EP1390947B1 - Verfahren zum signalempfang in einem digitalen kommunikationssystem - Google Patents

Verfahren zum signalempfang in einem digitalen kommunikationssystem Download PDF

Info

Publication number
EP1390947B1
EP1390947B1 EP02737822A EP02737822A EP1390947B1 EP 1390947 B1 EP1390947 B1 EP 1390947B1 EP 02737822 A EP02737822 A EP 02737822A EP 02737822 A EP02737822 A EP 02737822A EP 1390947 B1 EP1390947 B1 EP 1390947B1
Authority
EP
European Patent Office
Prior art keywords
background signal
lpc
bandwidth
characteristic data
filter coefficients
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02737822A
Other languages
English (en)
French (fr)
Other versions
EP1390947A2 (de
Inventor
Tim Fingscheidt
Imre Varga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1390947A2 publication Critical patent/EP1390947A2/de
Application granted granted Critical
Publication of EP1390947B1 publication Critical patent/EP1390947B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis
    • G10L19/012Comfort noise or silence coding
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/038Speech enhancement, e.g. noise reduction or echo cancellation using band spreading techniques

Definitions

  • the invention relates to a method for signal reception in one digital communication system using a background signal generator from received characteristic data, which one Characterize transmitter-side background signal, an output background signal is generated.
  • a method for voice transmission in digital communication systems in which to transmit a Background signal at least in the speech pauses with one such a method is used, as well as a corresponding Background signal generator with which such Procedure can be carried out.
  • DTX discontinuous transmission
  • VAD Voice Activity Detector
  • a speech decoder recognizes whether it is a speech frame or a background signal frame.
  • a background signal frame then becomes the following Number of missing frames replaced again by simply the received frame is repeated in the appropriate number becomes.
  • This is usually done in a background signal generator, for example the so-called CNG (Comfort Noise Generator), which is located next to a core speech decoder, which performs the decoding of the speech frames in the Speech decoder is located.
  • CNG Computer Noise Generator
  • the transfer of only part of the Frame during a background noise has the advantage that during this time the transmission channel for further calls other participants or for the transmission of others Data can be used.
  • the completion of the missing Information about the background noise in the CNG is provided therefore, to give each listener the feeling of continuous To convey transmission so that it does not irritate is feared and an interruption of the connection.
  • narrowband transmission narrowband
  • WB wide band
  • the bandwidth for narrowband transmission is, for example, 300 to 3400 Hz, which corresponds to a sampling rate (sample frequency) of 8 kHz. This is a transmission in the usual telephone quality.
  • Broadband coding achieves better transmission quality. This is, for example, in the range from 50 to 7000 Hz, corresponding to a sampling rate of 16 kHz. This standard is already being used in part in the current fixed telephone networks for video conferences etc.
  • broadband encoder technologies are to be developed and standardized in the future, for example various technologies with 16, 24 or 32 kbit / s bit rate for the ITU-T system.
  • a wideband AMR coder is provided, a narrowband AMR coder is already specified.
  • AMR Adaptive Multi Rate
  • the ratio between the bit rate of the speech encoder and the channel encoder is varied on the transmitter side depending on the channel quality.
  • the sum of the bit rate is selected depending on the traffic and the available capacity on the transmission channels and then kept constant.
  • a distinction is made here e.g. B. between full rate and half rate channels.
  • the AMR-WB speech decoder and the AMR-NB speech decoder are implemented on the receiver side, then it is provided there that according to the transmission between a narrowband and a broadband mode, ie the AMR-NB speech decoder and the AMR-WB- Voice decoder is switched. If necessary, such a switchover can also occur during a call. When switching from broadband to narrowband mode, the user usually perceives a significant loss in quality.
  • NB speech decoder narrow-band speech decoder
  • wideband extender the entire signal within a so-called wideband extender towards the larger bandwidth expand.
  • this can be done by any method known in the literature for artificial bandwidth expansion, which also generates signal components at frequencies which were not present in the narrowband signal or only in an attenuated manner.
  • Such an artificial bandwidth expansion is particularly useful if it is a system with different bandwidths, for example with implementations of the AMR-NB and the AMR-WB method.
  • Figure 1 shows a corresponding device according to the current state of the art.
  • the core speech decoder (Core-SD) which the actual incoming speech signal frame S decoded and a CNG which receives the background signal frames H and a corresponding output background signal is generated.
  • Core SD core speech decoder
  • CNG CNG which receives the background signal frames H and a corresponding output background signal is generated.
  • WB extender WB extender abbreviated
  • a background signal generator is also intended to be used be specified in this procedure.
  • this is done within the background signal generator an output background signal from the received characteristic data with a given bandwidth, which is greater than the bandwidth of that received by Characteristics of the characterized background signal, i. H. it will already in the background signal generator from the characteristic data the narrowband background signal the broadband Background signal generated.
