EP1387752A1 - Staged, sequentially separated injection mold - Google Patents

Staged, sequentially separated injection mold

Info

Publication number
EP1387752A1
EP1387752A1 EP02736861A EP02736861A EP1387752A1 EP 1387752 A1 EP1387752 A1 EP 1387752A1 EP 02736861 A EP02736861 A EP 02736861A EP 02736861 A EP02736861 A EP 02736861A EP 1387752 A1 EP1387752 A1 EP 1387752A1
Authority
EP
European Patent Office
Prior art keywords
sleeve
mold
core
stripper
injection mold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02736861A
Other languages
German (de)
French (fr)
Other versions
EP1387752A4 (en
Inventor
E. Chapplear William
R. Harrison Kevin
J. Moorhead Andrew
Charles A. Webster
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Accurate Mould Ltd
West Pharmaceutical Services Inc
Original Assignee
West Pharmaceutical Services Inc
Accurate Mold USA Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by West Pharmaceutical Services Inc, Accurate Mold USA Ltd filed Critical West Pharmaceutical Services Inc
Publication of EP1387752A1 publication Critical patent/EP1387752A1/en
Publication of EP1387752A4 publication Critical patent/EP1387752A4/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/33Moulds having transversely, e.g. radially, movable mould parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/40Removing or ejecting moulded articles
    • B29C45/43Removing or ejecting moulded articles using fluid under pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/56Stoppers or lids for bottles, jars, or the like, e.g. closures
    • B29L2031/565Stoppers or lids for bottles, jars, or the like, e.g. closures for containers

