EP1399667A1 - Fuel injection device for an internal combustion engine - Google Patents

Fuel injection device for an internal combustion engine

Info

Publication number
EP1399667A1
EP1399667A1 EP02740253A EP02740253A EP1399667A1 EP 1399667 A1 EP1399667 A1 EP 1399667A1 EP 02740253 A EP02740253 A EP 02740253A EP 02740253 A EP02740253 A EP 02740253A EP 1399667 A1 EP1399667 A1 EP 1399667A1
Authority
EP
European Patent Office
Prior art keywords
magnet armature
fuel injection
capsule
injection device
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02740253A
Other languages
German (de)
French (fr)
Other versions
EP1399667B1 (en
Inventor
Laurent Chretien
Régis BLANC
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1399667A1 publication Critical patent/EP1399667A1/en
Application granted granted Critical
Publication of EP1399667B1 publication Critical patent/EP1399667B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/44Details, components parts, or accessories not provided for in, or of interest apart from, the apparatus of groups F02M59/02 - F02M59/42; Pumps having transducers, e.g. to measure displacement of pump rack or piston
    • F02M59/46Valves
    • F02M59/466Electrically operated valves, e.g. using electromagnetic or piezoelectric operating means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M57/00Fuel-injectors combined or associated with other devices
    • F02M57/02Injectors structurally combined with fuel-injection pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M59/00Pumps specially adapted for fuel-injection and not provided for in groups F02M39/00 -F02M57/00, e.g. rotary cylinder-block type of pumps
    • F02M59/20Varying fuel delivery in quantity or timing
    • F02M59/36Varying fuel delivery in quantity or timing by variably-timed valves controlling fuel passages to pumping elements or overflow passages
    • F02M59/366Valves being actuated electrically