  • the process consequently at least for the part of the signal that is in the background signal generator, d. H. in a CNG constructed according to the invention, is processed, no downstream wideband extender needed. This will result in a significant number of circuit operations no longer needed during reception, which leads to the desired reduction in the total energy requirement leads.
  • a background signal generator Have means for generating the output signal, which are designed so that the bandwidth of the generated output background signal is larger than that Range of characteristics characterized by the input data Background signal.
  • Such an inventive Background signal generator is preferably part of a Speech decoder, which in any receiving device can be arranged. It is preferably the receiving device around a terminal. But it can also a receiving device within any one Communication network, for example a cellular network or a fixed telephone network.
  • the method or such a background signal generator can be used wherever a Output background signal generated from transmitted characteristic data will, d. h, in particular in the usually in cellular networks used methods for voice transmission, at which separate background signal frames in the speech pauses are transmitted, which are then in the receiver device within the CNG can be converted into an output background signal.
  • the inventive method or the background signal generator are not on the current narrowband and Broadband standards are limited but can always be applied when it comes down to a narrow band transmitted signal to generate a broadband signal.
  • the output background signal can either be according to Editing directly to a user of the device acoustic way as background noise.
  • the characteristic data can also be a gain factor which include the signal energy, i. H. the volume representing the background signal.
  • the transmission the spectral information based on the LPC filter coefficients as well as the additional transmission of a gain factor is the usual one in current standards Way to transmit characteristics for a background signal.
  • a preferred way of generating an output background signal with the desired larger bandwidth from the received LPC filter coefficients of a narrow band Filters consists of the received LPC filter coefficients into corresponding LPC filter coefficients for an LPC synthesis filter of the desired larger bandwidth convert and the converted LPC filter coefficients then feed it to an LPC synthesis filter that matches the noise signal the desired bandwidth is excited.
  • a background signal generator according to the invention is required on the one hand, either a noise signal generator for generation a corresponding noise signal or alternatively an input for such a noise signal.
  • these agents can be an LPC synthesis filter the desired bandwidth as well as Means to filter the LPC for a narrow band Filters as they appear in the input data are in corresponding LPC filter coefficients for the broadband Implement LPC synthesis filter.
  • a particularly easy way to use the LPC filter coefficients for the broadband LPC synthesis filter from the zu to determine the receiving LPC filter coefficient consists in the use of a look up table, in the "narrowband" LPC filter coefficient and "broadband" LPC filter coefficients are assigned to each other.
  • the LPC filter coefficients are mutually sentence by sentence assigned, d. H. there are complete LPC filter coefficient sets in the table saved and assigned to each other.
  • the assignment table can, for example, use a parallel Training determined using suitable estimation methods become.
  • the memory can be a memory within act of the CNG or the speech decoder. It can but also an external one, if necessary for other purposes anyway located within the receiving device or the device Act memory on which the speech decoder or CNG Has access.
  • the mapping table can be a single large Assignment table. But it can also be a multi-part Mapping table or by several individual mapping tables act.
  • a speech decoder (SD) 8 a CNG 1 and a narrow-band core speech decoder (Core SD) 7 are arranged.
  • the incoming signal includes each speech frame S and - in speech pauses - background signal frame H, the corresponding for each Voice decoders are recognizable.
  • the speech signal frames S are decoded within the core speech decoder 7 and therefrom a narrowband speech signal SS is generated, which in a subsequent wideband extender into a broadband Signal is implemented.
  • the difference of the invention Structure to the prior art consists in the structure of the Background signal generator 1, i.e. H. in the CNG 1.
  • a conventional narrow band CNG is used, which comes from an incoming background signal frame H generates a narrowband background signal.
  • a switch which corresponds to the activity of the core speech decoder and the CNG is switched put the signal on an output line of the speech decoder, so that on this output line a continuous narrowband signal is present, which is then the wideband extender is fed. That is, in this conventional method the output background signal is generated in narrowband and then in the wideband extender accordingly extensive switching operation converted into a broadband signal.
  • Output signal of the CNG also initially in the core speech decoder to be processed further, which in turn then outputs decoded background signal.
  • a broadband CNG 1 used which immediately from an incoming background signal frame H one narrowband background signal a broadband output background signal HS generated at the output.
  • This broadband Background signal HS no longer needs the wideband extender 10 to be fed. Accordingly, only that of Core speech decoder 7 outgoing signal SS the wideband extender 10 fed.
  • FIG 3 shows a particularly simple and inexpensive Embodiment for a CNG 1 according to the invention, which from the background signal frame H of a narrow band Background signal is a broadband output background signal HS generated.