Definitions

  • the present invention is directed generally to staged, sequentially separated injection molds and particularly to molds for forming container spouts having an integral panel sealing the spout and an integral pull ring to facilitate opening the spout by removal of the panel.
  • Certain types of containers such as cartons and the like that have a gable- shaped top, employ separately molded plastic spouts with threaded closures.
  • Such cartons will be recognized as those containers in which quarts, liters, and half- gallons of milk or juice are packaged.
  • the spouts are injection molded to include a removable integral panel sealing the spout at the time of initial purchase by the consumer. Examples of such an injection molded spout are found in U.S. Patents 5,133,486; 5,735,426; 5,915,574; 5,957,312 and 6,179,147.
  • the integral panel is view as a tamper-resistant feature of the closure system that is desired by the public to ensure the safety of the product within the container.
  • the integral panel is joined to the spout by a frangible line, and an integral pull ring is provided to facilitate opening of the spout through removal of the integral panel by tearing the frangible line surrounding the panel.
  • the spout includes a threaded exterior surface and a threaded closure to permit re-closing of the container after partial consumption of the contents.
  • a steel or other metallic mold of the item to be molded is first made.
  • the mold contains a mold cavity configured to reflect the part to be molded.
  • the mold is periodically openable, or separable, so that the molded part can be removed from the mold cavity.
  • a plastic material such as polypropylene, polystyrene or the like, is injected, such as by a reciprocating screw arrangement, into the mold. After the material has been allowed to cool, the mold is opened and the molded part is ejected from the mold. The mold can then be closed and used for forming a subsequent part.
  • the presence of the integral panel and pull ring on the interior of the spout at the time it is initially molded represents a special problem.
  • the ejection of the part from the mold must occur in such a sequence as to preserve the frangible line surrounding the removable panel and the pull ring.
  • the mandrel-like portion must, as part of the mold opening sequence, be removed from the molded part after the part is formed.
  • removing the mandrel-like mold element is typically done by pulling or stripping the molded part from the mandrel as part of the mold opening sequence. This, however, may cause damage to the molded parts, particularly if the parts include threads or pull rings formed therein.
  • One mold designed for this purpose includes a plurality of concentric, separable telescopic mold elements, and an opening therein defined by one of the base portion and the mold elements for injecting a mold material into the apparatus.
  • the elements are configured such that they can be separated or removed from the mold, from the inner most element outward.
  • This structure is intended to provide sufficient free space for the newly molded part to flex inward as the mold elements are removed thus minimizing the possibility of damage to the molded part.
  • Each of the mold elements includes a mold face, which in part defines a mold cavity, and flange portions opposite of their respective mold faces.
  • the mold also includes a movable, ball bearing type to facilitate opening the mold for removal of the molded container spout.
  • the mold apparatus also includes two intermediate mold elements positioned between the inner and outer mold elements. Each of the intermediate mold elements includes openings through their respective body portions adapted to receive a movable, locking ball bearing cam member therein.
  • a staged, sequentially separated injection mold of the present invention includes a base, a first mold element coupled to the base including a gate through which plastics material can be injected and a surface at least partially defining a mold cavity for receiving the plastics material.
  • a core plate movable in a first direction with respect to the mold base has a core element fixed to the plate including an end surface confronting the first mold element partially defining the mold cavity.
  • a sleeve surrounds the core element having an end surface confronting the first mold element, an outward facing surface, and an inward facing surface confronting the core element.
  • the inward facing surface includes a channel coupled to the sleeve end surface and a circumferential groove.
  • the sleeve end surface, outward facing surface and channel further defining the mold cavity.
  • the core element, sleeve and stripper ring After injection of plastic into the mold cavity, the core element, sleeve and stripper ring initially move as a unit in a first direction away from the first mold element. The core element is then retracted within the sleeve by a distance sufficient to expose the channel coupled to the sleeve end surface to permit release of material from the channel.
  • a set of thread splits confronts the sleeve outward facing surface and the first mold element to further define the mold cavity. The set of thread splits are movable generally orthogonally to the direction of relative movement of the core and cavity plates. An inclined outer surface is included on each of the thread splits and wedge elements are fixed to the mold base.
  • Each wedge element acts between adjacent inclined outer surfaces on adjacent thread splits to force the thread splits toward the confronting sleeve outward facing surfaces upon movement of the core plate toward the mold base.
  • the set of thread splits move away from the outer surface of the sidewall simultaneously with the moving of the core element, sleeve and stripper ring as a unit away from the first mold element. Stops are fixed to the stripper plate for limiting the movement of the thread splits away from the confronting sleeve outward facing surfaces.
  • a stripper ring surrounding the sleeve includes an edge positioned contiguous to the sleeve outward facing surface.
  • the stripper ring edge includes an arcuate portion immediately adjacent to the thread splits partially defining the mold cavity.
  • the stripper ring is movable along the sleeve to facilitate removal of material from the sleeve outward facing surface.
  • a stripper plate coupling means couples the stripper plate to the core plate for limiting the relative movement between the stripper plate and core plate.
  • a sleeve support plate is fixed to the sleeve and coupling means couple the sleeve support plate to the core plate for delayed movement with respect to the core plate.
  • the sleeve support plate After the sleeve support plate has been moved by a distance sufficient to remove the sleeve from within the container spout sidewall and to remove the pull ring from the channel on the inside surface of the sleeve, the sleeve support plate is advanced relative to the stripper plate to cause the sleeve end surface to contact the pull ring and thereby separate the container spout from the stripper ring.
  • the structure of a mold of the present invention allows for a less complex set of relative movements betweens the various elements of the mold to permit release of the molded article and return of the mold to a position suitable to receive injected plastics.
  • the less complex movements allows for faster and more reliable operation of the mold as compared to existing molds intended to create similar molded articles.
  • Some of the simplicity comes from having certain elements of the mold perform two functions. For example, the set of thread splits confronting the sleeve outward facing surface to define the thread formation on the outer surface of the sidewall also cooperates with the first mold element to define the flange.
  • the stripper ring surrounding the sleeve to facilitate removal of the molded sidewall portion of the spout from the sleeve also has an edge positioned contiguous to the sleeve outward facing surface with an arcuate portion immediately adjacent to the thread splits at least partially defining the lip of the sidewall.
  • Figure 1 is a perspective view of an exemplary container spout that can be formed using the staged, sequentially separated injection mold, in accordance with the principles of the present invention, the spout being illustrated affixed to a gable top container.
  • Figure 2 is a perspective view of a spout that can be formed in a staged, sequentially separated injection mold of the present invention.
  • Figure 3 is a cross-sectional view of the staged, sequentially separated injection mold apparatus of the present invention for making the spout shown in Figures 1 and 2, with the mold shown in the fully closed position.
  • Figure 4 is a cross-sectional view similar to that of Figure 3 with the mold moved to an open position with the thread splits retracted away from the molded spout.
  • Figure 5 is a cross-sectional view similar to that of Figure 4 with the mold core plate moved even further open so that the core is moved within the sleeve to a position that will allow the pull ring to be removed.
  • Figure 6 is a cross-sectional view similar to that of Figure 5 with the mold sleeve support plate moved to a further open position thereby causing the sleeve to be withdrawn from the molded article that is held by the stripper ring.
  • Figure 7 is a cross-sectional view nearly identical to that of Figure 5 with the mold sleeve support plate having been returned to its former position thus causing the sleeve to move back inside the stripper ring to force the molded spout out of contact with the stripper ring.
  • Figure 8 is a cross-sectional view nearly identical to that of Figure 4 with the core plate having been returned to its former position, thus completing the ejection of the molded article from the mold in preparation for the mold to close to the position shown in Figure 3 ready again to accept injected plastic.
  • Figure 1 shows a container 10 that has come into widespread use having a gable top 12 including a spout 14 capped with a closure 16 for resealing the container 10 after initial opening.
