EP1381622A2 - Human secreted proteins - Google Patents

Human secreted proteins

Info

Publication number
EP1381622A2
EP1381622A2 EP02749512A EP02749512A EP1381622A2 EP 1381622 A2 EP1381622 A2 EP 1381622A2 EP 02749512 A EP02749512 A EP 02749512A EP 02749512 A EP02749512 A EP 02749512A EP 1381622 A2 EP1381622 A2 EP 1381622A2
Authority
EP
European Patent Office
Prior art keywords
seq
polypeptide
referenced
fragment
encoded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02749512A
Other languages
German (de)
French (fr)
Inventor
Craig A. Rosen
Steven M. Ruben
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Human Genome Sciences Inc
Original Assignee
Human Genome Sciences Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Human Genome Sciences Inc filed Critical Human Genome Sciences Inc
Publication of EP1381622A2 publication Critical patent/EP1381622A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • A61P11/06Antiasthmatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/08Antiallergic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and asthmatic diseases and disorders.
  • Antibodies that bind these polypeptides are also encompassed by the present invention.
  • vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and/or antibodies are also encompassed by the present invention.
  • the invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention.
  • the present invention further encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.
  • the immune system is an intricate network of cells, tissues and soluble molecules that function to protect the body from invasion by foreign substances and pathogens.
  • the major cells of the immune system are lymphocytes, including B cells and T cells, and myeloid cells, including basophils, eosinophils, neutrophils, mast cells, monocytes, macrophages and dendritic cells.
  • lymphocytes including B cells and T cells
  • myeloid cells including basophils, eosinophils, neutrophils, mast cells, monocytes, macrophages and dendritic cells.
  • soluble molecules- such as antibodies, complement proteins, and cytokines- circulate in lymph and blood plasma, and play important roles in immunity.
  • the immune system can be subdivided into the acquired and innate immune systems.
  • the cells of the innate immune system e.g., neutrophils, eosinophils, basophils, mast cells
  • the cells of the acquired immune system are antigen specific. Repeated exposure of B and T cells to an antigen results in improved immune responses (memory responses) produced by these cell types.
  • the cells and products of the acquired immune system can recruit components of the innate system to mount a focused immune response.
  • An immune response is seldom carried out by a single cell type, but rather requires the coordinated efforts of several cell types.
  • cells of the immune system communicate with each other and with other cells of the body. Communication between cells may be made by cell-cell contact, between membrane bound molecules on each cell, or by the interaction of soluble components of the immune system with cellular receptors. Signaling between cell types may have one or more of a variety of consequences, including activation, proliferation, differentiation, and apoptosis. Activation and differentiation of immune cells may result in the expression or secretion of polypeptides, or other molecules, which in turn affect the function of other cells and/or molecules of the immune system.
  • the genes and proteins associated with this coordinated immune response are essential for the proper regulation and functioning of the immune system.
  • Dysregulation of immune system- related genes and proteins may result in a variety of diseases and/or disorders, including immediate hypersensitivity diseases.
  • Immediate hypersensitivity diseases such as asthma, hay fever, and allergic conjunctivitis, are characterized by similar physiological mechanisms and generally are initiated by environmental antigens (e.g. pollen, dust, or molds).
  • environmental antigens e.g. pollen, dust, or molds.
  • Patients suffering from the effects of these disorders are predisposed to react to specific external antigens. When these antigens contact certain tissues, such as ocular, nasal, or lung tissues, those tissues initiate an immune response and produce undesirable and frequently life-threatening symptoms.
  • Immunomodulators Molecules that stimulate or suppress immune system function are known as immunomodulators. These molecules, which include endogenous proteins (e.g., cytokines, cytokine receptors, and intracellular signal transduction molecules), molecules derived from microorganisms, and synthetic agents, may exert their modulatory effects at one or more stages of the immune response, such as antigen recognition, stimulation of cytokine production and release, and/or activation/differentiation of lymphocytes and myeloid cells. Immunomodulators may enhance (immunoprophylaxis, immunostimulation), restore (immunosubstitution, immunorestoration) or suppress (immunosuppression, immunodeviation) immunological functions or activities.
  • Immunomodulatory compounds have many important applications in clinical practice.
  • immunosuppressing agents which attenuate or prevent unwanted immune responses
  • a mechanism of action common to many immunosuppressants is the inhibition of T cell activation and/or differentiation.
  • Antilymphocyte antibodies have also been used to attenuate immune system functions.
  • immunosuppressive agents can produce a number of side effects, which limit their use. Among the most serious secondary effects include kidney and liver toxicity, increased risk of infection, hyperglycemia, neoplasia, and osteoporosis (see, e.g., Freeman, Clin. Biochem. 24(1):9-14 (1991); Mitchison, Dig.
  • the present invention encompasses human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and asthmatic diseases and disorders.
  • Antibodies that bind these polypeptides are also encompassed by the present invention; as are vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and or antibodies.
  • the invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention.
  • the present invention also encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.
  • Table IA summarizes information concerning certain polypnucleotides and polypeptides of the invention.
  • the first column provides the gene number in the application for each clone identifier.
  • the second column provides a unique clone identifier, "Clone ID:”, for a cDNA clone related to each contig sequence disclosed in Table IA.
  • Third column the cDNA Clones identified in the second column were deposited as indicated in the third column (i.e. by ATCC Deposit No:Z and deposit date). Some of the deposits ' contain multiple different clones corresponding to the same gene.
  • “Vector” refers to the type of vector contained in the corresponding cDNA Clone identified in the second column.
  • nucleotide sequence identified as "NT SEQ ID NO:X” was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones.
  • the overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.
  • Total NT Seq refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X.”
  • the deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq.” (seventh column) and the "3' NT of Clone Seq.” (eighth column) of SEQ ID NO:X.
  • nucleotide position of SEQ ID NO:X of the putative start codon is identified as "5' NT of Start Codon.”
  • nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep.”
  • the translated amino acid sequence, beginning with the methionine is identified as "AA SEQ ID NO:Y,” although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
  • the first and last amino acid position of SEQ ID NO: Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep.”
  • the predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion”.
  • the amino acid position of SEQ ID NO: Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF”.
  • SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
  • SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention.
  • polypeptides identified from SEQ ID NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table IA and/or elsewhere herein
  • DNA sequences generated by sequencing reactions can contain sequencing errors.
  • the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
  • the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence.
  • the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
  • the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table IA.
  • the nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods
  • amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
  • Table IA Also provided in Table IA is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience.
  • Vectors Lambda Zap U.S. Patent Nos. 5,128,256 and 5,286,636
  • Uni-Zap XR U.S.
  • Patent Nos. 5,128, 256 and 5,286,636 Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 76:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037.
  • Phagemid pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene.
  • Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene
  • Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0 were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., Focus 15:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue.
  • Vector pCR ® 2.1 which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 76:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).
  • the present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, and or a deposited cDNA (cDNA Clone ID).
  • the corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
  • allelic variants, orthologs, and/or species homologs are also provided in the present invention. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X and SEQ ID NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC.
  • allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
  • the present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X and/or a cDNA contained in ATCC Deposit No.Z.
  • the present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z.
  • Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention.
  • the present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.
  • Table IB Comprised of Tables IB.l and 1B.2
  • Table IB.l and Table 1B.2 summarize some of the polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) and contig nucleotide sequence identifiers (SEQ ID NO:X)) and further summarizes certain characteristics of these polynucleotides and the polypeptides encoded thereby.
  • the first column of Tables IB.l and 1B.2 provide the gene numbers in the application for each clone identifier.
  • the second column of Tables IB.l and 1B.2 provide unique clone identifiers, "Clone ID:”, for cDNA clones related to each contig sequence disclosed in Table IA and/or Table IB.
  • the third column of Tables IB.l and 1B.2 provide unique contig identifiers, "Contig ID:” for each of the contig sequences disclosed in these tables.
  • the fourth column of Tables IB.l and 1B.2 provide the sequence identifiers, "SEQ ID NO:X", for each of the contig sequences disclosed in Table IA and/or IB. Table IB.l
  • the fifth column of Table IB.l provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:X that delineates the preferred open reading frame (ORF) that encodes the amino acid sequence shown in the sequence listing and referenced in Table IB.l as SEQ ID NO:Y (column 6).
  • Column 7 of Table IB.l lists residues comprising predicted epitopes contained in the polypeptides encoded by each of the preferred ORFs (SEQ ID NO:Y).
  • polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the predicted epitopes described in Table IB.l. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
  • Column 8 of Table IB.l (“Cytologic Band") provides the chromosomal location of polynucleotides corresponding to SEQ ID NO:X. Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database.
  • OMIM Identification number is disclosed in Table IB.l, column 9 labeled "OMIM Disease Reference(s)".
  • a key to the OMIM reference identification numbers is provided in Table 5.
  • Table 1B.2 Column 5 of Table IB.2, "Tissue Distribution" shows the expression profile of tissue, cells, and/or cell line libraries which express the polynucleotides of the invention.
  • the first code number shown in Table 1B.2 column 5 represents the tissue/cell source identifier code corresponding to the key provided in Table 4. Expression of these polynucleotides was not observed in the other tissues and/or cell libraries tested.
  • the second number in column 5 represents the number of times a sequence corresponding to the reference polynucleotide sequence (e.g., SEQ ID NO:X) was identified in the corresponding tissue/cell source.
  • tissue/cell source identifier codes in which the first two letters are "AR" designate information generated using DNA array technology.
  • cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array.
  • cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33 P dCTP, using oligo(dT) to prime reverse transcription.
  • Table IC summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ ID NO:B).
  • the first column provides a unique clone identifier, "Clone ID:”, for a cDNA clone related to each contig sequence.
  • the second column provides the sequence identifier, "SEQ ID NO:X”, for each contig sequence.
  • the third column provides a unique contig identifier, "Contig ID:” for each contig sequence.
  • the fourth column provides a BAC identifier "BAC ID NO:A” for the BAC clone referenced in the corresponding row of the table.
  • the fifth column provides the nucleotide sequence identifier, "SEQ ID NO:B" for a fragment of the BAC clone identified in column four of the corresponding row of the table.
  • the sixth column "Exon From- To" provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides of the invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
  • the present invention encompasses a method of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic diseases and disorders; comprising administering to a patient in which such treatment, prevention, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table IA, Table IB, and Table IC, in an amount effective to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate the disease or disorder.
  • the polynucleotides, polypeptides, agonists, or antagonists of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists thereof (including antibodies) could be used to treat the associated disease.
  • Table ID provides information related to biological activities for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information related to assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities.
  • the first column (“Gene No.”) provides the gene number in the application for each clone identifier.
  • the second column (“cDNA Clone ID:”) provides the unique clone identifier for each clone as previously described and indicated in Tables IA, IB, and IC.
  • the third column (“AA SEQ ID NO:Y”) indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Tables IA, IB, and 2).
  • the fourth column (“Biological Activity”) indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides).
  • the fifth column (“Exemplary Activity Assay”) further describes the corresponding biological activity and provides information pertaining to the various types of assays that may be performed to test, demonstrate, or quantify the corresponding biological activity. Table ID describes the use of FMAT technology, inter alia, for testing or demonstrating various biological activities.
  • Fluorometric microvolume assay technology is a fluorescence-based system that provides a means to perform nonradioactive cell- and bead-based assays to detect activation of cell signal transduction pathways. This technology was designed specifically for ligand binding and immunological assays. Using this technology, fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using a data processing system. Unbound flurophore comprising the background signal is ignored, allowing for a wide variety of homogeneous assays. FMAT technology may be used for peptide ligand binding assays, immunofluorescence, apoptosis, cytotoxicity, and bead-based immunocapture assays.
  • FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides (including polypeptide fragments and variants) to activate signal transduction pathways.
  • FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides to upregulate production of immunomodulatory proteins (such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)).
  • immunomodulatory proteins such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)
  • Table ID also describes the use of kinase assays for testing, demonstrating, or quantifying biological activity.
  • the phosphorylation and de-phosphorylation of specific amino acid residues e.g. Tyrosine, Serine, Threonine
  • cell-signal transduction proteins provides a fast, reversible means for activation and de-activation of cellular signal transduction pathways.
  • cell signal transduction via phosphorylation de-phosphorylation is crucial to the regulation of a wide variety of cellular processes (e.g. proliferation, differentiation, migration, apoptosis, etc.).
  • kinase assays provide a powerful tool useful for testing, confirming, and/or identifying polypeptides (including polypeptide fragments and variants) that mediate cell signal transduction events via protein phosphorylation. See e.g., Forrer, P., Tamaskovic R., and Jaussi, R. "Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities" Biol. Chem. 379(8-9): 1101-1110 (1998).
  • Polynucleotides encoding polypeptides of the present invention can be used in assays to test for one or more biological activities.
  • One such biological activity which may be tested includes the ability of polynucleotides and polypeptides of the invention to stimulate up-regulation or down-regulation of expression of particular genes and proteins.
  • polynucleotides and polypeptides of the present invention exhibit activity in altering particular gene and protein expression patterns, it is likely that these polynucleotides and polypeptides of the present invention may be involved in, or capable of effecting changes in, diseases associated with the altered gene and protein expression profiles.
  • polynucleotides, polypeptides, or antibodies of the present invention could be used to treat said associated diseases.
  • TaqMan® assays may be performed to assess the ability of polynucleotides (and polypeptides they encode) to alter the expression pattern of particular "target" genes.
  • TaqMan® reactions are performed to evaluate the ability of a test agent to induce or repress expression of specific genes in different cell types.
  • TaqMan® gene expression quantification assays ('TaqMan® assays") are well known to, and routinely performed by, those of ordinary skill in the art.
  • TaqMan® assays are performed in a two step reverse transcription / polymerase chain reaction (RT-PCR). In the first (RT) step, cDNA is reverse transcribed from total RNA samples using random hexamer primers. In the second (PCR) step, PCR products are synthesized from the cDNA using gene specific primers.
  • RT-PCR reverse transcription / polymerase chain reaction
  • the Taqman® PCR reaction exploits the 5' nuclease activity of AmpliTaq Gold ® DNA Polymerase to cleave a Taqman® probe (distinct from the primers) during PCR.
  • the Taqman® probe contains a reporter dye at the 5 '-end of the probe and a quencher dye at the 3' end of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence.
  • the probe specifically anneals between the forward and reverse primer sites.
  • AmpliTaq Fold DNA Polymerase then cleaves the probe between the reporter and quencher when the probe hybridizes to the target, resulting in increased fluorescence of the reporter (see Figure 2). Accumulation of PCR products is detected directly by monitoring the increase in fluorescence of the reporter dye.
  • probe fragments are displaced from the target, polymerization of the strand continues.
  • the 3 '-end of the probe is blocked to prevent extension of the probe during PCR. This process occurs in every cycle and does not interfere with the exponential accumulation of product.
  • the increase in fluorescence signal is detected only if the target sequence is complementary to the probe and is amplified during PCR. Because of these requirements, any nonspecific amplification is not detected.
  • vector controls or constructs containing the coding sequence for the gene of interest are transfected into cells, such as for example 293T cells, and supernatants collected after 48 hours.
  • multiple primary human cells or human cell lines are used; such cells may include but are not limited to, Normal Human Dermal Fibroblasts, Aortic Smooth Muscle, Human Umbilical Vein Endothelial Cells, HepG2, Daudi, Jurkat, U937, Caco, and THP-1 cell lines.
  • Cells are plated in growth media and growth is arrested by culturing without media change for 3 days, or by switching cells to low serum media and incubating overnight. Cells are treated for 1, 6, or 24 hours with either vector control supernatant or sample supernatant (or purified/partially purified protein preparations in buffer).
  • Total RNA is isolated; for example, by using Trizol extraction or by using the Ambion RNAqueous(TM)-4PCR RNA isolation system. Expression levels of multiple genes are analyzed using TAQMAN, and expression in the test sample is compared to control vector samples to identify genes induced or repressed.
  • Table IE indicates particular disease classes and preferred indications for which polynucleotides, polypeptides, or antibodies of the present invention may be used in detecting, diagnosing, preventing, treating and/or ameliorating said diseases and disorders based on "target" gene expression patterns which may be up- or down-regulated by polynucleotides (and the encoded polypeptides) corresponding to each indicated cDNA Clone ID (shown in Table IE, Column 2).
  • the present invention encompasses a method of detecting, diagnosing, preventing, treating, and/or ameliorating a disease or disorder listed in the "Disease Class" and/or "Preferred Indication” columns of Table IE; comprising administering to a patient in which such detection, diagnosis, prevention, or treatment is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, diagnose, prevent, treat, or ameliorate the disease or disorder.
  • the first and second columns of Table ID show the "Gene No.” and "cDNA Clone ID No.”, respectively, indicating certain nucleic acids and proteins (or antibodies against the same) of the invention (including polynucleotide, polypeptide, and antibody fragments or variants thereof) that may be used in detecting, diagnosing, preventing, treating, or ameliorating the disease(s) or disorder(s) indicated in the corresponding row in the "Disease Class” or "Preferred Indication” Columns of Table IE.
  • the present invention also encompasses methods of detecting, diagnosing, preventing, treating, or ameliorating a disease or disorder listed in the "Disease Class” or "Preferred Indication” Columns of Table IE; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in the "Disease Class” or “Preferred Indication” Columns of Table IE.
  • the "Disease Class” Column of Table IE provides a categorized descriptive heading for diseases, disorders, and/or conditions (more fully described below) that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
  • the "Preferred Indication” Column of Table IE describes diseases, disorders, and/or conditions that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
  • Cell Line and “Exemplary Targets” Columns of Table IE indicate particular cell lines and target genes, respectively, which may show altered gene expression patterns (i.e., up- or down-regulation of the indicated target gene) in Taqman assays, performed as described above, utilizing polynucleotides of the cDNA Clone ID shown in the corresponding row. Alteration of expression patterns of the indicated “Exemplary Target” genes is correlated with a particular "Disease Class” and/or "Preferred Indication” as shown in the corresponding row under the respective column headings.
  • the "Exemplary Accessions” Column indicates GenBank Accessions (available online through the National Center for Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov/) which correspond to the "Exemplary Targets” shown in the adjacent row.
  • the recitation of "Cancer” in the “Disease Class” Column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof) may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate neoplastic diseases and/or disorders (e.g., leukemias, cancers, etc., as described below under “Hyperproliferative Disorders”).
  • the recitation of “Immune” in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), blood disorders (e.g., as described below under "Immune Activity” "Cardiovascular Disorders” and/or “Blood-Related Disorders”), and infections (e.g., as described below under "Infectious Disease”).
  • neoplastic diseases e.g., as described below under "Hyperproliferative Disorders”
  • blood disorders e.g., as described below under “Immune Activity” "Cardiovascular Disorders” and/or “Blood-Related Disorders”
  • infections e.g., as described below under "
  • Angiogenesis in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), diseases and/or disorders of the cardiovascular system (e.g., as described below under "Cardiovascular Disorders"), diseases and/or disorders involving cellular and genetic abnormalities (e.g., as described below under "Diseases at the Cellular Level"), diseases and/or disorders involving angiogenesis (e.g., as described below under "Anti- Angiogenesis Activity”), to promote or inhibit cell or tissue regeneration (e.g., as described below under “Regeneration”), or to promote wound healing (e.g., as described below under "Wound Healing and Epithelial Cell Proliferation”).
  • neoplastic diseases
  • Diabetes in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diabetes (including diabetes mellitus types I and II), as well as diseases and/or disorders associated with, or consequential to, diabetes (e.g. as described below under “Endocrine Disorders,” “Renal Disorders,” and “Gastrointestinal Disorders”).
  • Table 2 summarizes homology and features of some of the polypeptides of the invention.
  • the first column provides a unique clone identifier, "Clone ID:”, corresponding to a cDNA clone disclosed in Table IA or Table IB.
  • the second column provides the unique contig identifier, "Contig ID:” corresponding to contigs in Table IB and allowing for correlation with the information in Table IB.
  • the third column provides the sequence identifier, "SEQ ID NO:X”, for the contig polynucleotide sequence.
  • the fourth column provides the analysis method by which the homology/identity disclosed in the Table was determined.
  • NR non-redundant protein database
  • PFAM protein families
  • polypeptides of the invention comprise, or alternatively consist of, an amino acid sequence encoded by a polynucleotide in SEQ ID NO:X as delineated in columns 8 and 9, or fragments or variants thereof.
  • Table 3 provides polynucleotide sequences that may be disclaimed according to certain embodiments of the invention.
  • the first column provides a unique clone identifier, "Clone ID”, for a cDNA clone related to contig sequences disclosed in Table IB.
  • the second column provides the sequence identifier, "SEQ ID NO:X”, for contig sequences disclosed in Table IA and/or Table IB.
  • the third column provides the unique contig identifier, "Contig ID:”, for contigs disclosed in Table IB.
  • the fourth column provides a unique integer 'a' where 'a' is any integer between 1 and the final nucleotide minus 15 of SEQ ID NO:X
  • the fifth column provides a unique integer 'b' where 'b' is any integer between 15 and the final nucleotide of SEQ ID NO:X, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:X, and where b is greater than or equal to a + 14.
  • the uniquely defined integers can be substituted into the general formula of a-b, and used to describe polynucleotides which may be preferably excluded from the invention.
  • preferably excluded from the invention are at least one, two, three, four, five, ten, or more of the polynucleotide sequence(s) having the accession number(s) disclosed in the sixth column of this Table (including for example, published sequence in connection with a particular BAC clone).
  • preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone).
  • Table 4 provides a key to the tissue/cell source identifier code disclosed in Table IB.2, column 5.
  • Column 1 of Table 4 provides the tissue/cell source identifier code disclosed in Table IB.2, column 5.
  • Columns 2-5 provide a description of the tissue or cell source. Note that "Description” and “Tissue” sources (i.e. columns 2 and 3) having the prefix “a_” indicates organs, tissues, or cells derived from “adult” sources. Codes corresponding to diseased tissues are indicated in column 6 with the word “disease.” The use of the word “disease” in column 6 is non- limiting.
  • the tissue or cell source may be specific (e.g.
  • tissue/cell source is a library
  • column 7 identifies the vector used to generate the library.
  • Table 5 provides a key to the OMIM reference identification numbers disclosed in Table IB.l, column 9.
  • OMIM reference identification numbers (Column 1) were derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/).
  • Column 2 provides diseases associated with the cytologic band disclosed in Table IB.l, column 8, as determined using the Morbid Map database.
  • Table 6 summarizes some of the ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application. These deposits were made in addition to those described in the Table IA.
  • Table 7 shows the cDNA libraries sequenced, and ATCC designation numbers and vector information relating to these cDNA libraries.
  • the first column shows the first four letters indicating the Library from which each library clone was derived.
  • the second column indicates the catalogued tissue description for the corresponding libraries.
  • the third column indicates the vector containing the corresponding clones.
  • the fourth column shows the ATCC deposit designation for each libray clone as indicated by the deposit information in Table 6.
  • isolated refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered “by the hand of man” from its natural state.
  • an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be “isolated” because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide.
  • isolated does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.
  • a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.
  • a "polynucleotide” refers to a molecule having a nucleic acid sequence encoding SEQ ID NO:Y or a fragment or variant thereof (e.g., the polypeptide delinated in columns fourteen and fifteen of Table IA); a nucleic acid sequence contained in SEQ ID NO:X (as described in column 5 of Table IA and/or column 3 of Table IB) or the complement thereof; a cDNA sequence contained in Clone ID: (as described in column 2 of Table IA and/or Table IB and contained within a library deposited with the ATCC); a nucleotide sequence encoding the polypeptide encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 (EXON From-To) of Table IC or a fragment or variant thereof; or a nucleotide coding sequence in SEQ ID NO:B as defined in column 6 of Table IC or the complement thereof.
  • the polynucleotide can contain the nucleotide sequence of the full-length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence.
  • a "polypeptide” refers to a molecule having an amino acid sequence encoded by a polynucleotide of the invention as broadly defined (obviously excluding poly-Phenylalanine or poly-Lysine peptide sequences which result from translation of a polyA tail of a sequence corresponding to a cDNA).
  • SEQ ID NO:X was often generated by overlapping sequences contained in multiple clones (contig analysis).