  • the advantage of this CNG 1 is that that as an input signal normal, according to the current one Standard transmitted background signal frame H used can be. That is, a transmission of the currently is sufficient usual LPC filter coefficients, which the spectral information of the signal included, and the transmission of the gain VF, which represents the signal energy, out. Therefore, there are no changes to a transmission standard or something similar.
  • the background signal generator according to the invention is accordingly also very similar to a conventional background signal generator built and has an LPC synthesis filter 2, which one by means of the white noise RS Noise signal generator 6 is excited.
  • the volume of the signal is determined by the gain factor VF, which is set in an amplification device 5 the white noise signal present at the input of the LPC filter RS reinforced accordingly.
  • This gain factor becomes VF by means of an analysis device 4 from the incoming background signal frame determined.
  • LPC filter coefficients are initially in a conversion device 3 from the background signal frame H determined and in LPC filter coefficients FK the desired larger bandwidth. This conversion takes place, for example, with the help of one in one Memory 3a stored allocation table LUT.
  • LUT assignment table are the various LPC filter coefficient sets, which is the background signal of the broadcast Correspond to bandwidth, each LPC filter coefficient sets the desired bandwidth of the broadband output background signal HS assigned.
  • the bandwidth widening directly integrated into the CNG 1, creating a efficient method of increasing the bandwidth for the periods the language breaks are possible. Because the sum of the pauses in speech a fairly high proportion during an overall conversation can assume is overall of a considerably smaller Energy consumption of such a receiver.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Quality & Reliability (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Dc Digital Transmission (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Signalempfang in einem digitalen Kommunikationssystem, bei dem in einem Hintergrundsignalgenerator aus empfangenen Kenndaten, welche ein senderseitiges Hintergrundsignal charakterisieren, ein Ausgangs-Hintergrundsignal generiert wird. Darüber hinaus betrifft die Erfindung ein Verfahren zur Sprachübertragung in digitalen Kommunikationssystemen, bei dem zur Übertragung eines Hintergrundsignals zumindest in den Sprachpausen mit einem derartigen Verfahren gearbeitet wird, sowie einen entsprechenden Hintergrundsignalgenerator, mit dem ein derartiges Verfahren durchgeführt werden kann.
In digitalen Kommunikationssystemen, d. h. in Kommunikationssystemen, bei denen das zu übertragende Signal digitalisiert wird und in digitaler Form vom Sender an den Empfänger übertragen wird, beispielsweise in Mobilfunksystemen, kommt es für ein optimales und effizientes Management des gesamten Systems darauf an, die Anzahl der Bits zur Übertragung einer bestimmten Information möglichst gering zu halten. Eine solche Bit-Reduktion wird üblicherweise durch eine bestimmte Art der Quellcodierung erreicht. Im Falle einer Sprachübertragung spricht man von einer Sprachcodierung. In der Sprachcodierung werden die zu übertragende Sprache bzw. Geräusche in Abschnitte konstanter Länge, in sogenannte Rahmen, eingeteilt. Die Länge bzw. Dauer solcher Rahmen beträgt üblicherweise 20 ms. Ein Rahmen wird dann abhängig vom Sprachcodierverfahren in eine bestimmte Anzahl von Bits umgesetzt. Bei Einsatz des EFR-Sprachcodecs (enhanced fullrate) in dem heute weit verbreiteten Mobilfunkstandard GSM wird beispielsweise eine Reduzierung von 128 bzw. 64 kbit/s auf 12.2kbit/s erreicht.
Eine weitere Möglichkeit, die Übertragungskanäle zu entlasten bzw. effektiver zu nutzen, besteht darin, vor einer Übertragung zwischen wesentlichen Informationen und unwesentlichen Informationen, beispielsweise zwischen aktiver Sprache und Hintergrundgeräusch, zu unterscheiden und nur die wesentlichen Informationen kontinuierlich mit einer höheren Bitrate zu übertragen und die unwesentlicheren Informationen nur in reduzierter Form zu übermitteln. Bei einem derzeit bereits eingesetzten Verfahren, der sog. Discontinuous Transmission (DTX) wird mittels eines Sprachpausendetektors, im Allgemeinen VAD (Voice Activity Detector) genannt, sendeseitig entschieden, ob eine volle oder eine reduzierte Übertragung erfolgt. Bei der Übertragung eines Hintergrundgeräusches ohne eine gleichzeitige Sprachaktivität wird z.B. im GSM-Standard nur jeder 8. Rahmen vom Sender an den Empfänger übermittelt. Dabei wird jeder Rahmen entsprechend gekennzeichnet, ob es sich um einen Sprach-Rahmen oder um ein Hintergrundsignal-Rahmen handelt. Auf der Empfängerseite wird dann innerhalb eines Sprachdecoders erkannt, ob es sich um einen Sprach-Rahmen oder um einen Hintergrundsignal-Rahmen handelt. Bei Empfang eines Hintergrundsignal-Rahmens wird dann die folgende Anzahl von fehlenden Rahmen wieder ersetzt, indem einfach der empfangene Rahmen in entsprechender Anzahl wiederholt wird. Dies geschieht üblicherweise in einem Hintergrundsignalgenerator, beispielsweise dem sogenannten CNG (Comfort Noise Generator), der sich neben einem Kern-Sprachdecoder, welcher die Decodierung der Sprach-Rahmen durchführt, im Sprachdecoder befindet. Die Übertragung nur eines Teils der Rahmen während eines Hintergrundgeräusches hat den Vorteil, dass in dieser Zeit der Übertragungskanal für weitere Gespräche anderer Teilnehmer oder auch zur Übermittlung sonstiger Daten genutzt werden kann. Die Vervollständigung der fehlenden Information über das Hintergrundgeräusch im CNG erfolgt deswegen, um dem jeweiligen Zuhörer das Gefühl der kontinuierlichen Übertragung zu vermitteln, damit dieser nicht irritiert wird und eine Unterbrechung der Verbindung befürchtet.