  • the spout 14 is shown in greater detail in Figure 2 to have a peripheral flange 18.
  • a generally cylindrical sidewall 20 extends perpendicularly from an inner perimeter 22 of the flange 18 to a lip 24.
  • a closure engaging formation such as a thread 26 is formed on the outer surface 28 of the sidewall 20, which interacts with a corresponding internal thread (not shown) on the closure16.
  • the closure engaging formation 26 could be a snap ring near the lip 24 for interaction with a corresponding snap-on cap rather than the closure 16 with an internal thread.
  • a removable panel 30 is integrally formed within the sidewall 20 forming a tamper indicating seal that can be visually inspected by a consumer of the contents of the container prior to initiating use.
  • a pull ring 32 is connected to the removable panel 30 by a stem portion 34 to permit easy removal of the panel 30 by the consumer. By merely pulling on the pull ring 32, the consumer causes a rupture to develop along a generally circular line of weakness 36 at the periphery of the removable panel 30. It will be recognized by those skilled in the art that the various elements of the spout 14 are not easily formed using an injection mold.
  • a mold 40 constructed according to the present invention for the purpose of forming the spout 14, is shown in Figures 3-8. While the figures only illustrate a single set of mold elements capable of forming a single spout at one time, in actual practice, the mold 40 can comprise many such sets of mold elements so that as many as 96, or even more, spouts 14 can be formed simultaneously. The illustration of merely those mold elements necessary to form a single spout at one time is for the purpose of clarity and should not be considered as limiting in any way.
  • the mold 40 includes a mold base 42.
  • a first mold element 44 is coupled to the base 42 and includes a gate 45 through which plastics material can be injected
  • the first mold element 44 also includes a surface 46 partially defining a mold cavity 47 for receiving the plastics material, the mold cavity 47 having the shape of the spout 14.
  • the surface 46 of the first mold element 44 is configured to form the obverse surface of the spout 14 from that shown in Figure 2.
  • the surface 46 of the first mold element 44 includes a first portion 48 defining a lower surface of flange 18, a second portion 50 defining a inner surface of the cylindrical sidewall 20 below the removable panel 30, a third portion 52 defining the lower surface of the removable panel 30, and a ridge 54 at the junction of the second and third portions defining the circular line of weakness 36.
  • a pair of camming wedges 56 are fixed to the mold base 42 on each side of the first mold element 44 to project generally perpendicularly away from the mold base 42.
  • Each camming wedge 56 includes a pair of inclined surfaces 58, the function of which will become apparent from the discussion below.
  • the mold 40 also includes a first core plate 60 that is reciprocally movable in direction Y with respect to the mold base 42.
  • a core element 62 is fixed to the core plate 60 to project toward the first mold element 44.
  • the core element 62 includes an end surface 64 that confronts a central part of the third portion 52 of surface 46 of the first mold element 44 and defines an inner portion of the upper surface of the removable panel 30.
  • the core element 62 also includes a cylindrical outer surface 66.
  • a second core plate 68 is fixed to the first core plate 60, and includes lines 70 for handling cooling fluids, such as chilled water, supplied to the interior of the core element 62.
  • the mold 40 also includes a sleeve support plate 72 separated from the first core plate 60 by a core retaining plate 74.
  • the core retaining plate 74 is fixed to the sleeve support plate 72.
  • a sleeve 76 is fixed to the sleeve support plate 72 so as to surround the core element 62.
  • the sleeve 76 has an end surface 78 that confronts that portion of surface 46 of the first mold element 44 to define the perimetral portion of the removable panel 30.
  • the sleeve 76 also has an outward facing surface 80 that includes a forward portion defining the inner surface of the sidewall 20 of the spout 14.
  • An inward facing surface 82 of the sleeve 76 confronts the core element 62 and includes a channel 84 coupled to the sleeve end surface 78 that defines the pull ring 32 and stem portion 34 of the spout 14.
  • the sleeve 76 is movable with respect to the core element 62 to permit release of material from the channel 84 as explained below in connection with the steps of the molding process illustrated by Figures 5 and 6, however, the sleeve 76 is limited in its movement.
  • a fastener 86 extends through the core retaining plate 74, the first core plate 60 and the second core plate 68, and is fixed to the sleeve support plate 72.
  • the second core plate 68 includes a shoulder 88 that confronts a stop 90 on the fastener 86 that limits the relative movement between the sleeve support plate 72 and the second core plate 86.
  • the faster 86 is surrounded by a bushing 92 that limits the travel of the plates 60, 68, 72 and 74 during their relative movement.
  • the mold 40 also includes a stripper plate 94.
  • a stripper ring 96 is fixed to the stripper plate 94 so as to surround the sleeve 76.
  • the stripper ring 96 includes an edge 98 positioned contiguous to the sleeve outward facing surface 80. As shown in Figure 6, the edge 98 includes a portion 100 that defines the lip 24 of the spout 14.
  • the stripper plate 94 and stripper ring 96 are movable relative to the sleeve 76 to facilitate removal of material from the sleeve outward facing surface 80 as explained below in connection with the steps of the molding process illustrated by Figures 5 through 7, however, the stripper ring 96 is limited in its movement.
  • a fastener 99 extends through the first core plate 60, core retaining plate 74, and the sleeve support plate 72, and is fixed to the stripper plate 94.
  • the first core plate 60 includes a shoulder 101 that confronts a stop 102 on the fastener 99 that limits the relative movement between the stripper plate 94 and the first core plate 60.
  • the fastener 99 is surrounded by a bushing 104 that limits the travel of the plates 60, 72, 74 and 94 during their relative movement.
  • Wear plate 106 is fixed to a front surface 108 of the stripper plate 94 by fastener 110.
  • Thread splits 112 move along the surface of wear plate 106 for lateral movement in the direction X.
  • the thread splits 112 include a thread-defining surface 114 that confronts the sleeve outward facing surface 80 and the second portion 50 of the first mold element 44 to define the threaded outer surface 20 of the spout 14.
  • the thread splits 112 are movable by a biasing means or by a cam and cam follower combination (not shown) between the position shown in Figure 3 and the position shown in Figures 4-8.
  • the thread splits 112 include an inclined outer surface 118 intended to be engaged by the inclined surfaces 58 of camming wedges 56 to force the thread splits 112 toward the confronting sleeve outward facing surfaces 80 upon movement of the first core plate 60 toward the mold base 42.
  • the head 116 of fastener 110 is dimensioned to act as a stop to limit the outward lateral movement of the thread splits 112.
  • a container spout 14 as shown in Figures 1 and 2 is formed in mold 40 by injecting a molten plastic through gate 45 while the mold is situated in a closed position as shown in Figure 3.
  • the core element 62, sleeve 76 and stripper ring 96 are moved as a unit to an open position as shown in Figure 4 which has the effect of removing the molded spout 14 from contact with the surface 46 of the first mold element 40.
  • the thread splits 112 are caused to move outward away from the outer surface 28 of the sidewall 20 to expose the newly formed threads 26.
  • first and second core plates 60 and 68 move away from the sleeve support plate 72 and core retaining plate 74 by a distance limited by the abutment of stop 90 and shoulder 88, typically about 1.25 cm, as shown in Figure 5.
  • This causes the core element 62 to be withdrawn from within the sleeve 76 by a distance sufficient to expose the channel 84 coupled to the sleeve end surface 78 that contains the pull ring 32 and stem portion 34 of the spout 14.
  • the rearward movement of the first and second core plates 60 and 68 continues until the shoulder 101 on the first core plate 60 abuts stop 102 surrounding fastener 99, as shown in Figure 6.
  • the sleeve support plate 72 This causes the sleeve support plate 72 to be separated from the stripper plate 94 by a distance, typically about 1.9 cm, sufficient to withdraw sleeve outward facing surface 80 from within the sidewall 20 of spout 14 so that the spout is now held by edge portion 100 of the stripper ring 96 that defines the lip 24 of the spout 14.
  • the sleeve support plate 72 is moved forward until it abuts the stripper plate 94 as shown in Figure 7. This causes the sleeve end surface 78 to contact the pull ring 32 and push the molded spout 14 free from the stripper ring 96, thereby providing the molded spout 14 with some momentum so that it will be ejected from the mold 40.
  • a optional air channel can be included to provide an air blast between the molded spout 14 and one or more of the stripper ring 96, core element 62, and sleeve 76 to assist in the ejection of the spout 14.
  • the core plates 60 and 68 are moved to abut the sleeve support plate 72 as shown in Figure 8.
  • the core plates 60 and 68, sleeve support plate 72 and stripper plate 94 are then moved as a unit to return to the closed position shown in Figure 3.
  • mold 40 is illustrative of the present invention in that it allows for a very simple set of relative movements betweens the various elements of the mold to permit release of the molded article 14, and then a return of the mold to a position suitable to receive a next shot of injected plastics.
  • the simple movements of the mold 40 allow for a faster and more reliable operation of the mold as compared to existing molds intended to create similar molded articles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Closures For Containers (AREA)