Definitions

  • the invention is based on one
  • Fuel injection device for an internal combustion engine according to the preamble of claim 1.
  • Such a fuel injection device is known from DE 196 53 055 Cl.
  • This fuel injection device has a solenoid valve for controlling the
  • the solenoid valve connects the work area to the
  • Fuel injection device controlled with a relief chamber the solenoid valve being open when de-energized, so that the working space is connected to the relief chamber and no high pressure for fuel injection can build up in it.
  • the solenoid valve closes, so that the work space is separated from the relief space and builds up in this high pressure and fuel is injected.
  • the solenoid valve is controlled by an electrical control device and has a magnet coil and a movable magnet armature. The magnet armature is connected to a valve member, through which the connection to the relief chamber is controlled.
  • the solenoid valve also has a magnetic disk through which the armature is attracted when the solenoid coil is energized.
  • a bolt is pressed into the magnet armature, which protrudes into a bore in the magnet disk and is guided displaceably in this.
  • the magnet armature is thus displaceably guided over the bolt in the bore of the magnetic disk, the guidance of the magnet armature being as accurate as possible perpendicular to an end face of the magnetic disk facing the magnet armature, in order to enable an arrangement of the magnet armature with the smallest possible distance from the magnetic disk without this coming into contact with the magnetic disk.
  • the construction of the solenoid valve with the bolt pressed into the magnet armature and its guidance in the bore of the magnetic disk is complex and thus causes high costs.
  • the fuel injection device according to the invention with the features of claim 1 has the advantage that the armature itself is guided in the capsule, so that the solenoid valve has a simple and inexpensive structure.
  • FIG. 2 Fuel injection device for an internal combustion engine with a solenoid valve in a simplified representation
  • FIG. 2 the solenoid valve in an enlarged representation
  • FIG. 3 a solenoid armature of the solenoid valve in an enlarged representation according to a modified embodiment.
  • FIG. 1 shows a fuel injection device for an internal combustion engine, in particular a motor vehicle.
  • the fuel injection device has a fuel pump 10 and a fuel injection valve 12, which are combined into a common structural unit and form a so-called pump-nozzle unit, which is inserted into a bore in the cylinder head of the internal combustion engine, the fuel injection valve 12 in the combustion chamber of a cylinder Internal combustion engine protrudes.
  • the fuel pump 10 has a pump piston 18, which is axially displaceably guided in a cylinder bore 14 of a pump body 16 and delimits a pump working chamber 20 in the cylinder bore 14, in which fuel is compressed under high pressure during the delivery stroke of the pump piston 18.
  • fuel is supplied to the pump working chamber 20 from a fuel reservoir.
  • the pump piston 18 is driven by a cam drive of the internal combustion engine, not shown in detail, against the force of a return spring 22 in a lifting movement.
  • the fuel injection valve 12 has a valve body 26 which can be formed in several parts and which is connected to the pump body 16.
  • an injection valve member 28 is guided to be longitudinally displaceable in a bore 30.
  • the bore 30 runs at least approximately parallel to the cylinder bore 14 of the pump body 16, but can also be inclined to the latter.
  • the valve body 26 has at least one, preferably a plurality of injection openings 32 at its end region facing the combustion chamber of the cylinder.
  • the injection valve member 28 has at its end region facing the combustion chamber an, for example, approximately conical sealing surface 34 which interacts with a valve seat 36, for example also approximately conical in the valve body 26 in its end region facing the combustion chamber, from or after which the injection openings 32 lead away.
  • valve body 26 there is an annular space 38 between the injection valve member 28 and the bore 30 towards the valve seat 36, which in its end region facing away from the valve seat 36 merges into a pressure space 40 surrounding the injection valve member 28 by a radial expansion of the bore 30.
  • the injection valve member 28 has a pressure shoulder 42 facing the valve seat 36 at the level of the pressure chamber 40 due to a reduction in cross section.
  • a prestressed closing spring 44 engages, by means of which the injection valve member 28 with its sealing surface 34 is pressed toward the valve seat 36.
  • the closing spring 44 is arranged in a spring chamber 46 which adjoins the bore 30.
  • the pressure chamber 40 is connected to the pump working chamber 20 via a channel 48 running through the valve body 26 and the pump body 16.
  • the latter has a solenoid valve 50, shown enlarged in FIG. 2, which is controlled by an electronic control device 52.
  • a connection of the pump work chamber 20 to a relief chamber is controlled by the solenoid valve 50, the connection of the pump work chamber 20 to the relief chamber being opened when the solenoid valve 50 is open, so that no high pressure can build up in the pump work chamber 20 and no fuel injection takes place.
  • the solenoid valve 50 is closed, the pump work chamber 20 is separated from the relief chamber by this, so that high pressure builds up in the pump work chamber 20 in accordance with the stroke of the pump piston 18 and a
  • Fuel injection can take place.
  • the solenoid valve 50 is arranged laterally on the pump body 16, for example, and has a valve member 56 which is guided in a bore 54 of the pump body 16.
  • the bore 54 runs transversely, for example at least approximately perpendicular to the Cylinder bore 14.
  • the bore 54 has a radial extension 55, from which a connecting bore 58 leads into the pump working space 20.
  • the bore 54 opens into an enlarged annular space 59 in the pump body 16 compared to this, the mouth of the bore 54 expanding approximately conically, for example, and forming a valve seat 60.
  • the valve member 56 has a larger cross section in its end region protruding from the bore 54 into the annular space 59 than in the bore 54, as a result of which an approximately conical sealing surface 61 facing the valve seat 60 is formed on the valve member 56, which cooperates with the valve seat 60.
  • a connecting bore 62 opens into the annular space 59 to form a relief space, which is, for example, at least indirectly the
  • Fuel tank is used. If the valve member 56 rests with its sealing surface 61 on the valve seat 60, the pump work space 20 is separated from the relief space and if the valve member 56 is spaced apart with its sealing surface 61 from the valve seat 60, the pump work space 20 is connected to the relief space. In the open position of the valve member 56, fuel is sucked into the pump working chamber 20 through the connecting bore 62 during the suction stroke of the pump piston 18.
  • the injection valve member 28 lifts off with its sealing surface 34 from the valve seat 36 and releases the injection openings 32 through which fuel is injected into the combustion chamber .
  • the pressure in the pressure chamber 40 drops again so far that the pressure force generated by it via the pressure shoulder 42 is less than the force of the closing spring 44, the fuel injection valve 12 closes again and the fuel injection is ended.
  • a prestressed compression spring 64 acts on the end region of the valve member 56 facing away from the solenoid valve 50, by means of which the valve member 56 is acted upon in its opening direction, that is in one direction away from the valve seat 60.
  • the spring 64 is supported on the one hand at least indirectly on the valve member 56 and on the other hand on a cover 65 which closes the bore 54 and is inserted into the pump body 16.
  • the valve member 56 In its end region protruding into the annular space 59, the valve member 56 has a flange 66 with an enlarged cross section and a cylindrical section 67 adjoining it in the axial direction away from the sealing surface 61, on which an annular collar 68 with an enlarged cross section is formed at a distance from the flange 66.
  • the annular space 59 is formed in a bore 69 of the pump body 16 which is stepped several times in diameter and is delimited in the axial direction away from the pump body 16 by a stop disk 70 inserted into a section of the bore 69 which is somewhat larger in diameter than the annular space 59.
  • the stop disk 70 has a bore 71 through which the cylindrical section 67 of the valve member 56 projects.
  • the diameter of the bore 71 in the stop disk 70 is only slightly larger than that of the annular collar 68 of the valve member 56, which is arranged in the bore 71.
  • the bore 71 in the stop disk 70 is made smaller in diameter than the flange 66 of the Valve member 56, which can therefore not dip into the bore 71.
  • the stop disk 70 lies in the axial direction towards the pump body 16 against a stop shoulder 72 in the bore 69 on the pump body 16.
  • the valve member 56 is guided with its annular collar 68 in the bore 71 of the stop plate 70 with little play.
  • the section of the bore 69 which receives the stop disk 70 is followed by a further section of the bore 69 which is enlarged in diameter and into which a magnetic disk 74 is inserted as part of the solenoid valve 50.
  • the magnetic disk 74 has a bore 75 into which the cylindrical section 67 of the valve member 56 projects.
  • An elastic sealing ring 77 is clamped between the magnetic disk 74 and an annular shoulder 76 formed on the pump body 16 and surrounding the stop disk 70.
  • the solenoid valve 50 has a movable magnet armature 80, against which the valve member 56 rests with the end of its end protruding from the bore 75 of the magnet disk 74.
  • the magnet armature 80 is designed as an at least approximately cylindrical piston and is arranged in a cup-shaped capsule 81 at least approximately coaxially with the valve member 56.
  • the magnet armature 80 is guided so as to be displaceable in the capsule 81 with little play.
  • the end face of the magnet disk 74 facing the magnet armature 80 and the end face of the magnet armature 80 facing the magnet disk 74 are arranged parallel to one another with the highest possible accuracy, and the magnet armature 80 moves perpendicularly to the end face of the magnet disk 74 facing it with the highest possible accuracy.
  • the magnet armature 80 may have one or more axial through bores 79.
  • the end face of the valve member 56 rests on the end face of the magnet armature 80 facing the magnet disk 74.
  • the capsule 81 arranged bottom 82 of the capsule 81 and the face of the magnet armature facing away from the magnetic disk 74
  • a prestressed compression spring 83 is arranged, through which the magnet armature 80 is acted upon towards the magnetic disk 74.
  • the force exerted on the armature 80 by the compression spring 83 is less than the force exerted on the valve member 56 by the compression spring 64.
  • the pressure spring 64 acting on the valve member 56 and the pressure spring 83 acting on the magnet armature 80 ensure that the valve member 56 rests on the magnet armature 80 without these two parts being connected to one another.
  • a ring 85 is arranged between the capsule 81 and the magnetic disk 74, which ring is connected, in particular welded, to the capsule 81 and to the magnetic disk 74.
  • the ring 85 is made of non-magnetizable material.
  • the magnetic disk 74 forms, so to speak, a cover closing the capsule 81 and the magnet armature 80 is arranged in the interior delimited by the capsule 81 and the magnetic disk 74.
  • the 81 is inserted into an approximately hollow cylindrical carrier 86, which has an outer diameter that is at least approximately the same size as the outer diameter of the magnetic disk 74.
  • the carrier 86 has a radial recess 87 toward the magnetic disk 74 in its inner circumference, into which a magnetic coil 88 is inserted.
  • the magnetic coil 88 is fixed in the recess in the axial direction between the carrier 86 and the magnetic disk 74.
  • a connection body 89 preferably made of plastic, is connected to the carrier 86, in which electrical conductor elements are arranged which are connected on the one hand to the magnetic coil 88 and on the other hand to plug contacts 90 with which a plug part (not shown) of electrical lines leading to the control device 52 can be connected ,
  • the bore 69 is formed in an approximately hollow cylindrical projection 91 of the pump body 16, which is provided with an external thread on its outer circumference.
  • a union nut 92 is pushed over the carrier 86 of the solenoid valve 50, which is screwed onto the external thread of the shoulder 91 of the pump body 16 and via which the solenoid valve 50 is thus fastened to the pump body 16.
  • the union nut 92 engages on the carrier 86, which is supported on the magnetic disk 74, which in turn is supported on the stop disk 70, which bears against the stop shoulder 72 of the pump body 16.
  • the sealing ring 77 is elastically compressed by the magnetic disk 74 when it comes into contact with the stop disk 70.
  • the function of the solenoid valve 50 is explained below. If the magnet coil 88 is de-energized, no magnetic force acts on the magnet armature 80. The valve member 56 is held in its open position by the force of the compression spring 64, since the force of the compression spring 64 is greater than the force of the compression spring 83 acting on the magnet armature 80. The magnet armature 80 is thus arranged at an axial distance from the magnet disk 74. The movement of the valve member 56 and thus of the magnet armature 80 in the opening direction is limited in that the valve member 56 comes into contact with the stop disk 74 with its flange 66.
  • the control unit 52 When the solenoid valve 50 is to be closed, the control unit 52 energizes the solenoid 88 so that a closed magnetic circuit is created by the solenoid 88, the magnet disk 74 and the magnet armature 80 and the magnet armature 80 is attracted to the magnet disk 74.
  • the force exerted by the compression spring 83 and the magnetic disk 74 on the magnet armature 80 is greater than the force exerted on the valve member 56 by the compression spring 64, so that the valve member 56 is moved into its closed position by the magnet armature 80, in which it is also moved its sealing surface 61 rests on the valve seat 60.
  • the hub that the Valve member 56 executes between its open position and its closed position is dimensioned such that the magnet armature 80 is still arranged at an axial distance from the magnetic disk 74 even in the closed position.
  • the remaining air gap prevents the magnet armature 80 from sticking to the magnet disk 74 after the magnet coil 88 is de-energized and the magnet armature 80 has to be moved away from the magnet disk 74 again.
  • the stroke h, which the valve member 56 executes between its open position and its closed position is due to the distance between the valve seat 60, on which the valve member 56 comes into contact with its sealing surface 61, on the one hand and the stop disk 74, on which the valve member 56 comes to rest with its flange 66, on the other hand determines.
  • the residual air gap s between the magnet armature 80 and the magnetic disk 74 can be adjusted to the required size by using a stop disk 74 with an adapted thickness.
  • the stop disk 74 can be produced, for example, by stamping.
  • the magnet armature 80 is preferably made of an alloy which contains at least iron and cobalt, the proportion of cobalt being between 10 and 50%.
  • the proportion of cobalt is preferably between 15 and 20%, a proportion of cobalt of approximately 17% is particularly advantageous.
  • the percentages of the cobalt content are based on the weight.
  • the magnet armature 80 has particularly advantageous magnetic properties.
  • the course of the current flow through the magnetic coil 88 is detected and evaluated by the control device 52.
  • the magnet armature 80 represents a movable part of the magnetic circuit, by means of which the inductance of the magnetic circuit is changed during its movement, which leads to a specific temporal course of the current flow through the magnet coil 88. When the armature 80 stops moving, the inductance no longer changes and - left
  • the hardness of the material from which the magnet armature 80 is made to achieve the favorable magnetic properties is lower than the hardness of the material from which the valve member 56 is made.
  • the armature 80 has a coating 94 at least in some areas made of a material that has a higher hardness than the material that is the iron-cobalt alloy from which the magnet armature 80 is made.
  • a metal in particular nickel or chromium, can be used as the material for the coating 94.
  • a surface hardness of the magnet armature 80 of, for example, approximately 700 HV can be achieved here.
  • the coating 94 can only be applied to the outer casing of the magnet armature 80, over which it is guided in the capsule 81, or also to the end face of the magnet armature 80 against which the valve member 56 rests, or over the entire surface of the magnet armature 80 it can also be provided that the capsule 81 is provided with a coating 94 on its inner circumference guiding the magnet armature 80.
  • the coating 94 is preferably applied at least to the part of the magnet armature 80 and capsule 81 which has the lower hardness.
  • the magnet armature 80 and / or the capsule 81 can also be treated in whole or in part with a method for increasing its surface hardness.
  • the magnet armature 80 and / or the capsule 81 can be subjected to a heat treatment process and, for example, be case-hardened, treated by gas nitrocarburizing or by carbonitriding.
  • the surface hardness of the magnet armature 80 and / or the capsule 81 can only be increased on its outer jacket or on its inner circumference on which the magnet armature 80 is guided.
  • the surface hardness can also be increased over a larger area of the surface or over the entire surface of the magnet armature 80, in particular also on the end face of the magnet armature 80, against which the valve member 56 rests.
  • the capsule 81 can be made of plasma nitrided steel, for example.
  • the magnet armature 80 and / or the capsule 81 can be subjected to a work hardening process in whole or in part and, for example, by shot peening or a consolidation. This treatment of the magnet armature 80 and / or the capsule 81 can also only be carried out on the outer jacket of the magnet armature 80 or on the inner circumference of the capsule 81, where the magnet armature 80 is guided. Alternatively, the work hardening can also take place over a larger area of the surface or over the entire surface of the magnet armature 80.
  • Fuel injection device in the form of the unit injector is limited but can also be provided in any other type of fuel injection device.

Abstract

The invention relates to a fuel injection device comprising at least one electro valve (50) for controlling the injection of fuel. The electro valve (50) is controlled by an electric control device (52) and comprises a solenoid coil (88), a displaceable piston-shaped magneto armature (80),which displaces a valve element (56) between at least two positions, a magnetic disk (74) which attracts the magneto armature (80) when current flows through the solenoid coil (88), and a pot-shaped capsule (81) wherein the magneto armature (80) is immersed. The magnetic armature (80) is at least directly guideable in a sliding manner. Said magneto armature (80) is guided in a sliding manner into the capsule (81) via the exterior jacket thereof.