Für die Sprachcodierung gibt es außerdem derzeit verschiedene Standards mit unterschiedlichen Bandbreiten. Hierbei wird zwischen den Grundvarianten für Schmalbandübertragung (Narrow Band; NB) und Breitbandübertragung (Wide Band; WB) unterschieden. Die Bandbreite liegt bei der Schmalbandübertragung z.B. bei 300 bis 3400 Hz, was einer Abtastrate (Sample Frequenz) von 8 kHz entspricht. Hierbei handelt es sich um eine Übertragung in der üblichen Telefonqualität. Eine bessere Übertragungsqualität wird mit der Breitbandcodierung erreicht. Diese liegt beispielsweise im Bereich von 50 bis 7000 Hz, entsprechend einer Abtastrate von 16 kHz. Dieser Standard wird in den derzeit üblichen Telefon-Festnetzen zum Teil schon für Videokonferenzen etc. genutzt. Darüber hinaus sollen in Zukunft noch weitere Breitbandcoder-Technologien entwickelt und standardisiert werden, beispielsweise bei dem ITU-T-System verschiedene Technologien mit 16, 24 oder 32 kbit/s Bitrate. Im Rahmen der ETSI/3GPP-Standardisierung ist ein Wideband-AMR-Coder vorgesehen, ein Narrowband-AMR-Coder ist schon spezifiziert. Im sog. AMR-Verfahren (Adaptive Multi Rate) wird auf der Senderseite je nach Kanalqualität das Verhältnis zwischen der Bitrate des Sprachcoders und des Kanalcoders variiert. Die Summe der Bitrate wird abhängig vom Verkehr sowie der zur Verfügung stehenden Kapazität auf den Übertragungskanälen gewählt und dann konstant gehalten. Es wird hier unterschieden z. B. zwischen Fullrate- und Halfrate-Kanälen.
Wenn auf der Empfängerseite der AMR-WB-Sprachdecoder und der AMR-NB-Sprachdecoder implementiert sind, dann ist dort vorgesehen, dass entsprechend der Übertragung zwischen einem Schmalband- und einem Breitbandmodus, d.h. dem AMR-NB-Sprachdecoder und dem AMR-WB-Sprachdecoder umgeschaltet wird. Gegebenenfalls kann eine solche Umschaltung auch während eines Gesprächs auftreten. Bei einer Umschaltung von Breitband- auf Schmalbandmodus wird vom Nutzer üblicherweise ein deutlicher Qualitätsverlust wahrgenommen.
Sofern ein schmalbandiges Signal übertragen wird, besteht eine Möglichkeit zur Verbesserung des Hörkomforts darin, das empfangene Signal in einem NB-Sprachdecoder (Schmalbandiger Sprachdecoder) zu decodieren und anschließend das gesamte Signal innerhalb eines sog. Wideband-Extenders "künstlich" auf die größere Bandbreite zu erweitern. Dies kann prinzipiell durch jedes in der Literatur bekannte Verfahren zur künstlichen Bandbreitenerweiterung geschehen, das auch Signalanteile bei Frequenzen generiert, die in dem schmalbandigen Signal nicht oder nur gedämpft vorhanden waren. Eine solche künstliche Bandbreitenerweiterung bietet sich insbesondere dann an, wenn es sich um ein System mit verschiedenen Bandbreiten, beispielsweise mit Implementierungen des AMR-NBund des AMR-WB-Verfahrens, handelt. Bei diesen Systemen kann dann, soweit möglich, im Breitbandmodus übertragen werden, und bei einer geringeren zur Verfügung stehenden Übertragungskapazität wird auf einen schmalbandigeren Modus umgeschaltet. Es kann dabei beim Umschalten auf den schmalbandigeren Modus die künstliche Verbreiterung auf der Empfängerseite verwendet werden, um dem jeweiligen Nutzer des Geräts zumindest teilweise eine bessere, vom normalen Breitbandmodus her gewohnte Sprachqualität zu liefern, so dass dieser gegebenenfalls die geringere Bandbreite bei der Übertragung nicht registriert.
Eine künstliche Bandbreitenerweiterung kann jedoch auch in einem System ohne breitbandige Übertragungsmöglichkeit sinnvoll eingesetzt werden. Dort wird dann (durchweg oder auch vom Nutzer oder dem Netzbetreiber einstellbar) ein Wideband-Extender eingesetzt, um einen gegenüber der NB-Übertragung verbesserten Sprachqualitätseindruck zu vermitteln.
Figur 1 zeigt hierbei eine entsprechende Vorrichtung nach dem derzeitigen Stand der Technik. Innerhalb des Sprachdecoders befindet sich der Kern-Sprachdecoder (Core-SD), welcher die eigentlichen ankommenden Sprachsignalrahmen S decodiert und ein CNG, welcher die Hintergrundsignalrahmen H empfängt und ein entsprechendes Ausgangs-Hintergrundsignal generiert. Je nachdem, ob der Core-SD oder der CNG aktiv sind, wird zwischen den Ausgängen dieser beiden Einrichtungen umgeschaltet. Als Ergebnis kommt aus dem schmalbandigen Sprachdecoder ein entsprechendes schmalbandiges Signal, welches sowohl die Sprache als auch das Hintergrundsignal umfasst. Dieses Signal wird dann in einem nachfolgenden Wideband-Extender (im folgenden auch WB-Extender abgekürzt) auf die gewünschte Bandbreite gebracht. Eine solche Vorrichtung ist im Artikel von P. Jax und P. Vary "Wideband Extension of Telephone Speech Using a Hidden Markov Model", IEEE Speech Coding Workshop (09-2000), Seite 133-135 offenbart. Eine solche Erweiterung mittels eines nachgeschalteten WB-Extenders führt zwar zu einem erhöhten Hörkomfort. Da aber jede einzelne Schaltungsoperation Energie kostet, wird hierdurch zwangsläufig auch der Gesamtenergieverbrauch des Geräts erhöht. Das ist insbesondere bei der Verwendung eines derartigen Verfahrens in mobilen Endgeräten nachteilig, da dies zwangsläufig zu einer schnelleren Entleerung eines Akkus führt und dementsprechend die Betriebszeiten, bis eine Nachladung des Akkus erforderlich ist, verkürzt werden.
Es ist Aufgabe der vorliegenden Erfindung, eine Alternative zu diesem Stand der Technik anzugeben, welche auf einfache und kostengünstige Weise eine Vergrößerung der Bandbreite auf der Empfängerseite bei reduziertem Energieverbrauch erlaubt. Darüber hinaus soll ein Hintergrundsignalgenerator zur Verwendung in diesem Verfahren angegeben werden.
Diese Aufgabe wird durch ein Verfahren gemäß Patentanspruch 1 und einen Hintergrundsignalgenerator gemäß Patentanspruch 8 gelöst.
Erfindungsgemäß wird dabei innerhalb des Hintergrundsignalgenerators aus den empfangenen Kenndaten ein Ausgangs-Hintergrundsignal mit einer vorgegebenen Bandbreite generiert, welches größer ist als die Bandbreite des durch die empfangenen Kenndaten charakterisierten Hintergrundsignals, d. h. es wird bereits direkt im Hintergrundsignalgenerator aus den Kenndaten des schmalbandigen Hintergrundsignals das breitbandige Hintergrundsignal erzeugt. Bei dem Verfahren wird folglich zumindest für den Teil des Signals, der im Hintergrundsignalgenerator, d. h. in einem erfindungsgemäß aufgebauten CNG, bearbeitet wird, kein nachgeschalteter Wideband-Extender mehr benötigt. Dadurch werden eine erhebliche Anzahl von Schaltungsoperationen während des Empfangs nicht mehr benötigt, was zu der gewünschten Reduzierung des Gesamtenergiebedarfs führt.