  • a representative clone containing all or most of the sequence for SEQ ID NO:X is deposited at Human Genome Sciences, Inc. (HGS) in a catalogued and archived library.
  • HGS Human Genome Sciences, Inc.
  • each clone is identified by a cDNA Clone ID (identifier generally referred to herein as Clone ID:).
  • Clone ID identifier generally referred to herein as Clone ID:
  • Each Clone ID is unique to an individual clone and the Clone ED is all the information needed to retrieve a given clone from the HGS library.
  • Table 7 provides a list of the deposited cDNA libraries.
  • Table 7 lists the deposited cDNA libraries by name and links each library to an ATCC Deposit. Library names contain four characters, for example, "HTWE.” The name of a cDNA clone (Clone ID) isolated from that library begins with the same four characters, for example "HTWEP07".
  • Table IA and or Table IB correlates the Clone ID names with SEQ ID NO:X. Thus, starting with an SEQ ID NO:X, one can use Tables IA, IB, 6, 7, and 9 to determine the corresponding Clone ID, which library it came from and which ATCC deposit the library is contained in.
  • the ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA.
  • the ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.
  • the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length.
  • polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron.
  • the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
  • a "polynucleotide” of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, or the complement thereof (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments described herein), the polynucleotide sequence delineated in columns 7 and 8 of Table IA or the complement thereof, the polynucleotide sequence delineated in columns 8 and 9 of Table 2 or the complement thereof, and/or cDNA sequences contained in Clone ID: (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments, or the cDNA clone within the pool of cDNA clones deposited with the ATCC, described herein), and/or the polynucleotide sequence delineated in column 6 of Table IC or the complement thereof.
  • SEQ ID NO:X or the complement thereof
  • “Stringent hybridization conditions” refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 x SSC at about 65 degree C.
  • nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature.
  • washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).
  • blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations.
  • the inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility.
  • polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide,” since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using oligo dT as a primer).
  • polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA.
  • polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double- stranded regions.
  • polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA.
  • a polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons.
  • Modified bases include, for example, tritylated bases and unusual bases such as inosine.
  • a variety of modifications can be made to DNA and RNA; thus, "polynucleotide” embraces chemically, enzymatically, or metabolically modified forms.
  • the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length.
  • polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron.
  • the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
  • SEQ ID NO:X refers to a polynucleotide sequence described in column 5 of Table IA
  • SEQ ID NO:Y refers to a polypeptide sequence described in column 10 of Table IA
  • SEQ YD NO:X is identified by an integer specified in column 6 of Table 1 A.
  • the polypeptide sequence SEQ ED NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X.
  • the polynucleotide sequences are shown in the sequence listing immediately followed by all of the polypeptide sequences.
  • a polypeptide sequence corresponding to polynucleotide sequence SEQ ID NO:2 is the first polypeptide sequence shown in the sequence listing.
  • the second polypeptide sequence corresponds to the polynucleotide sequence shown as SEQ ID NO:3, and so on.
  • the polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids.
  • the polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini.
  • polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods.
  • Modifications include acetylation, acylation, ADP- ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination.
  • SEQ ED NO:X refers to a polynucleotide sequence described, for example, in Tables IA, Table IB, or Table 2, while “SEQ ED NO:Y” refers to a polypeptide sequence described in column 11 of Table 1 A and or Table IB. SEQ ID NO:X is identified by an integer specified in column 4 of Table IB. The polypeptide sequence SEQ TD NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X. "Clone ID:” refers to a cDNA clone described in column 2 of Table IA and/or IB.
  • a polypeptide having functional activity refers to a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein.
  • Such functional activities include, but are not limited to, biological activity (e.g. activity useful in treating, preventing and/or ameliorating allergic and/or asthmatic diseases and disorders), antigenicity (ability to bind [or compete with a polypeptide for binding] to an anti-polypeptide antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.
  • biological activity e.g. activity useful in treating, preventing and/or ameliorating allergic and/or asthmatic diseases and disorders
  • antigenicity ability to bind [or compete with a polypeptide for binding] to an anti-polypeptide antibody
  • immunogenicity ability to generate antibody which binds to a specific polypeptide of the invention
  • polypeptides of the invention can be assayed for functional activity (e.g. biological activity) using or routinely modifying assays known in the art, as well as assays described herein. Specifically, one of skill in the art may routinely assay secreted polypeptides (including fragments and variants) of the invention for activity using assays as described in the examples section below.
  • a polypeptide having biological activity refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency.
  • the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention.
  • Table IA summarizes information concerning certain polypnucleotides and polypeptides of the invention.
  • the first column provides the gene number in the application for each clone identifier.
  • the second column provides a unique clone identifier, "Clone ID:”, for a cDNA clone related to each contig sequence disclosed in Table IA.
  • Third column the cDNA Clones identified in the second column were deposited as indicated in the third column (i.e. by ATCC Deposit No:Z and deposit date). Some of the deposits contain multiple different clones corresponding to the same gene.
  • "Vector” refers to the type of vector contained in the corresponding cDNA Clone identified in the second column.
  • nucleotide sequence identified as "NT SEQ ID NO:X” was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones.
  • the overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X.
  • 'Total NT Seq.” refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X.”
  • the deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq.” (seventh column) and the "3' NT of Clone Seq.” (eighth column) of SEQ ID NO:X.
  • nucleotide position of SEQ ID NO:X of the putative start codon is identified as "5' NT of Start Codon.”
  • nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep.”
  • the translated amino acid sequence, beginning with the methionine is identified as "AA SEQ ID NO:Y,” although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
  • the first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep.”
  • the predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion”.
  • the amino acid position of SEQ ID NO: Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF”.
  • SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
  • SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention.
  • polypeptides identified from SEQ ED NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table IA and/or elsewhere herein
  • DNA sequences generated by sequencing reactions can contain sequencing errors.
  • the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
  • the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence.
  • the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
  • the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ED NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table IA.
  • the nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods
  • amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
  • Table IA Also provided in Table IA is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience.
  • pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene.
  • Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene
  • Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0 were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., Focus 75:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue.
  • Vector pCR ® 2.1 which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 76:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).
  • the present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ED
  • the corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
  • allelic variants, orthologs, and/or species homologs are also provided in the present invention. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X and SEQ ED NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC.
  • allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
  • the present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X and/or a cDNA contained in ATCC Deposit No.Z.
  • the present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ D NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z.
  • Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ED NO:Y, a polypeptide encoded by SEQ ED NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention.
  • the present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.
  • the first column in Table IB.l and Table IB.2 provides the gene number in the application corresponding to the clone identifier.
  • the second column in Table IB.l and Table IB.2 provides a unique "Clone ID:" for the cDNA clone related to each contig sequence disclosed in Table IB.l and Table 1B.2.
  • This clone ID references the cDNA clone which contains at least the 5' most sequence of the assembled contig and at least a portion of SEQ ID NO:X as determined by directly sequencing the referenced clone.
  • the referenced clone may have more sequence than described in the sequence listing or the clone may have less.
  • a full-length cDNA can be obtained by methods described elsewhere herein.
  • the third column in Table IB.l and Table 1B.2 provides a unique "Contig ID” identification for each contig sequence.
  • the fourth column in Table IB.l and Table 1B.2 provides the "SEQ ID NO:" identifier for each of the contig polynucleotide sequences disclosed in Table IB.
  • Table IB.l The fifth column in Table IB.l, "ORF (From-To)", provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence "SEQ ID NO:X” that delineate the preferred open reading frame (ORF) shown in the sequence listing and referenced in Table IB.l, column 6, as SEQ ID NO:Y. Where the nucleotide position number "To" is lower than the nucleotide position number "From", the preferred ORF is the reverse complement of the referenced polynucleotide sequence.
  • the sixth column in Table IB.l provides the corresponding SEQ ID NO:Y for the polypeptide sequence encoded by the preferred ORF delineated in column 5.
  • the invention provides an amino acid sequence comprising, or alternatively consisting of, a polypeptide encoded by the portion of SEQ ID NO:X delineated by "ORF (From- To)". Also provided are polynucleotides encoding such amino acid sequences and the complementary strand thereto.
  • Column 7 in Table IB.l lists residues comprising epitopes contained in the polypeptides encoded by the preferred ORF (SEQ ID NO:Y), as predicted using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4:181-186.
  • polypeptides of the invention comprise, or alternatively consist of, at least one, two, three, four, five or more of the predicted epitopes as described in Table IB. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
  • Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database. Each sequence in the UniGene database is assigned to a "cluster"; all of the ESTs, cDNAs, and STSs in a cluster are believed to be derived from a single gene. Chromosomal mapping data is often available for one or more sequence(s) in a UniGene cluster; this data (if consistent) is then applied to the cluster as a whole. Thus, it is possible to infer the chromosomal location of a new polynucleotide sequence by determining its identity with a mapped UniGene cluster.
  • a modified version of the computer program BLASTN (Altshul, et al., J. Mol. Biol. 215:403-410 (1990), and Gish, and States, Nat. Genet. 3:266-272) (1993) was used to search the UniGene database for EST or cDNA sequences that contain exact or near-exact matches to a polynucleotide sequence of the invention (the 'Query').
  • a sequence from the UniGene database (the 'Subject') was said to be an exact match if it contained a segment of 50 nucleotides in length such that 48 of those nucleotides were in the same order as found in the Query sequence.
  • a presumptive chromosomal location was determined for a polynucleotide of the invention, an associated disease locus was identified by comparison with a database of diseases which have been experimentally associated with genetic loci.
  • the database used was the Morbid Map, derived from OMIMTM and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD) 2000;. If the putative chromosomal location of a polynucleotide of the invention (Query sequence) was associated with a disease in the Morbid Map database, an OMIM reference identification number was noted in column 9, Table IB.l, labelled "OMIM Disease Reference(s). Table 5 is a key to the OMIM reference identification numbers (column 1), and provides a description of the associated disease in Column 2. Table 1B.2
  • Table 1B.2 provides an expression profile and library codexount for each of the contig sequences (SEQ ID NO:X) disclosed in Table IB, which can routinely be combined with the information provided in Table 4 and used to determine the tissues, cells, and/or cell line libraries which predominantly express the polynucleotides of the invention.
  • the second number in column 5 represents the number of times a sequence corresponding to the reference polynucleotide sequence was identified in the corresponding tissue/cell source.
  • tissue/cell source identifier codes in which the first two letters are "AR" designate information generated using DNA array technology.
  • cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array.
  • cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33 P dCTP, using oligo (dT) to prime reverse transcription. After hybridization, high stringency washing conditions were employed to remove non-specific hybrids from the array. The remaining signal, emanating from each gene target, was measured using a Phosphorimager.
  • Phosphor Stimulating Luminescence which reflects the level of phosphor signal generated from the probe hybridized to each of the gene targets represented on the array.
  • a local background signal subtraction was performed before the total signal generated from each array was used to normalize gene expression between the different hybridizations.
  • the value presented after "[array code]:” represents the mean of the duplicate values, following background subtraction and probe normalization.
  • One of skill in the art could routinely use this information to identify normal and/or diseased tissue(s) which show a predominant expression pattern of the corresponding polynucleotide of the invention or to identify polynucleotides which show predominant and/or specific tissue and/or cell expression.
  • AR254:26 A 264.22, AR248:18, AR251:17, AR240:17, AR313:16, AR268:14, AR272:13, AR290:13, AR311:13, AR310:13, AR177:13, AR180:13, AR246:13, AR245:10, AR250:10, AR309:10, AR275:10, AR183:9, AR247:9, AR274:9, AR312:9, AR039:9, AR308:9, AR269:9, AR271:8, AR179:8, AR270:8, AR267:8, AR316:7, AR198:7, AR252:7, AR244:7, AR243:7, AR175:6, A 193:6, AR195:6, AR165:6, AR299:6, AR192:6, AR166:6, A 201:6, AR164:6, AR162:6, AR161:6, AR242:6, AR163:6, AR273:6, AR300:
  • HDPC025 460682 46 AR060:2, AR055:2, AR282:2 H0521:2, H0445:2, H0394:l, H0747:l, H0581:l, L0761:l and L0750:l.
  • Table IC summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ ID NO:B).
  • the first column provides a unique clone identifier, "Clone ID:”, for a cDNA clone related to each contig sequence.
  • the second column provides the sequence identifier, "SEQ ID NO:X”, for each contig sequence.
  • the third column provides a unique contig identifier, "Contig ID:” for each contig sequence.
  • the fourth column provides a BAC identifier "BAC ID NO:A” for the BAC clone referenced in the corresponding row of the table.
  • the fifth column provides the nucleotide sequence identifier, "SEQ ID NO:B" for a fragment of the BAC clone identified in column four of the corresponding row of the table.
  • the sixth column "Exon From- To" provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides of the invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
  • the polynucleotides or polypeptides, or agonists or antagonists of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists could be used to treat the associated disease.
  • the present invention encompasses methods of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating a disease or disorder.
  • the present invention encompasses a method of treating an allergic and/or asthmatic disease or disorder comprising administering to a patient in which such detection, treatment, prevention, and/or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate the allergic and/or asthmatic disease or disorder.
  • the present invention also encompasses methods of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating an allergic and/or asthmatic disease or disorder; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in Column 3 of Table ID.
  • Table ID provides information related to biological activities for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information related to assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities.
  • the first column (“Gene No.") provides the gene number in the application for each clone identifier.
  • the second column (“cDNA Clone ED:”) provides the unique clone identifier for each clone as previously described and indicated in Table IA through Table ID.
  • the third column (“AA SEQ ED NO:Y”) indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Tables IA, Table IB, and Table 2).
  • the fourth column (“Biological Activity”) indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides).
  • the fifth column (“Exemplary Activity Assay”) further describes the corresponding biological activity and also provides information pertaining to the various types of assays that may be performed to test, demonstrate, or quantify the corresponding biological activity.
  • Fluorometric microvolume assay technology is a fluorescence-based system that provides a means to perform nonradioactive cell- and bead-based assays to detect activation of cell signal transduction pathways. This technology was designed specifically for ligand binding and immunological assays. Using this technology, fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using a data processing system. Unbound flurophore comprising the background signal is ignored, allowing for a wide variety of homogeneous assays.
  • FMAT technology may be used for peptide ligand binding assays, immunofluorescence, apoptosis, cytotoxicity, and bead-based immunocapture assays. See, Miraglia S et. al., "Homogeneous cell and bead based assays for highthroughput screening using flourometric microvolume assay technology," Journal of Biomolecular Screening; 4: 193-204 (1999).
  • FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides (including polypeptide fragments and variants) to activate signal transduction pathways.
  • FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides to upregulate production of immunomodulatory proteins (such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)).
  • immunomodulatory proteins such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)
  • Table ID also describes the use of kinase assays for testing, demonstrating, or quantifying biological activity.
  • the phosphorylation and de-phosphorylation of specific amino acid residues (e.g. Tyrosine, Serine, Threonine) on cell-signal transduction proteins provides a fast, reversible means for activation and de-activation of cellular signal transduction pathways.
  • kinase assays provide a powerful tool useful for testing, confirming, and/or identifying polypeptides (including polypeptide fragments and variants) that mediate cell signal transduction events via protein phosphorylation. See e.g., Forrer, P., Tamaskovic R., and Jaussi, R. "Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities" Biol. Chem. 379(8-9): 1101-1110 (1998).
  • Polynucleotides encoding polypeptides of the present invention can be used in assays to test for one or more biological activities.
  • One such biological activity which may be tested includes the ability of polynucleotides and polypeptides of the invention to stimulate up-regulation or down-regulation of expression of particular genes and proteins.
  • polynucleotides and polypeptides of the present invention exhibit activity in altering particular gene and protein expression patterns, it is likely that these polynucleotides and polypeptides of the present invention may be involved in, or capable of effecting changes in, diseases associated with the altered gene and protein expression profiles.
  • polynucleotides, polypeptides, or antibodies of the present invention could be used to treat said associated diseases.
  • TaqMan® assays may be performed to assess the ability of polynucleotides (and polypeptides they encode) to alter the expression pattern of particular "target" genes.
  • TaqMan® reactions are performed to evaluate the ability of a test agent to induce or repress expression of specific genes in different cell types.
  • TaqMan® gene expression quantification assays (“TaqMan® assays") are well known to, and routinely performed by, those of ordinary skill in the art.
  • TaqMan® assays are performed in a two step reverse transcription / polymerase chain reaction (RT-PCR). In the first (RT) step, cDNA is reverse transcribed from total RNA samples using random hexamer primers. In the second (PCR) step, PCR products are synthesized from the cDNA using gene specific primers.
  • the Taqman® PCR reaction exploits the 5' nuclease activity of AmpliTaq Gold ® DNA Polymerase to cleave a Taqman® probe (distinct from the primers) during PCR.
  • the Taqman® probe contains a reporter dye at the 5 '-end of the probe and a quencher dye at the 3' end of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence.
  • the probe specifically anneals between the forward and reverse primer sites.
  • AmpliTaq Fold DNA Polymerase then cleaves the probe between the reporter and quencher when the probe hybridizes to the target, resulting in increased fluorescence of the reporter (see Figure 2). Accumulation of PCR products is detected directly by monitoring the increase in fluorescence of the reporter dye.
  • vector controls or constructs containing the coding sequence for the gene of interest are transfected into cells, such as for example 293T cells, and supematants collected after 48 hours.
  • cells such as for example 293T cells, and supematants collected after 48 hours.
  • multiple primary human cells or human cell lines are used; such cells may include but are not limited to, Normal Human Dermal Fibroblasts, Aortic Smooth Muscle, Human Umbilical Vein Endothelial Cells, HepG2, Daudi, Jurkat, U937, Caco, and THP-1 cell lines.
  • Cells are plated in growth media and growth is arrested by culturing without media change for 3 days, or by switching cells to low serum media and incubating overnight.
  • RNA is isolated; for example, by using Trizol extraction or by using the Ambion RNAqueous(TM)-4PCR RNA isolation system. Expression levels of multiple genes are analyzed using TAQMAN, and expression in the test sample is compared to control vector samples to identify genes induced or repressed.
  • Table IE indicates particular disease classes and preferred indications for which polynucleotides, polypeptides, or antibodies of the present invention may be used in detecting, diagnosing, preventing, treating and/or ameliorating said diseases and disorders based on "target" gene expression patterns which may be up- or down-regulated by polynucleotides (and the encoded polypeptides) corresponding to each indicated cDNA Clone ID (shown in Table IE, Column 2).
  • the present invention encompasses a method of detecting, diagnosing, preventing, treating, and/or ameliorating a disease or disorder listed in the "Disease Class" and/or "Preferred Indication” columns of Table IE; comprising administering to a patient in which such detection, diagnosis, prevention, or treatment is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, diagnose, prevent, treat, or ameliorate the disease or disorder.
  • the first and second columns of Table ID show the "Gene No.” and "cDNA Clone ID No.”, respectively, indicating certain nucleic acids and proteins (or antibodies against the same) of the invention (including polynucleotide, polypeptide, and antibody fragments or variants thereof) that may be used in detecting, diagnosing, preventing, treating, or ameliorating the disease(s) or disorder(s) indicated in the corresponding row in the "Disease Class” or "Preferred Indication” Columns of Table IE.
  • the present invention also encompasses methods of detecting, diagnosing, preventing, treating, or ameliorating a disease or disorder listed in the "Disease Class” or "Preferred Indication” Columns of Table IE; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in the "Disease Class” or “Preferred Indication” Columns of Table IE.
  • the "Disease Class" Column of Table IE provides a categorized descriptive heading for diseases, disorders, and/or conditions (more fully described below) that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
  • the "Preferred Indication" Column of Table IE describes diseases, disorders, and/or conditions that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
  • Cell Line and “Exemplary Targets” Columns of Table IE indicate particular cell lines and target genes, respectively, which may show altered gene expression patterns (i.e., up- or down-regulation of the indicated target gene) in Taqman assays, performed as described above, utilizing polynucleotides of the cDNA Clone ID shown in the corresponding row. Alteration of expression patterns of the indicated “Exemplary Target” genes is correlated with a particular "Disease Class” and/or "Preferred Indication” as shown in the corresponding row under the respective column headings.
  • Cancer in the "Disease Class” Column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof) may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate neoplastic diseases and/or disorders (e.g., leukemias, cancers, etc., as described below under “Hyperproliferative Disorders”).
  • neoplastic diseases and/or disorders e.g., leukemias, cancers, etc., as described below under “Hyperproliferative Disorders”
  • the recitation of “Immune” in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), blood disorders (e.g., as described below under "Immune Activity” "Cardiovascular Disorders” and/or “Blood-Related Disorders”), and infections (e.g., as described below under 'Infectious Disease”).
  • neoplastic diseases e.g., as described below under "Hyperproliferative Disorders”
  • blood disorders e.g., as described below under "Immune Activity” "Cardiovascular Disorders” and/or “Blood-Related Disorders”
  • infections e.g., as described below under
  • Angiogenesis in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), diseases and/or disorders of the cardiovascular system (e.g., as described below under "Cardiovascular Disorders"), diseases and/or disorders involving cellular and genetic abnormalities (e.g., as described below under "Diseases at the Cellular Level"), diseases and/or disorders involving angiogenesis (e.g., as described below under "Anti-Angiogenesis Activity”), to promote or inhibit cell or tissue regeneration (e.g., as described below under “Regeneration”), or to promote wound healing (e.g., as described below under "Wound Healing and Epithelial Cell Proliferation”).
  • neoplastic diseases
  • Diabetes in the "Disease Class” column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diabetes (including diabetes mellitus types I and II), as well as diseases and/or disorders associated with, or consequential to, diabetes (e.g. as described below under “Endocrine Disorders,” “Renal Disorders,” and “Gastrointestinal Disorders”).
  • Table 2 further characterizes certain encoded polypeptides of the invention, by providing the results of comparisons to protein and protein family databases.
  • the first column provides a unique clone identifier, "Clone ID NO:”, corresponding to a cDNA clone disclosed in Table IA and/or Table IB.
  • the second column provides the unique contig identifier, "Contig ID:” which allows correlation with the information in Table IB.
  • the third column provides the sequence identifier, "SEQ ED NO:”, for the contig polynucleotide sequences.
  • the fourth column provides the analysis method by which the homology/identity disclosed in the Table was determined.
  • the - fifth column provides a description of the PFAM/NR hit identified by each analysis.
  • NR non-redundant protein database
  • PFAM protein families
  • each of the polynucleotides shown in Table IB, column 3 was used to search against the NR database.
  • the computer program BLASTX was used to compare a 6-frame translation of the Query sequence to the NR database (for information about the BLASTX algorithm please see Altshul et al., J. Mol. Biol. 215:403-410 (1990), and Gish and States, Nat. Genet. 3:266-272 (1993).
  • a description of the sequence that is most similar to the Query sequence (the highest scoring 'Subject') is shown in column five of Table 2 and the database accession number for that sequence is provided in column six.
  • the highest scoring 'Subject' is reported in Table 2 if (a) the estimated probability that the match occurred by chance alone is less than l.Oe- 07, and (b) the match was not to a known repetitive element.
  • BLASTX returns alignments of short polypeptide segments of the Query and Subject sequences that share a high degree of similarity; these segments are known as High-Scoring Segment Pairs or HSPs.
  • Table 2 reports the degree of similarity between the Query and the Subject for each HSP as a percent identity in Column 7. The percent identity is determined by dividing the number of exact matches between the two aligned sequences in the HSP, dividing by the number of Query amino acids in the HSP and multiplying by 100.
  • the polynucleotides of SEQ ID NO:X which encode the polypeptide sequence that generates an HSP are delineated by columns 8 and 9 of Table 2.
  • the PFAM database PFAM version 2.1, (Sonnhammer, Nucl. Acids Res., 26:320-322, , 1998)) consists of a series of multiple sequence alignments; one alignment for each protein family. Each multiple sequence alignment is converted into a probability model called a Hidden Markov Model, or HMM, that represents the position-specific variation among the sequences that make up the multiple sequence alignment (see, e.g., Durbin, et al., Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge University Press, 1998 for the theory of HMMs).
  • HMM Hidden Markov Model
  • HMMER version 1.8 (Sean Eddy, Washington University in Saint Louis) was used to compare the predicted protein sequence for each Query sequence (SEQ ID NO:Y in Table IB) to each of the HMMs derived from PFAM version 2.1.