Description

Kraftstoffeinspritzeinrichtung für eine BrennkraftmaschineFuel injection device for an internal combustion engine
Stand der TechnikState of the art
Die Erfindung geht aus von einerThe invention is based on one
Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine nach der Gattung des Anspruchs 1.Fuel injection device for an internal combustion engine according to the preamble of claim 1.
Eine solche Kraftstoffeinspritzeinrichtung ist durch die DE 196 53 055 Cl bekannt. Diese Kraftstoffeinspritzeinrichtung weist ein Magnetventil zur Steuerung derSuch a fuel injection device is known from DE 196 53 055 Cl. This fuel injection device has a solenoid valve for controlling the
Kraftstoffeinspritzung auf. Durch das Magnetventil wird eine Verbindung eines Arbeitsraums derFuel injection on. The solenoid valve connects the work area to the
Kraftstoffeinspritzeinrichtung mit einem Entlastungsraum gesteuert, wobei das Magnetventil stromlos offen ist, so daß der Arbeitsraum mit dem Entlastungsraum verbunden ist und sich in diesem kein Hochdruck für eine Kraftstoffeinspritzung aufbauen kann. Bei Bestromung schließt das Magnetventil, so daß der Arbeitsraum vom Entlastungsraum getrennt ist und sich in diesem Hochdruck aufbaut und eine Kraftstoffeinspritzung erfolgt. Das Magnetventil wird durch eine elektrische Steuereinrichtung angesteuert und weist eine Magnetspule und einen beweglichen Magnetanker auf. Der Magnetanker ist mit einem Ventilglied verbunden, durch das die Verbindung mit dem Entlastungsraum gesteuert wird. Das Magnetventil weist außerdem eine Magnetscheibe auf, durch die der Magnetanker bei stromdurchflossener Magnetspule angezogen wird. In den Magnetanker ist ein Bolzen eingepresst, der in eine Bohrung der Magnetscheibe ragt und in dieser verschiebbar geführt ist. Der Magnetanker ist somit über den Bolzen in der Bohrung der Magnetscheibe verschiebbar geführt, wobei die Führung des Magnetankers mit möglichst hoher Genauigkeit senkrecht zu einer dem Magnetanker zugewandten Stirnfläche der Magnetscheibe erfolgen muß, um eine Anordnung des Magnetankers mit möglichst geringem Abstand von der Magnetscheibe zu ermöglichen ohne daß dieser an der Magnetscheibe zur Anlage kommt. Der Aufbau des Magnetventils mit dem in den Magnetanker eingepressten Bolzen und dessen Führung in der Bohrung der Magnetscheibe ist aufwendig und verursacht somit hohe Kosten.Fuel injection device controlled with a relief chamber, the solenoid valve being open when de-energized, so that the working space is connected to the relief chamber and no high pressure for fuel injection can build up in it. When energized, the solenoid valve closes, so that the work space is separated from the relief space and builds up in this high pressure and fuel is injected. The solenoid valve is controlled by an electrical control device and has a magnet coil and a movable magnet armature. The magnet armature is connected to a valve member, through which the connection to the relief chamber is controlled. The solenoid valve also has a magnetic disk through which the armature is attracted when the solenoid coil is energized. A bolt is pressed into the magnet armature, which protrudes into a bore in the magnet disk and is guided displaceably in this. The magnet armature is thus displaceably guided over the bolt in the bore of the magnetic disk, the guidance of the magnet armature being as accurate as possible perpendicular to an end face of the magnetic disk facing the magnet armature, in order to enable an arrangement of the magnet armature with the smallest possible distance from the magnetic disk without this coming into contact with the magnetic disk. The construction of the solenoid valve with the bolt pressed into the magnet armature and its guidance in the bore of the magnetic disk is complex and thus causes high costs.
Vorteile der ErfindungAdvantages of the invention
Die erfindungsgemäße Kraftstoffeinspritzeinrichtung mit den Merkmalen gemäß Anspruch 1 hat den Vorteil, daß der Magnetanker selbst in der Kapsel geführt ist, so daß das Magnetventil einen einfachen und kostengünstigen Aufbau aufweist .The fuel injection device according to the invention with the features of claim 1 has the advantage that the armature itself is guided in the capsule, so that the solenoid valve has a simple and inexpensive structure.
In den abhängigen Ansprüchen sind vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Kraftstoffeinspritzeinrichtung angegeben. Durch die Weiterbildung gemäß den Ansprüchen 2 bis 7 wird ein Verschleiß des Magnetankers vermieden.Advantageous refinements and developments of the fuel injection device according to the invention are specified in the dependent claims. The further development according to claims 2 to 7 prevents wear of the magnet armature.
Zeichnungdrawing
Mehrere Ausführungsbeispiele der Erfindung sind in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 eineSeveral embodiments of the invention are shown in the drawing and explained in more detail in the following description. 1 shows a
Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine mit einem Magnetventil in vereinfachter Darstellung, Figur 2 das Magnetventil in vergrößerter Darstellung und Figur 3 einen Magnetanker des Magnetventils in vergrößerter Darstellung gemäß einer modifizierten Ausführung.Fuel injection device for an internal combustion engine with a solenoid valve in a simplified representation, FIG. 2 the solenoid valve in an enlarged representation and FIG. 3 a solenoid armature of the solenoid valve in an enlarged representation according to a modified embodiment.
Beschreibung der Ausführungsbeispiele In Figur 1 ist eine Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs dargestellt. Die Kraftstoffeinspritzeinrichtung weist eine Kraftstoffpumpe 10 und ein Kraftstoffeinspritzventil 12 auf, die zu einer gemeinsamen Baueinheit zusammengefaßt sind und eine sogenannte Pumpe-Düse-Einheit bilden, die in eine Bohrung im Zylinderkopf der Brennkraftmaschine eingesetzt ist, wobei das Kraftstoffeinspritzventil 12 in den Brennraum eines Zylinders der Brennkraftmaschine ragt. Die Kraftstoffpumpe 10 weist einen in einer Zylinderbohrung 14 eines Pumpenkörpers 16 axial verschiebbar geführten Pumpenkolben 18 auf, der in der Zylinderbohrung 14 einen Pumpenarbeitsraum 20 begrenzt, in dem beim Förderhub des Pumpenkolbens 18 Kraftstoff unter Hochdruck verdichtet wird. Dem Pumpenarbeitsraum 20 wird beim Saughub des Pumpenkolbens 18 Kraftstoff aus einem Kraftstoffvorratsbehälter zugeführt. Der Pumpenkolben 18 wird durch einen nicht näher dargestellten Nockenantrieb der Brennkraftmaschine gegen die Kraft einer Rückstellfeder 22 in einer Hubbewegung angetrieben.Description of the embodiments FIG. 1 shows a fuel injection device for an internal combustion engine, in particular a motor vehicle. The fuel injection device has a fuel pump 10 and a fuel injection valve 12, which are combined into a common structural unit and form a so-called pump-nozzle unit, which is inserted into a bore in the cylinder head of the internal combustion engine, the fuel injection valve 12 in the combustion chamber of a cylinder Internal combustion engine protrudes. The fuel pump 10 has a pump piston 18, which is axially displaceably guided in a cylinder bore 14 of a pump body 16 and delimits a pump working chamber 20 in the cylinder bore 14, in which fuel is compressed under high pressure during the delivery stroke of the pump piston 18. During the suction stroke of the pump piston 18, fuel is supplied to the pump working chamber 20 from a fuel reservoir. The pump piston 18 is driven by a cam drive of the internal combustion engine, not shown in detail, against the force of a return spring 22 in a lifting movement.