Abstract

A stage, sequentially separated injection mold (40) for forming a container spout (14) having a peripheral flange (18), a generally cylindrical sidewal (20), a removable panel (30) fixed within the sidewall, and a pull ring (32) connected to the removable panel. The mold includes a base (42), and a first element (44) coupled to the base including a gate (45). A core plate (60) movable with respect ot the base, and a core element (62) confronting the first mold element. A sleeve (76) surrounds the core element having a channel (84) to define the pull ring. The sleeve moves with respect to the core element to permit release of a molded pull ring. A stripper ring (96) surrounds the sleeve with an edge (98) positioned contiguous to the sleeve outward facing surface, the stripper ring being movable along the sleeve.

Description

Staged, Sequentially Separated Injection Mold
Background of the Invention
The present invention is directed generally to staged, sequentially separated injection molds and particularly to molds for forming container spouts having an integral panel sealing the spout and an integral pull ring to facilitate opening the spout by removal of the panel.
Certain types of containers, such as cartons and the like that have a gable- shaped top, employ separately molded plastic spouts with threaded closures. Such cartons will be recognized as those containers in which quarts, liters, and half- gallons of milk or juice are packaged. The spouts are injection molded to include a removable integral panel sealing the spout at the time of initial purchase by the consumer. Examples of such an injection molded spout are found in U.S. Patents 5,133,486; 5,735,426; 5,915,574; 5,957,312 and 6,179,147. The integral panel is view as a tamper-resistant feature of the closure system that is desired by the public to ensure the safety of the product within the container. The integral panel is joined to the spout by a frangible line, and an integral pull ring is provided to facilitate opening of the spout through removal of the integral panel by tearing the frangible line surrounding the panel. The spout includes a threaded exterior surface and a threaded closure to permit re-closing of the container after partial consumption of the contents.
To mold such spouts in an injection molding apparatus, a steel or other metallic mold of the item to be molded is first made. The mold contains a mold cavity configured to reflect the part to be molded. The mold is periodically openable, or separable, so that the molded part can be removed from the mold cavity. A plastic material, such as polypropylene, polystyrene or the like, is injected, such as by a reciprocating screw arrangement, into the mold. After the material has been allowed to cool, the mold is opened and the molded part is ejected from the mold. The mold can then be closed and used for forming a subsequent part.
The presence of the integral panel and pull ring on the interior of the spout at the time it is initially molded represents a special problem. The ejection of the part from the mold must occur in such a sequence as to preserve the frangible line surrounding the removable panel and the pull ring. This can be accomplished by having the mold include an internal mandrel-like core element or sleeve around which the plastic material is molded to conform to the desired mold shape. The mandrel-like portion must, as part of the mold opening sequence, be removed from the molded part after the part is formed. In some known injection mold apparatus, removing the mandrel-like mold element is typically done by pulling or stripping the molded part from the mandrel as part of the mold opening sequence. This, however, may cause damage to the molded parts, particularly if the parts include threads or pull rings formed therein.
One mold designed for this purpose, disclosed in U.S. Patents 5,736,172 and 5,820,807, includes a plurality of concentric, separable telescopic mold elements, and an opening therein defined by one of the base portion and the mold elements for injecting a mold material into the apparatus. The elements are configured such that they can be separated or removed from the mold, from the inner most element outward. This structure is intended to provide sufficient free space for the newly molded part to flex inward as the mold elements are removed thus minimizing the possibility of damage to the molded part. Each of the mold elements includes a mold face, which in part defines a mold cavity, and flange portions opposite of their respective mold faces. The mold also includes a movable, ball bearing type to facilitate opening the mold for removal of the molded container spout. The mold apparatus also includes two intermediate mold elements positioned between the inner and outer mold elements. Each of the intermediate mold elements includes openings through their respective body portions adapted to receive a movable, locking ball bearing cam member therein.
This combination of separable telescopic mold elements and locking ball bearing cam members is rather complex and less reliable than would be desirable in a manufacturing situation. Thus, there continues to be a need for an injection molding apparatus which permits a staged, sequential separation of the mold to effect withdrawal of mold portions, which separation process eliminates the potential damage to the molded parts during the mold opening process. Summary of the Invention
Accordingly, a staged, sequentially separated injection mold of the present invention includes a base, a first mold element coupled to the base including a gate through which plastics material can be injected and a surface at least partially defining a mold cavity for receiving the plastics material. A core plate movable in a first direction with respect to the mold base has a core element fixed to the plate including an end surface confronting the first mold element partially defining the mold cavity. A sleeve surrounds the core element having an end surface confronting the first mold element, an outward facing surface, and an inward facing surface confronting the core element. The inward facing surface includes a channel coupled to the sleeve end surface and a circumferential groove. The sleeve end surface, outward facing surface and channel further defining the mold cavity. After injection of plastic into the mold cavity, the core element, sleeve and stripper ring initially move as a unit in a first direction away from the first mold element. The core element is then retracted within the sleeve by a distance sufficient to expose the channel coupled to the sleeve end surface to permit release of material from the channel. A set of thread splits confronts the sleeve outward facing surface and the first mold element to further define the mold cavity. The set of thread splits are movable generally orthogonally to the direction of relative movement of the core and cavity plates. An inclined outer surface is included on each of the thread splits and wedge elements are fixed to the mold base. Each wedge element acts between adjacent inclined outer surfaces on adjacent thread splits to force the thread splits toward the confronting sleeve outward facing surfaces upon movement of the core plate toward the mold base. After injection of plastic into the mold cavity, the set of thread splits move away from the outer surface of the sidewall simultaneously with the moving of the core element, sleeve and stripper ring as a unit away from the first mold element. Stops are fixed to the stripper plate for limiting the movement of the thread splits away from the confronting sleeve outward facing surfaces.