  • a HMM derived from PFAM version 2.1 was said to be a significant match to a polypeptide of the invention if the score returned by HMMER 1.8 was greater than 0.8 times the HMMER 1.8 score obtained with the most distantly related known member of that protein family.
  • the description of the PFAM family which shares a significant match with a polypeptide of the invention is listed in column 5 of Table 2, and the database accession number of the PFAM hit is provided in column 6.
  • Column 7 provides the score returned by HMMER version 1.8 for the alignment.
  • Columns 8 and 9 delineate the polynucleotides of SEQ ID NO:X which encode the polypeptide sequence which show a significant match to a PFAM protein family.
  • the invention provides a protein comprising, or alternatively consisting of, a polypeptide encoded by the polynucleotides of SEQ ID NO:X delineated in columns 8 and 9 of Table 2. Also provided are polynucleotides encoding such proteins, and the complementary strand thereto.
  • nucleotide sequence SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below.
  • the nucleotide sequences of SEQ ID NO:X are useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in ATCC Deposit No:Z. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling immediate applications in chromosome mapping, linkage analysis, tissue identification and/or typing, and a variety of forensic and diagnostic methods of the invention.
  • polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to these polypeptides, or fragments thereof, and/or to the polypeptides encoded by the cDNA clones identified in, for example, Table IA and/or IB.
  • DNA sequences generated by sequencing reactions can contain sequencing errors.
  • the errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence.
  • the erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence, hi these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
  • the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and a predicted translated amino acid sequence identified as SEQ ED NO:Y, but also a sample of plasmid DNA containing cDNA ATCC Deposit No:Z (e.g., as set forth in columns 2 and 3 of Table IA and/or as set forth, for example, in Table IB, 6, and 7).
  • the nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. Further, techniques known in the art can be used to verify the nucleotide sequences of SEQ ID NO:X.
  • amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
  • Partial cDNA clones can be made full-length by utilizing the rapid amplification of cDNA ends (RACE) procedure described in Frohman, M.A., et al., Proc. Nat'l. Acad. Sci. USA, 85:8998- 9002 (1988).
  • RACE rapid amplification of cDNA ends
  • RNA Poly A+ or total RNA is reverse transcribed with Superscript II (Gibco/BRL) and an antisense or complementary primer specific to the cDNA sequence.
  • the primer is removed from the reaction with a Microcon Concentrator (Amicon).
  • the first-strand cDNA is then tailed with dATP and terminal deoxynucleotide transferase (Gibco/BRL).
  • the second strand is synthesized from the dA-tail in PCR buffer, Taq DNA polymerase (Perkin-Elmer Cetus), an oligo-dT primer containing three adjacent restriction sites (Xhol, Sail and Clal) at the 5' end and a primer containing just these restriction sites.
  • This double-stranded cDNA is PCR amplified for 40 cycles with the same primers as well as a nested cDNA-specific antisense primer.
  • the PCR products are size-separated on an ethidium bromide-agarose gel and the region of gel containing cDNA products the predicted size of missing protein-coding DNA is removed.
  • cDNA is purified from the agarose with the Magic PCR Prep kit (Promega), restriction digested with Xhol or Sail, and ligated to a plasmid such as pBluescript SKEI (Stratagene) at Xhol and EcoRV sites.
  • This DNA is transformed into bacteria and the plasmid clones sequenced to identify the correct protein-coding inserts. Correct 5' ends are confirmed by comparing this sequence with the putatively identified homologue and overlap with the partial cDNA clone. Similar methods known in the art and/or commercial kits are used to amplify and recover 3' ends.
  • kits are commercially available for purchase. Similar reagents and methods to those above are supplied in kit form from Gibco/BRL for both 5' and 3' RACE for recovery of full-length genes.
  • a second kit is available from Clontech, which is a modification of a related technique, SLIC (single-stranded ligation to single-stranded cDNA), developed by Dumas et al., Nucleic Acids Res., 19:5227-32 (1991).
  • SLIC single-stranded ligation to single-stranded cDNA
  • the major differences in procedure are that the RNA is alkaline hydrolyzed after reverse transcription and RNA ligase is used to join a restriction site-containing anchor primer to the first-strand cDNA. This obviates the necessity for the dA-tailing reaction that results in a polyT stretch that is difficult to sequence past.
  • An alternative to generating 5' or 3' cDNA from RNA is to use cDNA library double- stranded DNA.
  • An asymmetric PCR-amplified antisense cDNA strand is synthesized with an antisense cDNA-specific primer and a plasmid-anchored primer. These primers are removed and a symmetric PCR reaction is performed with a nested cDNA-specific antisense primer and the plasmid-anchored primer.
  • RNA Ligase Protocol For Generating The 5 ' or 3' End Sequences To Obtain Full Length Genes
  • several methods are available for the identification of the 5' or 3' portions of the gene that may not be present in the original cDNA plasmid. These methods include, but are not limited to, filter probing, clone enrichment using specific probes and protocols similar and identical to 5' and 3' RACE. While the full-length gene may be present in the library and can be identified by probing, a useful method for generating the 5' or 3' end is to use the existing sequence information from the original cDNA to generate the missing information. A method similar to 5' RACE is available for generating the missing 5' end of a desired full-length gene.
  • RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcript and a primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest, is used to PCR amplify the 5' portion of the desired full length gene which may then be sequenced and used to generate the full length gene.
  • This method starts with total RNA isolated from the desired source, poly A RNA may be used but is not a prerequisite for this procedure.
  • RNA preparation may then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA, which may interfere with the later RNA ligase step.
  • the phosphatase if used is then inactivated and the RNA is treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs.
  • This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase.
  • This modified RNA preparation can then be used as a template for first strand cDNA synthesis using a gene specific oligonucleotide.
  • the first strand synthesis reaction can then be used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest.
  • the resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the relevant gene.
  • the present invention also relates to vectors or plasmids, which include such DNA sequences, as well as the use of the DNA sequences.
  • the material deposited with the ATCC (e.g., as described in columns 2 and 3 of Table IA, and/or as set forth in Table IB, Table 6, or Table 7) is a mixture of cDNA clones derived from a variety of human tissue and cloned in either a plasmid vector or a phage vector, as described, for example, in Table IA and Table 7. These deposits are referred to as "the deposits" herein.
  • the tissues from which some of the clones were derived are listed in Table 7, and the vector in which the corresponding cDNA is contained is also indicated in Table 7.
  • the deposited material includes cDNA clones corresponding to SEQ ED NO:X described, for example, in Table IA and/or Table IB (ATCC Deposit No:Z).
  • a clone which is isolatable from the ATCC Deposits by use of a sequence listed as SEQ ID NO:X may include the entire coding region of a human gene or in other cases such clone may include a substantial portion of the coding region of a human gene.
  • sequence listing may in some instances list only a portion of the DNA sequence in a clone included in the ATCC Deposits, it is well within the ability of one skilled in the art to sequence the DNA included in a clone contained in the ATCC Deposits by use of a sequence (or portion thereof) described in, for example Tables IA and/or Table IB or Table 2, by procedures hereinafter further described, and others apparent to those skilled in the art.
  • Table IA and Table 7 are also provided in Table IA and Table 7.
  • Vectors Lambda Zap U.S. Patent Nos. 5,128,256 and 5,286,636
  • Uni-Zap XR U.S.
  • Patent Nos. 5,128, 256 and 5,286,636 Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 76:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037.
  • Phagemid pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene.
  • Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene.
  • Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0 were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E, et al., Focus 15:59- (1993). Vector lafrnid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue.
  • Vector pCR ® 2.1 which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 7(5:9677-9686 (1988) and Mead, D. et al, Bio/Technology 9: (1991).
  • the present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ED NO:Y, and/or the deposited clone (ATCC Deposit No:Z).
  • the corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
  • allelic variants, orthologs, and/or species homologs are also provided in the present invention. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ED NO:X or the complement thereof, polypeptides encoded by genes corresponding to SEQ ID NO:X or the complement thereof, and/or the cDNA contained in ATCC Deposit No:Z, using information from the sequences disclosed herein or the clones deposited with the ATCC.
  • allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
  • polypeptides of the invention can be prepared in any suitable manner.
  • Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
  • polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro- sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.
  • polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified.
  • a recombinantly produced version of a polypeptide, including the secreted polypeptide can be substantially purified using techniques described herein or otherwise known in the art, such as, for example, by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988).
  • Polypeptides of the invention also can be purified from natural, synthetic or recombinant sources using techniques described herein or otherwise known in the art, such as, for example, antibodies of the invention raised against the polypeptides of the present invention in methods which are well known in the art.
  • the present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ED NO:X, and/or the cDNA sequence contained in ATCC Deposit No:Z.
  • the present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ED NO:X or a complement thereof, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or the polypeptide sequence encoded by a nucleotide sequence in SEQ ED NO:B as defined in column 6 of Table IC.
  • Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ED NO:X, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or a polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IC are also encompassed by the invention.
  • the present invention further encompasses a polynucleotide comprising, or alternatively consisting of, the complement of the nucleic acid sequence of SEQ ED NO:X, a nucleic acid sequence encoding a polypeptide encoded by the complement of the nucleic acid sequence of SEQ ED NO:X, and/or the cDNA contained in ATCC Deposit No:Z.
  • representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in Table IC column 6, or any combination thereof.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in Table IC column 6, or any combination thereof.
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ED NO:B (see Table IC, column 5).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ED NO:A (see Table IC, column 4). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ED NO:A (see Table IC, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
  • representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC which correspond to the same Clone ID (see Table IC, column 1), or any combination thereof.
  • Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in column 6 of Table IC which correspond to the same Clone ID (see Table IC, column 1), or any combination thereof.
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same Clone ID (see Table IC, column 1) and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ED NO:B (see Table IC, column 5).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same Clone 3D (see Table IC, column 1) and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IC, column 4).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same Clone ED (see Table IC, column 1) and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IC, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
  • representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ID NO:X (see Table IC, column 2), or any combination thereof.
  • Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2), or any combination thereof.
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2) and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IC, column 5).
  • polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2) and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ED NO:A (see Table IC, column 4).
  • the above- described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2) and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ED NO:A (See Table IC, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
  • representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in the same row of Table IC column 6, or any combination thereof.
  • Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in the same row of Table IC column 6, or any combination thereof.
  • the polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in the same row of Table IC column 6, wherein sequentially delineated sequences in the table (i.e. corresponding to those exons located closest to each other) are directly contiguous in a 5' to 3' orientation.
  • above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IC, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IC, column 5).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IC, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ED NO:A (see Table IC, column 4).
  • the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IC, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IC, column 4).
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IC, column 2) or fragments or variants thereof.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC which correspond to the same Clone ED (see Table IC, column 1), and the polynucleotide sequence of SEQ ED NO:X (e.g., as defined in Table IA, Table IB, or Table IC) or fragments or variants thereof, hi preferred embodiments, the delineated sequence(s) and polynucleotide sequence of SEQ ED NO:X correspond to the same Clone ID.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in the same row of column 6 of Table IC, and the polynucleotide sequence of SEQ ED NO:X (e.g., as defined in Table IA, Table IB, or Table IC) or fragments or variants thereof.
  • the delineated sequence(s) and polynucleotide sequence of SEQ ED NO:X correspond to the same row of column 6 of Table IC.
  • Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3 ' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of the sequence of SEQ ID NO:X are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X are directly contiguous Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IC are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IC are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides, are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 corresponding to the same Clone ED (see Table IC, column 1) are directly contiguous. Nucleic acids that hybridize to the complement of these 20 lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one sequence in column 6 corresponding to the same contig sequence identifer SEQ ED NO:X (see Table IC, column 2) are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 corresponding to the same row are directly contiguous.
  • the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC is directly contiguous with the 5' 10 polynucleotides of the next sequential exon delineated in Table IC, column 6.
  • Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention.
  • Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
  • polynucleotide sequences such as EST sequences, are publicly available and accessible through sequence databases and may have been publicly available prior to conception of the present invention.
  • such related polynucleotides are specifically excluded from the scope of the present invention. Accordingly, for each contig sequence (SEQ ID NO:X) listed in the fifth column of Table IA and/or the fourth column of Table IB, preferably excluded are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b.
  • a is any integer between 1 and the final nucleotide minus 15 of SEQ ED NO:X
  • b is an integer of 15 to the final nucleotide of SEQ ID NO:X, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:X, and where b is greater than or equal to a + 14. More specifically, preferably excluded are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a and b are integers as defined in columns 4 and 5, respectively, of Table 3.
  • the polynucleotides of the invention do not consist of at least one, two, three, four, five, ten, or more of the specific polynucleotide sequences referenced by the Genbank Accession No. as disclosed in column 6 of Table 3 (including for example, published sequence in connection with a particular BAC clone), hi further embodiments, preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone). In no way is this listing meant to encompass all of the sequences that may be excluded by the general formula; it is just a representative example. AU references available through these accessions are hereby incorporated by reference in their entirety.
  • HBJJU28 29 561723 1 - 1146 15 - 1160 AI090576, T74524, AA572813, AI287766, BF821897, AL037632, BF725844, BF821009, AI619742, AI890348, AI821901, AA513551, AI473995, AA720702, BE138484, AI281881, AF001965.2, AC0103197, AC007182.3, AC007956.5, AL138996.4, AL049553.20, AL121655.1,

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Pulmonology (AREA)
  • Diabetes (AREA)
  • Immunology (AREA)
  • Obesity (AREA)
  • Genetics & Genomics (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

The present invention relates to human secreted polypeptides, and isolated nucleic acid molecules encoding said polypeptides, useful for diagnosing and treating allergic and asthmatic disorders. Antibodies that bind these polypeptides are also encompassed by the present invention. Also encompassed by the invention are vectors, host cells, and recombinant and synthetic methods for producing said polypeptides, and/or antibodies. The invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention. The present invention further encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.

Description

Human Secreted Proteins
Field of the Invention
The present invention relates to human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and asthmatic diseases and disorders. Antibodies that bind these polypeptides are also encompassed by the present invention. Also encompassed by the invention are vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and/or antibodies. The invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention. The present invention further encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.
Background of the Invention
The immune system is an intricate network of cells, tissues and soluble molecules that function to protect the body from invasion by foreign substances and pathogens. The major cells of the immune system are lymphocytes, including B cells and T cells, and myeloid cells, including basophils, eosinophils, neutrophils, mast cells, monocytes, macrophages and dendritic cells. In addition to these cellular components of the immune system, soluble molecules- such as antibodies, complement proteins, and cytokines- circulate in lymph and blood plasma, and play important roles in immunity. The immune system can be subdivided into the acquired and innate immune systems. The cells of the innate immune system (e.g., neutrophils, eosinophils, basophils, mast cells) are not antigen specific and their action is not enhanced by repeated exposure to the same antigen. The cells of the acquired immune system (B and T cells) are antigen specific. Repeated exposure of B and T cells to an antigen results in improved immune responses (memory responses) produced by these cell types. The cells and products of the acquired immune system can recruit components of the innate system to mount a focused immune response. For a more extensive review of the immune system, see Fundamental Immunology. 4th edition, Ed. William Paul, Lippincott-Raven Pub. (1998).
An immune response is seldom carried out by a single cell type, but rather requires the coordinated efforts of several cell types. In order to coordinate an immune response, it is necessary that cells of the immune system communicate with each other and with other cells of the body. Communication between cells may be made by cell-cell contact, between membrane bound molecules on each cell, or by the interaction of soluble components of the immune system with cellular receptors. Signaling between cell types may have one or more of a variety of consequences, including activation, proliferation, differentiation, and apoptosis. Activation and differentiation of immune cells may result in the expression or secretion of polypeptides, or other molecules, which in turn affect the function of other cells and/or molecules of the immune system. The genes and proteins associated with this coordinated immune response are essential for the proper regulation and functioning of the immune system. Dysregulation of immune system- related genes and proteins may result in a variety of diseases and/or disorders, including immediate hypersensitivity diseases. Immediate hypersensitivity diseases, such as asthma, hay fever, and allergic conjunctivitis, are characterized by similar physiological mechanisms and generally are initiated by environmental antigens (e.g. pollen, dust, or molds). Patients suffering from the effects of these disorders are predisposed to react to specific external antigens. When these antigens contact certain tissues, such as ocular, nasal, or lung tissues, those tissues initiate an immune response and produce undesirable and frequently life-threatening symptoms. Over 35 million Americans suffer from allergic disorders, such as seasonal allergic rhinitis (hay fever), and asthma affects about 10 million Americans. These conditions are not only becoming more common but also more serious, with more people being hospitalized. Molecules that stimulate or suppress immune system function are known as immunomodulators. These molecules, which include endogenous proteins (e.g., cytokines, cytokine receptors, and intracellular signal transduction molecules), molecules derived from microorganisms, and synthetic agents, may exert their modulatory effects at one or more stages of the immune response, such as antigen recognition, stimulation of cytokine production and release, and/or activation/differentiation of lymphocytes and myeloid cells. Immunomodulators may enhance (immunoprophylaxis, immunostimulation), restore (immunosubstitution, immunorestoration) or suppress (immunosuppression, immunodeviation) immunological functions or activities.
Immunomodulatory compounds have many important applications in clinical practice. For example, immunosuppressing agents (which attenuate or prevent unwanted immune responses) can be used to prevent immediate hypersensitivity reactions such as asthma and allergic reactions. A mechanism of action common to many immunosuppressants is the inhibition of T cell activation and/or differentiation. Antilymphocyte antibodies have also been used to attenuate immune system functions. Currently used immunosuppressive agents can produce a number of side effects, which limit their use. Among the most serious secondary effects include kidney and liver toxicity, increased risk of infection, hyperglycemia, neoplasia, and osteoporosis (see, e.g., Freeman, Clin. Biochem. 24(1):9-14 (1991); Mitchison, Dig. Dis.l l(2)J8-101 (1993)). The discovery of new human allergy and/or asthma related polynucleotides, the polypeptides encoded by them, and antibodies that specifically bind these polypeptides, satisfies a need in the art by providing new compositions that are useful in the diagnosis, treatment, prevention and/or prognosis of disorders of the immune system, including, but not limited to, allergic reactions and conditions, asthma, and related immediate hypersensitivity disorders.
Summary of the Invention
The present invention encompasses human secreted proteins/polypeptides, and isolated nucleic acid molecules encoding said proteins/polypeptides, useful for detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and asthmatic diseases and disorders. Antibodies that bind these polypeptides are also encompassed by the present invention; as are vectors, host cells, and recombinant and synthetic methods for producing said polynucleotides, polypeptides, and or antibodies. The invention further encompasses screening methods for identifying agonists and antagonists of polynucleotides and polypeptides of the invention. The present invention also encompasses methods and compositions for inhibiting or enhancing the production and function of the polypeptides of the present invention.
Detailed Description
Polynucleotides and Polypeptides of the Invention
Description of Table IA
Table IA summarizes information concerning certain polypnucleotides and polypeptides of the invention. The first column provides the gene number in the application for each clone identifier. The second column provides a unique clone identifier, "Clone ID:", for a cDNA clone related to each contig sequence disclosed in Table IA. Third column, the cDNA Clones identified in the second column were deposited as indicated in the third column (i.e. by ATCC Deposit No:Z and deposit date). Some of the deposits' contain multiple different clones corresponding to the same gene. In the fourth column, "Vector" refers to the type of vector contained in the corresponding cDNA Clone identified in the second column. In the fifth column, the nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X. In the sixth column, "Total NT Seq." refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." (seventh column) and the "3' NT of Clone Seq." (eighth column) of SEQ ID NO:X. In the ninth column, the nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, in column ten, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep." In the eleventh column, the translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
In the twelfth and thirteenth columns of Table 1 A, the first and last amino acid position of SEQ ID NO: Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." In the fourteenth column, the predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion". The amino acid position of SEQ ID NO: Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF".
SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table IA and/or elsewhere herein
Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases).
Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ID NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table IA. The nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods
The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
Also provided in Table IA is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience. Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S.
Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 76:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene
Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., Focus 15:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 76:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).
The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ID NO:Y, and or a deposited cDNA (cDNA Clone ID). The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X and SEQ ID NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
The present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X and/or a cDNA contained in ATCC Deposit No.Z. The present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z. Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ID NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention. The present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.
Description of Table IB (Comprised of Tables IB.l and 1B.2) Table IB.l and Table 1B.2 summarize some of the polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) and contig nucleotide sequence identifiers (SEQ ID NO:X)) and further summarizes certain characteristics of these polynucleotides and the polypeptides encoded thereby. The first column of Tables IB.l and 1B.2 provide the gene numbers in the application for each clone identifier. The second column of Tables IB.l and 1B.2 provide unique clone identifiers, "Clone ID:", for cDNA clones related to each contig sequence disclosed in Table IA and/or Table IB. The third column of Tables IB.l and 1B.2 provide unique contig identifiers, "Contig ID:" for each of the contig sequences disclosed in these tables. The fourth column of Tables IB.l and 1B.2 provide the sequence identifiers, "SEQ ID NO:X", for each of the contig sequences disclosed in Table IA and/or IB. Table IB.l
The fifth column of Table IB.l, "ORF (From-To)", provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:X that delineates the preferred open reading frame (ORF) that encodes the amino acid sequence shown in the sequence listing and referenced in Table IB.l as SEQ ID NO:Y (column 6). Column 7 of Table IB.l lists residues comprising predicted epitopes contained in the polypeptides encoded by each of the preferred ORFs (SEQ ID NO:Y). Identification of potential immunogenic regions was performed according to the method of Jameson and Wolf (CABIOS, 4; 181-186 (1988)); specifically, the Genetics Computer Group (GCG) implementation of this algorithm, embodied in the program PEPTIDESTRUCTURE (Wisconsin Package vlθ.0, Genetics Computer Group (GCG), Madison, Wise). This method returns a measure of the probability that a given residue is found on the surface of the protein. Regions where the antigenic index score is greater than 0.9 over at least 6 amino acids are indicated in Table IB.l as "Predicted Epitopes". In particular embodiments, polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the predicted epitopes described in Table IB.l. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly. Column 8 of Table IB.l ("Cytologic Band") provides the chromosomal location of polynucleotides corresponding to SEQ ID NO:X. Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database. Given a presumptive chromosomal location, disease locus association was determined by comparison with the Morbid Map, derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIM™. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/). If the putative chromosomal location of the Query overlaps with the chromosomal location of a Morbid Map entry, an OMIM identification number is disclosed in Table IB.l, column 9 labeled "OMIM Disease Reference(s)". A key to the OMIM reference identification numbers is provided in Table 5. Table 1B.2 Column 5 of Table IB.2, "Tissue Distribution" shows the expression profile of tissue, cells, and/or cell line libraries which express the polynucleotides of the invention. The first code number shown in Table 1B.2 column 5 (preceding the colon), represents the tissue/cell source identifier code corresponding to the key provided in Table 4. Expression of these polynucleotides was not observed in the other tissues and/or cell libraries tested. The second number in column 5 (following the colon), represents the number of times a sequence corresponding to the reference polynucleotide sequence (e.g., SEQ ID NO:X) was identified in the corresponding tissue/cell source. Those tissue/cell source identifier codes in which the first two letters are "AR" designate information generated using DNA array technology. Utilizing this technology, cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array. cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33P dCTP, using oligo(dT) to prime reverse transcription. After hybridization, high stringency washing conditions were employed to remove non-specific hybrids from the array. The remaining signal, emanating from each gene target, was measured using a Phosphorimager. Gene expression was reported as Phosphor Stimulating Luminescence (PSL) which reflects the level of phosphor signal generated from the probe hybridized to each of the gene targets represented on the array. A local background signal subtraction was performed before the total signal generated from each array was used to normalize gene expression between the different hybridizations. The value presented after "[array code]:" represents the mean of the duplicate values, following background subtraction and probe normalization. One of skill in the art could routinely use this information to identify normal and/or diseased tissue(s) which show a predominant expression pattern of the corresponding polynucleotide of the invention or to identify polynucleotides which show predominant and/or specific tissue and/or cell expression.