Das Kraftstoffeinspritzventil 12 weist einen Ventilkörper 26 auf, der mehrteilig ausgebildet sein kann, und der mit dem Pumpenkörper 16 verbunden ist. Im Ventilkörper 26 ist in einer Bohrung 30 ein Einspritzventilglied 28 längsverschiebbar geführt. Die Bohrung 30 verläuft zumindest annähernd parallel zur Zylinderbohrung 14 des Pumpenkörpers 16, kann jedoch auch zu dieser geneigt verlaufen. Der Ventilkörper 26 weist an seinem dem Brennraum des Zylinders zugewandten Endbereich wenigstens eine, vorzugsweise mehrere Einspritzöffnungen 32 auf. Das Einspritzventilglied 28 weist an seinem dem Brennraum zugewandten Endbereich eine beispielsweise etwa kegelförmige Dichtfläche 34 auf, die mit einem im Ventilkörper 26 in dessen dem Brennraum zugewandtem Endbereich ausgebildeten, beispielsweise ebenfalls etwa kegelförmigen Ventilsitz 36 zusammenwirkt, von dem oder nach dem die Einspritzöffnungen 32 abführen. Im Ventilkörper 26 ist zwischen dem Einspritzventilglied 28 und der Bohrung 30 zum Ventilsitz 36 hin ein Ringraum 38 vorhanden, der in seinem dem Ventilsitz 36 abgewandten Endbereich durch eine radiale Erweiterung der Bohrung 30 in einen das Einspritzventilglied 28 umgebenden Druckraum 40 übergeht. Das Einspritzventilglied 28 weist auf Höhe des Druckraums 40 durch eine Querschnittsverringerung eine zum Ventilsitz 36 weisende Druckschulter 42 auf. Am dem Brennraum abgewandten Ende des Einspritzventilglieds 28 greift eine vorgespannte Schließfeder 44 an, durch die das Einspritzventilglied 28 mit seiner Dichtfläche 34 zum Ventilsitz 36 hin gedrückt wird. Die Schließfeder 44 ist in einem Federraum 46 angeordnet, der sich an die Bohrung 30 anschließt. Der Druckraum 40 ist über einen durch den Ventilkörper 26 und den Pumpenkörper 16 verlaufenden Kanal 48 mit dem Pumpenarbeitsraum 20 verbunden.The fuel injection valve 12 has a valve body 26 which can be formed in several parts and which is connected to the pump body 16. In the valve body 26, an injection valve member 28 is guided to be longitudinally displaceable in a bore 30. The bore 30 runs at least approximately parallel to the cylinder bore 14 of the pump body 16, but can also be inclined to the latter. The valve body 26 has at least one, preferably a plurality of injection openings 32 at its end region facing the combustion chamber of the cylinder. The injection valve member 28 has at its end region facing the combustion chamber an, for example, approximately conical sealing surface 34 which interacts with a valve seat 36, for example also approximately conical in the valve body 26 in its end region facing the combustion chamber, from or after which the injection openings 32 lead away. In the valve body 26 there is an annular space 38 between the injection valve member 28 and the bore 30 towards the valve seat 36, which in its end region facing away from the valve seat 36 merges into a pressure space 40 surrounding the injection valve member 28 by a radial expansion of the bore 30. The injection valve member 28 has a pressure shoulder 42 facing the valve seat 36 at the level of the pressure chamber 40 due to a reduction in cross section. At the end of the injection valve member 28 facing away from the combustion chamber, a prestressed closing spring 44 engages, by means of which the injection valve member 28 with its sealing surface 34 is pressed toward the valve seat 36. The closing spring 44 is arranged in a spring chamber 46 which adjoins the bore 30. The pressure chamber 40 is connected to the pump working chamber 20 via a channel 48 running through the valve body 26 and the pump body 16.
Zur Steuerung der Kraftstoffeinspritzung durch die Kraftstoffeinspritzeinrichtung weist diese ein in Figur 2 vergrößert dargestelltes Magnetventil 50 auf, das durch eine elektronische Steuereinrichtung 52 angesteuert wird. Durch das Magnetventil 50 wird eine Verbindung des Pumpenarbeitsraums 20 mit einem Entlastungsraum gesteuert, wobei bei geöffnetem Magnetventil 50 die Verbindung des Pumpenarbeitsraums 20 mit dem Entlastungsraum geöffnet ist, so daß sich im Pumpenarbeitsraum 20 kein Hochdruck aufbauen kann und keine Kraftstoffeinspritzung erfolgt. Wenn das Magnetventil 50 geschlossen ist, so wird durch dieses der Pumpenarbeitsraum 20 vom Entlastungsraum getrennt, so daß sich im Pumpenarbeitsraum 20 Hochdruck entsprechend dem Hub des Pumpenkolbens 18 aufbauen und eineTo control the fuel injection by the fuel injection device, the latter has a solenoid valve 50, shown enlarged in FIG. 2, which is controlled by an electronic control device 52. A connection of the pump work chamber 20 to a relief chamber is controlled by the solenoid valve 50, the connection of the pump work chamber 20 to the relief chamber being opened when the solenoid valve 50 is open, so that no high pressure can build up in the pump work chamber 20 and no fuel injection takes place. When the solenoid valve 50 is closed, the pump work chamber 20 is separated from the relief chamber by this, so that high pressure builds up in the pump work chamber 20 in accordance with the stroke of the pump piston 18 and a
Kraftstoffeinspritzung erfolgen kann. Das Magnetventil 50 ist beispielsweise am Pumpenkörper 16 seitlich angeordnet und weist ein in einer Bohrung 54 des Pumpenkörpers 16 geführtes Ventilglied 56 auf. Die Bohrung 54 verläuft quer, beispielsweise zumindest annähernd senkrecht zur Zylinderbohrung 14. Die Bohrung 54 weist eine radiale Erweiterung 55 auf, von der aus eine Verbindungsbohrung 58 in den Pumpenarbeitsraum 20 abführt.Fuel injection can take place. The solenoid valve 50 is arranged laterally on the pump body 16, for example, and has a valve member 56 which is guided in a bore 54 of the pump body 16. The bore 54 runs transversely, for example at least approximately perpendicular to the Cylinder bore 14. The bore 54 has a radial extension 55, from which a connecting bore 58 leads into the pump working space 20.
Die Bohrung 54 mündet in einen im Querschnitt gegenüber dieser vergrößerten Ringraum 59 im Pumpenkörper 16, wobei die Mündung der Bohrung 54 sich beispielsweise etwa konisch erweitert und einen Ventilsitz 60 bildet. Das Ventilglied 56 weist in seinem aus der Bohrung 54 in den Ringraum 59 ragenden Endbereich einen größeren Querschnitt auf als in der Bohrung 54, wodurch am Ventilglied 56 eine zum Ventilsitz 60 weisende beispielsweise etwa konische Dichtfläche 61 gebildet ist, die mit dem Ventilsitz 60 zusammenwirkt. In den Ringraum 59 mündet eine Verbindungsbohrung 62 zu einem Entlastungsraum, als der beispieslweise zumindest mittelbar derThe bore 54 opens into an enlarged annular space 59 in the pump body 16 compared to this, the mouth of the bore 54 expanding approximately conically, for example, and forming a valve seat 60. The valve member 56 has a larger cross section in its end region protruding from the bore 54 into the annular space 59 than in the bore 54, as a result of which an approximately conical sealing surface 61 facing the valve seat 60 is formed on the valve member 56, which cooperates with the valve seat 60. A connecting bore 62 opens into the annular space 59 to form a relief space, which is, for example, at least indirectly the
Kraftstoffvorratsbehälter dient. Wenn das Ventilglied 56 mit seiner Dichtfläche 61 am Ventilsitz 60 anliegt, so ist der Pumpenarbeitsraum 20 vom Entlastungsraum getrennt und wenn das Ventilglied 56 mit seiner Dichtfläche 61 zum Ventilsitz 60 beabstandet ist, so ist der Pumpenarbeitsraum 20 mit dem Entlastungsräum verbunden. In der geöffneten Stellung des Ventilglieds 56 wird beim Saughub des Pumpenkolbens 18 Kraftstoff durch die Verbindungsbohrung 62 in den Pumpenarbeitsraum 20 angesaugt. In der geöffneten Stellung des Ventilglieds 56 kann sich im Pumpenarbeitsraum 20 und in dem mit diesem über den Kanal 48 verbundenen Druckraum 40 des Kraftstoffeinspritzventils 12 kein Hochdruck aufbauen, so daß das Kraftstoffeinspritzventil 12 bedingt durch die Schließfeder 44, durch die das Einspritzventilglied 28 mit seiner Dichtfläche 34 in Anlage am Ventilsitz 36 gehalten wird, geschlossen ist und keine Kraftstoffeinspritzung erfolgt. In der geschlossenen Stellung des Ventilglieds 56 baut sich im Pumpenarbeitsraum 20 und im Druckraum 40 Hochdruck entsprechend dem Hub des Pumpenkolbens 18 auf. Wenn der Druck im Druckraum 40 so hoch ist, daß die durch diesen über die Druckschulter 42 auf das Einspritzventilglied 28 erzeugte Kraft in Öffnungsrichtung 29 größer ist als die durch die Schließfeder 44 auf das Einspritzventilglied 28 ausgeübte Schließkraft, so hebt das Einspritzventilglied 28 mit seiner Dichtfläche 34 vom Ventilsitz 36 ab und gibt die Einspritzöffnungen 32 frei, durch die Kraftstoff in den Brennraum eingespritzt wird. Wenn der Druck im Druckraum 40 wieder so weit absinkt, daß die durch diesen über die Druckschulter 42 erzeugte Druckkraft geringer ist als die Kraft der Schließfeder 44, so schließt das Kraftstoffeinspritzventil 12 wieder und die Kraftstoffeinspritzung ist beendet.Fuel tank is used. If the valve member 56 rests with its sealing surface 61 on the valve seat 60, the pump work space 20 is separated from the relief space and if the valve member 56 is spaced apart with its sealing surface 61 from the valve seat 60, the pump work space 20 is connected to the relief space. In the open position of the valve member 56, fuel is sucked into the pump working chamber 20 through the connecting bore 62 during the suction stroke of the pump piston 18. In the open position of the valve member 56, no high pressure can build up in the pump working chamber 20 and in the pressure chamber 40 of the fuel injection valve 12 connected to it via the channel 48, so that the fuel injection valve 12 is caused by the closing spring 44, through which the injection valve member 28 with its sealing surface 34 is held in contact with the valve seat 36, is closed and there is no fuel injection. In the closed position of the valve member 56, high pressure builds up in the pump work chamber 20 and in the pressure chamber 40 in accordance with the stroke of the pump piston 18. If the pressure in the pressure chamber 40 is so high that the pressure through the pressure shoulder 42 on the Injection valve member 28 generated force in the opening direction 29 is greater than the closing force exerted on the injection valve member 28 by the closing spring 44, the injection valve member 28 lifts off with its sealing surface 34 from the valve seat 36 and releases the injection openings 32 through which fuel is injected into the combustion chamber , When the pressure in the pressure chamber 40 drops again so far that the pressure force generated by it via the pressure shoulder 42 is less than the force of the closing spring 44, the fuel injection valve 12 closes again and the fuel injection is ended.