Dementsprechend muss ein erfindungsgemäßer Hintergrundsignalgenerator Mittel zum Generieren des Ausgangssignals aufweisen, die derart ausgestaltet sind, dass die Bandbreite des generierten Ausgangs-Hintergrundsignals größer ist als die Bandbreite des durch die eingangsseitigen Kenndaten charakterisierten Hintergrundsignals. Ein solcher erfindungsgemäßer Hintergrundsignalgenerator ist vorzugsweise Teil eines Sprachdecoders, welcher in einer beliebigen Empfangseinrichtung angeordnet sein kann. Vorzugsweise handelt es sich bei der Empfangseinrichtung um ein Endgerät. Es kann sich aber auch um eine Empfangseinrichtung innerhalb eines beliebigen Kommunikationsnetzes, beispielsweise eines Mobilfunknetzes oder eines Telefonfestnetzes, handeln.
Das Verfahren bzw. ein solcher Hintergrundsignalgenerator können überall dort verwendet werden, wo empfangsseitig ein Ausgangs-Hintergrundsignal aus übermittelten Kenndaten erzeugt wird, d. h, insbesondere in den üblicherweise in Mobilfunknetzen verwendeten Verfahren zur Sprachübertragung, bei denen separate Hintergrundsignal-Rahmen in den Sprachpausen übermittelt werden, die dann im Empfängergerät innerhalb des CNG in ein Ausgangs-Hintergrundsignal umgewandelt werden. Das erfindungsgemäße Verfahren bzw. der Hintergrundsignalgenerator sind hierbei nicht auf die derzeitigen Schmalband- und Breitbandstandards beschränkt, sondern können immer dann angewendet werden, wenn es darum geht, aus einem schmalbandigen übertragenen Signal ein breitbandigeres Signal zu erzeugen.
Das Ausgangs-Hintergrundsignal kann entweder nach entsprechender Bearbeitung direkt an einen Benutzer des Geräts auf akustischem Wege als Hintergrundgeräusch ausgegeben werden.
Es kann aber auch in sonstiger Weise weiterbearbeitet bzw. weitergeleitet werden.
Bei einem bevorzugten Ausführungsbeispiel wird das Ausgangs-Hintergrundsignal im Hintergrundsignalgenerator mittels der empfangenen Kenndaten aus einem beispielsweise weißen Rauschsignal erzeugt, welches die gewünschte größere Bandbreite aufweist. Hierbei können die Kenndaten vorzugsweise sog. LPC-Filterkoeffizienten (LPC = Linear Predictive Coding) für einen LPC-Synthesefilter enthalten. Diese LPC-Filterkoeffizienten enthalten die Spektralinformationen des Hintergrundsignals. Darüber hinaus können die Kenndaten auch einen Verstärkungsfaktor umfassen, welcher die Signalenergie, d. h. die Lautstärke, des Hintergrundsignals repräsentiert. Die Übermittlung der Spektralinformationen anhand der LPC-Filterkoeffizienten sowie die zusätzliche Übermittlung eines Verstärkungsfaktors ist der auch in derzeitigen Standards übliche Weg, Kenndaten für ein Hintergrundsignal zu übermitteln. Wenn beim erfindungsgemäßen Verfahren ebenfalls diese Kenndaten zur Generierung des Ausgangs-Hintergrundsignals verwendet werden, ist vorteilhafterweise keinerlei Umstellung des Übertragungsstandards notwendig, d. h. es kann jederzeit ein Gerät mit dem erfindungsgemäßen Hintergrundsignalgenerator arbeiten, ohne dass sich der jeweilige Sender bzw. das Übertragungsnetz danach richten muss.
Eine bevorzugte Möglichkeit der Generierung eines Ausgangs-Hintergrundsignals mit der gewünschten größeren Bandbreite aus den empfangenen LPC-Filterkoeffizienten eines schmalbandigen Filters besteht darin, die empfangenen LPC-Filterkoeffizienten in entsprechende LPC-Filterkoeffizienten für ein LPC-Synthesefilter der gewünschten größeren Bandbreite umzuwandeln und die umgewandelten LPC-Filterkoeffizienten dann einem LPC-Synthesefilter zuzuführen, das mit dem Rauschsignal der gewünschten Bandbreite angeregt wird.
Ein erfindungsgemäßer Hintergrundsignalgenerator benötigt hierzu zum einen entweder einen Rauschsignalgenerator zur Erzeugung eines entsprechenden Rauschsignals oder alternativ einen Eingang für ein derartiges Rauschsignal. Zum anderen benötigt er Mittel, um das Ausgangs-Hintergrundsignal mittels der empfangenen Kenndaten aus dem Rauschsignal zu erzeugen. Bei diesen Mitteln kann es sich dementsprechend um ein LPC-Synthesefilter der gewünschten Bandbreite handeln sowie um Mittel, um die LPC-Filterkoeffizienten für ein schmalbandiges Filter, wie sie in den eingangsseitigen Kenndaten enthalten sind, in entsprechende LPC-Filterkoeffizienten für das breitbandige LPC-Synthesefilter umzusetzen.
Eine besonders einfache Möglichkeit, die LPC-Filterkoeffizienten für das breitbandigere LPC-Synthesefilter aus den zu empfangenden LPC-Filterkoeffizienten zu ermitteln, besteht in der Verwendung einer Zuordnungstabelle (Look Up Table), in der "schmalbandige" LPC-Filterkoeffizienten und "breitbandige" LPC-Filterkoeffizienten einander zugeordnet sind. Vorzugsweise sind die LPC-Filterkoeffizienten einander satzweise zugeordnet, d. h. es sind in der Tabelle komplette LPC-Filterkoeffizientensätze gespeichert und einander zugeordnet.
Diese Umsetzung ist insofern einfach, da lediglich ein Speicher mit einer entsprechenden Zuordnungstabelle benötigt wird. Die Zuordnungstabelle kann beispielsweise über ein paralleles Training mit geeigneten Schätzverfahren ermittelt werden. Bei dem Speicher kann es sich um einen Speicher innerhalb des CNG bzw. des Sprachdecoders handeln. Es kann sich aber auch um einen externen, ggf. für andere Zwecke ohnehin innerhalb der Empfangseinrichtung bzw. des Geräts befindlichen Speicher handeln, auf den der Sprachdecoder bzw. CNG Zugriff hat. Die Zuordnungstabelle kann eine einzelne große Zuordnungstabelle sein. Es kann sich aber auch um eine mehrteilige Zuordnungstabelle bzw. um mehrere einzelne Zuordnungstabellen handeln.
Eine Vielzahl weiterer Methoden zur Umsetzung schmalbandiger in breitbandige LPC-Koeffizienten ist aus der Literatur bekannt.
Die Erfindung wird im Folgenden unter Hinweis auf die beigefügten Figuren anhand eines Ausführungsbeispiels näher erläutert. Es zeigen:
  • Figur 1 eine schematische Darstellung eines schmalbandigen Sprachdecoders mit nachfolgender Bandbreitenerweiterung gemäß dem Stand der Technik,