Description of Table IC
Table IC summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ ID NO:B). The first column provides a unique clone identifier, "Clone ID:", for a cDNA clone related to each contig sequence. The second column provides the sequence identifier, "SEQ ID NO:X", for each contig sequence. The third column provides a unique contig identifier, "Contig ID:" for each contig sequence. The fourth column, provides a BAC identifier "BAC ID NO:A" for the BAC clone referenced in the corresponding row of the table. The fifth column provides the nucleotide sequence identifier, "SEQ ID NO:B" for a fragment of the BAC clone identified in column four of the corresponding row of the table. The sixth column, "Exon From- To", provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides of the invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
Description of Table ID
Table ID: In preferred embodiments, the present invention encompasses a method of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic diseases and disorders; comprising administering to a patient in which such treatment, prevention, or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) represented by Table IA, Table IB, and Table IC, in an amount effective to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate the disease or disorder.
As indicated in Table ID, the polynucleotides, polypeptides, agonists, or antagonists of the present invention (including antibodies) can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists thereof (including antibodies) could be used to treat the associated disease.
Table ID provides information related to biological activities for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information related to assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities. The first column ("Gene No.") provides the gene number in the application for each clone identifier. The second column ("cDNA Clone ID:") provides the unique clone identifier for each clone as previously described and indicated in Tables IA, IB, and IC. The third column ("AA SEQ ID NO:Y") indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Tables IA, IB, and 2). The fourth column ("Biological Activity") indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides). The fifth column ("Exemplary Activity Assay") further describes the corresponding biological activity and provides information pertaining to the various types of assays that may be performed to test, demonstrate, or quantify the corresponding biological activity. Table ID describes the use of FMAT technology, inter alia, for testing or demonstrating various biological activities. Fluorometric microvolume assay technology (FMAT) is a fluorescence-based system that provides a means to perform nonradioactive cell- and bead-based assays to detect activation of cell signal transduction pathways. This technology was designed specifically for ligand binding and immunological assays. Using this technology, fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using a data processing system. Unbound flurophore comprising the background signal is ignored, allowing for a wide variety of homogeneous assays. FMAT technology may be used for peptide ligand binding assays, immunofluorescence, apoptosis, cytotoxicity, and bead-based immunocapture assays. See, Miraglia S et. al., "Homogeneous cell and bead based assays for highthroughput screening using flourometric microvolume assay technology," Journal of Biomolecular Screening; 4:193-204 (1999). In particular, FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides (including polypeptide fragments and variants) to activate signal transduction pathways. For example, FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides to upregulate production of immunomodulatory proteins (such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)).
Table ID also describes the use of kinase assays for testing, demonstrating, or quantifying biological activity. In this regard, the phosphorylation and de-phosphorylation of specific amino acid residues (e.g. Tyrosine, Serine, Threonine) on cell-signal transduction proteins provides a fast, reversible means for activation and de-activation of cellular signal transduction pathways. Moreover, cell signal transduction via phosphorylation de-phosphorylation is crucial to the regulation of a wide variety of cellular processes (e.g. proliferation, differentiation, migration, apoptosis, etc.). Accordingly, kinase assays provide a powerful tool useful for testing, confirming, and/or identifying polypeptides (including polypeptide fragments and variants) that mediate cell signal transduction events via protein phosphorylation. See e.g., Forrer, P., Tamaskovic R., and Jaussi, R. "Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities" Biol. Chem. 379(8-9): 1101-1110 (1998).
Description of Table IE
Polynucleotides encoding polypeptides of the present invention can be used in assays to test for one or more biological activities. One such biological activity which may be tested includes the ability of polynucleotides and polypeptides of the invention to stimulate up-regulation or down-regulation of expression of particular genes and proteins. Hence, if polynucleotides and polypeptides of the present invention exhibit activity in altering particular gene and protein expression patterns, it is likely that these polynucleotides and polypeptides of the present invention may be involved in, or capable of effecting changes in, diseases associated with the altered gene and protein expression profiles. Hence, polynucleotides, polypeptides, or antibodies of the present invention could be used to treat said associated diseases. TaqMan® assays may be performed to assess the ability of polynucleotides (and polypeptides they encode) to alter the expression pattern of particular "target" genes. TaqMan® reactions are performed to evaluate the ability of a test agent to induce or repress expression of specific genes in different cell types. TaqMan® gene expression quantification assays ('TaqMan® assays") are well known to, and routinely performed by, those of ordinary skill in the art. TaqMan® assays are performed in a two step reverse transcription / polymerase chain reaction (RT-PCR). In the first (RT) step, cDNA is reverse transcribed from total RNA samples using random hexamer primers. In the second (PCR) step, PCR products are synthesized from the cDNA using gene specific primers.
To quantify gene expression the Taqman® PCR reaction exploits the 5' nuclease activity of AmpliTaq Gold® DNA Polymerase to cleave a Taqman® probe (distinct from the primers) during PCR. The Taqman® probe contains a reporter dye at the 5 '-end of the probe and a quencher dye at the 3' end of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence. During PCR, if the target of interest is present, the probe specifically anneals between the forward and reverse primer sites. AmpliTaq Fold DNA Polymerase then cleaves the probe between the reporter and quencher when the probe hybridizes to the target, resulting in increased fluorescence of the reporter (see Figure 2). Accumulation of PCR products is detected directly by monitoring the increase in fluorescence of the reporter dye.
After the probe fragments are displaced from the target, polymerization of the strand continues. The 3 '-end of the probe is blocked to prevent extension of the probe during PCR. This process occurs in every cycle and does not interfere with the exponential accumulation of product. The increase in fluorescence signal is detected only if the target sequence is complementary to the probe and is amplified during PCR. Because of these requirements, any nonspecific amplification is not detected. For test sample preparation, vector controls or constructs containing the coding sequence for the gene of interest are transfected into cells, such as for example 293T cells, and supernatants collected after 48 hours. For cell treatment and RNA isolation, multiple primary human cells or human cell lines are used; such cells may include but are not limited to, Normal Human Dermal Fibroblasts, Aortic Smooth Muscle, Human Umbilical Vein Endothelial Cells, HepG2, Daudi, Jurkat, U937, Caco, and THP-1 cell lines. Cells are plated in growth media and growth is arrested by culturing without media change for 3 days, or by switching cells to low serum media and incubating overnight. Cells are treated for 1, 6, or 24 hours with either vector control supernatant or sample supernatant (or purified/partially purified protein preparations in buffer). Total RNA is isolated; for example, by using Trizol extraction or by using the Ambion RNAqueous(TM)-4PCR RNA isolation system. Expression levels of multiple genes are analyzed using TAQMAN, and expression in the test sample is compared to control vector samples to identify genes induced or repressed. Each of the above described techniques are well known to, and routinely performed by, those of ordinary skill in the art.
Table IE indicates particular disease classes and preferred indications for which polynucleotides, polypeptides, or antibodies of the present invention may be used in detecting, diagnosing, preventing, treating and/or ameliorating said diseases and disorders based on "target" gene expression patterns which may be up- or down-regulated by polynucleotides (and the encoded polypeptides) corresponding to each indicated cDNA Clone ID (shown in Table IE, Column 2). Thus, in preferred embodiments, the present invention encompasses a method of detecting, diagnosing, preventing, treating, and/or ameliorating a disease or disorder listed in the "Disease Class" and/or "Preferred Indication" columns of Table IE; comprising administering to a patient in which such detection, diagnosis, prevention, or treatment is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, diagnose, prevent, treat, or ameliorate the disease or disorder. The first and second columns of Table ID show the "Gene No." and "cDNA Clone ID No.", respectively, indicating certain nucleic acids and proteins (or antibodies against the same) of the invention (including polynucleotide, polypeptide, and antibody fragments or variants thereof) that may be used in detecting, diagnosing, preventing, treating, or ameliorating the disease(s) or disorder(s) indicated in the corresponding row in the "Disease Class" or "Preferred Indication" Columns of Table IE.
In another embodiment, the present invention also encompasses methods of detecting, diagnosing, preventing, treating, or ameliorating a disease or disorder listed in the "Disease Class" or "Preferred Indication" Columns of Table IE; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in the "Disease Class" or "Preferred Indication" Columns of Table IE.
The "Disease Class" Column of Table IE provides a categorized descriptive heading for diseases, disorders, and/or conditions (more fully described below) that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof). The "Preferred Indication" Column of Table IE describes diseases, disorders, and/or conditions that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
The "Cell Line" and "Exemplary Targets" Columns of Table IE indicate particular cell lines and target genes, respectively, which may show altered gene expression patterns (i.e., up- or down-regulation of the indicated target gene) in Taqman assays, performed as described above, utilizing polynucleotides of the cDNA Clone ID shown in the corresponding row. Alteration of expression patterns of the indicated "Exemplary Target" genes is correlated with a particular "Disease Class" and/or "Preferred Indication" as shown in the corresponding row under the respective column headings.
The "Exemplary Accessions" Column indicates GenBank Accessions (available online through the National Center for Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov/) which correspond to the "Exemplary Targets" shown in the adjacent row. The recitation of "Cancer" in the "Disease Class" Column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof) may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate neoplastic diseases and/or disorders (e.g., leukemias, cancers, etc., as described below under "Hyperproliferative Disorders"). The recitation of "Immune" in the "Disease Class" column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), blood disorders (e.g., as described below under "Immune Activity" "Cardiovascular Disorders" and/or "Blood-Related Disorders"), and infections (e.g., as described below under "Infectious Disease").
The recitation of "Angiogenesis" in the "Disease Class" column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), diseases and/or disorders of the cardiovascular system (e.g., as described below under "Cardiovascular Disorders"), diseases and/or disorders involving cellular and genetic abnormalities (e.g., as described below under "Diseases at the Cellular Level"), diseases and/or disorders involving angiogenesis (e.g., as described below under "Anti- Angiogenesis Activity"), to promote or inhibit cell or tissue regeneration (e.g., as described below under "Regeneration"), or to promote wound healing (e.g., as described below under "Wound Healing and Epithelial Cell Proliferation").
The recitation of "Diabetes" in the "Disease Class" column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diabetes (including diabetes mellitus types I and II), as well as diseases and/or disorders associated with, or consequential to, diabetes (e.g. as described below under "Endocrine Disorders," "Renal Disorders," and "Gastrointestinal Disorders").
Description of Table 2
Table 2 summarizes homology and features of some of the polypeptides of the invention. The first column provides a unique clone identifier, "Clone ID:", corresponding to a cDNA clone disclosed in Table IA or Table IB. The second column provides the unique contig identifier, "Contig ID:" corresponding to contigs in Table IB and allowing for correlation with the information in Table IB. The third column provides the sequence identifier, "SEQ ID NO:X", for the contig polynucleotide sequence. The fourth column provides the analysis method by which the homology/identity disclosed in the Table was determined. Comparisons were made between polypeptides encoded by the polynucleotides of the invention and either a non-redundant protein database (herein referred to as "NR"), or a database of protein families (herein referred to as "PFAM") as further described below. The fifth column provides a description of the PFAM/NR hit having a significant match to a polypeptide of the invention. Column six provides the accession number of the PFAM/NR hit disclosed in the fifth column. Column seven, "Score/Percent Identity", provides a quality score or the percent identity, of the hit disclosed in columns five and six. Columns 8 and 9, "NT From" and "NT To" respectively, delineate the polynucleotides in "SEQ ID NO:X" that encode a polypeptide having a significant match to the PFAM/NR database as disclosed in the fifth and sixth columns. In specific embodiments polypeptides of the invention comprise, or alternatively consist of, an amino acid sequence encoded by a polynucleotide in SEQ ID NO:X as delineated in columns 8 and 9, or fragments or variants thereof.
Description of Table 3
Table 3 provides polynucleotide sequences that may be disclaimed according to certain embodiments of the invention. The first column provides a unique clone identifier, "Clone ID", for a cDNA clone related to contig sequences disclosed in Table IB. The second column provides the sequence identifier, "SEQ ID NO:X", for contig sequences disclosed in Table IA and/or Table IB. The third column provides the unique contig identifier, "Contig ID:", for contigs disclosed in Table IB. The fourth column provides a unique integer 'a' where 'a' is any integer between 1 and the final nucleotide minus 15 of SEQ ID NO:X, and the fifth column provides a unique integer 'b' where 'b' is any integer between 15 and the final nucleotide of SEQ ID NO:X, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:X, and where b is greater than or equal to a + 14. For each of the polynucleotides shown as SEQ ID NO:X, the uniquely defined integers can be substituted into the general formula of a-b, and used to describe polynucleotides which may be preferably excluded from the invention. In certain embodiments, preferably excluded from the invention are at least one, two, three, four, five, ten, or more of the polynucleotide sequence(s) having the accession number(s) disclosed in the sixth column of this Table (including for example, published sequence in connection with a particular BAC clone). In further embodiments, preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone).
Description of Table 4
Table 4 provides a key to the tissue/cell source identifier code disclosed in Table IB.2, column 5. Column 1 of Table 4 provides the tissue/cell source identifier code disclosed in Table IB.2, column 5. Columns 2-5 provide a description of the tissue or cell source. Note that "Description" and "Tissue" sources (i.e. columns 2 and 3) having the prefix "a_" indicates organs, tissues, or cells derived from "adult" sources. Codes corresponding to diseased tissues are indicated in column 6 with the word "disease." The use of the word "disease" in column 6 is non- limiting. The tissue or cell source may be specific (e.g. a neoplasm), or may be disease-associated (e.g., a tissue sample from a normal portion of a diseased organ). Furthermore, tissues and/or cells lacking the "disease" designation may still be derived from sources directly or indirectly involved in a disease state or disorder, and therefore may have a further utility in that disease state or disorder. In numerous cases where the tissue/cell source is a library, column 7 identifies the vector used to generate the library.
Description of Table 5
Table 5 provides a key to the OMIM reference identification numbers disclosed in Table IB.l, column 9. OMIM reference identification numbers (Column 1) were derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIM. McKusick-Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/). Column 2 provides diseases associated with the cytologic band disclosed in Table IB.l, column 8, as determined using the Morbid Map database.
Description of Table 6
Table 6 summarizes some of the ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application. These deposits were made in addition to those described in the Table IA.
Description of Table 7
Table 7 shows the cDNA libraries sequenced, and ATCC designation numbers and vector information relating to these cDNA libraries.
The first column shows the first four letters indicating the Library from which each library clone was derived. The second column indicates the catalogued tissue description for the corresponding libraries. The third column indicates the vector containing the corresponding clones. The fourth column shows the ATCC deposit designation for each libray clone as indicated by the deposit information in Table 6.
Definitions The following definitions are provided to facilitate understanding of certain terms used throughout this specification.
In the present invention, "isolated" refers to material removed from its original environment (e.g., the natural environment if it is naturally occurring), and thus is altered "by the hand of man" from its natural state. For example, an isolated polynucleotide could be part of a vector or a composition of matter, or could be contained within a cell, and still be "isolated" because that vector, composition of matter, or particular cell is not the original environment of the polynucleotide. The term "isolated" does not refer to genomic or cDNA libraries, whole cell total or mRNA preparations, genomic DNA preparations (including those separated by electrophoresis and transferred onto blots), sheared whole cell genomic DNA preparations or other compositions where the art demonstrates no distinguishing features of the polynucleotide/sequences of the present invention.
In the present invention, a "secreted" protein refers to those proteins capable of being directed to the ER, secretory vesicles, or the extracellular space as a result of a signal sequence, as well as those proteins released into the extracellular space without necessarily containing a signal sequence. If the secreted protein is released into the extracellular space, the secreted protein can undergo extracellular processing to produce a "mature" protein. Release into the extracellular space can occur by many mechanisms, including exocytosis and proteolytic cleavage.
As used herein, a "polynucleotide" refers to a molecule having a nucleic acid sequence encoding SEQ ID NO:Y or a fragment or variant thereof (e.g., the polypeptide delinated in columns fourteen and fifteen of Table IA); a nucleic acid sequence contained in SEQ ID NO:X (as described in column 5 of Table IA and/or column 3 of Table IB) or the complement thereof; a cDNA sequence contained in Clone ID: (as described in column 2 of Table IA and/or Table IB and contained within a library deposited with the ATCC); a nucleotide sequence encoding the polypeptide encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 (EXON From-To) of Table IC or a fragment or variant thereof; or a nucleotide coding sequence in SEQ ID NO:B as defined in column 6 of Table IC or the complement thereof. For example, the polynucleotide can contain the nucleotide sequence of the full-length cDNA sequence, including the 5' and 3' untranslated sequences, the coding region, as well as fragments, epitopes, domains, and variants of the nucleic acid sequence. Moreover, as used herein, a "polypeptide" refers to a molecule having an amino acid sequence encoded by a polynucleotide of the invention as broadly defined (obviously excluding poly-Phenylalanine or poly-Lysine peptide sequences which result from translation of a polyA tail of a sequence corresponding to a cDNA).
In the present invention, "SEQ ID NO:X" was often generated by overlapping sequences contained in multiple clones (contig analysis). A representative clone containing all or most of the sequence for SEQ ID NO:X is deposited at Human Genome Sciences, Inc. (HGS) in a catalogued and archived library. As shown, for example, in column 2 of Table IB, each clone is identified by a cDNA Clone ID (identifier generally referred to herein as Clone ID:). Each Clone ID is unique to an individual clone and the Clone ED is all the information needed to retrieve a given clone from the HGS library. Table 7 provides a list of the deposited cDNA libraries. One can use the Clone ID: to determine the library source by reference to Tables 6 and 7. Table 7 lists the deposited cDNA libraries by name and links each library to an ATCC Deposit. Library names contain four characters, for example, "HTWE." The name of a cDNA clone (Clone ID) isolated from that library begins with the same four characters, for example "HTWEP07". As mentioned below, Table IA and or Table IB correlates the Clone ID names with SEQ ID NO:X. Thus, starting with an SEQ ID NO:X, one can use Tables IA, IB, 6, 7, and 9 to determine the corresponding Clone ID, which library it came from and which ATCC deposit the library is contained in. Furthermore, it is possible to retrieve a given cDNA clone from the source library by techniques known in the art and described elsewhere herein. The ATCC is located at 10801 University Boulevard, Manassas, Virginia 20110-2209, USA. The ATCC deposits were made pursuant to the terms of the Budapest Treaty on the international recognition of the deposit of microorganisms for the purposes of patent procedure.
In specific embodiments, the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
A "polynucleotide" of the present invention also includes those polynucleotides capable of hybridizing, under stringent hybridization conditions, to sequences contained in SEQ ID NO:X, or the complement thereof (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments described herein), the polynucleotide sequence delineated in columns 7 and 8 of Table IA or the complement thereof, the polynucleotide sequence delineated in columns 8 and 9 of Table 2 or the complement thereof, and/or cDNA sequences contained in Clone ID: (e.g., the complement of any one, two, three, four, or more of the polynucleotide fragments, or the cDNA clone within the pool of cDNA clones deposited with the ATCC, described herein), and/or the polynucleotide sequence delineated in column 6 of Table IC or the complement thereof. "Stringent hybridization conditions" refers to an overnight incubation at 42 degree C in a solution comprising 50% formamide, 5x SSC (750 mM NaCl, 75 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5x Denhardt's solution, 10% dextran sulfate, and 20 μg/ml denatured, sheared salmon sperm DNA, followed by washing the filters in 0.1 x SSC at about 65 degree C.
Also contemplated are nucleic acid molecules that hybridize to the polynucleotides of the present invention at lower stringency hybridization conditions. Changes in the stringency of hybridization and signal detection are primarily accomplished through the manipulation of formamide concentration (lower percentages of formamide result in lowered stringency); salt conditions, or temperature. For example, lower stringency conditions include an overnight incubation at 37 degree C in a solution comprising 6X SSPE (20X SSPE = 3M NaCl; 0.2M NaH2P04; 0.02M EDTA, pH 7.4), 0.5% SDS, 30% formamide, 100 ug/ml salmon sperm blocking DNA; followed by washes at 50 degree C with 1XSSPE, 0.1% SDS. In addition, to achieve even lower stringency, washes performed following stringent hybridization can be done at higher salt concentrations (e.g. 5X SSC).
Note that variations in the above conditions may be accomplished through the inclusion and/or substitution of alternate blocking reagents used to suppress background in hybridization experiments. Typical blocking reagents include Denhardt's reagent, BLOTTO, heparin, denatured salmon sperm DNA, and commercially available proprietary formulations. The inclusion of specific blocking reagents may require modification of the hybridization conditions described above, due to problems with compatibility. Of course, a polynucleotide which hybridizes only to polyA+ sequences (such as any 3' terminal polyA+ tract of a cDNA shown in the sequence listing), or to a complementary stretch of T (or U) residues, would not be included in the definition of "polynucleotide," since such a polynucleotide would hybridize to any nucleic acid molecule containing a poly (A) stretch or the complement thereof (e.g., practically any double-stranded cDNA clone generated using oligo dT as a primer).
The polynucleotide of the present invention can be composed of any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. For example, polynucleotides can be composed of single- and double-stranded DNA, DNA that is a mixture of single- and double-stranded regions, single- and double-stranded RNA, and RNA that is mixture of single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or a mixture of single- and double- stranded regions. In addition, the polynucleotide can be composed of triple-stranded regions comprising RNA or DNA or both RNA and DNA. A polynucleotide may also contain one or more modified bases or DNA or RNA backbones modified for stability or for other reasons. "Modified" bases include, for example, tritylated bases and unusual bases such as inosine. A variety of modifications can be made to DNA and RNA; thus, "polynucleotide" embraces chemically, enzymatically, or metabolically modified forms.
In specific embodiments, the polynucleotides of the invention are at least 15, at least 30, at least 50, at least 100, at least 125, at least 500, or at least 1000 continuous nucleotides but are less than or equal to 300 kb, 200 kb, 100 kb, 50 kb, 15 kb, 10 kb, 7.5kb, 5 kb, 2.5 kb, 2.0 kb, or 1 kb, in length. In a further embodiment, polynucleotides of the invention comprise a portion of the coding sequences, as disclosed herein, but do not comprise all or a portion of any intron. In another embodiment, the polynucleotides comprising coding sequences do not contain coding sequences of a genomic flanking gene (i.e., 5' or 3' to the gene of interest in the genome). In other embodiments, the polynucleotides of the invention do not contain the coding sequence of more than 1000, 500, 250, 100, 50, 25, 20, 15, 10, 5, 4, 3, 2, or 1 genomic flanking gene(s).
"SEQ ID NO:X" refers to a polynucleotide sequence described in column 5 of Table IA, while "SEQ ID NO:Y" refers to a polypeptide sequence described in column 10 of Table IA. SEQ YD NO:X is identified by an integer specified in column 6 of Table 1 A. The polypeptide sequence SEQ ED NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X. The polynucleotide sequences are shown in the sequence listing immediately followed by all of the polypeptide sequences. Thus, a polypeptide sequence corresponding to polynucleotide sequence SEQ ID NO:2 is the first polypeptide sequence shown in the sequence listing. The second polypeptide sequence corresponds to the polynucleotide sequence shown as SEQ ID NO:3, and so on.
The polypeptide of the present invention can be composed of amino acids joined to each other by peptide bonds or modified peptide bonds, i.e., peptide isosteres, and may contain amino acids other than the 20 gene-encoded amino acids. The polypeptides may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. Such modifications are well described in basic texts and in more detailed monographs, as well as in a voluminous research literature. Modifications can occur anywhere in a polypeptide, including the peptide backbone, the amino acid side-chains and the amino or carboxyl termini. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Also, a given polypeptide may contain many types of modifications. Polypeptides may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP- ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990); Rattan et al., Ann. N.Y. Acad. Sci. 663:48-62 (1992)).
"SEQ ED NO:X" refers to a polynucleotide sequence described, for example, in Tables IA, Table IB, or Table 2, while "SEQ ED NO:Y" refers to a polypeptide sequence described in column 11 of Table 1 A and or Table IB. SEQ ID NO:X is identified by an integer specified in column 4 of Table IB. The polypeptide sequence SEQ TD NO:Y is a translated open reading frame (ORF) encoded by polynucleotide SEQ ID NO:X. "Clone ID:" refers to a cDNA clone described in column 2 of Table IA and/or IB.
"A polypeptide having functional activity" refers to a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein. Such functional activities include, but are not limited to, biological activity (e.g. activity useful in treating, preventing and/or ameliorating allergic and/or asthmatic diseases and disorders), antigenicity (ability to bind [or compete with a polypeptide for binding] to an anti-polypeptide antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide.