A stripper ring surrounding the sleeve includes an edge positioned contiguous to the sleeve outward facing surface. The stripper ring edge includes an arcuate portion immediately adjacent to the thread splits partially defining the mold cavity. The stripper ring is movable along the sleeve to facilitate removal of material from the sleeve outward facing surface. A stripper plate coupling means couples the stripper plate to the core plate for limiting the relative movement between the stripper plate and core plate. A sleeve support plate is fixed to the sleeve and coupling means couple the sleeve support plate to the core plate for delayed movement with respect to the core plate. After the sleeve support plate has been moved by a distance sufficient to remove the sleeve from within the container spout sidewall and to remove the pull ring from the channel on the inside surface of the sleeve, the sleeve support plate is advanced relative to the stripper plate to cause the sleeve end surface to contact the pull ring and thereby separate the container spout from the stripper ring.
The structure of a mold of the present invention allows for a less complex set of relative movements betweens the various elements of the mold to permit release of the molded article and return of the mold to a position suitable to receive injected plastics. The less complex movements allows for faster and more reliable operation of the mold as compared to existing molds intended to create similar molded articles. Some of the simplicity comes from having certain elements of the mold perform two functions. For example, the set of thread splits confronting the sleeve outward facing surface to define the thread formation on the outer surface of the sidewall also cooperates with the first mold element to define the flange. Likewise, the stripper ring surrounding the sleeve to facilitate removal of the molded sidewall portion of the spout from the sleeve also has an edge positioned contiguous to the sleeve outward facing surface with an arcuate portion immediately adjacent to the thread splits at least partially defining the lip of the sidewall. These and other features and advantages of the present invention will become apparent to those skilled in the art from a consideration of the following description of a preferred embodiment of the present invention that references the accompanying figures illustrating the best mode of the invention. Brief Description of the Drawings
Figure 1 is a perspective view of an exemplary container spout that can be formed using the staged, sequentially separated injection mold, in accordance with the principles of the present invention, the spout being illustrated affixed to a gable top container. Figure 2 is a perspective view of a spout that can be formed in a staged, sequentially separated injection mold of the present invention.
Figure 3 is a cross-sectional view of the staged, sequentially separated injection mold apparatus of the present invention for making the spout shown in Figures 1 and 2, with the mold shown in the fully closed position. Figure 4 is a cross-sectional view similar to that of Figure 3 with the mold moved to an open position with the thread splits retracted away from the molded spout.
Figure 5 is a cross-sectional view similar to that of Figure 4 with the mold core plate moved even further open so that the core is moved within the sleeve to a position that will allow the pull ring to be removed.
Figure 6 is a cross-sectional view similar to that of Figure 5 with the mold sleeve support plate moved to a further open position thereby causing the sleeve to be withdrawn from the molded article that is held by the stripper ring.
Figure 7 is a cross-sectional view nearly identical to that of Figure 5 with the mold sleeve support plate having been returned to its former position thus causing the sleeve to move back inside the stripper ring to force the molded spout out of contact with the stripper ring.
Figure 8 is a cross-sectional view nearly identical to that of Figure 4 with the core plate having been returned to its former position, thus completing the ejection of the molded article from the mold in preparation for the mold to close to the position shown in Figure 3 ready again to accept injected plastic. Description of the Preferred Embodiment
Figure 1 shows a container 10 that has come into widespread use having a gable top 12 including a spout 14 capped with a closure 16 for resealing the container 10 after initial opening. The spout 14 is shown in greater detail in Figure 2 to have a peripheral flange 18. A generally cylindrical sidewall 20 extends perpendicularly from an inner perimeter 22 of the flange 18 to a lip 24. A closure engaging formation such as a thread 26 is formed on the outer surface 28 of the sidewall 20, which interacts with a corresponding internal thread (not shown) on the closure16. It will be appreciated that the closure engaging formation 26 could be a snap ring near the lip 24 for interaction with a corresponding snap-on cap rather than the closure 16 with an internal thread. A removable panel 30 is integrally formed within the sidewall 20 forming a tamper indicating seal that can be visually inspected by a consumer of the contents of the container prior to initiating use. A pull ring 32 is connected to the removable panel 30 by a stem portion 34 to permit easy removal of the panel 30 by the consumer. By merely pulling on the pull ring 32, the consumer causes a rupture to develop along a generally circular line of weakness 36 at the periphery of the removable panel 30. It will be recognized by those skilled in the art that the various elements of the spout 14 are not easily formed using an injection mold.
A mold 40, constructed according to the present invention for the purpose of forming the spout 14, is shown in Figures 3-8. While the figures only illustrate a single set of mold elements capable of forming a single spout at one time, in actual practice, the mold 40 can comprise many such sets of mold elements so that as many as 96, or even more, spouts 14 can be formed simultaneously. The illustration of merely those mold elements necessary to form a single spout at one time is for the purpose of clarity and should not be considered as limiting in any way.
The mold 40 includes a mold base 42. A first mold element 44 is coupled to the base 42 and includes a gate 45 through which plastics material can be injected The first mold element 44 also includes a surface 46 partially defining a mold cavity 47 for receiving the plastics material, the mold cavity 47 having the shape of the spout 14. The surface 46 of the first mold element 44 is configured to form the obverse surface of the spout 14 from that shown in Figure 2. As shown in Figure 4, the surface 46 of the first mold element 44 includes a first portion 48 defining a lower surface of flange 18, a second portion 50 defining a inner surface of the cylindrical sidewall 20 below the removable panel 30, a third portion 52 defining the lower surface of the removable panel 30, and a ridge 54 at the junction of the second and third portions defining the circular line of weakness 36. A pair of camming wedges 56 are fixed to the mold base 42 on each side of the first mold element 44 to project generally perpendicularly away from the mold base 42. Each camming wedge 56 includes a pair of inclined surfaces 58, the function of which will become apparent from the discussion below.