Am dem Magnetventil 50 abgewandten Endbereich des Ventilglieds 56 greift eine vorgespannte Druckfeder 64 an, durch die das Ventilglied 56 in seiner Öffnungsrichtung beaufschlagt wird, das ist in einer Richtung vom Ventilsitz 60 weg. Die Feder 64 stützt sich einerseits zumindest mittelbar am Ventilglied 56 und andererseits an einem die Bohrung 54 verschließenden Deckel 65 ab, der in den Pumpenkörper 16 eingesetzt ist. In seinem in den Ringraum 59 ragenden Endbereich weist das Ventilglied 56 einen im Querschnitt vergrößerten Flansch 66 und an diesen in axialer Richtung von der Dichtfläche 61 weg anschließenden zylindrischen Abschnitt 67, an dem mit Abstand zum Flansch 66 ein im Querschnitt vergrößerter Ringbund 68 ausgebildet ist. Der Ringraum 59 ist in einer im Durchmesser mehrfach gestuften Bohrung 69 des Pumpenkörpers 16 ausgebildet und in axialer Richtung vom Pumpenkörper 16 weg durch eine in einen gegenüber dem Ringraum 59 im Durchmesser etwas größeren Abschnitt der Bohrung 69 eingesetzte Anschlagscheibe 70 begrenzt. Die Anschlagscheibe 70 weist eine Bohrung 71 auf, durch die der zylindrische Abschnitt 67 des Ventilglieds 56 hindurchragt. Die Bohrung 71 in der Anschlagscheibe 70 ist im Durchmesser nur wenig größer ausgebildet als der Ringbund 68 des Ventilglieds 56, der in der Bohrung 71 angeordnet ist. Die Bohrung 71 in der Anschlagscheibe 70 ist im Durchmesser kleiner ausgebildet als der Flansch 66 des Ventilglieds 56, der somit nicht in die Bohrung 71 eintauchen kann. Die Anschlagscheibe 70 liegt in axialer Richtung zum Pumpenkörper 16 hin an einer Anschlagschulter 72 in der Bohrung 69 am Pumpenkörper 16 an. Das Ventilglied 56 ist mit seinem Ringbund 68 in der Bohrung 71 der Anschlagscheibe 70 mit geringem Spiel geführt.A prestressed compression spring 64 acts on the end region of the valve member 56 facing away from the solenoid valve 50, by means of which the valve member 56 is acted upon in its opening direction, that is in one direction away from the valve seat 60. The spring 64 is supported on the one hand at least indirectly on the valve member 56 and on the other hand on a cover 65 which closes the bore 54 and is inserted into the pump body 16. In its end region protruding into the annular space 59, the valve member 56 has a flange 66 with an enlarged cross section and a cylindrical section 67 adjoining it in the axial direction away from the sealing surface 61, on which an annular collar 68 with an enlarged cross section is formed at a distance from the flange 66. The annular space 59 is formed in a bore 69 of the pump body 16 which is stepped several times in diameter and is delimited in the axial direction away from the pump body 16 by a stop disk 70 inserted into a section of the bore 69 which is somewhat larger in diameter than the annular space 59. The stop disk 70 has a bore 71 through which the cylindrical section 67 of the valve member 56 projects. The diameter of the bore 71 in the stop disk 70 is only slightly larger than that of the annular collar 68 of the valve member 56, which is arranged in the bore 71. The bore 71 in the stop disk 70 is made smaller in diameter than the flange 66 of the Valve member 56, which can therefore not dip into the bore 71. The stop disk 70 lies in the axial direction towards the pump body 16 against a stop shoulder 72 in the bore 69 on the pump body 16. The valve member 56 is guided with its annular collar 68 in the bore 71 of the stop plate 70 with little play.
An den die Anschlagscheibe 70 aufnehmenden Abschnitt der Bohrung 69 schließt sich ein weiterer im Durchmesser vergrößerter Abschnitt der Bohrung 69 an, in den als Bestandteil des Magnetventils 50 eine Magnetscheibe 74 eingesetzt ist. Die Magnetscheibe 74 weist eine Bohrung 75 auf, in die der zylindrische Abschnitt 67 des Ventilglieds 56 hineinragt. Zwischen der Magnetscheibe 74 und einer am Pumpenkörper 16 ausgebildeten, die Anschlagscheibe 70 umgebenden Ringschulter 76 ist ein elastischer Dichtring 77 eingespannt .The section of the bore 69 which receives the stop disk 70 is followed by a further section of the bore 69 which is enlarged in diameter and into which a magnetic disk 74 is inserted as part of the solenoid valve 50. The magnetic disk 74 has a bore 75 into which the cylindrical section 67 of the valve member 56 projects. An elastic sealing ring 77 is clamped between the magnetic disk 74 and an annular shoulder 76 formed on the pump body 16 and surrounding the stop disk 70.
Das Magnetventil 50 weist einen beweglichen Magnetanker 80 auf, an dem das Ventilglied 56 mit der Stirnseite seines aus der Bohrung 75 der Magnetscheibe 74 ragenden Endes anliegt. Der Magnetanker 80 ist als zumindest annähernd zylinderförmiger Kolben ausgebildet und in einer topfförmigen Kapsel 81 zumindest annähernd koaxial zum Ventilglied 56 verschiebbar angeordnet. Der Magnetanker 80 ist über seinen Außenmantel in der Kapsel 81 mit geringem Spiel verschiebbar geführt. Die dem Magnetanker 80 zugewandte Stirnseite der Magnetscheibe 74 und die der Magnetscheibe 74 zugewandte Stirnseite des Magnetankers 80 sind mit möglichst hoher Genauigkeit parallel zueinander angeordnet und der Magnetanker 80 ist bewegt sich mit möglichst hoher Genauigkeit senkrecht zu der diesem zugewandten Stirnseite der Magnetscheibe 74. Der Magnetanker 80 kann eine oder mehrere axiale Durchgangsbohrungen 79 aufweisen. Die Stirnseite des Ventilglieds 56 liegt an der der Magnetscheibe 74 zugewandten Stirnseite des Magnetankers 80 an. Zwischen dem am der Magnetscheibe 74 abgewandten Ende der Kapsel 81 angeordneten Boden 82 der Kapsel 81 und der der Magnetscheibe 74 abgewandten Stirnseite des MagnetankersThe solenoid valve 50 has a movable magnet armature 80, against which the valve member 56 rests with the end of its end protruding from the bore 75 of the magnet disk 74. The magnet armature 80 is designed as an at least approximately cylindrical piston and is arranged in a cup-shaped capsule 81 at least approximately coaxially with the valve member 56. The magnet armature 80 is guided so as to be displaceable in the capsule 81 with little play. The end face of the magnet disk 74 facing the magnet armature 80 and the end face of the magnet armature 80 facing the magnet disk 74 are arranged parallel to one another with the highest possible accuracy, and the magnet armature 80 moves perpendicularly to the end face of the magnet disk 74 facing it with the highest possible accuracy. The magnet armature 80 may have one or more axial through bores 79. The end face of the valve member 56 rests on the end face of the magnet armature 80 facing the magnet disk 74. Between the end facing away from the magnetic disk 74 the capsule 81 arranged bottom 82 of the capsule 81 and the face of the magnet armature facing away from the magnetic disk 74
80 ist eine vorgespannte Druckfeder 83 angeordnet, durch die der Magnetanker 80 zur Magnetscheibe 74 hin beaufschlagt ist. Die durch die Druckfeder 83 auf den Magnetanker 80 ausgeübte Kraft ist geringer als die durch die Druckfeder 64 auf das Ventilglied 56 ausgeübte Kraft. Durch die auf das Ventilglied 56 wirkende Druckfeder 64 und die auf den Magnetanker 80 wirkende Druckfeder 83 wird eine Anlage des Ventilglieds 56 am Magnetanker 80 sichergestellt, ohne daß diese beiden Teile miteinander verbunden sind.80 a prestressed compression spring 83 is arranged, through which the magnet armature 80 is acted upon towards the magnetic disk 74. The force exerted on the armature 80 by the compression spring 83 is less than the force exerted on the valve member 56 by the compression spring 64. The pressure spring 64 acting on the valve member 56 and the pressure spring 83 acting on the magnet armature 80 ensure that the valve member 56 rests on the magnet armature 80 without these two parts being connected to one another.
Zwischen der Kapsel 81 und der Magnetscheibe 74 ist ein Ring 85 angeordnet, der einerseits mit der Kapsel 81 und andererseits mit der Magnetscheibe 74 verbunden, insbesondere verschweißt ist. Der Ring 85 besteht aus nicht magnetisierbarem Material. Die Magnetscheibe 74 bildet dabei sozusagen einen die Kapsel 81 verschließenden Deckel und der Magnetanker 80 ist im durch die Kapsel 81 und die Magnetscheibe 74 begrenzten Innenraum angeordnet. Die KapselA ring 85 is arranged between the capsule 81 and the magnetic disk 74, which ring is connected, in particular welded, to the capsule 81 and to the magnetic disk 74. The ring 85 is made of non-magnetizable material. The magnetic disk 74 forms, so to speak, a cover closing the capsule 81 and the magnet armature 80 is arranged in the interior delimited by the capsule 81 and the magnetic disk 74. The capsule