  • Figur 2 eine schematische Darstellung eines schmalbandigen Sprachdecoders mit nachfolgender Bandbreitenerweiterung mit einem erfindungsgemäßen Hintergrundsignalgenerator.
  • Figur 3 eine schematische Darstellung eines Ausführungsbeispiels des erfindungsgemäßen Hintergrundsignalgenerators,
  • Aus einem Vergleich der Figuren 1 und 2 wird sofort der Unterschied zwischen dem erfindungsgemäßen Verfahren und dem derzeit üblichen Verfahren ersichtlich.
    Beiden Verfahren ist gemeinsam, dass in einem Sprachdecoder (SD) 8 ein CNG 1 sowie ein schmalbandiger Kern-Sprachdecoder (Core-SD) 7 angeordnet sind. Das ankommende Signal umfasst jeweils Sprach-Rahmen S sowie - in Sprachpausen - Hintergrundsignal-Rahmen H, die entsprechend für den jeweiligen Sprachdecoder erkennbar sind. Die Sprachsignal-Rahmen S werden innerhalb des Kern-Sprachdecoders 7 decodiert und daraus wird ein schmalbandiges Sprachsignal SS erzeugt, welches in einem nachfolgenden Wideband-Extender in ein breitbandiges Signal umgesetzt wird. Der Unterschied des erfindungsgemäßen Aufbaus zum Stand der Technik besteht hierbei im Aufbau des Hintergrundsignalgenerators 1, d. h. im CNG 1. Beim Stand der Technik gemäß Figur 1 wird ein herkömmlicher schmalbandiger CNG verwendet, welcher aus einem ankommenden Hintergrundsignal-Rahmen H ein schmalbandiges Hintergrundsignal erzeugt. Über einen Schalter, welcher jeweils entsprechend der Aktivität des Kern-Sprachdecoders und des CNG's umschaltet, wird das Signal auf eine Ausgangsleitung des Sprachdecoders gegeben, so dass an dieser Ausgangsleitung ein kontinuierliches schmalbandiges Signal anliegt, welches dann dem Wideband-Extender zugeführt wird. D. h., bei diesem herkömmlichen Verfahren wird das Ausgangs-Hintergrundsignal schmalbandig erzeugt und anschließend im Wideband-Extender mit entsprechend umfangreichen Schaltoperation in ein breitbandiges Signal umgewandelt. Alternativ kann nach dem Stand der Technik das Ausgangssignal des CNG auch zunächst noch im Kern-Sprachdecoder weiterverarbeitet werden, der seinerseits dann das decodierte Hintergrundsignal ausgibt.
    Bei dem erfindungsgemäßen Verfahren gemäß Figur 2 wird dagegen ein breitbandig arbeitender CNG 1 verwendet, welcher sofort aus einem ankommenden Hintergrundsignal-Rahmen H eines schmalbandigen Hintergrundsignals ein breitbandiges Ausgangs-Hintergrundsignal HS am Ausgang erzeugt. Dieses breitbandige Hintergrundsignal HS braucht nicht mehr dem Wideband-Extender 10 zugeführt zu werden. Dementsprechend wird nur noch das vom Kern-Sprachdecoder 7 ausgehende Signal SS dem Wideband-Extender 10 zugeführt. Der Schalter 9, der je nach Aktivität des Kern-Sprachdecoders 7 oder des CNG 1 zwischen den Ausgängen dieser Geräte umschaltet, ist folglich hinter dem Wideband-Extender 10 angeordnet.
    Figur 3 zeigt ein besonders einfach und kostengünstig aufgebautes Ausführungsbeispiel für einen erfindungsgemäßen CNG 1, welcher aus dem Hintergrundsignal-Rahmen H eines schmalbandigen Hintergrundsignals ein breitbandiges Ausgangs-Hintergrundsignal HS erzeugt. Der Vorteil dieses CNG 1 besteht darin, dass als Eingangssignal normale, nach dem derzeitigen Standard übertragene Hintergrundsignal-Rahmen H verwendet werden können. D. h., es reicht eine Übermittlung der derzeit üblichen LPC-Filterkoeffizienten, welche die Spektralinformationen des Signals enthalten, und die Übermittlung des Verstärkungsfaktors VF, welcher die Signalenergie repräsentiert, aus. Daher sind keine Änderungen eines Übertragungsstandards oder Ähnliches nötig.
    Dementsprechend ist der erfindungsgemäße Hintergrundsignalgenerator auch sehr ähnlich einem herkömmlichen Hintergrundsignalgenerator aufgebaut und weist zum einen ein LPC-Synthesefilter 2 auf, welches mittels des weißen Rauschens RS eines Rauschsignalgenerators 6 angeregt wird.
    Die Lautstärke des Signals wird über den Verstärkungsfaktor VF eingestellt, welcher in einer Verstärkungseinrichtung 5 das am Eingang des LPC-Filters anliegende weiße Rauschsignal RS entsprechend verstärkt. Dieser Verstärkungsfaktor VF wird mittels einer Analyseeinrichtung 4 aus dem ankommenden Hintergrundsignal-Rahmen ermittelt.
    Der wesentliche Unterschied zu einem CNG des Stands der Technik besteht darin, dass anstelle eines LPC-Filters der Bandbreite entsprechend dem ankommenden Hintergrundsignal-Rahmen H hier ein LPC-Filter 2 der gewünschten Bandbreite verwendet wird und dementsprechend auch der Rauschsignalgenerator 6 kein Rauschen der Bandbreite des gesendeten Hintergrundsignals, sondern ein Rauschsignal RS der gewünschten breiteren Bandbreite erzeugt.
    Außerdem werden auch nicht die im Hintergrundsignal-Rahmen H übertragenen LPC-Filterkoeffizienten direkt dem LPC-Filter 2 zugeführt, sondern diese LPC-Filterkoeffizienten werden zunächst in einer Umwandlungseinrichtung 3 aus dem Hintergrundsignal-Rahmen H ermittelt und in LPC-Filterkoeffizienten FK der gewünschten größeren Bandbreite umgewandelt. Diese Umwandlung erfolgt beispielsweise mit Hilfe einer in einem Speicher 3a gespeicherten Zuordnungstabelle LUT. In dieser Zuordnungstabelle LUT sind den verschiedensten LPC-Filterkoeffizientensätzen, welche dem Hintergrundsignal der gesendeten Bandbreite entsprechen, jeweils LPC-Filterkoeffizientensätze der gewünschten Bandbreite des breitbandigen Ausgangs-Hintergrundsignals HS zugeordnet.
    Bei dem erfindungsgemäßen Verfahren wird also die Bandbreitenerweiterung direkt in den CNG 1 integriert, wodurch eine effiziente Methode der Bandbreitenerweiterung für die Perioden der Sprachpausen möglich ist. Da die Summe der Sprachpausen während eines Gesamtgesprächs einen recht hohen Anteil annehmen kann, ist insgesamt auch von einem erheblich geringeren Energiebedarf eines solchen Empfängers auszugehen. Ein weiterer Vorteil dieses Verfahrens besteht darin, dass die Behandlung des eigentlichen übertragenen Sprachsignals, d. h. die Behandlung der übertragenen Sprach-Rahmen S während der Perioden der Sprachaktivitäten, nicht davon betroffen ist, so dass hier mit herkömmlichen Einrichtungen nach den bekannten Standards weitergearbeitet werden kann.