The polypeptides of the invention can be assayed for functional activity (e.g. biological activity) using or routinely modifying assays known in the art, as well as assays described herein. Specifically, one of skill in the art may routinely assay secreted polypeptides (including fragments and variants) of the invention for activity using assays as described in the examples section below. "A polypeptide having biological activity" refers to a polypeptide exhibiting activity similar to, but not necessarily identical to, an activity of a polypeptide of the present invention, including mature forms, as measured in a particular biological assay, with or without dose dependency. In the case where dose dependency does exist, it need not be identical to that of the polypeptide, but rather substantially similar to the dose-dependence in a given activity as compared to the polypeptide of the present invention (i.e., the candidate polypeptide will exhibit greater activity or not more than about 25-fold less and, preferably, not more than about tenfold less activity, and most preferably, not more than about three-fold less activity relative to the polypeptide of the present invention).
TABLES Table IA
Table IA summarizes information concerning certain polypnucleotides and polypeptides of the invention. The first column provides the gene number in the application for each clone identifier. The second column provides a unique clone identifier, "Clone ID:", for a cDNA clone related to each contig sequence disclosed in Table IA. Third column, the cDNA Clones identified in the second column were deposited as indicated in the third column (i.e. by ATCC Deposit No:Z and deposit date). Some of the deposits contain multiple different clones corresponding to the same gene. In the fourth column, "Vector" refers to the type of vector contained in the corresponding cDNA Clone identified in the second column. In the fifth column, the nucleotide sequence identified as "NT SEQ ID NO:X" was assembled from partially homologous ("overlapping") sequences obtained from the corresponding cDNA clone identified in the second column and, in some cases, from additional related cDNA clones. The overlapping sequences were assembled into a single contiguous sequence of high redundancy (usually three to five overlapping sequences at each nucleotide position), resulting in a final sequence identified as SEQ ID NO:X. In the sixth column, 'Total NT Seq." refers to the total number of nucleotides in the contig sequence identified as SEQ ID NO:X." The deposited clone may contain all or most of these sequences, reflected by the nucleotide position indicated as "5' NT of Clone Seq." (seventh column) and the "3' NT of Clone Seq." (eighth column) of SEQ ID NO:X. In the ninth column, the nucleotide position of SEQ ID NO:X of the putative start codon (methionine) is identified as "5' NT of Start Codon." Similarly, in column ten, the nucleotide position of SEQ ID NO:X of the predicted signal sequence is identified as "5' NT of First AA of Signal Pep." In the eleventh column, the translated amino acid sequence, beginning with the methionine, is identified as "AA SEQ ID NO:Y," although other reading frames can also be routinely translated using known molecular biology techniques. The polypeptides produced by these alternative open reading frames are specifically contemplated by the present invention.
In the twelfth and thirteenth columns of Table IA, the first and last amino acid position of SEQ ID NO:Y of the predicted signal peptide is identified as "First AA of Sig Pep" and "Last AA of Sig Pep." In the fourteenth column, the predicted first amino acid position of SEQ ID NO:Y of the secreted portion is identified as "Predicted First AA of Secreted Portion". The amino acid position of SEQ ID NO: Y of the last amino acid encoded by the open reading frame is identified in the fifteenth column as "Last AA of ORF".
SEQ ID NO:X (where X may be any of the polynucleotide sequences disclosed in the sequence listing) and the translated SEQ ID NO:Y (where Y may be any of the polypeptide sequences disclosed in the sequence listing) are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, SEQ ID NO:X is useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in the deposited clone. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ED NO:Y may be used, for example, to generate antibodies which bind specifically to proteins containing the polypeptides and the secreted proteins encoded by the cDNA clones identified in Table IA and/or elsewhere herein
Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence. In these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases). Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and the predicted translated amino acid sequence identified as SEQ ED NO:Y, but also a sample of plasmid DNA containing a human cDNA of the invention deposited with the ATCC, as set forth in Table IA. The nucleotide sequence of each deposited plasmid can readily be determined by sequencing the deposited plasmid in accordance with known methods
The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular plasmid can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
Also provided in Table IA is the name of the vector which contains the cDNA plasmid. Each vector is routinely used in the art. The following additional information is provided for convenience.
Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 76:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 77:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene
Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E., et al., Focus 75:59 (1993). Vector lafmid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 76:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991).
The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ED
NO:Y, and/or a deposited cDNA (cDNA Clone ID). The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include, but are not limited to, preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ID NO:X and SEQ ED NO:Y using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
The present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ID NO:X and/or a cDNA contained in ATCC Deposit No.Z. The present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ D NO:X, and/or a polypeptide encoded by a cDNA contained in ATCC deposit No.Z. Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ED NO:Y, a polypeptide encoded by SEQ ED NO:X and/or a polypeptide encoded by the cDNA contained in ATCC Deposit No.Z, are also encompassed by the invention. The present invention further encompasses a polynucleotide comprising, or alternatively consisting of the complement of the nucleic acid sequence of SEQ ID NO:X, and/or the complement of the coding strand of the cDNA contained in ATCC Deposit No.Z.
TABLE IA
Table IB (Comprised of Tables IB.l and 1B.2)
The first column in Table IB.l and Table IB.2 provides the gene number in the application corresponding to the clone identifier. The second column in Table IB.l and Table IB.2 provides a unique "Clone ID:" for the cDNA clone related to each contig sequence disclosed in Table IB.l and Table 1B.2. This clone ID references the cDNA clone which contains at least the 5' most sequence of the assembled contig and at least a portion of SEQ ID NO:X as determined by directly sequencing the referenced clone. The referenced clone may have more sequence than described in the sequence listing or the clone may have less. In the vast majority of cases, however, the clone is believed to encode a full-length polypeptide. In the case where a clone is not full-length, a full-length cDNA can be obtained by methods described elsewhere herein. The third column in Table IB.l and Table 1B.2 provides a unique "Contig ID" identification for each contig sequence. The fourth column in Table IB.l and Table 1B.2 provides the "SEQ ID NO:" identifier for each of the contig polynucleotide sequences disclosed in Table IB. Table IB.l The fifth column in Table IB.l, "ORF (From-To)", provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence "SEQ ID NO:X" that delineate the preferred open reading frame (ORF) shown in the sequence listing and referenced in Table IB.l, column 6, as SEQ ID NO:Y. Where the nucleotide position number "To" is lower than the nucleotide position number "From", the preferred ORF is the reverse complement of the referenced polynucleotide sequence. The sixth column in Table IB.l provides the corresponding SEQ ID NO:Y for the polypeptide sequence encoded by the preferred ORF delineated in column 5. In one embodiment, the invention provides an amino acid sequence comprising, or alternatively consisting of, a polypeptide encoded by the portion of SEQ ID NO:X delineated by "ORF (From- To)". Also provided are polynucleotides encoding such amino acid sequences and the complementary strand thereto. Column 7 in Table IB.l lists residues comprising epitopes contained in the polypeptides encoded by the preferred ORF (SEQ ID NO:Y), as predicted using the algorithm of Jameson and Wolf, (1988) Comp. Appl. Biosci. 4:181-186. The Jameson-Wolf antigenic analysis was performed using the computer program PROTEAN (Version 3.11 for the Power Macintosh, DNASTAR, Inc., 1228 South Park Street Madison, WI). In specific embodiments, polypeptides of the invention comprise, or alternatively consist of, at least one, two, three, four, five or more of the predicted epitopes as described in Table IB. It will be appreciated that depending on the analytical criteria used to predict antigenic determinants, the exact address of the determinant may vary slightly.
Column 8 in Table IB.l provides a chromosomal map location for certain polynucleotides of the invention. Chromosomal location was determined by finding exact matches to EST and cDNA sequences contained in the NCBI (National Center for Biotechnology Information) UniGene database. Each sequence in the UniGene database is assigned to a "cluster"; all of the ESTs, cDNAs, and STSs in a cluster are believed to be derived from a single gene. Chromosomal mapping data is often available for one or more sequence(s) in a UniGene cluster; this data (if consistent) is then applied to the cluster as a whole. Thus, it is possible to infer the chromosomal location of a new polynucleotide sequence by determining its identity with a mapped UniGene cluster.
A modified version of the computer program BLASTN (Altshul, et al., J. Mol. Biol. 215:403-410 (1990), and Gish, and States, Nat. Genet. 3:266-272) (1993) was used to search the UniGene database for EST or cDNA sequences that contain exact or near-exact matches to a polynucleotide sequence of the invention (the 'Query'). A sequence from the UniGene database (the 'Subject') was said to be an exact match if it contained a segment of 50 nucleotides in length such that 48 of those nucleotides were in the same order as found in the Query sequence. If all of the matches that met this criteria were in the same UniGene cluster, and mapping data was available for this cluster, it is indicated in Table IB under the heading "Cytologic Band". Where a cluster had been further localized to a distinct cytologic band, that band is disclosed; where no banding information was available, but the gene had been localized to a single chromosome, the chromosome is disclosed.
Once a presumptive chromosomal location was determined for a polynucleotide of the invention, an associated disease locus was identified by comparison with a database of diseases which have been experimentally associated with genetic loci. The database used was the Morbid Map, derived from OMIM™ and National Center for Biotechnology Information, National Library of Medicine (Bethesda, MD) 2000;. If the putative chromosomal location of a polynucleotide of the invention (Query sequence) was associated with a disease in the Morbid Map database, an OMIM reference identification number was noted in column 9, Table IB.l, labelled "OMIM Disease Reference(s). Table 5 is a key to the OMIM reference identification numbers (column 1), and provides a description of the associated disease in Column 2. Table 1B.2
Column 5, in Table 1B.2, provides an expression profile and library codexount for each of the contig sequences (SEQ ID NO:X) disclosed in Table IB, which can routinely be combined with the information provided in Table 4 and used to determine the tissues, cells, and/or cell line libraries which predominantly express the polynucleotides of the invention. The first number in Table 1B.2, column 5 (preceding the colon), represents the tissue/cell source identifier code corresponding to the code and description provided in Table 4. The second number in column 5 (following the colon) represents the number of times a sequence corresponding to the reference polynucleotide sequence was identified in the corresponding tissue/cell source. Those tissue/cell source identifier codes in which the first two letters are "AR" designate information generated using DNA array technology. Utilizing this technology, cDNAs were amplified by PCR and then transferred, in duplicate, onto the array. Gene expression was assayed through hybridization of first strand cDNA probes to the DNA array. cDNA probes were generated from total RNA extracted from a variety of different tissues and cell lines. Probe synthesis was performed in the presence of 33P dCTP, using oligo (dT) to prime reverse transcription. After hybridization, high stringency washing conditions were employed to remove non-specific hybrids from the array. The remaining signal, emanating from each gene target, was measured using a Phosphorimager. Gene expression was reported as Phosphor Stimulating Luminescence (PSL) which reflects the level of phosphor signal generated from the probe hybridized to each of the gene targets represented on the array. A local background signal subtraction was performed before the total signal generated from each array was used to normalize gene expression between the different hybridizations. The value presented after "[array code]:" represents the mean of the duplicate values, following background subtraction and probe normalization. One of skill in the art could routinely use this information to identify normal and/or diseased tissue(s) which show a predominant expression pattern of the corresponding polynucleotide of the invention or to identify polynucleotides which show predominant and/or specific tissue and/or cell expression.
TABLE IB.l
ι_n
l_Λ
)
c i
Ux σv
l_Λ -*J
U\
00
ON ©
σv -rt
σv
ON ON
ON vo
N>
CJ
-J
ON
-4 oo
oo
<_Λ
AR254:26, A 264.22, AR248:18, AR251:17, AR240:17, AR313:16, AR268:14, AR272:13, AR290:13, AR311:13, AR310:13, AR177:13, AR180:13, AR246:13, AR245:10, AR250:10, AR309:10, AR275:10, AR183:9, AR247:9, AR274:9, AR312:9, AR039:9, AR308:9, AR269:9, AR271:8, AR179:8, AR270:8, AR267:8, AR316:7, AR198:7, AR252:7, AR244:7, AR243:7, AR175:6, A 193:6, AR195:6, AR165:6, AR299:6, AR192:6, AR166:6, A 201:6, AR164:6, AR162:6, AR161:6, AR242:6, AR163:6, AR273:6, AR300:5, AR197:5, AR284:5, AR282:5, AR055:5, AR181:4, A 169:4, AR174.4, AR185:4, AR061:4, AR089:4, AR298:4, AR259.4, AR234:4, AR293:3, AR182:3, AR202:3, AR205:3, AR231:3, AR215:3, AR283:3, AR236:3, AR225:3, AR173:2, AR178:2, AR060:2, AR294:2, AR186:2, AR296:2, AR222:2, A 285:2, AR281:2, AR104.2, AR292:2, AR176:2, AR295:2, AR207:2, AR217:2, AR229:2, AR289:2, AR226:2, AR291:2, AR206:2, AR172:2, AR288:2, AR033:2, AR235:2, AR238:2, AR191:2, AR170:2, AR194:2, AR232:2, AR230:2, AR286:2, AR189:1, AR257:1, AR190:1, AR199:1, AR277:1, AR287:1, AR200:1, A 224:1, AR171:1, AR297:1, AR223:1, AR168:1, AR228:1, AR266:1, AR258:1, AR233:1, AR204:1, AR262:1,AR315:1,AR255:1,AR237:1,AR280:1 H0521:4, L0454:2, S0442:2,L0758:2,H0720:1,H0255:1, S0376:l, H0486:1,H0581:1,H0373:1,H0268:1,S0440:1,L0763:1,L0803:1,H0435:1,H0658:1,L3833:1,H0522:1,L0748:1, L0749:1,L0588:1 andH0543:l.
HDPBA28 866429 211
HDPC025 460682 46 AR060:2, AR055:2, AR282:2 H0521:2, H0445:2, H0394:l, H0747:l, H0581:l, L0761:l and L0750:l.
HDPCY37 837699 47 AR215:26, AR214:25, AR263 23, AR197 22,AR207:22,AR217: 19, AR195 19, AR212 19,AR169:19, AR222:18, AR168:18, AR269:17, AR24317,AR21616,AR172:16,AR26416, AR22516, AR17116,AR224:16,AR223:16, A 311:16, AR221:15, AR25315, AR16515,AR198:15, AR24615.AR16415,AR19215,AR277:14,AR240:14, AR170:14, AR166:14, AR16214.AR161: 14,AR213:14, AR16313.AR09613.AR24513,AR089:13,AR299:13, AR242:13, AR309:12, A 18312.AR31612, AR308:12, AR21912, AR19312,AR31212, AR201:12,AR235:12, AR313:12, A 250:12, AR19611,AR28211, AR205.11.AR28311,AR05311.AR23611,AR275:11,AR291:10, AR295:10, A 272:10, AR25210, AR218 10, AR270:10,AR185: 10, AR28810, AR26810,AR261:10,AR039:10,
AR297:9, AR199:9, AR247:9, AR285:9, AR173:9, AR033:9, AR060:9, AR191:9, AR177:9, AR174:9, AR175:9, AR290:9, AR181:8, AR300:8, AR238:8, AR211:8, AR210.8, AR286:8, AR176:8, AR188:8, AR182:8, AR287:8, A 296:8, AR271:8, AR293:8, AR231:8, AR061:7, AR055:7, AR200:7, AR180:7, A 254:7, AR104:7, AR289:7, AR204J, AR267:6, AR239:6, AR190:6, AR234:6, AR189:6, AR266:6, AR178:6, AR274:6, AR262:6, AR226:6, AR179:6, AR258:6, AR256:6, AR257:6, AR229:6, AR255:6, A 232:6, AR203:5, AR294:5, AR233:5, A 228:4, AR227:4, AR237:4, AR260:4, AR230:4 S0440:6, L0766:4, L3659:3, H0052:3, L0662:3, L0776:3, L0666:3, L0665:3, H0521:3, S0476:2, H0438:2, H0581:2, H0263:2, H0494:2, L0763:2, L0770:2, L0769:2, L0649:2, L0659:2, L0664:2, L2261:2, L3829:2, L0748:2, L0439:2, L0747.2, S0436:2, H0265:l, H0556:l, S0040:l, H0717:l, S0444:l, S0278:l, H0415:1,H0403:1,H0643:1,S0280:1,H0575:1,H0194:1,H0309:1,H0545:1,H0046:1,L0157:1,H0375:1,L0483:1, H0553:l, H0412:l, H0646:l, S0002:l, L0796:l, L3905:l, L0644:l, L0764:l, L0774:l, L0376:l, L0806:l, L0654:l, L0807:1,L0383:1,L3841:1,L2651:1,L2263:1,L2260:1,L2262:1,S0126:1,H0684:1,H0435:1,H0478:1,S0028:1, L0751:1,L0754:1,L0749:1, L0750:1,L0779:1,L0759:1, H0543:l, H0423:l andL3837:l.
HDPCY37 604114 212
O LΛ
o o
oCΛ
oON
oVO
to
)
t t-Λ
t
ON
LO
.
LO
4^
•rt
oo m o c o
r- un o rt) rf rf r-
rf f-
O
o en vo σv vo o ffi
Table IC summarizes additional polynucleotides encompassed by the invention (including cDNA clones related to the sequences (Clone ID:), contig sequences (contig identifier (Contig ID:) contig nucleotide sequence identifiers (SEQ ID NO:X)), and genomic sequences (SEQ ID NO:B). The first column provides a unique clone identifier, "Clone ID:", for a cDNA clone related to each contig sequence. The second column provides the sequence identifier, "SEQ ID NO:X", for each contig sequence. The third column provides a unique contig identifier, "Contig ID:" for each contig sequence. The fourth column, provides a BAC identifier "BAC ID NO:A" for the BAC clone referenced in the corresponding row of the table. The fifth column provides the nucleotide sequence identifier, "SEQ ID NO:B" for a fragment of the BAC clone identified in column four of the corresponding row of the table. The sixth column, "Exon From- To", provides the location (i.e., nucleotide position numbers) within the polynucleotide sequence of SEQ ID NO:B which delineate certain polynucleotides of the invention that are also exemplary members of polynucleotide sequences that encode polypeptides of the invention (e.g., polypeptides containing amino acid sequences encoded by the polynucleotide sequences delineated in column six, and fragments and variants thereof).
Table IC
LΛ t
Tables ID: The polynucleotides or polypeptides, or agonists or antagonists of the present invention can be used in assays to test for one or more biological activities. If these polynucleotides and polypeptides do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides or polypeptides, or agonists or antagonists could be used to treat the associated disease.
The present invention encompasses methods of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating a disease or disorder. In preferred embodiments, the present invention encompasses a method of treating an allergic and/or asthmatic disease or disorder comprising administering to a patient in which such detection, treatment, prevention, and/or amelioration is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate the allergic and/or asthmatic disease or disorder.
In another embodiment, the present invention also encompasses methods of detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating an allergic and/or asthmatic disease or disorder; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in Column 3 of Table ID.
Table ID provides information related to biological activities for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information related to assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities. The first column ("Gene No.") provides the gene number in the application for each clone identifier. The second column ("cDNA Clone ED:") provides the unique clone identifier for each clone as previously described and indicated in Table IA through Table ID. The third column ("AA SEQ ED NO:Y") indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Tables IA, Table IB, and Table 2). The fourth column ("Biological Activity") indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides). The fifth column ("Exemplary Activity Assay") further describes the corresponding biological activity and also provides information pertaining to the various types of assays that may be performed to test, demonstrate, or quantify the corresponding biological activity.
Table ID describes the use of, inter alia, FMAT technology for testing or demonstrating various biological activities. Fluorometric microvolume assay technology (FMAT) is a fluorescence-based system that provides a means to perform nonradioactive cell- and bead-based assays to detect activation of cell signal transduction pathways. This technology was designed specifically for ligand binding and immunological assays. Using this technology, fluorescent cells or beads at the bottom of the well are detected as localized areas of concentrated fluorescence using a data processing system. Unbound flurophore comprising the background signal is ignored, allowing for a wide variety of homogeneous assays. FMAT technology may be used for peptide ligand binding assays, immunofluorescence, apoptosis, cytotoxicity, and bead-based immunocapture assays. See, Miraglia S et. al., "Homogeneous cell and bead based assays for highthroughput screening using flourometric microvolume assay technology," Journal of Biomolecular Screening; 4: 193-204 (1999). In particular, FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides (including polypeptide fragments and variants) to activate signal transduction pathways. For example, FMAT technology may be used to test, confirm, and/or identify the ability of polypeptides to upregulate production of immunomodulatory proteins (such as, for example, interleukins, GM-CSF, Rantes, and Tumor Necrosis factors, as well as other cellular regulators (e.g. insulin)). Table ID also describes the use of kinase assays for testing, demonstrating, or quantifying biological activity. In this regard, the phosphorylation and de-phosphorylation of specific amino acid residues (e.g. Tyrosine, Serine, Threonine) on cell-signal transduction proteins provides a fast, reversible means for activation and de-activation of cellular signal transduction pathways. Moreover, cell signal transduction via phosphorylation/de-phosphorylation is crucial to the regulation of a wide variety of cellular processes (e.g. proliferation, differentiation, migration, apoptosis, etc.). Accordingly, kinase assays provide a powerful tool useful for testing, confirming, and/or identifying polypeptides (including polypeptide fragments and variants) that mediate cell signal transduction events via protein phosphorylation. See e.g., Forrer, P., Tamaskovic R., and Jaussi, R. "Enzyme-Linked Immunosorbent Assay for Measurement of JNK, ERK, and p38 Kinase Activities" Biol. Chem. 379(8-9): 1101-1110 (1998).
LΛ oo
C_Λ vo
ON t
<3N
ON LΛ
σv vo
-~J
-P-
ON
^1 so
O
O o
O s
oto
oto
ot
to
©
LtJ
ot
oto
to o oo
H***» t
to rt-*
to
H****
to
I—» ON
t rt*
t rt-** O
to
UJ to
to
LiJ L<J
to
L-J
t
OJ ON
to
OJ
VO
to o
to
-P-
to
-P-
to
•rt*
00
tsJ ^ o
to
LΛ LΛ
t
ON
to
to
00
to
VO
t
ON ©
to
ON J
ts>
Os OΛ
t σv s
t
O -oN
to σv o
-too
t -J to
to -J
t oo
O
to oo σv
to oo
to o -P-*.
to
V -Oo
OJ o
J rt->
OJ
J
I—> to
OJ OJ
OJ ^
OJ j\
OJ 0\
OJ
-J
OJ to
OJ to
OJ
OJ to
J to on
OJ to
ON
OJ t
OJ J
OJ OJ to
OJ J J
J OJ
OJ OJ LΛ
OJ J
Os
J J
-J
J
OJ oo
J
OJ SO
J
• O
OJ -£*->
OJ J
J -£•-. -P-**.
J LΛ
J
J
ON
OJ
OJ
J o
OJ
OJ K J
J Ux
OJ M l
OJ Ux
Os
J UX
OJ Ux
00
OJ Ux O
OJ
OS to
J Os OJ
OJ
OJ Os CΛ
OJ ON O
OJ O 00
OJ ON SO
OJ o
J
-J
OJ t
OJ OJ
OJ UX
OJ
-J
OS
OJ
-J
OJ
-J
VO
OJ oo
O
J o
OJ
00 J
OJ
OO
OJ oo
Ux
OJ oo -J
OJ oo oo
OJ oo o
OJ vo ©
OJ VO
OJ
VO OJ
OJ VO
OJ vo
UX
OJ vo vo
^
o
o Is)
t-Λ
I—'
Ux
CN
•P-*. rt-> 00
■ ■
SO
ot
•rt* t
Table IE: Polynucleotides encoding polypeptides of the present invention can be used in assays to test for one or more biological activities. One such biological activity which may be tested includes the ability of polynucleotides and polypeptides of the invention to stimulate up-regulation or down-regulation of expression of particular genes and proteins. Hence, if polynucleotides and polypeptides of the present invention exhibit activity in altering particular gene and protein expression patterns, it is likely that these polynucleotides and polypeptides of the present invention may be involved in, or capable of effecting changes in, diseases associated with the altered gene and protein expression profiles. Hence, polynucleotides, polypeptides, or antibodies of the present invention could be used to treat said associated diseases.