81 ist in einen etwa hohlzylinderförmigen Träger 86 eingesetzt, der einen Außendurchmesser aufweist, der zumindest annähernd gleich groß ist wie der Außendurchmesser der Magnetscheibe 74. Der Träger 86 weist zur Magnetscheibe 74 hin in seinem Innenumfang eine radiale Ausnehmung 87 auf, in die eine Magnetspule 88 eingesetzt ist. Die Magnetspule 88 ist in der Ausnehmung in axialer Richtung zwischen dem Träger 86 und der Magnetscheibe 74 festgelegt. Mit dem Träger 86 ist ein vorzugsweise aus Kunststoff bestehender Anschlußkörper 89 verbunden, in dem elektrische Leiterelemente angeordnet sind, die einerseits mit der Magnetspule 88 und andererseits mit Steckkontakten 90 verbunden sind, mit denen ein nicht dargestelltes Steckerteil von zur Steuereinrichtung 52 führenden elektrischen Leitungen verbindbar ist. Die Bohrung 69 ist in einem etwa hohlzylinderförmigen Ansatz 91 des Pumpenkörpers 16 ausgebildet, der an seinem Außenumfang mit einem Außengewinde versehen ist. Über den Träger 86 des Magnetventils 50 ist eine Überwurfmutter 92 aufgeschoben, die auf das Außengewinde des Ansatzes 91 des Pumpenkörpers 16 aufgeschraubt ist und über die somit das Magnetventil 50 am Pumpenkörper 16 befestigt ist. Die Überwurfmutter 92 greift am Träger 86 an, der sich an der Magnetscheibe 74 abstützt, die sich wiederum an der Anschlagscheibe 70 abstützt, welche an der Anschlagschulter 72 des Pumpenkörpers 16 anliegt. Der Dichtring 77 wird durch die Magnetscheibe 74 elastisch zusammengedrückt, wenn diese an der Anschlagscheibe 70 zur Anlage kommt.81 is inserted into an approximately hollow cylindrical carrier 86, which has an outer diameter that is at least approximately the same size as the outer diameter of the magnetic disk 74. The carrier 86 has a radial recess 87 toward the magnetic disk 74 in its inner circumference, into which a magnetic coil 88 is inserted. The magnetic coil 88 is fixed in the recess in the axial direction between the carrier 86 and the magnetic disk 74. A connection body 89, preferably made of plastic, is connected to the carrier 86, in which electrical conductor elements are arranged which are connected on the one hand to the magnetic coil 88 and on the other hand to plug contacts 90 with which a plug part (not shown) of electrical lines leading to the control device 52 can be connected , The bore 69 is formed in an approximately hollow cylindrical projection 91 of the pump body 16, which is provided with an external thread on its outer circumference. A union nut 92 is pushed over the carrier 86 of the solenoid valve 50, which is screwed onto the external thread of the shoulder 91 of the pump body 16 and via which the solenoid valve 50 is thus fastened to the pump body 16. The union nut 92 engages on the carrier 86, which is supported on the magnetic disk 74, which in turn is supported on the stop disk 70, which bears against the stop shoulder 72 of the pump body 16. The sealing ring 77 is elastically compressed by the magnetic disk 74 when it comes into contact with the stop disk 70.
Nachfolgend wird die Funktion des Magnetventils 50 erläutert. Wenn die Magnetspule 88 stromlos ist, so wirkt auf den Magnetanker 80 keine magnetische Kraft. Durch die Kraft der Druckfeder 64 wird das Ventilglied 56 in seiner offenen Stellung gehalten, da die Kraft der Druckfeder 64 größer ist als die Kraft der auf den Magnetanker 80 wirkenden Druckfeder 83. Der Magnetanker 80 ist somit mit axialem Abstand von der Magnetscheibe 74 angeordnet. Die Bewegung des Ventilglieds 56 und damit des Magnetankers 80 in Öffnungsrichtung ist dadurch begrenzt, daß das Ventilglied 56 mit seinem Flansch 66 an der Anschlagscheibe 74 zur Anlage kommt. Wenn das Magnetventil 50 geschlossen werden soll, so wird durch die Steuereinrichtung 52 die Magnetspule 88 bestromt, so daß durch die Magnetspule 88, die Magnetscheibe 74 und den Magnetanker 80 ein geschlossener magnetischer Kreis entsteht und der Magnetanker 80 von der Magnetscheibe 74 angezogen wird. Die durch die Druckfeder 83 und die Magnetscheibe 74 auf den Magnetanker 80 ausgeübte Kraft ist größer als die durch die Druckfeder 64 auf das Ventilglied 56 ausgeübte Kraft, so daß durch den Magnetanker 80 das Ventilglied 56 in seine geschlossene Stellung bewegt wird, in der dieses mit seiner Dichtfläche 61 am Ventilsitz 60 anliegt. Der Hub, den das Ventilglied 56 zwischen seiner geöffneten Stellung und seiner geschlossenen Stellung ausführt, ist derart bemessen, daß der Magnetanker 80 auch in der geschlossenen Stellung noch mit axialem Abstand zur Magnetscheibe 74 angeordnet ist. Durch den hierbei vorhandenen Restluftspalt wird verhindert, daß der Magnetanker 80 an der Magnetscheibe 74 haftet, nachdem die Magnetspule 88 wieder stromlos ist und der Magnetanker 80 wieder von der Magnetscheibe 74 wegbewegt werden muß. Der Hub h, den das Ventilglied 56 zwischen seiner geöffneten Stellung und seiner geschlossenen Stellung ausführt, ist durch den Abstand zwischen dem Ventilsitz 60, an dem das Ventilglied 56 mit seiner Dichtfläche 61 zur Anlage kommt, einerseits und der Anschlagscheibe 74, an dem das Ventilglied 56 mit seinem Flansch 66 zur Anlage kommt, andererseits bestimmt. Der Restluftspalt s zwischen dem Magnetanker 80 und der Magnetscheibe 74 kann durch Verwendung einer Anschlagscheibe 74 mit einer angepassten Dicke auf das erforderliche Mass eingestellt werden. Die Anschlagscheibe 74 kann beispielsweise durch Stanzprägen hergestellt sein.The function of the solenoid valve 50 is explained below. If the magnet coil 88 is de-energized, no magnetic force acts on the magnet armature 80. The valve member 56 is held in its open position by the force of the compression spring 64, since the force of the compression spring 64 is greater than the force of the compression spring 83 acting on the magnet armature 80. The magnet armature 80 is thus arranged at an axial distance from the magnet disk 74. The movement of the valve member 56 and thus of the magnet armature 80 in the opening direction is limited in that the valve member 56 comes into contact with the stop disk 74 with its flange 66. When the solenoid valve 50 is to be closed, the control unit 52 energizes the solenoid 88 so that a closed magnetic circuit is created by the solenoid 88, the magnet disk 74 and the magnet armature 80 and the magnet armature 80 is attracted to the magnet disk 74. The force exerted by the compression spring 83 and the magnetic disk 74 on the magnet armature 80 is greater than the force exerted on the valve member 56 by the compression spring 64, so that the valve member 56 is moved into its closed position by the magnet armature 80, in which it is also moved its sealing surface 61 rests on the valve seat 60. The hub that the Valve member 56 executes between its open position and its closed position is dimensioned such that the magnet armature 80 is still arranged at an axial distance from the magnetic disk 74 even in the closed position. The remaining air gap prevents the magnet armature 80 from sticking to the magnet disk 74 after the magnet coil 88 is de-energized and the magnet armature 80 has to be moved away from the magnet disk 74 again. The stroke h, which the valve member 56 executes between its open position and its closed position, is due to the distance between the valve seat 60, on which the valve member 56 comes into contact with its sealing surface 61, on the one hand and the stop disk 74, on which the valve member 56 comes to rest with its flange 66, on the other hand determines. The residual air gap s between the magnet armature 80 and the magnetic disk 74 can be adjusted to the required size by using a stop disk 74 with an adapted thickness. The stop disk 74 can be produced, for example, by stamping.
Der Magnetanker 80 besteht vorzugsweise aus einer Legierung, die wenigstens Eisen und Cobalt enthält, wobei der Anteil des Cobalts zwischen 10 und 50% beträgt. Vorzugsweise beträgt der Anteil an Cobalt zwischen 15 und 20%, besonders vorteilhaft ist ein Anteil an Cobalt von etwa 17%. Die Prozentangaben zum Cobaltanteil sind dabei auf das Gewicht bezogen. Der Magnetanker 80 weist hierdurch besonders vorteilhafte magnetische Eigenschaften auf. Durch die Steuereinrichtung 52 wird der zeitliche Verlauf des Stromflusses durch die Magnetspule 88 erfasst und ausgewertet. Der Magnetanker 80 stellt einen beweglichen Teil des Magnetkreises dar, durch den bei dessen Bewegung die Induktivität des Magnetkreises verändert wird, was zu einem bestimmten zeitlichen Verlauf des Stromflusses durch die Magnetspule 88 führt. Wenn sich der Magnetanker 80 nicht mehr bewegt, so ändert sich die Induktivität nicht mehr und - li ¬The magnet armature 80 is preferably made of an alloy which contains at least iron and cobalt, the proportion of cobalt being between 10 and 50%. The proportion of cobalt is preferably between 15 and 20%, a proportion of cobalt of approximately 17% is particularly advantageous. The percentages of the cobalt content are based on the weight. As a result, the magnet armature 80 has particularly advantageous magnetic properties. The course of the current flow through the magnetic coil 88 is detected and evaluated by the control device 52. The magnet armature 80 represents a movable part of the magnetic circuit, by means of which the inductance of the magnetic circuit is changed during its movement, which leads to a specific temporal course of the current flow through the magnet coil 88. When the armature 80 stops moving, the inductance no longer changes and - left