The mold 40 also includes a first core plate 60 that is reciprocally movable in direction Y with respect to the mold base 42. A core element 62 is fixed to the core plate 60 to project toward the first mold element 44. The core element 62 includes an end surface 64 that confronts a central part of the third portion 52 of surface 46 of the first mold element 44 and defines an inner portion of the upper surface of the removable panel 30. The core element 62 also includes a cylindrical outer surface 66. A second core plate 68 is fixed to the first core plate 60, and includes lines 70 for handling cooling fluids, such as chilled water, supplied to the interior of the core element 62.
The mold 40 also includes a sleeve support plate 72 separated from the first core plate 60 by a core retaining plate 74. The core retaining plate 74 is fixed to the sleeve support plate 72. A sleeve 76 is fixed to the sleeve support plate 72 so as to surround the core element 62. As shown in Figure 4, the sleeve 76 has an end surface 78 that confronts that portion of surface 46 of the first mold element 44 to define the perimetral portion of the removable panel 30. The sleeve 76 also has an outward facing surface 80 that includes a forward portion defining the inner surface of the sidewall 20 of the spout 14. An inward facing surface 82 of the sleeve 76 confronts the core element 62 and includes a channel 84 coupled to the sleeve end surface 78 that defines the pull ring 32 and stem portion 34 of the spout 14. The sleeve 76 is movable with respect to the core element 62 to permit release of material from the channel 84 as explained below in connection with the steps of the molding process illustrated by Figures 5 and 6, however, the sleeve 76 is limited in its movement. A fastener 86 extends through the core retaining plate 74, the first core plate 60 and the second core plate 68, and is fixed to the sleeve support plate 72. The second core plate 68 includes a shoulder 88 that confronts a stop 90 on the fastener 86 that limits the relative movement between the sleeve support plate 72 and the second core plate 86. The faster 86 is surrounded by a bushing 92 that limits the travel of the plates 60, 68, 72 and 74 during their relative movement.
The mold 40 also includes a stripper plate 94. A stripper ring 96 is fixed to the stripper plate 94 so as to surround the sleeve 76. The stripper ring 96 includes an edge 98 positioned contiguous to the sleeve outward facing surface 80. As shown in Figure 6, the edge 98 includes a portion 100 that defines the lip 24 of the spout 14. The stripper plate 94 and stripper ring 96 are movable relative to the sleeve 76 to facilitate removal of material from the sleeve outward facing surface 80 as explained below in connection with the steps of the molding process illustrated by Figures 5 through 7, however, the stripper ring 96 is limited in its movement. A fastener 99 extends through the first core plate 60, core retaining plate 74, and the sleeve support plate 72, and is fixed to the stripper plate 94. The first core plate 60 includes a shoulder 101 that confronts a stop 102 on the fastener 99 that limits the relative movement between the stripper plate 94 and the first core plate 60. The fastener 99 is surrounded by a bushing 104 that limits the travel of the plates 60, 72, 74 and 94 during their relative movement.
Wear plate 106 is fixed to a front surface 108 of the stripper plate 94 by fastener 110. Thread splits 112 move along the surface of wear plate 106 for lateral movement in the direction X. The thread splits 112 include a thread-defining surface 114 that confronts the sleeve outward facing surface 80 and the second portion 50 of the first mold element 44 to define the threaded outer surface 20 of the spout 14. The thread splits 112 are movable by a biasing means or by a cam and cam follower combination (not shown) between the position shown in Figure 3 and the position shown in Figures 4-8. The thread splits 112 include an inclined outer surface 118 intended to be engaged by the inclined surfaces 58 of camming wedges 56 to force the thread splits 112 toward the confronting sleeve outward facing surfaces 80 upon movement of the first core plate 60 toward the mold base 42. The head 116 of fastener 110 is dimensioned to act as a stop to limit the outward lateral movement of the thread splits 112.
In operation, a container spout 14 as shown in Figures 1 and 2 is formed in mold 40 by injecting a molten plastic through gate 45 while the mold is situated in a closed position as shown in Figure 3. After an initial period of time sufficient for in molten plastic to cool to a form-stable state, the core element 62, sleeve 76 and stripper ring 96 are moved as a unit to an open position as shown in Figure 4 which has the effect of removing the molded spout 14 from contact with the surface 46 of the first mold element 40. Simultaneously with this movement, the thread splits 112 are caused to move outward away from the outer surface 28 of the sidewall 20 to expose the newly formed threads 26.
Next, the first and second core plates 60 and 68 move away from the sleeve support plate 72 and core retaining plate 74 by a distance limited by the abutment of stop 90 and shoulder 88, typically about 1.25 cm, as shown in Figure 5. This causes the core element 62 to be withdrawn from within the sleeve 76 by a distance sufficient to expose the channel 84 coupled to the sleeve end surface 78 that contains the pull ring 32 and stem portion 34 of the spout 14. The rearward movement of the first and second core plates 60 and 68 continues until the shoulder 101 on the first core plate 60 abuts stop 102 surrounding fastener 99, as shown in Figure 6. This causes the sleeve support plate 72 to be separated from the stripper plate 94 by a distance, typically about 1.9 cm, sufficient to withdraw sleeve outward facing surface 80 from within the sidewall 20 of spout 14 so that the spout is now held by edge portion 100 of the stripper ring 96 that defines the lip 24 of the spout 14. Next, the sleeve support plate 72 is moved forward until it abuts the stripper plate 94 as shown in Figure 7. This causes the sleeve end surface 78 to contact the pull ring 32 and push the molded spout 14 free from the stripper ring 96, thereby providing the molded spout 14 with some momentum so that it will be ejected from the mold 40. A optional air channel can be included to provide an air blast between the molded spout 14 and one or more of the stripper ring 96, core element 62, and sleeve 76 to assist in the ejection of the spout 14. Thereafter the core plates 60 and 68 are moved to abut the sleeve support plate 72 as shown in Figure 8. The core plates 60 and 68, sleeve support plate 72 and stripper plate 94 are then moved as a unit to return to the closed position shown in Figure 3. This causes the inclined surfaces 58 on camming wedges 56 to force the thread splits toward the outward facing surfaces 80 of sleeve 76 and second portion 50 of surface 46 of the first mold element 44, thereby defining a closed cavity 47 situated to receive the next shot of molten plastic. The structure of mold 40 is illustrative of the present invention in that it allows for a very simple set of relative movements betweens the various elements of the mold to permit release of the molded article 14, and then a return of the mold to a position suitable to receive a next shot of injected plastics. The simple movements of the mold 40 allow for a faster and more reliable operation of the mold as compared to existing molds intended to create similar molded articles. Various modifications of the invention in addition to those shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