TaqMan® assays may be performed to assess the ability of polynucleotides (and polypeptides they encode) to alter the expression pattern of particular "target" genes. TaqMan® reactions are performed to evaluate the ability of a test agent to induce or repress expression of specific genes in different cell types. TaqMan® gene expression quantification assays ("TaqMan® assays") are well known to, and routinely performed by, those of ordinary skill in the art. TaqMan® assays are performed in a two step reverse transcription / polymerase chain reaction (RT-PCR). In the first (RT) step, cDNA is reverse transcribed from total RNA samples using random hexamer primers. In the second (PCR) step, PCR products are synthesized from the cDNA using gene specific primers.
To quantify gene expression the Taqman® PCR reaction exploits the 5' nuclease activity of AmpliTaq Gold® DNA Polymerase to cleave a Taqman® probe (distinct from the primers) during PCR. The Taqman® probe contains a reporter dye at the 5 '-end of the probe and a quencher dye at the 3' end of the probe. When the probe is intact, the proximity of the reporter dye to the quencher dye results in suppression of the reporter fluorescence. During PCR, if the target of interest is present, the probe specifically anneals between the forward and reverse primer sites. AmpliTaq Fold DNA Polymerase then cleaves the probe between the reporter and quencher when the probe hybridizes to the target, resulting in increased fluorescence of the reporter (see Figure 2). Accumulation of PCR products is detected directly by monitoring the increase in fluorescence of the reporter dye.
After the probe fragments are displaced from the target, polymerization of the strand continues. The 3' -end of the probe is blocked to prevent extension of the probe during PCR. This process occurs in every cycle and does not interfere with the exponential accumulation of product. The increase in fluorescence signal is detected only if the target sequence is complementary to the probe and is amplified during PCR. Because of these requirements, any nonspecific amplification is not detected.
For test sample preparation, vector controls or constructs containing the coding sequence for the gene of interest are transfected into cells, such as for example 293T cells, and supematants collected after 48 hours. For cell treatment and RNA isolation, multiple primary human cells or human cell lines are used; such cells may include but are not limited to, Normal Human Dermal Fibroblasts, Aortic Smooth Muscle, Human Umbilical Vein Endothelial Cells, HepG2, Daudi, Jurkat, U937, Caco, and THP-1 cell lines. Cells are plated in growth media and growth is arrested by culturing without media change for 3 days, or by switching cells to low serum media and incubating overnight. Cells are treated for 1, 6, or 24 hours with either vector control supernatant or sample supernatant (or purified/partially purified protein preparations in buffer). Total RNA is isolated; for example, by using Trizol extraction or by using the Ambion RNAqueous(TM)-4PCR RNA isolation system. Expression levels of multiple genes are analyzed using TAQMAN, and expression in the test sample is compared to control vector samples to identify genes induced or repressed. Each of the above described techniques are well known to, and routinely performed by, those of ordinary skill in the art.
Table IE indicates particular disease classes and preferred indications for which polynucleotides, polypeptides, or antibodies of the present invention may be used in detecting, diagnosing, preventing, treating and/or ameliorating said diseases and disorders based on "target" gene expression patterns which may be up- or down-regulated by polynucleotides (and the encoded polypeptides) corresponding to each indicated cDNA Clone ID (shown in Table IE, Column 2).
Thus, in preferred embodiments, the present invention encompasses a method of detecting, diagnosing, preventing, treating, and/or ameliorating a disease or disorder listed in the "Disease Class" and/or "Preferred Indication" columns of Table IE; comprising administering to a patient in which such detection, diagnosis, prevention, or treatment is desired a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof) in an amount effective to detect, diagnose, prevent, treat, or ameliorate the disease or disorder. The first and second columns of Table ID show the "Gene No." and "cDNA Clone ID No.", respectively, indicating certain nucleic acids and proteins (or antibodies against the same) of the invention (including polynucleotide, polypeptide, and antibody fragments or variants thereof) that may be used in detecting, diagnosing, preventing, treating, or ameliorating the disease(s) or disorder(s) indicated in the corresponding row in the "Disease Class" or "Preferred Indication" Columns of Table IE.
In another embodiment, the present invention also encompasses methods of detecting, diagnosing, preventing, treating, or ameliorating a disease or disorder listed in the "Disease Class" or "Preferred Indication" Columns of Table IE; comprising administering to a patient combinations of the proteins, nucleic acids, or antibodies of the invention (or fragments or variants thereof), sharing similar indications as shown in the corresponding rows in the "Disease Class" or "Preferred Indication" Columns of Table IE.
The "Disease Class" Column of Table IE provides a categorized descriptive heading for diseases, disorders, and/or conditions (more fully described below) that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
The "Preferred Indication" Column of Table IE describes diseases, disorders, and/or conditions that may be detected, diagnosed, prevented, treated, or ameliorated by a protein, nucleic acid, or antibody of the invention (or fragment or variant thereof).
The "Cell Line" and "Exemplary Targets" Columns of Table IE indicate particular cell lines and target genes, respectively, which may show altered gene expression patterns (i.e., up- or down-regulation of the indicated target gene) in Taqman assays, performed as described above, utilizing polynucleotides of the cDNA Clone ID shown in the corresponding row. Alteration of expression patterns of the indicated "Exemplary Target" genes is correlated with a particular "Disease Class" and/or "Preferred Indication" as shown in the corresponding row under the respective column headings.
The "Exemplary Accessions" Column indicates GenBank Accessions (available online through the National Center for Biotechnology Information (NCBI) at http://www.ncbi.nlm.nih.gov/) which correspond to the "Exemplary Targets" shown in the adjacent row.
The recitation of "Cancer" in the "Disease Class" Column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof) may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate neoplastic diseases and/or disorders (e.g., leukemias, cancers, etc., as described below under "Hyperproliferative Disorders").
The recitation of "Immune" in the "Disease Class" column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, prevent, treat, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), blood disorders (e.g., as described below under "Immune Activity" "Cardiovascular Disorders" and/or "Blood-Related Disorders"), and infections (e.g., as described below under 'Infectious Disease").
The recitation of "Angiogenesis" in the "Disease Class" column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diseases and/or disorders relating to neoplastic diseases (e.g., as described below under "Hyperproliferative Disorders"), diseases and/or disorders of the cardiovascular system (e.g., as described below under "Cardiovascular Disorders"), diseases and/or disorders involving cellular and genetic abnormalities (e.g., as described below under "Diseases at the Cellular Level"), diseases and/or disorders involving angiogenesis (e.g., as described below under "Anti-Angiogenesis Activity"), to promote or inhibit cell or tissue regeneration (e.g., as described below under "Regeneration"), or to promote wound healing (e.g., as described below under "Wound Healing and Epithelial Cell Proliferation").
The recitation of "Diabetes" in the "Disease Class" column indicates that the corresponding nucleic acid and protein, or antibody against the same, of the invention (or fragment or variant thereof), may be used for example, to detect, diagnose, treat, prevent, and/or ameliorate diabetes (including diabetes mellitus types I and II), as well as diseases and/or disorders associated with, or consequential to, diabetes (e.g. as described below under "Endocrine Disorders," "Renal Disorders," and "Gastrointestinal Disorders").
Table IE
t >
ON
- ■• σ
oo
Table 2 further characterizes certain encoded polypeptides of the invention, by providing the results of comparisons to protein and protein family databases. The first column provides a unique clone identifier, "Clone ID NO:", corresponding to a cDNA clone disclosed in Table IA and/or Table IB. The second column provides the unique contig identifier, "Contig ID:" which allows correlation with the information in Table IB. The third column provides the sequence identifier, "SEQ ED NO:", for the contig polynucleotide sequences. The fourth column provides the analysis method by which the homology/identity disclosed in the Table was determined. The - fifth column provides a description of the PFAM/NR hit identified by each analysis. Column six provides the accession number of the PFAM/NR hit disclosed in the fifth column. Column seven, score/percent identity, provides a quality score or the percent identity, of the hit disclosed in column five. Comparisons were made between polypeptides encoded by polynucleotides of the invention and a non-redundant protein database (herein referred to as "NR"), or a database of protein families (herein referred to as "PFAM"), as described below. The NR database, which comprises the NBRF PIR database, the NCBI GenPept database, and the SIB SwissProt and TrEMBL databases, was made non-redundant using the computer program nrdb2 (Warren Gish, Washington University in Saint Louis). Each of the polynucleotides shown in Table IB, column 3 (e.g., SEQ ID NO:X or the 'Query' sequence) was used to search against the NR database. The computer program BLASTX was used to compare a 6-frame translation of the Query sequence to the NR database (for information about the BLASTX algorithm please see Altshul et al., J. Mol. Biol. 215:403-410 (1990), and Gish and States, Nat. Genet. 3:266-272 (1993). A description of the sequence that is most similar to the Query sequence (the highest scoring 'Subject') is shown in column five of Table 2 and the database accession number for that sequence is provided in column six. The highest scoring 'Subject' is reported in Table 2 if (a) the estimated probability that the match occurred by chance alone is less than l.Oe- 07, and (b) the match was not to a known repetitive element. BLASTX returns alignments of short polypeptide segments of the Query and Subject sequences that share a high degree of similarity; these segments are known as High-Scoring Segment Pairs or HSPs. Table 2 reports the degree of similarity between the Query and the Subject for each HSP as a percent identity in Column 7. The percent identity is determined by dividing the number of exact matches between the two aligned sequences in the HSP, dividing by the number of Query amino acids in the HSP and multiplying by 100. The polynucleotides of SEQ ID NO:X which encode the polypeptide sequence that generates an HSP are delineated by columns 8 and 9 of Table 2.
The PFAM database, PFAM version 2.1, (Sonnhammer, Nucl. Acids Res., 26:320-322, , 1998)) consists of a series of multiple sequence alignments; one alignment for each protein family. Each multiple sequence alignment is converted into a probability model called a Hidden Markov Model, or HMM, that represents the position-specific variation among the sequences that make up the multiple sequence alignment (see, e.g., Durbin, et al., Biological sequence analysis: probabilistic models of proteins and nucleic acids, Cambridge University Press, 1998 for the theory of HMMs). The program HMMER version 1.8 (Sean Eddy, Washington University in Saint Louis) was used to compare the predicted protein sequence for each Query sequence (SEQ ID NO:Y in Table IB) to each of the HMMs derived from PFAM version 2.1. A HMM derived from PFAM version 2.1 was said to be a significant match to a polypeptide of the invention if the score returned by HMMER 1.8 was greater than 0.8 times the HMMER 1.8 score obtained with the most distantly related known member of that protein family. The description of the PFAM family which shares a significant match with a polypeptide of the invention is listed in column 5 of Table 2, and the database accession number of the PFAM hit is provided in column 6. Column 7 provides the score returned by HMMER version 1.8 for the alignment. Columns 8 and 9 delineate the polynucleotides of SEQ ID NO:X which encode the polypeptide sequence which show a significant match to a PFAM protein family.
As mentioned, columns 8 and 9 in Table 2, "NT From" and "NT To", delineate the polynucleotides of "SEQ ID NO:X" that encode a polypeptide having a significant match to the PFAM/NR database as disclosed in the fifth column. In one embodiment, the invention provides a protein comprising, or alternatively consisting of, a polypeptide encoded by the polynucleotides of SEQ ID NO:X delineated in columns 8 and 9 of Table 2. Also provided are polynucleotides encoding such proteins, and the complementary strand thereto.
The nucleotide sequence SEQ ID NO:X and the translated SEQ ID NO:Y are sufficiently accurate and otherwise suitable for a variety of uses well known in the art and described further below. For instance, the nucleotide sequences of SEQ ID NO:X are useful for designing nucleic acid hybridization probes that will detect nucleic acid sequences contained in SEQ ID NO:X or the cDNA contained in ATCC Deposit No:Z. These probes will also hybridize to nucleic acid molecules in biological samples, thereby enabling immediate applications in chromosome mapping, linkage analysis, tissue identification and/or typing, and a variety of forensic and diagnostic methods of the invention. Similarly, polypeptides identified from SEQ ID NO:Y may be used to generate antibodies which bind specifically to these polypeptides, or fragments thereof, and/or to the polypeptides encoded by the cDNA clones identified in, for example, Table IA and/or IB.
Nevertheless, DNA sequences generated by sequencing reactions can contain sequencing errors. The errors exist as misidentified nucleotides, or as insertions or deletions of nucleotides in the generated DNA sequence. The erroneously inserted or deleted nucleotides cause frame shifts in the reading frames of the predicted amino acid sequence, hi these cases, the predicted amino acid sequence diverges from the actual amino acid sequence, even though the generated DNA sequence may be greater than 99.9% identical to the actual DNA sequence (for example, one base insertion or deletion in an open reading frame of over 1000 bases). Accordingly, for those applications requiring precision in the nucleotide sequence or the amino acid sequence, the present invention provides not only the generated nucleotide sequence identified as SEQ ID NO:X, and a predicted translated amino acid sequence identified as SEQ ED NO:Y, but also a sample of plasmid DNA containing cDNA ATCC Deposit No:Z (e.g., as set forth in columns 2 and 3 of Table IA and/or as set forth, for example, in Table IB, 6, and 7). The nucleotide sequence of each deposited clone can readily be determined by sequencing the deposited clone in accordance with known methods. Further, techniques known in the art can be used to verify the nucleotide sequences of SEQ ID NO:X. The predicted amino acid sequence can then be verified from such deposits. Moreover, the amino acid sequence of the protein encoded by a particular clone can also be directly determined by peptide sequencing or by expressing the protein in a suitable host cell containing the deposited human cDNA, collecting the protein, and determining its sequence.
Table 2
* . J Ux
J
ON
-J-***-
OJ
-J
J o
■1^ J NO
^ ^ O
^
-^ ^
^ ^ OJ
-J****. ^
-P-*- Oft
px f^
ON
^
o Oft
RACE Protocol For Recovery of Full-Length Genes
Partial cDNA clones can be made full-length by utilizing the rapid amplification of cDNA ends (RACE) procedure described in Frohman, M.A., et al., Proc. Nat'l. Acad. Sci. USA, 85:8998- 9002 (1988). A cDNA clone missing either the 5' or 3' end can be reconstructed to include the absent base pairs extending to the translational start or stop codon, respectively. In some cases, cDNAs are missing the start codon of translation, therefor. The following briefly describes a modification of this original 5' RACE procedure. Poly A+ or total RNA is reverse transcribed with Superscript II (Gibco/BRL) and an antisense or complementary primer specific to the cDNA sequence. The primer is removed from the reaction with a Microcon Concentrator (Amicon). The first-strand cDNA is then tailed with dATP and terminal deoxynucleotide transferase (Gibco/BRL). Thus, an anchor sequence is produced which is needed for PCR amplification. The second strand is synthesized from the dA-tail in PCR buffer, Taq DNA polymerase (Perkin-Elmer Cetus), an oligo-dT primer containing three adjacent restriction sites (Xhol, Sail and Clal) at the 5' end and a primer containing just these restriction sites. This double-stranded cDNA is PCR amplified for 40 cycles with the same primers as well as a nested cDNA-specific antisense primer. The PCR products are size-separated on an ethidium bromide-agarose gel and the region of gel containing cDNA products the predicted size of missing protein-coding DNA is removed. cDNA is purified from the agarose with the Magic PCR Prep kit (Promega), restriction digested with Xhol or Sail, and ligated to a plasmid such as pBluescript SKEI (Stratagene) at Xhol and EcoRV sites. This DNA is transformed into bacteria and the plasmid clones sequenced to identify the correct protein-coding inserts. Correct 5' ends are confirmed by comparing this sequence with the putatively identified homologue and overlap with the partial cDNA clone. Similar methods known in the art and/or commercial kits are used to amplify and recover 3' ends.
Several quality-controUed kits are commercially available for purchase. Similar reagents and methods to those above are supplied in kit form from Gibco/BRL for both 5' and 3' RACE for recovery of full-length genes. A second kit is available from Clontech, which is a modification of a related technique, SLIC (single-stranded ligation to single-stranded cDNA), developed by Dumas et al., Nucleic Acids Res., 19:5227-32 (1991). The major differences in procedure are that the RNA is alkaline hydrolyzed after reverse transcription and RNA ligase is used to join a restriction site-containing anchor primer to the first-strand cDNA. This obviates the necessity for the dA-tailing reaction that results in a polyT stretch that is difficult to sequence past.
An alternative to generating 5' or 3' cDNA from RNA is to use cDNA library double- stranded DNA. An asymmetric PCR-amplified antisense cDNA strand is synthesized with an antisense cDNA-specific primer and a plasmid-anchored primer. These primers are removed and a symmetric PCR reaction is performed with a nested cDNA-specific antisense primer and the plasmid-anchored primer.
RNA Ligase Protocol For Generating The 5 ' or 3' End Sequences To Obtain Full Length Genes Once a gene of interest is identified, several methods are available for the identification of the 5' or 3' portions of the gene that may not be present in the original cDNA plasmid. These methods include, but are not limited to, filter probing, clone enrichment using specific probes and protocols similar and identical to 5' and 3' RACE. While the full-length gene may be present in the library and can be identified by probing, a useful method for generating the 5' or 3' end is to use the existing sequence information from the original cDNA to generate the missing information. A method similar to 5' RACE is available for generating the missing 5' end of a desired full-length gene. (This method was published by Fromont-Racine et al., Nucleic Acids Res., 21(7): 1683-1684 (1993)). Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcript and a primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest, is used to PCR amplify the 5' portion of the desired full length gene which may then be sequenced and used to generate the full length gene. This method starts with total RNA isolated from the desired source, poly A RNA may be used but is not a prerequisite for this procedure. The RNA preparation may then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA, which may interfere with the later RNA ligase step. The phosphatase if used is then inactivated and the RNA is treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase. This modified RNA preparation can then be used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction can then be used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the relevant gene. The present invention also relates to vectors or plasmids, which include such DNA sequences, as well as the use of the DNA sequences. The material deposited with the ATCC (e.g., as described in columns 2 and 3 of Table IA, and/or as set forth in Table IB, Table 6, or Table 7) is a mixture of cDNA clones derived from a variety of human tissue and cloned in either a plasmid vector or a phage vector, as described, for example, in Table IA and Table 7. These deposits are referred to as "the deposits" herein. The tissues from which some of the clones were derived are listed in Table 7, and the vector in which the corresponding cDNA is contained is also indicated in Table 7. The deposited material includes cDNA clones corresponding to SEQ ED NO:X described, for example, in Table IA and/or Table IB (ATCC Deposit No:Z). A clone which is isolatable from the ATCC Deposits by use of a sequence listed as SEQ ID NO:X, may include the entire coding region of a human gene or in other cases such clone may include a substantial portion of the coding region of a human gene. Furthermore, although the sequence listing may in some instances list only a portion of the DNA sequence in a clone included in the ATCC Deposits, it is well within the ability of one skilled in the art to sequence the DNA included in a clone contained in the ATCC Deposits by use of a sequence (or portion thereof) described in, for example Tables IA and/or Table IB or Table 2, by procedures hereinafter further described, and others apparent to those skilled in the art.
Also provided in Table IA and Table 7 is the name of the vector which contains the cDNA clone. Each vector is routinely used in the art. The following additional information is provided for convenience. Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S.
Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 76:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, Inc., 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Phagemid pBS may be excised from the Lambda Zap and Uni-Zap XR vectors, and phagemid pBK may be excised from the Zap Express vector. Both phagemids may be transformed into E. coli strain XL-1 Blue, also available from Stratagene.
Vectors pSportl, pCMVSport 1.0, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. See, for instance, Gruber, C. E, et al., Focus 15:59- (1993). Vector lafrnid BA (Bento Soares, Columbia University, New York, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. See, for instance, Clark, J. M., Nuc. Acids Res. 7(5:9677-9686 (1988) and Mead, D. et al, Bio/Technology 9: (1991).
The present invention also relates to the genes corresponding to SEQ ID NO:X, SEQ ED NO:Y, and/or the deposited clone (ATCC Deposit No:Z). The corresponding gene can be isolated in accordance with known methods using the sequence information disclosed herein. Such methods include preparing probes or primers from the disclosed sequence and identifying or amplifying the corresponding gene from appropriate sources of genomic material.
Also provided in the present invention are allelic variants, orthologs, and/or species homologs. Procedures known in the art can be used to obtain full-length genes, allelic variants, splice variants, full-length coding portions, orthologs, and/or species homologs of genes corresponding to SEQ ED NO:X or the complement thereof, polypeptides encoded by genes corresponding to SEQ ID NO:X or the complement thereof, and/or the cDNA contained in ATCC Deposit No:Z, using information from the sequences disclosed herein or the clones deposited with the ATCC. For example, allelic variants and/or species homologs may be isolated and identified by making suitable probes or primers from the sequences provided herein and screening a suitable nucleic acid source for allelic variants and/or the desired homologue.
The polypeptides of the invention can be prepared in any suitable manner. Such polypeptides include isolated naturally occurring polypeptides, recombinantly produced polypeptides, synthetically produced polypeptides, or polypeptides produced by a combination of these methods. Means for preparing such polypeptides are well understood in the art.
The polypeptides may be in the form of the secreted protein, including the mature form, or may be a part of a larger protein, such as a fusion protein (see below). It is often advantageous to include an additional amino acid sequence which contains secretory or leader sequences, pro- sequences, sequences which aid in purification, such as multiple histidine residues, or an additional sequence for stability during recombinant production.
The polypeptides of the present invention are preferably provided in an isolated form, and preferably are substantially purified. A recombinantly produced version of a polypeptide, including the secreted polypeptide, can be substantially purified using techniques described herein or otherwise known in the art, such as, for example, by the one-step method described in Smith and Johnson, Gene 67:31-40 (1988). Polypeptides of the invention also can be purified from natural, synthetic or recombinant sources using techniques described herein or otherwise known in the art, such as, for example, antibodies of the invention raised against the polypeptides of the present invention in methods which are well known in the art. The present invention provides a polynucleotide comprising, or alternatively consisting of, the nucleic acid sequence of SEQ ED NO:X, and/or the cDNA sequence contained in ATCC Deposit No:Z. The present invention also provides a polypeptide comprising, or alternatively, consisting of, the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ED NO:X or a complement thereof, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or the polypeptide sequence encoded by a nucleotide sequence in SEQ ED NO:B as defined in column 6 of Table IC. Polynucleotides encoding a polypeptide comprising, or alternatively consisting of the polypeptide sequence of SEQ ID NO:Y, a polypeptide encoded by SEQ ED NO:X, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or a polypeptide sequence encoded by a nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IC are also encompassed by the invention. The present invention further encompasses a polynucleotide comprising, or alternatively consisting of, the complement of the nucleic acid sequence of SEQ ED NO:X, a nucleic acid sequence encoding a polypeptide encoded by the complement of the nucleic acid sequence of SEQ ED NO:X, and/or the cDNA contained in ATCC Deposit No:Z. Moreover, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in Table IC column 6, or any combination thereof. Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in Table IC column 6, or any combination thereof. In further embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ED NO:B (see Table IC, column 5). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ED NO:A (see Table IC, column 4). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ED NO:A (see Table IC, column 4). Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
Further, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC which correspond to the same Clone ID (see Table IC, column 1), or any combination thereof. Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in column 6 of Table IC which correspond to the same Clone ID (see Table IC, column 1), or any combination thereof. In further embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same Clone ID (see Table IC, column 1) and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ED NO:B (see Table IC, column 5). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same Clone 3D (see Table IC, column 1) and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IC, column 4). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same Clone ED (see Table IC, column 1) and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IC, column 4). Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
Further, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ID NO:X (see Table IC, column 2), or any combination thereof. Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2), or any combination thereof. In further embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2) and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IC, column 5). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2) and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ED NO:A (see Table IC, column 4). In additional embodiments, the above- described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in column 6 of Table IC which correspond to the same contig sequence identifier SEQ ED NO:X (see Table IC, column 2) and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ED NO:A (See Table IC, column 4). Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention.