es ergibt sich eine charakteristische Änderung des zeitlichen Verlaufs des Stromflusses durch die Magnetspule 88. Für die Steuerung der Kraftstoffeinspritzung ist insbesondere der Zeitpunkt von Bedeutung, wenn das Magnetventil 50 geschlossen ist, so daß sich im Pumpenarbeitsraum 20 Hochdruck aufbaut und die Kraftstoffeinspritzung beginnt. Aus der charakteristischen Änderung des Stromflusses durch die Magnetspule 88 kann ermittelt werden, wenn der Magnetanker 80 und somit das Ventilglied 56 die geschlossene Stellung erreicht hat. Bei der Herstellung des Magnetankers 80 aus dem vorstehend angegebenen Material ergibt sich eine stark ausgeprägte Änderung des Stromflusses durch die Magnetspule 88, wenn sich der Magnetanker 80 nicht mehr bewegt, so daß der Schließzeitpunkt des Magnetventils 50 und damit der Zeitpunkt des Einspritzbeginns mit hoher Genauigkeit bestimmen lässt.there is a characteristic change in the temporal course of the current flow through the solenoid coil 88. For the control of the fuel injection, the point in time when the solenoid valve 50 is closed is of particular importance, so that high pressure builds up in the pump work chamber 20 and the fuel injection begins. From the characteristic change in the current flow through the magnet coil 88, it can be determined when the magnet armature 80 and thus the valve member 56 has reached the closed position. When the magnet armature 80 is produced from the material specified above, there is a pronounced change in the current flow through the magnet coil 88 when the magnet armature 80 is no longer moving, so that the closing time of the solenoid valve 50 and thus the time of the start of injection determine with high accuracy leaves.
Die Härte des Materials, aus dem der Magnetanker 80 zur Erzielung der günstigen magnetischen Eigenschaften besteht, ist gegenüber der Härte des Materials, aus dem das Ventilglied 56 besteht, geringer. Um zu verhindern, daß durch die Anlage des Ventilglieds 56 am Magnetanker 80 an diesem ein unzulässig starker Verschleiß auftritt, ist vorzugsweise vorgesehen, daß die Oberflächenhärte des Magnetankers 80 zumindest im Bereich der Anlage des Ventilglieds 56 erhöht ist.The hardness of the material from which the magnet armature 80 is made to achieve the favorable magnetic properties is lower than the hardness of the material from which the valve member 56 is made. In order to prevent inadmissibly high wear from occurring due to the valve member 56 bearing against the magnet armature 80, it is preferably provided that the surface hardness of the magnet armature 80 is increased at least in the region of the valve member 56 contact.
Um zu verhindern, daß am Magnetanker 80 und/oder an der Kapsel 81 infolge der Führung des Magnetankers 80 ein unzulässig starker Verschleiß auftritt, sind am Magnetanker 80 und/oder an der Kapsel 81 gemäß Figur 3 Maßnahmen zur Erhöhung der Oberflächenhärte vorgesehen. In Figur 3 sind der Magnetanker 80 und die Kapsel 81 ausIn order to prevent excessive wear on the armature 80 and / or on the capsule 81 due to the guidance of the armature 80, measures are provided on the magnet armature 80 and / or on the capsule 81 according to FIG. 3 to increase the surface hardness. In Figure 3, the armature 80 and the capsule 81 are off
Übersichtlichkeitsgründen in einer Explosionsdarstellung gezeigt. Es kann hierbei vorgesehen sein, daß der Magnetanker 80 zumindest bereichsweise eine Beschichtung 94 aus einem Material aufweist, das gegenüber dem Material, das ist die Eisen-Cobalt-Legierung, aus dem der Magnetanker 80 besteht, eine höhere Härte aufweist. Als Material für die Beschichtung 94 kann ein Metall verwendet werden, insbesondere Nickel oder Chrom. Es kann hierbei eine Oberflächenhärte des Magnetankers 80 von beispielsweise etwa 700 HV erreicht werden. Die Beschichtung 94 kann nur am Außenmantel der Magnetankers 80, über den dieser in der Kapsel 81 geführt ist, oder auch an der Stirnfläche des Magnetankers 80 aufgebracht sein, an der das Ventilglied 56 anliegt, oder über die gesamte Oberfläche des Magnetankers 80. Es kann auch vorgesehen sein, daß die Kapsel 81 an ihrem den Magnetanker 80 führenden Innenumfang mit einer Beschichtung 94 versehen ist. Die Beschichtung 94 ist vorzugsweise zumindest an dem Teil Magnetanker 80 und Kapsel 81 aufgebracht, das die geringere Härte aufweist.For reasons of clarity shown in an exploded view. It can be provided here that the armature 80 has a coating 94 at least in some areas made of a material that has a higher hardness than the material that is the iron-cobalt alloy from which the magnet armature 80 is made. A metal, in particular nickel or chromium, can be used as the material for the coating 94. A surface hardness of the magnet armature 80 of, for example, approximately 700 HV can be achieved here. The coating 94 can only be applied to the outer casing of the magnet armature 80, over which it is guided in the capsule 81, or also to the end face of the magnet armature 80 against which the valve member 56 rests, or over the entire surface of the magnet armature 80 it can also be provided that the capsule 81 is provided with a coating 94 on its inner circumference guiding the magnet armature 80. The coating 94 is preferably applied at least to the part of the magnet armature 80 and capsule 81 which has the lower hardness.
Anstelle der Beschichtung 94 kann der Magnetanker 80 und/oder die Kapsel 81 auch ganz oder bereichsweise mit einem Verfahren zur Erhöhung von dessen Oberflächenhärte behandelt sein. Der Magnetanker 80 und/oder die Kapsel 81 kann einem Wärmebehandlungsverfahren unterzogen werden und beispielsweise einsatzgehärtet sein, durch gasnitrocarburieren oder durch carbonitrieren behandelt sein. Die Oberflächenhärte des Magnetankers 80 und/oder der Kapsel 81 kann nur an dessen Außenmantel bzw. an deren Innenumfang erhöht sein, an dem die Führung des Magnetankers 80 erfolgt. Alternativ kann die Oberflächenhärte auch über einen größeren Bereich der Oberfläche oder über die gesamte Oberfläche des Magnetankers 80, insbesondere auch an der Stirnfläche des Magnetankers 80, an der das Ventilglied 56 anliegt, erhöht sein. Die Kapsel 81 kann beispielsweise aus plasmanitriertem Stahl bestehen.Instead of the coating 94, the magnet armature 80 and / or the capsule 81 can also be treated in whole or in part with a method for increasing its surface hardness. The magnet armature 80 and / or the capsule 81 can be subjected to a heat treatment process and, for example, be case-hardened, treated by gas nitrocarburizing or by carbonitriding. The surface hardness of the magnet armature 80 and / or the capsule 81 can only be increased on its outer jacket or on its inner circumference on which the magnet armature 80 is guided. Alternatively, the surface hardness can also be increased over a larger area of the surface or over the entire surface of the magnet armature 80, in particular also on the end face of the magnet armature 80, against which the valve member 56 rests. The capsule 81 can be made of plasma nitrided steel, for example.
Weiterhin kann der Magnetanker 80 und/oder die Kapsel 81 ganz oder bereichsweise einem Kaltverfestigungsverfahren unterzogen werden und beispielsweise durch Kugelbestrahlung oder eine Schlagverfestigung behandelt werden. Auch diese Behandlung des Magnetankers 80 und/oder der Kapsel 81 kann nur am Außenmantel des Magnetankers 80 bzw. am Innenumfang der Kapsel 81 erfolgen, wo die Führung des Magnetankers 80 erfolgt. Alternativ kann die Kaltverfestigung auch über einen größeren Bereich der Oberfläche oder über die gesamte Oberfläche des Magnetankers 80 erfolgen.Furthermore, the magnet armature 80 and / or the capsule 81 can be subjected to a work hardening process in whole or in part and, for example, by shot peening or a consolidation. This treatment of the magnet armature 80 and / or the capsule 81 can also only be carried out on the outer jacket of the magnet armature 80 or on the inner circumference of the capsule 81, where the magnet armature 80 is guided. Alternatively, the work hardening can also take place over a larger area of the surface or over the entire surface of the magnet armature 80.
Die Verwendung des vorstehend beschriebenen Magnetventils 50 mit dem in der Kapsel 81 geführten Magnetanker 80 ist nicht auf die beschriebene Ausführung derThe use of the solenoid valve 50 described above with the magnet armature 80 guided in the capsule 81 is not based on the embodiment described in FIG
Kraftstoffeinspritzeinrichtung in Form der Pumpe-Düse- Einheit beschränkt sondern kann auch bei beliebigen anderen Ausführungen von Kraftstoffeinspritzeinrichtungen vorgesehen werden . Fuel injection device in the form of the unit injector is limited but can also be provided in any other type of fuel injection device.