    Claims (14)

    1. Verfahren zum Signalempfang in einem digitalen Kommunikationssystem, bei dem in einem Hintergrundsignalgenerator (1) aus empfangenen Kenndaten (H), welche ein senderseitiges Hintergrundsignal charakterisieren, ein Ausgangs-Hintergrundsignal (HS) generiert wird,
      dadurch gekennzeichnet, dass innerhalb des Hintergrundsignalgenerators (1) aus den empfangenen Kenndaten (H) ein Ausgangs-Hintergrundsignal (HS) mit einer vorgegebenen Bandbreite generiert wird, welche größer ist als eine Bandbreite des durch die empfangenen Kenndaten (H) charakterisierten Hintergrundsignals.
    2. Verfahren nach Anspruch 1,
      dadurch gekennzeichnet, dass das Ausgangs-Hintergrundsignal (HS) im Hintergrundsignalgenerator (1) mittels der empfangenen Kenndaten (H) aus einem Rauschsignal (RS) erzeugt wird, welches die gewünschte größere Bandbreite aufweist.
    3. Verfahren nach Anspruch 1 oder 2,
      dadurch gekennzeichnet, dass die Kenndaten LPC-Filterkoeffizienten (FK) für ein LPC-Synthesefilter und/oder einen Verstärkungsfaktor (VF) umfassen.
    4. Verfahren nach Anspruch 3,
      dadurch gekennzeichnet, dass auf Basis der empfangenen LPC-Filterkoeffizienten entsprechende LPC-Filterkoeffizienten (FK) für ein LPC-Synthesefilter (2) der gewünschten größeren Bandbreite ermittelt werden, welches mit dem Rauschsignal (RS) der gewünschten Bandbreite angeregt wird.
    5. Verfahren nach Anspruch 4,
      dadurch gekennzeichnet, dass die Ermittlung der LPC-Filterkoeffizienten (FK) für das breitbandigere LPC-Synthesefilter aus den empfangenen LPC-Filterkoeffizienten mittels einer Zuordnungstabelle (LUT) erfolgt, in denen LPC-Filterkoeffizienten für ein LPC-Synthesefilter der Bandbreite des senderseitigen Hintergrundsignals und LPC-Filterkoeffizienten (FK) für das breitbandigere LPC-Synthesefilter (2) einander zugeordnet sind.
    6. Verfahren zur Signalübertragung in digitalen Kommunikationssystemen, bei dem zur Übertragung eines Hintergrundsignals zumindest in den Sprachpausen Kenndaten (H), welche das jeweilige Hintergrundsignal charakterisieren, an einen Empfänger übertragen werden und auf der Empfängerseite ein Ausgangs-Hintergrundsignal (HS) generiert wird,
      dadurch gekennzeichnet, dass das Ausgangs-Hintergrundsignal (HS) gemäß einem Verfahren nach einem der Ansprüche 1 bis 5 generiert wird.
    7. Verfahren nach einem der Ansprüche 1 bis 6,
      dadurch gekennzeichnet, dass das digitale Kommunikationssystem ein Mobilfunksystem umfasst.
    8. Hintergrundsignalgenerator (1) mit Mitteln (2, 3, 4, 5, 6), um aus eingangsseitigen Kenndaten (H), welche ein senderseitiges Hintergrundsignal charakterisieren, ein entsprechendes Ausgangs-Hintergrundsignal (HS) zu generieren,
      dadurch gekennzeichnet, dass die Mittel (2, 3, 4, 5, 6), zum Generieren des Ausgangs-Hintergrundsignals (HS) derart ausgestaltet sind, dass die Bandbreite des generierten Ausgangs-Hintergrundsignals (HS) größer ist als eine Bandbreite des durch die eingangsseitigen Kenndaten (H) charakterisierten Hintergrundsignals.
    9. Hintergrundsignalgenerator nach Anspruch 8,
      gekennzeichnet durch
      einen Rauschsignalgenerator (6) zur Erzeugung eines Rauschsignals (RS), welches die gewünschte größere Bandbreite aufweist, und/oder einen Eingang für ein solches Rauschsignal und Mittel (2, 3, 5), um das Ausgangs-Hintergrundsignal (HS) mittels der empfangenen Kenndaten (H) aus dem Rauschsignal (RS) zu generieren.
    10. Hintergrundsignalgenerator nach Anspruch 9,
      gekennzeichnet durch
      einen LPC-Synthesefilter (2) der gewünschten Bandbreite und Mittel (3) um in den eingangseitigen Kenndaten (H) enthaltene LPC-Filterkoeffizienten in entsprechende LPC-Filterkoeffizienten (FK) für das LPC-Synthesefilter (2) umzusetzen.
    11. Hintergrundsignalgenerator nach Anspruch 10,
      gekennzeichnet durch
      einen Speicher (3a) mit einer Zuordnungstabelle (LUT), in der LPC-Filterkoeffizienten der Bandbreite des senderseitigen Hintergrundsignals und LPC-Filterkoeffizienten (FK) für das breitbandigere LPC-Synthesefilter (2) einander zugeordnet sind.
    12. Sprachdecoder (8) mit einem Hintergrundsignalgenerator (1) nach einem der vorstehenden Ansprüche 8 bis 11.
    13. Empfangseinrichtung mit einem Hintergrundsignalgenerator nach einem der vorstehenden Ansprüche 8 bis 11 oder mit einem Sprachdecoder nach Anspruch 12.
    14. Endgerät mit einer Empfangseinrichtung nach Anspruch 13.
    EP02737822A 2001-05-17 2002-04-29 Verfahren zum signalempfang in einem digitalen kommunikationssystem Expired - Lifetime EP1390947B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE10124189 2001-05-17
    DE10124189A DE10124189A1 (de) 2001-05-17 2001-05-17 Verfahren zum Signalempfang
    PCT/DE2002/001560 WO2002093562A2 (de) 2001-05-17 2002-04-29 Verfahren zum signalempfang in einem digitalen kommunikationssystem