Moreover, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in the same row of Table IC column 6, or any combination thereof. Additional, representative examples of polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in the same row of Table IC column 6, or any combination thereof. In preferred embodiments, the polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the complementary strand(s) of the sequences delineated in the same row of Table IC column 6, wherein sequentially delineated sequences in the table (i.e. corresponding to those exons located closest to each other) are directly contiguous in a 5' to 3' orientation. In further embodiments, above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IC, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IC, column 5). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IC, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ED NO:A (see Table IC, column 4). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated in the same row of Table IC, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ID NO:A (see Table IC, column 4). Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IC, column 2) or fragments or variants thereof. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in column 6 of Table IC which correspond to the same Clone ED (see Table IC, column 1), and the polynucleotide sequence of SEQ ED NO:X (e.g., as defined in Table IA, Table IB, or Table IC) or fragments or variants thereof, hi preferred embodiments, the delineated sequence(s) and polynucleotide sequence of SEQ ED NO:X correspond to the same Clone ID. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
In further specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more of the sequences delineated in the same row of column 6 of Table IC, and the polynucleotide sequence of SEQ ED NO:X (e.g., as defined in Table IA, Table IB, or Table IC) or fragments or variants thereof. In preferred embodiments, the delineated sequence(s) and polynucleotide sequence of SEQ ED NO:X correspond to the same row of column 6 of Table IC. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3 ' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of the sequence of SEQ ID NO:X are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X are directly contiguous Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IC are directly contiguous. Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IC are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides, are also encompassed by the invention.
In further specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention. hi specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 corresponding to the same Clone ED (see Table IC, column 1) are directly contiguous. Nucleic acids that hybridize to the complement of these 20 lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, a polynucleotide sequence in which the 3' 10 polynucleotides of one sequence in column 6 corresponding to the same contig sequence identifer SEQ ED NO:X (see Table IC, column 2) are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 corresponding to the same row are directly contiguous. In preferred embodiments, the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC is directly contiguous with the 5' 10 polynucleotides of the next sequential exon delineated in Table IC, column 6. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
Table 3
Many polynucleotide sequences, such as EST sequences, are publicly available and accessible through sequence databases and may have been publicly available prior to conception of the present invention. Preferably, such related polynucleotides are specifically excluded from the scope of the present invention. Accordingly, for each contig sequence (SEQ ID NO:X) listed in the fifth column of Table IA and/or the fourth column of Table IB, preferably excluded are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b. where a is any integer between 1 and the final nucleotide minus 15 of SEQ ED NO:X, b is an integer of 15 to the final nucleotide of SEQ ID NO:X, where both a and b correspond to the positions of nucleotide residues shown in SEQ ID NO:X, and where b is greater than or equal to a + 14. More specifically, preferably excluded are one or more polynucleotides comprising a nucleotide sequence described by the general formula of a-b, where a and b are integers as defined in columns 4 and 5, respectively, of Table 3. In specific embodiments, the polynucleotides of the invention do not consist of at least one, two, three, four, five, ten, or more of the specific polynucleotide sequences referenced by the Genbank Accession No. as disclosed in column 6 of Table 3 (including for example, published sequence in connection with a particular BAC clone), hi further embodiments, preferably excluded from the invention are the specific polynucleotide sequence(s) contained in the clones corresponding to at least one, two, three, four, five, ten, or more of the available material having the accession numbers identified in the sixth column of this Table (including for example, the actual sequence contained in an identified BAC clone). In no way is this listing meant to encompass all of the sequences that may be excluded by the general formula; it is just a representative example. AU references available through these accessions are hereby incorporated by reference in their entirety.
Table 3
■ ■
Os t
AW237082, AW025153, R90773, AI766469, AI672360, BF718243, AA745682, AW134904, AA495776, AL119175, F23330, AA417706, AW274357, AW268196, R36266, AI913519, W00431, AA496881, BE252368, AA610858, AA417588, AI685216, AW072885, BF975689, BF690095, BF984194, BG033163, AA114066, AW474388, AA133537, AI693690, BF339469, BG166654, BG164558, AW078929, AI473536, ALI 19399, AI345688, AL042544, AI539771, AI288050, BF812961, AI472566, AA326898, AI863082, AI633125, AI698391, AI538564, AI915291, AW152182, AA248795, BF811804, AI889189, AI866469, AI270099, AI884318, AI933992, AW151714, AW051088, AW827289, AI611743, AI933903, BF814449, AI885520, AI435268, AW078574, AI049787, AI819326, AI539780, AI584140, BE540034, AL046466, AA905473, AA279795, BF970652, AA019328, AI887772, AW087934, AI570966, AI250627, AI492528, AI249962, BF871314, AI866608, BF822127, AI224027, AI628254, AW168503, AW191844, W74529, AI352274, AI589428, AI624693, AI242248, AI873638, AI801766, AI537677, BE907440, AI702073, AI916419, AW163834, BE965169, AI249877, AI963763, AI312542, AA641818, AI357996, AI684305, BF572734, BF856052, AW500379, BE965129, AI376872, BE875407, AI433157, AI932794, AW079409, AI610115, AW983832, AI537024, AI951950, BG031894, AI582932, AI587606, AI590043, AW129230, BF814360, AI888621,
Os AV734591, AI273901, AW085786, AI673785, BE843239, AW169790, AI651840, AL037454, OJ AL046595, AI640729, AI811344, AI520785, BF814357, AI473451, BG177717, AA743354, AI270429, AW118518, AL513901, AI580451, AW020397, AI559296, AW026882, AA502794, AI917963, AI540821, AI538850, AI270183, AI520859, AI475139, AI362239, AI923989, BF792469, AW167021, AI678446, AI745684, BF868927, AI582912, AI640704, BF222472, AI249946, AI590021, AI679891, AL046618, BF680133, AW188434, AI828574, AI625384, T69241, AW149311, AI690585, AI590227, AI630931, AI884469, AI281757, AI476478, AA835801, AI573032, AI500061, AI680162, AI567846, AI366900, AW081322, AI951868, AI583065, AI345745, AI536638, AI815232, AI434242, AW162214, AI659795, AI702406, AL038605, AW168795, AW080090, AI472536, AI659334, AW946864, AL043355, AV745810, AI866040, AI580190, AI583533, AI561231, BF812936, BE543089, AI654750, AI923370, BF812938, AC005786.1, AF218008.1, AC005787.1, AL389935.1, AK025092.1, AL354776.15, AL035067.2, AK025312.1, U66059.1, AC026464.6, AL162002.1, AC023880.5, AK026533.1, AB048919.1, BC008485.1, BC004264.1, AK026408.1, AF225424.1, BC005678.1, S77771.1, BC004370.1, AK025435.1, AF090901.1, AK026462.1, BC004349.1, AL136850.1, AL080159.1, AK027144.1, AL050149.1, AB047631.1, AL137547.1, BC004556.1, AL080148.1, AK000652.1, AL512750.1, AF260566.1, AF245044.1, BC003614.1, AL049382.1, BC002343.1, BC006494.1, AL122100.1, AK000250.1, Y14314.1, AL137256.1, AL050155.1, AL162083.1, AB047887.1, AL122098.1, BC001098.1, AL133619.1, AL050138.1, BC002733.1, AK026532.1, AB060912.1, AL049339.1, AK0Q0418.1, AL080154.1, Z82022.1, BC007556.1, AK025484.1, BC009341.1,
^ s ^
BE514167, T64415, X97515, AA633574, AI424608, AI311616, AA508475, AI033570, BF238967, BF096079, BG166654, BG164558, BF525578, BG113299, AV727963, BF338002, AL119399, AL079794, AV713079, AV682559, BF343172, BG104845, BF726207, BG058150, AL047675, AI623941, AL037030, BF792961, BE965956, AV746104, BE875407, AW583714, BE965621, AI439443, BG179993, AV757996, AL037558, AW021717, AL036634, BE891834, AV681840, BF752999, AL042382, BF812960, BE965067, BE910373, AW020397, AI567582, BE964614, R36271, BE965724, BG113741, AV650703, AI446373, AI890907, AA572758, BF672397, BE964512, BE536058, BF814761, AL037454, AW162194, AV648430, AA641818, BF792099, AL514793, BF032768, AL135022, AI923837, BE011880, AW827206, BG034550, AW160376, AL037649, AW827289, BF856052, BF527014, AL048656, BG180996, AV713305, BF343174, BF037484, BG109270, BF750879, BF814357, AA580663, BE965599, BG178911, AI538885, AV757293, AL036901, BF814447, AI913452, BF871314, BF089679, BE966443, AI345562, BG029053, AV735235, AI499652, AI866770, AI349628, AL514359, BE963838, BE729660, AI609128, BE048319, AI818977, AI609594, AW161156, BG001235, BE906419, BG111590, BF910810, AL046200, AI525653, BF764538, AI538850, BE047852, AL118781, BE874133, BF107577, BG222103, AV745703, BF913615, BG058217, AW071362, AW3O13O0,
4^ BF970990, BE875368, BF344734, AI285826, AW834302, AI433590, AW827227, BF771374, AI343037, AL045163, BF344201, AW151136, AI491775, AV682799, AF055030.1, AF338735.1, AB056416.1, AK001837.1, AL162004.1, BC006525.1, AF210052.1, AF090943.1, AF183393.1, AF217966.1, AK026784.1, AL136622.1, AF143723.1, BC008387.1, AL080159.1, U78525.1, AB055361.1, BC003627.1, BC004530.1, AL110197.1, AK026762.1, AL137488.1, AL122110.1, AF069506.1, AL137271.1, AL137550.1, AL133113.1, AL137529.1, AL389935.1, Y16645.1, AL049466.1, AF177336.1, AL136767.1, AK024992.1, AL389978.1, AK000432.1, AK026583.1, BC004899.1, AL133640.1, AF205073.1, AL359583.1, AL080074.1, AK025339.1, AF090900.1, AL117457.1, AL050116.1, AL096744.1, AL137533.1, AL023657.1, AB060826.1, AL136844.1, BC007567.1, AL137480.1, AB050410.1, AF078844.1, AK027096.1, AK025967.1, AL137478.1, AL389939.1, AB063088.1, AL512719.1, AL359622.1, AK026057.1, AB060873.1, AK025084.1, AL117649.1, AB056372.1, AL133665.1, AK026506.1, BC007021.1, AB056420.1, AJ299431.1, AL049314.1, AL162006.1, BC000316.1, AK027164.1, AB060852.1, AF056191.1, X72889.1, AK026408.1, AK026504.1, BC001045.1, AB062938.1, AK025435.1, AL512765.1, AL162002.1, AL359941.1, AL133067.1, AL049382.1, AL050172.1, AK026613.1, AK000083.1, AK025092.1, AL122100.1, AB050431.1, AB049758.1, AK026434.1, AF260566.1, AL137294.1, AL136787.1, AL110222.1, AL389982.1, AL136805.1, AL136784.1, AK026608.1, AF061943.1, AF285167.1, AB051158.1, BC004958.1, AL136892.1, AB062978.1, S78214.1, AL133560.1, AL050277.1, AF090934.1, BC006440.1, AK026885.1, AL512733.1, AL512746.1, AB055303.1, AB060887.1, ALQ80148.1, BC007534.1, AL080140.1, AF217994.1, AF026816.2, AK025857.1, AL137557.1,
• ■
ON 00
AC005399.19, AP001748.1, AC020750.3, AC006511.5, AC008687.4, AL121594.6, AC020915.6, AC011491.5, AL133174.15, AL035367.5, AC090939.1, AC005209.1, AC010877.3, AP001714.1, AL133245.2, AF334404.1, AE006639.1, AL353692.14, AL161452.19, AL355517.12, AL096841.6, AC010422.7, AC008610.6, AC020898.5, AL031279.1, AL034380.26, AJ400879.1, AC007850.29, AL021579.1, AC022211.5, AL450224.1, AP001972.4, Z68870.1, AC008481.7, AL022721.1, AL136300.22, AL122035.6, AC009122.8, U95740.1, AC005081.3, AJ400877.1, AC006285.il, AC073138.3, AC005565.1, AC005071.2, AC003962.1, AC010899.8, AL354932.26, AL353812.13, AC004089.25, AC053467.1, AC078846.2, AC006130.1, AC005280.3, AC008736.6, AC008521.5, AC003101.1, AC006146.2, AC018695.6, AC027319.5, AC007666.12, AL160397.17, AC008474J, AL136123.19, AC023510.16, AC009412.6, AP000115.1, AC005516.1, AC011464.5, AL117333.26, AC005971.5, AC002544.1, AC006345.4, AC007450.1, AC007003.4, AC016025.12, AL035659.22, AC010201.18, AP001687.1, AC010530J, AC011455.6, AC008946.6, AL359091.10, AB038653.1, AC018809.4, AC011500.7, AL365199.10, AP001713.1, AL132713.il, AC083884.6, AL136131.15, AC010271.6, AL049776.3, AC012476.8, AL355543.13, AP000503.1, AC010311.8, AC011737.10, AL590763.1, AL121653.2, AF111168.2, AC010789.9, AC010279.4, AL023807.6, AL353807.18,
*■ ■ Os AL121920.21, AC011811.42, AP000047.1, AL121891.22, AC006329.5, AL162615.13, NO AC004166.12, AL390074.17, AC008760.6, AC022517.1, AC008747.5, U80017.1, AC004033.3, AL034372.33, AC005015.2, AP001716.1, AC007308.13, AF129756.1, AC005726.1, AC005011.2, AL137918.4, AL035458.35, AC005913.2, AC015801.25, AC005098.2, AL161747.5, AC005080.2, AL022323.7, AL391827.18, AC006211.1, AL139113.21, AL157823.9, AC011485.6, AL445222.9, AP000509.1, AC073073.2, AL031577.1, AC009996.7, AC006195.1, AL354815.10, U62317.2, AC008264.10, AF134726.1, AC074331.1, AC007957.36, AC004895.2, AC005180.2, AL445248J, AL139021.6, AL354720.14, AC005288.1, AC004846.2, AL034417.14, AC005512.1, AL132641.3, AL355922.4, AC006975.2, AC002558.1, AC024561.4, AC009756.9, AP003439.2, AC005914.1, AC011739J, AF124523.1, AP003357.2, AL009179.1, AC004848.1, AC007216.2, AC013429.12, AD000092.1, AP001605.1, AL034405.16, AL137852.15, AL021154.1, AL163203.2, AC022382.3, AC072061.8, AC008397J, AL391839.9, AC000052.16, AL158196.24, AC010722.2, AC009123.6, AL136305.14, AP000359.1, AL391834.8, AL031427.15, AL022313.1, AC016830.5, AC068724J, AL359846.il, AC012599.8, AL135749.3, AL023284.1, AC009946.2, AL162505.20, AC023908.6, AP002788.3, AC009144.5, AC026464.6, AC009475.4, AC004797.1, AC007263. 4.
HBIMB51 27 963208 1 - 523 15 - 537 AW293249.
HBJJU28 29 561723 1 - 1146 15 - 1160 AI090576, T74524, AA572813, AI287766, BF821897, AL037632, BF725844, BF821009, AI619742, AI890348, AI821901, AA513551, AI473995, AA720702, BE138484, AI281881, AF001965.2, AC0103197, AC007182.3, AC007956.5, AL138996.4, AL049553.20, AL121655.1,
-P-*. to
4^ -J J
AI755214, AA568204, AA602557, AI053688, AI754105, AI754567, BE968744, N23504, AI037897, AA171941, AI753037, AI366902, BF680286, AL035423.4, AF078544.1, AF155810.1, AF155809.1, AF155811.1, AP001972.4, AL137073.13, AC004622.1, AC007739.2, AC006512.12, AC007546.5, AC074121.16, AC010618.7, AC004840.3, AC005952.1, AC020552.4, AC010530.7, AC008622.5, AL021154.1, AC004815.2, AL135927.14, AC007227.3, AL122015.17, AL121891.22, AL391262.3, AP002981.2, AL035088.1, AC039057.8, AC007226.3, AC002367.1, AL033383.26, AC027319.5, AC022083.6, AC007957.36, AC003982.1, AP001631.1, AL159168.15, AC004659.1, AC008946.6, AE000658.1, AC009497.3, AL031985.10, AC010149.8, AC009247.12, AL137026.21, AL031311.1, AC011247.10, AC008753.8, AL133448.4, AL049760.26, AL132780.5, AL138976.5, AC005899.1, AC068724.7, AL139384.16, AL136418.4, AL139054.1, AC079468.3, Z97632.1, AP001712.1, AL031602.14, AL445184.il, AC016643.6, AL137141.10, AL137162.25, AC004144.1, AC005046.3, AC004832.3, AP000240.1, AL121890.34, AC020983.7, AC008896.5, AL031680.20, AC015982.9, L44140.1, AC006285.il, AC005261.1, AP001748.1, AL033529.25, AC018720.5, ALI 17694.5, AL109804.41, AC004975.2, AL137229.4, Z83840.7, AC011462.4, AL035587.5, AL022334.1, AC002301.1, AC026464.6, AC068999.15, M89651.1, AL049759.10, AC005666.1, ^ -J AL117341.26, AC007664.12, AC008635.6, AL356481.16, AC018828.3, AC009001.7, AL158040.13, AC007421.12, AC009480.4, AL050335.32, AC005342.1, AP001694.1, AL157938.22, AC007536.9, AL136305.14, AC011443.6, AL032822.1, AJ300188.1, AC008745.6, ACOl 1465.4, AC007934.7, AC004963.2, AL161893.24, AC020947.6, AL359236.4, AC008372.6, AC005815.1, AC008962.8, AL135838.5, AP001718.1, AC012076.4, AC068799.14, AL359986.15, AC020908.6, AC003110.1, AL109627.18, AC008623.4, AL157823.9, AL354750.12, AC009068.10, AL133367.4, AC005255.1, AP002898.1, AC018636.4, AC016026.13, AC005828.1, AC007637.9, AL391139.19, AL132855.4, AP000503.1, AC006211.1, AL121675.36, AL121972.17, Z95331.2, AC005901.1, AL159159.21, AL132773.14, AL138885.21, AL109865.36, AL121586.31, AL136525.17, AL391827.18, AP000744.4, AL161670.4, AC006023.2, AL391122.9, AC006433.18, AC000353.27, AC074338.1, AC008569.6, Z93023.1, AC009087.4, AC004019.20, AC002306.1, AC083867.4, AL035697.19, AC005859.1, AL359092.14, AC090517.2, AC011450.4, AL139316.5, AC009412.6, AP001705.1, Z85987.13, AP000514.1, AL352978.6, AC006241.1, AL159191.4, AP002852.3, AL033524.il, AL391153.3, AL034380.26, AL132640.4, AC019205.4, AP000356.1, AC005586.2, AL162424.20, AC007731.14, AC008518.3, AL590283.7, AC004139.1, AC016596.5, AC021036.5, ACOl 1479.6, AC005207.1, AC010458.5, AC008891.7, AP000665.5, AC008857.5, ACOl 1890.4, AC034193.4, AC005500.2, AC010320.9, AP003357.2, AL135818.3, AL357752.19, AC008626.5, AC002316.1, AP001725.1, AC011290.3, AF111168.2, AL354653.26, AC002126.1, AL136123.19, Z98743.1, AL359272.9, AC018695.6, U95742.1, Z95152.1, AL138816.12,
U\
AI590043, AI284517, AI923989, AI872423, AW172981, AI500706, AI445237, AI491776, AI289791, AW151138, BF811804, AI521560, AI889189, AI500662, AI582912, AW172723, AI284509, AI539800, AI889168, AI440263, AI538885, AI927233, AI866573, AI633493, AI434256, AI866469, AI434242, AI805769, AI888661, AI284513, AI500714, AI888118, AI277008, AI285439, AI436429, AI859991, BE964045, AI355779, AI623736, AI889147, AI371228, AI581033, AI431307, AI440252, AI491710, AI440238, AL047422, AI866786, AI567971, AI610557, AI860003, AI431316, AI242736, AI539260, AI828574, AI887499, AW151979, AL038575, AI539781, AI702065, AI539707, AI885949, AI285419, AW089557, AI559957, AI521571, AI469775, AI866581, AL047398, AW074057, AI815150, AI567953, AI446495, BE906230, AI867068, AI225248, AI698352, AI815239, AI371229, AI921420, AI624279, BF913616, BG252929, AI701890, AI687614, AA464646, BF038804, AI919345, AW858243, AI282249, AI962040, AI829330, AW078839, BE895765, AI554821, AI561170, BE764656, AI636811, AL515375, AI500146, AL042365, AW059765, AI263331, AI610756, AI440260, AI690946, BF814072, AI890907, BF811802, AW129310, AI866458, AI431238, BF815930, AI648567, BF925348, AL514069, BE540578, AA830821, AI924051, AI433157, BE964497, AI273179, BE621206, BG108452, AI371251, AI866510, AI499986, BE968711, -J AW151974, AW073697, AI866461, AI923046, BF339011, AI049859, BF752892, AI436458, -J BF526393, AI379711, AI918408, AI334445, AW169643, AL048403, AI915201, AA878808, BF764538, AI349814, AI953880, AI702902, AI800171, BE881675, AI819663, AI432656, AF118240.1, AB016531.1, BC000467.1, BC004356.1, BC000632.1, AK025906.1, BC004937.1, AK027081.1, BC007634.1, AL133070.1, X79204.1, AK000247.1, BC004908.1, AL080162.1, AL136781.1, AF017790.1, Z22828.1, U92992.1, BC002356.1, BC008382.1, BC001093.1, AL080127.1, AL136748.1, BC008195.1, AB048910.1, BC000713.1, AK024550.1, BC008818.1, BC001470.1, AK027116.1, AL133084.1, BC008488.1, AB063077.1, AL137275.1, AF056191.1, AK026086.1, BC004370.1, AB047609.1, BC003105.1, BC006164.1, BC002485.1, AL122098.1, AF111847.1, BC008893.1, M92439.1, AP001343.1, AL512454.6, BC002839.1, AK026038.1, AJ004832.1, X72889.1, BC002491.1, AK026865.1, AK026021.1, AK025084.1, AK025958.1, BC002607.1, AL136825.1, AL133049.1, BC001790.1, BC000785.1, AB060905.1, AL161953.1, AL136765.1, S77771.1, BC004926.1, AL137429.1, BC006207.1, AL389978.1, BC006508.1, AF067420.1, AK026642.1, AK026590.1, BC007657.1, AF260566.1, AB063087.1, BC002844.1, AF369701.1, BC004181.1, AL117432.1, BC000051.1, BC000386.1, BC007852.1, AK026749.1, AF151109.1, BC005805.1, AK026164.1, AB049629.1, AK025092.1, BC008717.1, AK026627.1, AL161802.15, AL353745.7, BC008365.1, D83989.1, U80742.1, AK026648.1, BC007207.1, BC002495.1, BC009272.1, AL136763.1, AL137556.1, AL136540.1, BC002777.1, AL080154.1, AK026532.1, BC009284.1, AC004690.1, AK026389.1, AF353396.1, AF022813.1, BC001328.1, BC002816.1, AL049423.1, AL049314.1, AB060837.1, AL512705.1, BC002524.1, AL137536.1,