Claims

Ansprüche Expectations
1. Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine mit wenigstens einem Magnetventil (50) zur Steuerung der Kraftstoffeinspritzung, wobei das Magnetventil (50) durch eine elektrische Steuereinrichtung1. Fuel injection device for an internal combustion engine with at least one solenoid valve (50) for controlling the fuel injection, the solenoid valve (50) by an electrical control device
(52) angesteuert wird und eine Magnetspule (88), einen beweglichen kolbenförmigen Magnetanker (88), durch den ein Ventilglied (56) zwischen wenigstens zwei Stellungen bewegbar ist, eine Magnetscheibe (74) , durch die der Magnetanker (80) bei stromdurchflossener Magnetspule (88) angezogen wird, und eine topffömige Kapsel (81) aufweist, in die der Magnetanker (80) eintaucht, und wobei der Magnetanker (80) zumindest mittelbar verschiebbar geführt ist, dadurch gekennzeichnet, daß der Magnetanker (80) über seinen Außenmantel in der Kapsel (81) verschiebbar geführt ist.(52) and a magnet coil (88), a movable piston-shaped magnet armature (88), through which a valve member (56) can be moved between at least two positions, a magnet disk (74), through which the magnet armature (80) when the magnet coil flows through current (88) is attracted, and has a pot-shaped capsule (81) into which the magnet armature (80) is immersed, and wherein the magnet armature (80) is at least indirectly displaceably guided, characterized in that the magnet armature (80) via its outer jacket in the capsule (81) is slidably guided.
2. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Magnetanker (80) zumindest an seinem Außenmantel und/oder die Kapsel (81) an ihrem Innenmantel mit einer Beschichtung (94) aus einem Metall mit gegenüber dem Material, aus dem der Magnetanker (80) bzw. die Kapsel2. Fuel injection device according to claim 1, characterized in that the magnet armature (80) at least on its outer casing and / or the capsule (81) on its inner casing with a coating (94) made of a metal with respect to the material from which the magnet armature ( 80) or the capsule
(81) besteht, höherer Härte versehen ist.(81) there is higher hardness.
3. Kraftstoffeinspritzeinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß die Beschichtung (94) aus Chrom oder Nickel besteht.3. Fuel injection device according to claim 2, characterized in that the coating (94) consists of chromium or nickel.
4. Kraftstoffeinspritzeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Magnetanker (80) zumindest an seinem Außenmantel und/oder die Kapsel (81) an ihrem Innenmantel mit einem Verfahren zur Erhöhung der Oberflächenhärte behande1t ist.4. Fuel injection device according to claim 1, characterized in that the magnet armature (80) at least on its outer casing and / or the capsule (81) on its inner casing is treated with a method to increase the surface hardness.
5. Kraftstoffeinspritzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Magnetanker (80) und/oder die Kapsel (81) einsatzgehärtet ist.5. Fuel injection device according to claim 4, characterized in that the magnet armature (80) and / or the capsule (81) is case hardened.
6. Kraftstoffeinspritzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Magnetanker (80) und/oder die Kapsel6. Fuel injection device according to claim 4, characterized in that the magnet armature (80) and / or the capsule
(81) mit einem Nitrierverfahren behandelt ist, insbesondere mit einem Gasnitrocarburierverfahren oder einem Carbonitrierverfahren .(81) is treated with a nitriding process, in particular with a gas nitrocarburizing process or a carbonitriding process.
7. Kraftstoffeinspritzeinrichtung nach Anspruch 4, dadurch gekennzeichnet, daß der Magnetanker (80) und/oder die Kapsel (81) mit einem Kaltverfestigungsverfahren behandelt ist, insbesondere einem Kugelbestrahlungsverfahren oder einem Schlagverfestigungsverfahren .7. Fuel injection device according to claim 4, characterized in that the magnet armature (80) and / or the capsule (81) is treated with a work-hardening process, in particular a shot-peening process or an impact hardening process.
8. Kraftstoffeinspritzeinrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, daß der Magnetanker (80) zumindest im wesentlichen aus einer Legierung besteht, die wenigstens Eisen und Cobalt enthält, wobei der Anteil an Cobalt zwischen 10% und 50% beträgt. 8. Fuel injection device according to one of the preceding claims, characterized in that the magnet armature (80) consists at least essentially of an alloy which contains at least iron and cobalt, the proportion of cobalt being between 10% and 50%.
EP02740253A 2001-04-24 2002-04-12 Fuel injection device for an internal combustion engine Expired - Lifetime EP1399667B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10119982 2001-04-24
DE10119982A DE10119982A1 (en) 2001-04-24 2001-04-24 Fuel injection device for an internal combustion engine
PCT/DE2002/001369 WO2002086308A1 (en) 2001-04-24 2002-04-12 Fuel injection device for an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1399667A1 true EP1399667A1 (en) 2004-03-24
EP1399667B1 EP1399667B1 (en) 2005-03-23

Family

ID=7682486

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02740253A Expired - Lifetime EP1399667B1 (en) 2001-04-24 2002-04-12 Fuel injection device for an internal combustion engine

Country Status (7)

Country Link
US (1) US6962144B2 (en)
EP (1) EP1399667B1 (en)
JP (1) JP2004519591A (en)
DE (2) DE10119982A1 (en)
HU (1) HUP0301299A2 (en)
PL (1) PL358197A1 (en)
WO (1) WO2002086308A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10119982A1 (en) 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine
DE10134056B8 (en) * 2001-07-13 2014-05-28 Vacuumschmelze Gmbh & Co. Kg Process for the production of nanocrystalline magnetic cores and apparatus for carrying out the process
DE102005034486A1 (en) * 2005-07-20 2007-02-01 Vacuumschmelze Gmbh & Co. Kg Process for the production of a soft magnetic core for generators and generator with such a core
US7472844B2 (en) * 2005-12-21 2009-01-06 Caterpillar Inc. Fuel injector nozzle with tip alignment apparatus
US8029627B2 (en) * 2006-01-31 2011-10-04 Vacuumschmelze Gmbh & Co. Kg Corrosion resistant magnetic component for a fuel injection valve
US20070176025A1 (en) * 2006-01-31 2007-08-02 Joachim Gerster Corrosion resistant magnetic component for a fuel injection valve
DE502007000329D1 (en) * 2006-10-30 2009-02-05 Vacuumschmelze Gmbh & Co Kg Soft magnetic iron-cobalt based alloy and process for its preparation
US9057115B2 (en) 2007-07-27 2015-06-16 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron-cobalt-based alloy and process for manufacturing it
US8012270B2 (en) 2007-07-27 2011-09-06 Vacuumschmelze Gmbh & Co. Kg Soft magnetic iron/cobalt/chromium-based alloy and process for manufacturing it

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3905992A1 (en) 1989-02-25 1989-09-21 Mesenich Gerhard ELECTROMAGNETIC HIGH PRESSURE INJECTION VALVE
US5331730A (en) * 1992-09-03 1994-07-26 Siemens Automotive L.P. Method of making a coil molded into a magnetic stator
JP3069990B2 (en) * 1993-04-27 2000-07-24 東洋電装株式会社 Method of manufacturing pulse generator
EP0683862B1 (en) 1993-12-09 1998-06-10 Robert Bosch Gmbh Electromagnetic valve
DE19616084A1 (en) * 1996-04-23 1997-10-30 Bosch Gmbh Robert Fuel injector
DE19641785C2 (en) 1996-10-10 1999-01-28 Bosch Gmbh Robert Valve needle for an injection valve
DE19653055C1 (en) * 1996-12-19 1998-05-07 Bosch Gmbh Robert Fuel injection pump seal checking process for vehicles
DE19714812A1 (en) * 1997-04-10 1998-10-15 Bosch Gmbh Robert Solenoid
DE10119982A1 (en) 2001-04-24 2002-10-31 Bosch Gmbh Robert Fuel injection device for an internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02086308A1 *

Also Published As

Publication number Publication date
EP1399667B1 (en) 2005-03-23
WO2002086308A1 (en) 2002-10-31
HUP0301299A2 (en) 2003-08-28
DE10119982A1 (en) 2002-10-31
JP2004519591A (en) 2004-07-02
US20040025841A1 (en) 2004-02-12
US6962144B2 (en) 2005-11-08
PL358197A1 (en) 2004-08-09
DE50202551D1 (en) 2005-04-28

Similar Documents

Publication Publication Date Title
DE3733809C2 (en) magnetic valve
DE19833461A1 (en) Electromagnetically operated valve for fuel injection compressed mixtures and external fuel ignition has specially designed impact area acting as core or relay armature
DE19650865A1 (en) magnetic valve
DE102004024533A1 (en) Fuel injector
EP2222949A1 (en) Fuel metering device for a high-pressure fuel pump and high-pressure fuel pump
EP1423603B1 (en) Fuel injection valve
DE102008041794A1 (en) Electromagnetic valve for controlling a fuel quantity
EP0683861A1 (en) Electromagnetic valve
EP1399667B1 (en) Fuel injection device for an internal combustion engine
WO2015106935A1 (en) High-pressure fuel pump comprising an electromagnetic intake valve
EP1262655B1 (en) Fuel injection valve
EP1386073B1 (en) Fuel injection device for an internal combustion engine, comprising a magneto armature made of cobalt and iron
DE102007011047A1 (en) Magnetventilinjektor
DE102006003484A1 (en) Device for injecting fuel
EP1570170A1 (en) Fuel-injection valve
DE10332812B4 (en) Fuel injector
DE102004013413A1 (en) Fuel injection valve
DE10202324A1 (en) Solenoid valve and process for its manufacture
WO2008046677A2 (en) Fuel injector comprising a sealing element
DE102017222951A1 (en) Electromagnetically actuated inlet valve and high-pressure fuel pump
EP1606510B1 (en) Electromagnet for an electromagnetic valve
DE102007012706A1 (en) Valve for fuel injectors
WO2019115057A1 (en) Electromagnetically actuatable intake valve and high-pressure fuel pump
DE102019208887A1 (en) Electromagnetically operated inlet valve and high pressure pump with inlet valve
DE102009054680A1 (en) Injection valve, particularly for fuel injection system of internal combustion engine in motor vehicles, has valve opening, coaxially arranged and axially movably guided valve needle and electromagnet for lifting actuation of valve needle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BLANC, REGIS

Inventor name: CHRETIEN, LAURENT

17Q First examination report despatched

Effective date: 20040423

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050323

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50202551

Country of ref document: DE

Date of ref document: 20050428

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050804

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20051227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080418

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080423

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090412

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091222

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090412

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50202551

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50202551

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101