227A (en) * 1993-05-14 1994-11-29 Sintokogio Ltd Method and device for supplying gas into reverberatory furnace
WO1999002287A1 (en) * 1997-07-07 1999-01-21 Norsk Hydro Asa Method of fluxless melting of magnesium
FR2809643A1 (en) * 2000-05-31 2001-12-07 Brochot Sa METHOD AND DEVICE FOR PROTECTING NON-FERROUS FUSED METAL

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 007, no. 024 (M - 189) 29 January 1983 (1983-01-29) *
PATENT ABSTRACTS OF JAPAN vol. 016, no. 062 (M - 1211) 17 February 1992 (1992-02-17) *
PATENT ABSTRACTS OF JAPAN vol. 1995, no. 02 31 March 1995 (1995-03-31) *

Also Published As

Publication number Publication date
ES2302776T3 (en) 2008-08-01
PL375750A1 (en) 2005-12-12
EP1402977B1 (en) 2008-03-19
HK1061541A1 (en) 2004-09-24
WO2004030849A1 (en) 2004-04-15
CZ2005153A3 (en) 2005-10-12
AU2003262517A1 (en) 2004-04-23
JP2006500221A (en) 2006-01-05
US7290588B2 (en) 2007-11-06
ATE389483T1 (en) 2008-04-15
PL206577B1 (en) 2010-08-31
DE50211923D1 (en) 2008-04-30
US20060090874A1 (en) 2006-05-04
JP4537204B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
DE3728557C2 (en)
DE2249554A1 (en) FLUID SWITCH
DE3211712A1 (en) DEVICE FOR SUPPLYING A THERMAL SPRAYING SYSTEM WITH POWDERED SUBSTANCES
DE2553165B2 (en) Gas mixing device for respiratory protection, diving, medical and laboratory technology
DE1758057B2 (en) Device for melting and conditioning thermoplastic materials, in particular glass
EP0408961A1 (en) Calibrating and metering device for a mixture of gases
DE10104012A1 (en) Aerosol generating device
DE3814917C2 (en)
DE3229328A1 (en) GAS DOSING DEVICE FOR MEDICAL APPARATUS
EP0324937A1 (en) Apparatus for introducing a fluid substance into a carrier gas, and method for operating the apparatus
DE102010050334B4 (en) Process and apparatus for non-catalytic denitrification of exhaust gases from incinerators
DE102009060454B4 (en) Device for aerosol production
EP0767006A1 (en) Method and apparatus for feeding powder to a powder spraying device
EP0424894B1 (en) Method of supplying a treating agent into an exhaust stream of combustion processes
EP1402977B1 (en) Shielding gas device for pressure die casting machines
DE69900588T2 (en) METHOD AND DEVICE FOR PROMOTING PRE-MIXED GAS TO INLET NOZZLES OF AN ELECTRIC ARC FURNACE
DE3876519T2 (en) METHOD AND DEVICE FOR DEGASSING MOLTED METALS BY THE RH METHOD.
DE2053072A1 (en) Mixing device for gases
DE4018265C1 (en) Emergency refrigeration of cold room - involves pouring liq. nitrogen and liq. oxygen into room for evaporative cooling
DE3939197A1 (en) METHOD AND COMBUSTION PLANT FOR REDUCING THE NITROGEN OXIDE CONCENTRATION IN THE EXHAUST FLOW FROM COMBUSTION PROCESSES
WO1999055472A1 (en) Device and method for alternating pressure flushing
DE2303978B1 (en) Device for introducing fine-grain treatment agents into molten steel
DE202009017542U1 (en) Device for aerosol production
DE102007038278B4 (en) Mass transport and event control in systems with piezoelectrically activated droplet emission and combinations of carrier matrix and dosing agent
DE2459253C2 (en) PROCESS AND SYSTEM FOR FEEDING SOLID RAW MATERIALS THROUGH A HOLLOW ELECTRODE

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20040312

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1061541

Country of ref document: HK

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

17Q First examination report despatched

Effective date: 20060720

17Q First examination report despatched

Effective date: 20060720

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OSKAR FRECH GMBH + CO. KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50211923

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

NLT2 Nl: modifications (of names), taken from the european patent patent bulletin

Owner name: OSKAR FRECH GMBH + CO. KG

Effective date: 20080409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ZIMMERLI, WAGNER & PARTNER AG

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1061541

Country of ref document: HK

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2302776

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

26N No opposition filed

Effective date: 20081222

BERE Be: lapsed

Owner name: OSKAR FRECH G.M.B.H. & CO. KG

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: OSKAR FRECH GMBH + CO. KG

Free format text: OSKAR FRECH GMBH + CO. KG#SCHORNDORFER STRASSE 32#73614 SCHORNDORF-WEILER (DE) -TRANSFER TO- OSKAR FRECH GMBH + CO. KG#SCHORNDORFER STRASSE 32#73614 SCHORNDORF-WEILER (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: WAGNER PATENT AG, CH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180921

Year of fee payment: 17

Ref country code: FR

Payment date: 20180921

Year of fee payment: 17

Ref country code: DE

Payment date: 20180920

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180924

Year of fee payment: 17

Ref country code: CH

Payment date: 20180924

Year of fee payment: 17

Ref country code: CZ

Payment date: 20180911

Year of fee payment: 17

Ref country code: SE

Payment date: 20180924

Year of fee payment: 17

Ref country code: AT

Payment date: 20180918

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20181024

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211923

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190926

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200401

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 389483

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190925

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20210128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190926