Claims

What is claimed is:
1. A staged, sequentially separated injection mold (40) comprising: a mold base (42) and a first mold element (44) coupled to the base (42) including a gate (45) through which plastics material can be injected and a surface (46) at least partially defining a mold cavity (47) for receiving the plastics material; a core plate (60) movable in a first direction (Y) with respect to the mold base (42) and a core element (62) fixed to the core plate (60), the core element (62) including an end surface (64) confronting the first mold element (44) and at least partially defining the mold cavity (47); a sleeve (76) surrounding the core element (62) having an end surface (78) confronting the first mold element (14), an outward facing surface (80), and an inward facing surface (82) confronting the core element (62), the sleeve end surface (78) and outward facing surface (80) further defining the mold cavity (47), and a channel (84) on the inward facing surface (82) of the sleeve (76) coupled to the sleeve end surface (78) further defining the mold cavity (47), the sleeve (76) being movable in said first direction (Y) with respect to the core element (62) to permit release of material from the channel (84); and a set of thread splits (112) confronting the sleeve outward facing surface (80) and the first mold element (14) to further define the mold cavity (47), the set of thread splits (112) being movable in a direction (X) generally orthogonal to the first direction (Y).
2. The injection mold of claim 1 further comprising a stripper ring (96) surrounding the sleeve (76) and including an edge (98) positioned contiguous to the sleeve outward facing surface (80), the stripper ring (96) being movable along the sleeve (76) to facilitate removal of material from the sleeve outward facing surface (80).
3. The injection mold of claim 2 further comprising an inclined outer surface (118) on each of the thread splits (112) and wedge elements (56) fixed to the mold base (42), each wedge element having a pair of similarly inclined surfaces (58) projecting between the adjacent inclined outer surfaces (118) on adjacent thread splits to force the thread splits toward confronting sleeve outward facing surfaces (118) upon movement of the core plate (60) toward the mold base (42).
4. The injection mold of either of claims 2 or 3 further comprising a stripper plate (94) fixed to the stripper ring (96), and thread split supporting means fixed to the thread splits (112) and coupled to the stripper plate for movement relative to the stripper plate in said second direction (X) and with the stripper plate in said first direction (Y).
5. The injection mold of claim 4 further comprising stripper plate coupling means (99) for coupling the stripper plate to the core plate (60) for limiting the relative movement between the stripper plate and core plate.
6. The injection mold of claim 4 or 5 further comprising stops (116) fixed to the stripper plate for limiting the movement of the thread splits (112) away from the confronting sleeve outward facing surfaces.
7. The injection mold of any of claims 1 through 6 further comprising a sleeve support plate (72) fixed to the sleeve and coupling means (86) for coupling the sleeve support plate to the core plate (68) for delayed movement with respect to the core plate.
8. The injection mold of any of claims 1 through 7 wherein said channel (84) on the sleeve inward facing surface (76) further comprises a circumferential groove at a fixed distance from said sleeve end surface (78), and a slot leading from the circumferential groove to the sleeve end surface.
9. The injection mold of claim 8 wherein the smallest dimension of the slot leading from the circumferential groove to the sleeve end surface (78) is greater than a smallest dimension of the mold cavity (47) measured between the sleeve end surface and the first mold element (44).
10. The injection mold of any of claims 2-9 wherein said edge of the stripper ring (92) positioned contiguous to the sleeve further comprises an arcuate portion (100) partially defining the mold cavity (47).
11. The injection mold of any of claims 1 -10 wherein the surface (46) of the first mold element (44) defining the mold cavity (47) defines at least in part a peripheral flange (18) and removable panel (30) of a container spout (14).
12. The injection mold of claim 11 wherein the surface (50) of the first mold element (44) defining the mold cavity defines at least in part an inner surface of a cylindrical sidewall (28) of the container spout.
13. The injection mold of any of claims 1 -12 wherein the end surface (64) of the core element (62) defines at least in part a removable panel (30) of a container spout.
14. The injection mold of any of claims 1-13 wherein the end surface (78) of the sleeve (76) surrounding the core element (62) defines at least in part a removable panel (30) of a container spout.
15. The injection mold of claim 14 wherein the end surface (78) of the sleeve (76) defines a line of weakness (36) surrounding the removable panel (30) of the container spout.
16. The injection mold of any of claims 1-15 wherein the outward facing surface (80) of the sleeve defines at least in part a cylindrical sidewall (28) of a container spout.
17. The injection mold of any of claims 1-16 wherein the channel (84) on the sleeve inward facing surface (82) is connected to a peripheral groove defining a pull ring (32) attached to a removable panel (30) of a container spout.
18. The injection mold of any of claims 1-17 wherein a surface (100) adjacent to the stripper ring edge (98) contiguous to the sleeve defines a lip (24) of a container spout (14).
19. The injection mold of any of claims 1-18 further comprising a channel in one of the core, stripper ring, or sleeve to provide a blast of air against an interior surface of the molded container spout (14) to assist in the ejection of the container spout (1 ) from the mold.
20. A method for forming a container spout (14) having a peripheral flange (18), a generally cylindrical sidewall (28) extending from an inner perimeter (22) of the flange to a lip (24), a closure coupling formation (26) on an outer surface of the sidewall (28), a removable panel (30) fixed within the sidewall (28), and a pull ring (32) connected to the removable panel, the method comprising the steps of: providing a first mold element (44) including a gate (45) through which plastics material can be injected and a surface (46) at least partially defining the peripheral flange (18) and removable panel (30), providing a core element (62) including an end surface (64) confronting the first mold element (44) to partially define the removable panel, providing a sleeve (76) surrounding the core element (62) having an end surface (78) confronting the first mold element (44) to partially define the removable panel, an outward facing surface (80) at least partially defining the sidewall, and an inward facing surface (82) confronting the core element, the inward facing surface including a channel (84) coupled to the sleeve end surface (78) at least partially defining the pull ring, providing a stripper ring (96) surrounding the sleeve having an edge (88) positioned contiguous to the sleeve outward facing surface (80) and an arcuate portion (100) immediately adjacent to the sleeve at least partially defining the lip (24) of the sidewall, moving the core element (62), sleeve (76) and stripper ring (96) as a unit in a first direction (Y) away from the first mold element (44), retracting the core element (62) within the sleeve (76) by a distance sufficient to expose the channel (84) coupled to the sleeve end surface (78) at least partially defining the pull ring, withdrawing the sleeve (76) relative to the stripper ring (96) by a distance sufficient to remove the sleeve from within the container spout sidewall (28) and to remove the pull ring (32) from the channel on the inside surface of the sleeve (76), and advancing the sleeve (76) relative to the stripper ring (96) sufficient to cause the sleeve end surface (78) to contact the pull ring (32) and thereby separate the container spout (14) from the stripper ring.
21. The method of claim 20 further comprising the steps of: providing a set of thread splits (112) confronting the sleeve outward facing surface (80) and the first mold element (44) to further define the fiange (18) and the closure coupling formation (26) on the outer surface of the sidewall (28) and the mold cavity, and allowing the set of thread splits (112) to move in a second direction (X) generally orthogonal to the first direction (Y) away from the outer surface of the sidewall (28) simultaneously with the moving of the core element (62), sleeve (76) and stripper ring (96) as a unit in a first direction (Y) away from the first mold element (44).
22. The method of claim 20 or 21 further comprising the steps of providing an outward facing surface (50) on the first mold element (44) defining at least in part an inner surface of the cylindrical sidewall (28) of the container spout (14) and arranging for the part of the inner surface of the cylindrical sidewall (28) of the container spout defined by the outward facing surface (50) on the first mold element to be withdrawn from the first mold element (44) simultaneously with the moving of the core element (62), sleeve (76) and stripper ring (96) as a unit in a first direction (y) away from the first mold element.
23. The method of any of claims 20 through 22 further comprising the step of providing a blast of air against an interior surface of the molded container spout (14) to assist in the ejection of the container spout from the mold (40).
EP02736861A 2001-05-16 2002-05-15 Staged, sequentially separated injection mold Withdrawn EP1387752A4 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US29144201P 2001-05-16 2001-05-16
US291442P 2001-05-16
PCT/US2002/015388 WO2002092319A1 (en) 2001-05-16 2002-05-15 Staged, sequentially separated injection mold

Publications (2)

Publication Number Publication Date
EP1387752A1 true EP1387752A1 (en) 2004-02-11
EP1387752A4 EP1387752A4 (en) 2007-05-23

Family

ID=23120298

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02736861A Withdrawn EP1387752A4 (en) 2001-05-16 2002-05-15 Staged, sequentially separated injection mold