    Publications (2)

    Publication Number Publication Date
    EP1390947A2 EP1390947A2 (de) 2004-02-25
    EP1390947B1 true EP1390947B1 (de) 2004-10-06

    Family

    ID=7685230

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP02737822A Expired - Lifetime EP1390947B1 (de) 2001-05-17 2002-04-29 Verfahren zum signalempfang in einem digitalen kommunikationssystem

    Country Status (4)

    Country Link
    EP (1) EP1390947B1 (de)
    CN (1) CN1319045C (de)
    DE (2) DE10124189A1 (de)
    WO (1) WO2002093562A2 (de)

    Families Citing this family (1)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US7546237B2 (en) * 2005-12-23 2009-06-09 Qnx Software Systems (Wavemakers), Inc. Bandwidth extension of narrowband speech

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    SE506034C2 (sv) * 1996-02-01 1997-11-03 Ericsson Telefon Ab L M Förfarande och anordning för förbättring av parametrar representerande brusigt tal
    GB9714001D0 (en) * 1997-07-02 1997-09-10 Simoco Europ Limited Method and apparatus for speech enhancement in a speech communication system

    Also Published As

    Publication number Publication date
    WO2002093562A3 (de) 2003-06-19
    DE50201243D1 (de) 2004-11-11
    EP1390947A2 (de) 2004-02-25
    CN1319045C (zh) 2007-05-30
    WO2002093562A2 (de) 2002-11-21
    CN1636241A (zh) 2005-07-06
    DE10124189A1 (de) 2002-11-21

    Similar Documents

    Publication Publication Date Title
    DE69621613T2 (de) Anordnung und verfahren zur sprachübertragung und eine derartige anordnung enthaltende fernsprechanlage
    DE69533734T2 (de) Durch Sprachaktivitätsdetektion gesteuerte Rauschunterdrückung
    DE69226500T2 (de) Verfahren und Gerät zur Sprachsignalübertragung
    DE69631318T2 (de) Verfahren und Vorrichtung zur Erzeugung von Hintergrundrauschen in einem digitalen Übertragungssystem
    DE60129072T2 (de) Multimodale Sprachkodierung und Geräuschunterdrückung
    DE19617630B4 (de) Verfahren zum Herleiten der Nachwirkperiode in einem Sprachdecodierer bei diskontinuierlicher Übertragung, sowie Sprachcodierer und Sender-Empfänger
    DE69730473T2 (de) System zur Kodierung und Übertragung von Sprachsignalen
    EP1025646B1 (de) Verfahren und vorrichtung zum codieren von audiosignalen sowie verfahren und vorrichtungen zum decodieren eines bitstroms
    DE69735097T2 (de) Verfahren und vorrichtung zur verbesserung der sprachqualität in tandem-sprachkodierern
    EP0954909B1 (de) Verfahren zum codieren eines audiosignals
    DE60214599T2 (de) Skalierbare audiokodierung
    DE60120504T2 (de) Verfahren zur transcodierung von audiosignalen, netzwerkelement, drahtloses kommunikationsnetzwerk und kommunikationssystem
    DE60118553T2 (de) Verfahren und anordnung zur änderung der signalquellenbandbreite in einer telekommunikationsverbindung mit mehrfach-bandbreitenfähigkeit
    DE60121592T2 (de) Kodierung und dekodierung eines digitalen signals
    EP1953739B1 (de) Verfahren und Vorrichtung zur Geräuschsunterdrückung bei einem decodierten Signal
    EP0946001A9 (de) Verfahren und Funk-Kommunikationssystem zur Übertragung von Sprachinformation
    EP2245620B1 (de) Verfahren und mittel zur enkodierung von hintergrundrauschinformationen
    DE4211945C1 (de)
    DE60100173T2 (de) Verfahren und Vorrichtung zur drahtloser Übertragung unter Verwendung einer Kodierung mit vielfacher Quellendarstellung
    EP1390947B1 (de) Verfahren zum signalempfang in einem digitalen kommunikationssystem
    DE2455584A1 (de) Anti-larsen-einrichtung
    DE10252070B4 (de) Kommunikationsendgerät mit parametrierter Bandbreitenerweiterung und Verfahren zur Bandbreitenerweiterung dafür
    EP2245622B1 (de) Verfahren und mittel zur dekodierung von hintergrundrauschinformationen
    EP0693849A1 (de) System zum Übertragen von codierten Sprachsignalen
    DE10102173A1 (de) Verfahren und Anordnung zum Umsetzen von parametrisch codier-ten Sprachsignalen verschiedener Bandbreite in Sprachsignale

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 20031110

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK RO SI

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    REF Corresponds to:

    Ref document number: 50201243

    Country of ref document: DE

    Date of ref document: 20041111

    Kind code of ref document: P

    LTIE Lt: invalidation of european patent or patent extension

    Effective date: 20041006

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20050707

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: TP

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20070420

    Year of fee payment: 6

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20081231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20080430

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20081101

    PGRI Patent reinstated in contracting state [announced from national office to epo]

    Ref country code: DE

    Effective date: 20090818

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20110407 AND 20110413

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50201243

    Country of ref document: DE

    Owner name: QUALCOMM INCORPORATED, US

    Free format text: FORMER OWNER: PALM, INC. (N.D.GES. D. STAATES DELAWARE), SUNNYVALE, US

    Effective date: 20110406

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50201243

    Country of ref document: DE

    Owner name: QUALCOMM INCORPORATED, SAN DIEGO, US

    Free format text: FORMER OWNER: PALM, INC. (N.D.GES. D. STAATES DELAWARE), SUNNYVALE, CALIF., US

    Effective date: 20110406

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50201243

    Country of ref document: DE

    Representative=s name: SAMSON & PARTNER, PATENTANWAELTE, DE

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50201243

    Country of ref document: DE

    Representative=s name: SAMSON & PARTNER, PATENTANWAELTE, DE

    Effective date: 20140307

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50201243

    Country of ref document: DE

    Representative=s name: MAUCHER JENKINS, DE

    Effective date: 20140307

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50201243

    Country of ref document: DE

    Owner name: QUALCOMM INCORPORATED, US

    Free format text: FORMER OWNER: HEWLETT-PACKARD DEVELOPMENT CO., L.P., HOUSTON, US

    Effective date: 20140307

    Ref country code: DE

    Ref legal event code: R081

    Ref document number: 50201243

    Country of ref document: DE

    Owner name: QUALCOMM INCORPORATED, SAN DIEGO, US

    Free format text: FORMER OWNER: HEWLETT-PACKARD DEVELOPMENT COMPANY, L.P., HOUSTON, TEX., US

    Effective date: 20140307

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50201243

    Country of ref document: DE

    Representative=s name: SAMSON & PARTNER PATENTANWAELTE MBB, DE

    Effective date: 20140307

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: 732E

    Free format text: REGISTERED BETWEEN 20140724 AND 20140730

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50201243

    Country of ref document: DE

    Representative=s name: MAUCHER JENKINS, DE

    Ref country code: DE

    Ref legal event code: R082

    Ref document number: 50201243

    Country of ref document: DE

    Representative=s name: MAUCHER JENKINS PATENTANWAELTE & RECHTSANWAELT, DE

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20180328

    Year of fee payment: 17

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20180409

    Year of fee payment: 17

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 50201243

    Country of ref document: DE

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20190429

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20191101

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20190429