Country Status (7)

Country Link
EP (1) EP1387752A4 (en)
JP (1) JP2004525806A (en)
BR (1) BR0209656A (en)
CA (1) CA2447430C (en)
MX (1) MXPA03009871A (en)
PL (1) PL368460A1 (en)
WO (1) WO2002092319A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7588439B2 (en) 2007-07-20 2009-09-15 Husky Injection Molding Systems Ltd. Compensating core for use with a molding system
US7597551B2 (en) 2007-07-20 2009-10-06 Husky Injection Molding Systems Ltd. Compensating retaining member for use with a molding system
US7575429B2 (en) 2007-07-20 2009-08-18 Husky Injection Molding Systems Ltd. Compensating mold stack for use in a molding system
US10675838B2 (en) * 2017-11-29 2020-06-09 Fourté International, Sdn. Bhd Molding processes for metallic foams, apparatuses, and products
CN113681843B (en) * 2021-07-28 2023-02-28 株洲时代新材料科技股份有限公司 Full-automatic demolding rubber mold and demolding method thereof
CN118205176B (en) * 2024-05-21 2024-07-26 宁海县第一注塑模具有限公司 Glove box cover plate forming die

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE927898C (en) * 1943-12-17 1955-05-20 Eckert & Ziegler G M B H Separating device for the sprue on injection molds for the production of objects from thermoplastic compounds
DE1045639B (en) * 1955-05-03 1958-12-04 Korkenfabrik Friedrich Sanner Injection mold for the production of molded bodies made of thermoplastic material, in particular caps for pharmaceutical tablet tubes
JPH07257564A (en) * 1994-03-28 1995-10-09 Toppan Printing Co Ltd Plug for liquid container
JPH0891410A (en) * 1994-09-28 1996-04-09 Yoshino Kogyosho Co Ltd Pouring device and production thereof
JPH0939034A (en) * 1995-07-25 1997-02-10 Toppan Printing Co Ltd Injection molding die
JP2000025817A (en) * 1998-07-14 2000-01-25 Dainippon Printing Co Ltd Spout forming device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4622463Y1 (en) * 1968-07-02 1971-08-04
JPS6036427Y2 (en) * 1981-03-12 1985-10-29 豊國樹脂工業株式会社 Mold for forming the threaded nozzle part of the tube
US4806301A (en) * 1984-08-15 1989-02-21 American Safety Closure Corp. Process of removing a plastic cap from a mold
JP3044631B2 (en) * 1991-02-14 2000-05-22 日本クラウンコルク株式会社 Molding method of pull cap and mold device therefor
JP3254941B2 (en) * 1994-12-16 2002-02-12 凸版印刷株式会社 Injection mold
JP3695870B2 (en) * 1996-11-28 2005-09-14 積水成型工業株式会社 Synthetic resin plug injection molding method, mold used in the method, and synthetic resin plug manufactured by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE927898C (en) * 1943-12-17 1955-05-20 Eckert & Ziegler G M B H Separating device for the sprue on injection molds for the production of objects from thermoplastic compounds
DE1045639B (en) * 1955-05-03 1958-12-04 Korkenfabrik Friedrich Sanner Injection mold for the production of molded bodies made of thermoplastic material, in particular caps for pharmaceutical tablet tubes
JPH07257564A (en) * 1994-03-28 1995-10-09 Toppan Printing Co Ltd Plug for liquid container
JPH0891410A (en) * 1994-09-28 1996-04-09 Yoshino Kogyosho Co Ltd Pouring device and production thereof
JPH0939034A (en) * 1995-07-25 1997-02-10 Toppan Printing Co Ltd Injection molding die
JP2000025817A (en) * 1998-07-14 2000-01-25 Dainippon Printing Co Ltd Spout forming device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO02092319A1 *

Also Published As

Publication number Publication date
CA2447430C (en) 2008-01-22
MXPA03009871A (en) 2005-02-17
EP1387752A4 (en) 2007-05-23
WO2002092319A1 (en) 2002-11-21
PL368460A1 (en) 2005-03-21
BR0209656A (en) 2004-04-20
CA2447430A1 (en) 2002-11-21
JP2004525806A (en) 2004-08-26

Similar Documents

Publication Publication Date Title
JP3942196B2 (en) Recloseable container and method for manufacturing the same
CA2013908C (en) Container with a unitary closure and method for making same
EP1169261B1 (en) Apparatus and method for forming cap, and formed cap
CZ204095A3 (en) Closure of a container, process of its manufacture, closure assembly and a mould for making the same
US4648834A (en) Mold for manufacturing flanged objects without side action
US20070131641A1 (en) Closure with frangible tamper-evident band
US5736172A (en) Staged sequentially separated injection mold apparatus for forming container closures
US6938787B2 (en) Synthetic-resin screw cap
US8834149B2 (en) Molding apparatus
US7150847B2 (en) Staged, sequentially separated injection mold
EP2691223B1 (en) A mold stack for a preform
US4830214A (en) One-piece molded end closure
CA2447430C (en) Staged, sequentially separated injection mold
US5037290A (en) Apparatus for molding a one-piece molded end closure
CN114787045B (en) Closure device for a container
US4983346A (en) Method for molding a one-piece molded end closure
US4209101A (en) Tamper-proof closure and method of making same
CN107073781B (en) Method and apparatus for manufacturing packaging closures
US4463056A (en) Thermoplastic container parison
US3642408A (en) Apparatus for making plastic closure having weakening line
CA1057920A (en) Apparatus and method for moulding plastics covers for containers
AU2004261315C1 (en) Closure with frangible tamper-evident band

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031124

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBSTER, CHARLES A.

Inventor name: ANDREW, J., MOORHEAD

Inventor name: KEVIN, R., HARRISON

Inventor name: WILLIAM, E., CHAPPLEAR

REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1064066

Country of ref document: HK

RIN1 Information on inventor provided before grant (corrected)

Inventor name: WEBSTER, CHARLES A.

Inventor name: ANDREW, J., MOORHEAD

Inventor name: KEVIN, R., HARRISON

Inventor name: CHAPPELEAR, WILLIAM E.

A4 Supplementary search report drawn up and despatched

Effective date: 20070420

17Q First examination report despatched

Effective date: 20070621

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: WEST PHARMACEUTICAL SERVICES, INC.

Owner name: ACCURATE MOULD LTD

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081202

REG Reference to a national code

Ref country code: HK

Ref legal event code: WD

Ref document number: 1064066

Country of ref document: HK