■ ■
4^ oo O
^ o
HESAJ10 61 526013 1 - 1076 15 - 1090 BG163863, BF973568, BE905545, BE440123, BE877406, BE878414, AI810399, AA421950, AW954926, AI826072, AA507017, AI597673, AA147367, W46280, AA586621, W70172, BE879100, AA595444, AA725205, AI701337, AA421951, AA722808, AA988274, AA844455, W96316, T59591, BF869408, BF858292, BF858296, AA587061, AI077904, BF858302, AA147419, AA058506, AW579978, AA649904, AA651755, AW383857, R24354, AI077596, AA576389, AI734990, AA319027, BF858301, AA034247, AA054465, AA814555, W69907, BE833571, BE159104, BG170925, AI918084, W96221, AA326962, AL048246, AL048247, BF834026, BF339936, AA626906, AA897619, AI826118, BF363870, AA683597, AA932608, AA046341, W32814, R24251, BF858297, AW971745, AW750463, AA046263, AA630968, BE612945, BE622828, BE622931, BE613136, BE614237, BE613349, BE613070, AI146631, BE621911, BE614307, BE620742, BE618811, BE622868, AI074824, AI074849, BE614451, AI081420, AL119457, AI086654, AL119324, AL119511, AL119399, AI954162, AI270350, AW877209, AL043152, AL042544, AI675825, AL042382, AW970048, AL043168, AL079794, BG164558, BF525578, BE891834, BE964767, AL042866, AW029263, BE779982, AW023871, BF764534, AI096771, AI634450, BE965493, BG251257, BF811802, BF924856, BE733009, AW129271, BE964497, F37450, AI433611, AW025279, AI627896, AI811422, BE967255, ^ o AI305157, BF814360, AI431323, BE963918, AW302854, AI349944, AI925404, AW964095, ^ AI812080, AW271119, AL079741, AW028442, AI688848, BF750875, AI520931, AI335209, AI050666, BF817418, AL530922, AA494167, AL037104, BE897632, AI334450, AW131112, AL037081, AW268220, AI880009, AA808175, AI570389, AI635702, AI859464, BG254754, BF055742, AI613548, AI524654, AW961463, AI336586, AW403717, AI349004, BG168646, AW172723, AL042981, AI805638, AI336575, AW073898, BE250931, AW083804, BE965251, AI891157, AI811644, AA806719, AW022682, BE393551, AI270039, BG034746, AI263584, BF812963, AI480118, AI309306, AI244380, BG166697, AI452993, BE613727, BE965724, AL037582, AL037602, AI636788, AL038605, BE964728, AI620302, AI281412, AV716516, AU118477, AV760924, AI926593, AI336567, AI866465, AW194079, AI699011, BF817824, BF032768, BF764538, AI924971, AI702527, AI345823, AI915295, AL121306, BG113605, AW268243, AW301395, ALI 19443, AI312348, AI540458, AI472566, AW081343, BF751997, BG032704, AI680504, AL514959, BF967034, AW162189, AW082623, BE968711, BE566196, BE964110, AW074987, AV682067, AI583611, AI951222, AI658566, AC005005.1, U77594.1, AB026436.1, BC009395.1, AF205073.1, AK026749.1, AL137711.1, AF274348.1, AF274347.1, BC009294.1, AL117416.1, AF219137.1, X66975.1, AL389978.1, AB048913.1, AF067420.1, AK026642.1, BC002471.1, AL389935.1, S69510.1, BC004950.1, AK026784.1, BC002524.1, AK000489.1, AF081571.1, S76508.1, AK026865.1, AK025541.1, J05032.1, BC005890.1, AL136748.1, AF352728.1, AC020956.6, BC004925.1, AK026626.1, AK024747.1, BC007456.1, BC002844.1, BC005002.1, BC002491.1, AL080124.1, AL137556.1, AK025414.1, BC009253.1,
^ o
AW961463, AI859464, BG254754, AW271119, F37450, AI687166, AI784230, AW403717, BF987104, AW172723, AI891157, AI480118, AI805638, AI933589, AI811644, AW303089, AI680457, AI783861, AI434741, AW083804, AI251830, AI828731, AI924971, AW268306, AI612759, AI648663, AW022682, AI566630, BE393551, AI537617, BF812963, BF817402, ALI 19319, BF870154, BF921092, AI499285, BE613727, BE965724, AI446248, AV716516, AL038605, AI680162, AI475408, AI682841, AI568114, AW193872, AI537024, AI866465, AW193843, BF970449, BF032768, BF812938, AI567351, BF764538, BE966990, AI538342, AI620003, BE544111, BF895953, AI610645, BG112239, AI432040, AI866127, AI568138, AI445992, AI922550, AW162189, BG027628, AA493923, AI927755, AW079159, AW117746, AI244380, AI539711, AI866573, BF909758, AV682124, AI567582, BE966388, AI580984, BF854113, AI554343, AI619587, BE964576, AI857797, AW117919, AI922561, AI249877, AI344785, AI783504, AL036214, AI699255, AW163823, AI677824, AI874166, AI698401, AI932949, AI564528, BF915208, AI142101, AI539028, AI866741, AI367210, BF814335, BG120816, BE536058, AI867042, AI537989, AI863191, BE964959, BF913616, AI863321, AI950664, BE061389, BE621256, AW193134, BE974031, AI919345, BE964812, AI364788, AC005005.1, BC009395.1, AL117416.1, AL389978.1, AB048913.1, AK026642.1, AK026784.1, ^ oo AK024538.1, AK026865.1, BC005890.1, BC009294.1, AF219137.1, AF205073.1, AL389939.1, -J AL389935.1, BC004925.1, AK026626.1, BC002844.1, AL080124.1, BC004264.1, AL137556.1, AK025414.1, BC009253.1, AK026533.1, AL080154.1, AK000450.1, BC003687.1, AB060826.1, AL137271.1, BC001349.1, BC002343.1, BC006494.1, AL110222.1, AF012536.1, BC009033.1, AL117440.1, AL512754.1, AF225424.1, AB049900.1, AF162270.1, AB060839.1, AL136754.1, AK027116.1, AF090901.1, AJ012755.1, AL080060.1, AK025375.1, AK026741.1, BC003548.1, AK025524.1, AF352728.1, AL133072.1, AL136799.1, BC005007.1, AF159141.1, AL359601.1, AK000250.1, AB050431.1, BC007198.1, AB051158.1, AF106862.1, AL122098.1, AL137711.1, AF274348.1, AF274347.1, AL137705.1, AK024594.1, AL512719.1, AL136615.1, X69819.1, BC008280.1, L30117.1, AB060916.1, BC007355.1, AK027146.1, AB060903.1, AB056768.1, AB052191.1, BC006164.1, AK027204.1, AL359615.1, AB062978.1, BC008455.1, AB049848.1, X53587.1, AF111112.1, AK026528.1, AB047623.1, AK000137.1, BC004951.1, Z82022.1, AF217987.1, AB048975.1, AL136792.1, AK000753.1, BC003684.1, AL353940.1, AL050393.1, AL136784.1, BC008070.1, AB047897.1, AB056427.1, AK027213.1, S69510.1, AL136780.1, AK026551.1, AL136928.1, BC002631.1, AB063008.1, AB048974.1, AL133665.1, Y14314.1, BC004244.1, AF252872.1, AL359618.1, BC006807.1, AK025484.1, BC003122.1, X65873.1, BC006133.1, AL136805.1, AK026532.1, S76508.1, BC004533.1, BC009341.1, BC008382.1, AK000247.1, AB060912.1, AL137526.1, BC003683.1, AK026504.1, AK026597.1, AK026057.1, AL162003.1, AB055370.1, AL359583.1, AK026885.1, AL080127.1, AL110221.1, AK027144.1, AK025312.1, AF125948.1, BC004556.1, AL080137.1, AL133010.1, AL137476.1, AB055361.1,
-P- 00 oo
^ O O
O J
AI539260, AI799183, BE966011, BE965121, BE964512, AI433157, AI648567, AI690946, AI554821, AI561170, BG252929, AW151136, AI539771, AL515087, BE897632, AI432644, AW673679, AI537677, AI494201, BF812963, AI500659, BE883591, AI866465, AI815232, AI801325, AI500523, AI859991, AI887775, AI582932, AI590043, AI923989, AI872423, AI284517, AI500706, AI445237, AI491776, AI289791, BF811804, AW151138, AI889189, AI521560, AI500662, AW172723, AI582912, AI284509, AI539800, AI889168, AI538885, AI440263, AI927233, AI866573, AI633493, AI434256, AI866469, AI805769, AI434242, AI888661, AI500714, AI284513, AI888118, AI285439, AI436429, AI355779, AI889147, AI623736, AI581033, AI371228, AI491710, AI440252, AI431307, AL047282, AI440238, AI567971, AI866786, AI860003, AI610557, AI431316, AI242736, AI828574, AI887499, BE966787, AW151979, AI539781, AI702065, AI539707, AI885949, AW089557, AI285419, AI559957, AI521571, AI469775, AI866581, AI567953, AW074057, AI815150, AI446495, AI867068, AI225248, AI698352, AW858243, BF814072, BE885490, AW022682, AL041587, AI866820, AI890907, BE084795, BE886728, AI866691, AL513891, BG116926, BG029667, AI961589, BF811802, BE895765, BF815930, BF812438, AI371251, AI866510, AI811171, BE885353, AI866461, AI923046, AI431238, AL045500, BG110517, AL047422, AA808175,
NO AI371243, BE905161, AL048403, AI952433, AL118781, AI866503, BE877904, BG035329,
4^ AV654896, AL514156, AL042365, BF339333, AI371229, BE537531, AI804531, BG257535, N25033, AL513737, BF795712, AL039390, AI493559, AI918408, BF796402, AI366900, AV647670, AW082113, AI274759, AI521589, AI285417, BGl 19543, AL036780, AL037582, AL037602, AI433976, AI889191, AI440260, R81679, AW130863, AV704234, AL080011, BG256950, AI241901, BE891101, AL120987, AI652336, AI521634, AI872104, AI432666, AI539863, AV736134, AL047398, AL121454, BE540578, BF814357, BE875959, AI366910, AW129310, BF725463, AI355008, AI561177, AW151132, AW197139, BF338002, BG027628, BG113712, BG166490, AI582926, AI815239, AI252077, AI275175, AL045413, BF969697, AI273179, AI345415, AW168849, AI499463, AI638644, AI432653, BF971261, AI610362, AV744876, AI440239, AI521596, BF727352, BG180608, AI673256, AI537273, AI537191, AW151970, AI436456, AI371265, AL046681, BF726204, AL039287, BE908744, AW161202, AI963846, AI872310, AI567940, AI610357, AI613453, AI955441, AI817244, BG180295, BF968504, AI612913, AL117589.1, AB033062.1, AL359399.3, AB056770.1, AK026406.1, AF141289.1, AL389935.1, AL512718.1, AL442082.1, AL136781.1, AL137554.1, AF104032.1, AL133049.1, BC004324.1, AL137533.1, AL133070.1, AK025239.1, AL136864.1, AB048881.1, BC006180.1, AK025967.1, AF303581.1, AF178432.1, AB047904.1, BC004899.1, AK000083.1, BC003658.1, BC006458.1, AL136828.1, AL050155.1, AL137555.1, AL360294.il, AK027114.1, AL117435.1, AL133072.1, AL137480.1, AL359618.1, BC004923.1, AL133080.1, AB060908.1, AL080162.1, AL133075.1, BC005070.1, BC003683.1, AL357195.1, AL136825.1, AL122093.1,
-*. o
AI708515, AA029171, AI289783, AA147482, AW001857, BE744941, BF851250, W76470, AI148076, AI619715, W32695, AI973179, BF856405, AA086231, AI536682, AI244167, AW205328, AAl 12137, AI015550, AI159953, AA449234, AA449289, AI886087, R48602, AW974749, R48705, N57904, W73612, AA515533, AI095398, AA086322, AA554446, AA317019, BE019888, R07096, AA894669, AAl 12027, T96414, AA923651, T96497, AI581984, AI093238, AW084446, BE834394, T65129, AA100811, BF767404, AA652428, W32694, AW364698, BF371383, AW390788, AI903419, AI903380, AI903350, AA300051, AW886927, H55267, AA029067, AA588851, AA588463, BF931116, BE646329, AW514396, T65909, AW578218, AW800794, R07042, AA625855, AA663955, AA687595, AI581808, R76016, W22074, AA043407, AA436950, H39017, BF814527, AI824576, AI702073, AI698391, AW080090, AI633062, AI608936, BE786043, AI358213, AI306705, AW983832, BE963838, BG179993, AW051258, AI677796, AW051088, BF856017, AI932794, AI366900, AI352497, AI889189, AW983829, AI270183, AW163834, AL514731, AI434468, AI812015, AI249877, AI679672, AW118518, BF812960, AI284131, AW029611, AI468872, AI699011, AI927755, BF792961, BE966388, AI886753, AW827289, AI564719, AV743962, BG108406, AI567846, AV741327, AI573060, AI783504, BGl 12718, AI620284, AI866770, AW198075, BF032768,
NO AW083778, AL514899, AI611738, AI280732, AI619502, AI680162, AI802542, AW081255, AI280607, AI499285, AI570807, AW004886, AI452560, AW026882, AW151136, AI923370, AI627988, BF812938, AL118781, BF970652, BE789764, AW104724, AI670009, AI863382, AI433157, BE543089, BF812961, AI452993, AI624548, AI659795, AW079572, AI860783, AI633125, BF812426, F27788, AW089179, AI673785, AI915291, AI354998, AW152182, AI537024, AI917252, BE967261, BF725599, AW080746, AL120853, AW129659, AW163554, AI537677, AI499890, AI612852, BF526020, AI174394, AW192461, AI613270, AW105620, ALI 19863, AI520809, AI923989, AL036673, AI571909, AI803778, AI653979, BG036846, AW192687, AV682249, AL514357, AW839006, AI274507, AI632408, AI288305, AI635067, BGl 80273, AI612913, ALI 19828, AV682212, AI590686, AI435268, AI432030, BE048071, AI500588, AI628217, BE047606, AI637748, AW238688, BG029829, AF064238.3, AJ010306.2, Y13492.2, Z49989.1, AF115564.1, AF115570.1, AF115567.1, AF115569.1, AF115568.1, AL122098.1, AL137533.1, AB056420.1, BC006195.1, BC005858.1, AK024524.1, AL133067.1, AK025092.1, BC001045.1, AL137550.1, AL080159.1, AK026462.1, AK024538.1, AL512733.1, AL050277.1, AL389939.1, S61953.1, AB056421.1, BC008893.1, AL137294.1, BC001963.1, AL389982.1, AF026816.2, AL136844.1, AB060852.1, BC008488.1, Y14314.1, AF260566.1, AL136805.1, AL049283.1, AL512684.1, AK025209.1, AK026593.1, X82434.1, AK026542.1, X72889.1, AL137560.1, AL137271.1, BC004951.1, AB060916.1, AK026532.1, AF183393.1, AL137478.1, AL137556.1, AL583915.1, AK025484.1, AF057300.1, AF057299.1, AK000652.1, AF348209.1, AL353625.5, AK026480.1, AF218014.1, AF225424.1, Z82022.1, AK027213.1,
*. O O
Ux o o
AA705374, AW860285, BF913689, BE885241, AA641818, AA805708, N49165, AA665587, AL040011, AV682124, AI538564, BE047833, AW673679, BG028116, AI537643, AI564716, AI927233, AI954422, AA653252, AI494201, AA808175, AA746607, AL118781, AA693331, AL514093, AI570807, BF725644, AI633125, BF871314, AI582966, AW152182, AI537677, N71199, BE886291, AW079432, BF970652, AI096771, AW021091, AI829495, AV758806, BE974031, AA504514, BF836158, AI244105, AV656903, AI521799, AI884318, AW089275, BG107566, BF039003, BF812961, AI623662, AA928539, AW051088, BE048235, AW162118, AW020419, BE875959, AW160363, BF965053, AW088691, AI915291, AA888196, BG026969, BG105501, AI500061, AV682403, AI500588, BE047852, AL120853, AI623941, AI621341, AL041996, AI890214, AI254727, AW162194, AW022636, BF751288, AI365256, AI567128, BE876011, BG115134, AI886055, AW059568, AI859991, AV743129, AI669864, AA830596, AW088560, AI473536, BE790023, AI871703, AW167021, AI539260, BE906584, AI589428, AW327693, AA502794, AV757293, AI554516, AI433611, AL043070, AI345688, AI432030, AI150993, AI918408, BF525834, AI434731, AL046926, BG107834, AI698391, AI932794, AL036548, AI859240, AI702073, AI538850, AI699056, BGO29086, AI473451, AI619820, BF997967, AI370623, AI889189, AI890907, AV682366, AI536685, AI824576, BG255493,
Ux o AL514627, AI433157, AL513755, BF971001, AI274768, AW020095, BG113385, BF672397, AW080076, AL513901, AV746791, BF766529, BE786834, AV735890, BF055737, AV729336, BF814450, AW090071, BG113299, AA225339, F35882, AA732937, BF686473, AI540676, AI670009, BF814072, AW952456, BF038002, BF680133, AW880037, AI287862, BE881711, AI934259, AV703169, AI815232, AI678688, AA832154, BE909009, AW168705, AI811422, AI335411, AI910639, AI582932, AI872423, BE963954, BGl 17375, AI249389, AV727787, AI915295, AW004595, AI579901, AW827289, AI591310, AI521560, AI610667, AL514721, BE966699, AI690687, AI587489, AV681579, AI539560, AA834534, AI866469, AV734185, AW968336, AL042954, AI334445, BG164371, AW025943, AW079409, AA568405, BG027679, AI538829, AW198090, BG251435, AI783997, AI242246, AI522052, AI923989, AL048644, AW238688, AW083374, AI933992, BG252914, AI950877, BE966278, BF811804, AI440239, BF724894, AI887163, AI868204, AI738854, W74529, BE138941, AI471429, AI345417, AL513743, AI628331, BC002444.1, AF195092.1, AB049892.1, BC004181.1, AL136844.1, BC000714.1, Z82022.1, AK000418.1, AF132730.1, BC007680.1, AK024538.1, AL122100.1, S78214.1, AK000421.1, AL353956.1, BC003410.1, BC003052.1, BC002413.1, AL117394.1, AL137627.1, AL162085.1, AK024546.1, BC001967.1, BC004310.1, BC003122.1, BC009294.1, AK026389.1, AL136766.1, AF218034.1, AK025092.1, AL117460.1, AF227198.1, AL133559.1, AL137267.1, AL049283.1, BC001328.1, AF114784.1, AL389935.1, BC004368.1, AK000655.1, BC007767.1, BC000317.1, BC007567.1, X95876.1, AL137459.1, AL137538.1, AB047801.1, AL050149.1, AL117435.1, AL157433.1, BC004943.1, BC005007.1, AL390154.1, AF217987.1,
OΛ o t
Ux oJ
Ux o
Ux o Ux
Ux o
Ux o -J
BF755046, AA524729, AA631405, AV730261, AA703315, BE154390, AI052560, BF883829, N23646, AA826146, AA713998, AI940701, BF815608, AA584589, BE790104, AW087334, AA487598, AW939910, AI493725, AA418919, AA779025, BF338817, AI686420, BF001825, BF063736, AA663257, AW872342, BF929662, BF919126, BF919125, AI002286, AI940708, AW845664, AU156101, AI800842, AU148272, AA669412, BE676217, AA584914, AI564481, AA593077, H71269, AW088584, AI479770, BE167158, T07383, AU140348, BF958620, T57745, T57474, T63786, BE141836, AL134317, AI671215, AA910874, AW439349, AA171526, AI968135, BF871286, AA774178, AA353087, AA281350, BE531051, AI858454, H63688, AA076475, AW993580, AW865469, AA280232, AU139668, BF997714, BG012085, AI248986, AW819076, BF218444, AW190986, AW238615, AA084198, H71280, AA258511, H92806, BF767788, BF763870, BF878613, BF905882, BF969711, BE783575, AL048837, H59185, AA632760, AA076364, AA281143, AA227286, AA587277, AI795961, AA481809, AA434462, BF812273, AW513636, AV653743, BE897813, AA581506, AI081365, AA180023, BE177666, BF869076, AA969742, AA188746, AW845678, BF878615, AA218640, AW088010, AA354211, AV652938, BE072874, AA583368, BF829537, AI654594, AW865403, N70045, AA487808, AA431655, AA486234, AA664413, AI114647, AP002532.1, AL121986.12, AB045358.1, o on AL450382.6, AL121879.14, AC073311J, AC004389.1, AL035397.4, AL355379.5, AC022416.5, oo AC079147.5, AL133226.16, AC006154.1, AL355796.il, AC018795.9, AC005521.1, AL354926.16, AL133282.15, AC004049.1, AC078950.19, AC012492.9, AL096862.18, AL354941.10, AL353811.12, AL121964.16, AC007882.3, AC026756.15, AL359925.9, AC007001.2, AC007967.3, AC006999.2, AC006386.4, AC010080.2, AL512374.1, AL357394.il, AL022160.1, AP001712.1, AP000466.1, AC078927.20, AC010146.13, AL137191.5, AL133553.9, AC004932.4, AC018741.3, AC068712.6, AC044791.6, AC005029.1, AC002349.1, AC007000.2, AL133229.40, AC009478.4, AL391987.15, AL135903.12, AC006210.2, AC007388.3, AT400877.1, AL109662.3, AC002086.1, AP001208.3, AC012323J, AC010681.15, AL139277.7, AC020910.5, AC019097.5, AC010209.13, AC025471.5, AP001207.3, AC016057.5, AC083875.1, AL356214.20, AC009299.5, AL359316.6, AL109845.8, AL353573.10, AC004979.1, AL035551.6, AL359237.4, AC016748.3, AC010289J, AL163248.2, AF207955.1, AL162390.9, AC018705.10, AL035427.17, AL139141.22, AC048346.13, AF235098.1, AL163206.2, AF198099.1, U82696.1, AF274856.2, AC078955.24, AC022073.13, AL008633.1, AL590675.3, AL121780.il, AL356115.9, Z95333.1, AC006477.3, AL500522.9, AL365222.24, AL031622.1, AL138743.5, AC007035.3, AL162580.20, AC007759.1, AC025265.21, AL138920.il, AC003098.1, AL353691.12, AC012152.12, AL133411.8, AC010623J, AC008430.3, AC090645.1, AC018833.3, AC026214.3, AC087092.1, AL359914.14, AC004208.1, AC022710.10, AP001669.1, AP000457.3, AE006462.1, Z84812.1, AC010528.8, AL078600.15, AC003658.1, AF196972.1, AC005875.2, AC026182.4, AC087086.1, Z82975.1, AC007250.2,
Ux o
NO
Ux
Ux
H-» to
AC025593.5, AC006511.5, AF045555.1, AC007374.6, AL096814.26, AC005081.3, AL445685.17, AJ400877.1, AC004985.2, AC020558.4, AC009516.19, AC008443.8, AL031447.4, AC006028.3, AL121992.24, AC011465.4, AC008655.6, AC008616.6, AL135928.6, AL513550.9, AL031295.1, AL050335.32, AL049780.4, AC005052.2, AL390060.14, AC011005.7, AP001717.1, AB023049.1, AC007000.2, U82668.1, AC005840.2, AC006530.4, AF111168.2, AC018809.4, AC002477.1, AC011443.6, AC018751.30, AC008622.5, AC023058.17, L78833.1, AC007956.5, Z85986.1, AC072052.6, AL137067.7, AC018635.6, AC002059.3, AC004824.3, AC026172.3, AC018506.4, AP000116.1, AL135927.14, AC007227.3, AL445248.7, AL590763.1, AC005914.1, AP001727.1, AL158207.15, AC010320.9, AP000557.2, AL050318.13, AL139809.16, AC008764.7, AC004882.2, AC007731.14, AJ312686.1, AC008969.5, AC004965.2, AC005037.2, AC000353.27, AC027130.5, AC087590.1, AL513008.14, AC005520.2, AC005088.2, AL133244.1, AC008551.5, AL109976.23, AC011461.4, AL132639.4, AC005089.2, AC0104927, AC009244.24, AC006930.1, AC007318.4, AC005098.2, AC005399.19, AC005529.7, AC004859.2, AL031584.1, AL160471.5, AL391139.19, AF111169.2, AL133448.4, AL4511257, AP001670.1, AC011890.4, AC005231.2, AF030453.1, AC010527.5, AL034420.16, AC009247.12, AC010328.4, AC073657.5, AC006120.1, *1
H-> AL117692.5, AP000512.1, AL161452.19, AC022382.3, AL445435.il, AC005722.1, J AC005632.2, AL162426.20, AL138721.16, AL163636.6, AL049766.14, AL137792.il, AL391827.18, AC004815.2, AL135901.23, AC0209837, AC021036.5, AL162724.16, AL590762.1, AC011500.7, AC005736.1, AL022312.7, AP003357.2, AL158830.17, AC004089.25, AC006538.1, AP000212.1, AC008760.6, AL450226.1, AL163249.2, AC009002.5, AL121658.2, AF200465.1, AC025438.5, AC091118.2, AC008736.6, AL121601.13, AC004583.1, AC019205.4, AC010326.6, AC007676.19, AC018638.5, AC008755.6, AF001549.1, AC003109.1, AC009194.8, AL021578.4, AF064861.1, AC011247.10, AL354808.24, AP001718.1, AL355480.22, AC005015.2, AL079335.29, AC002299.1, AL035086.12, AC005368.1, AL357515.26, AF168787.1, AC074270.25, Z95152.1, AC002470.17, AP001752.1, AC005070.1, AC005332.1, AC005619.1, AC010458.5, AF196779.1, AC006285.il, AC010422.7, AC010463.6, AC004813.2, AC024561.4, AC007097.4, AC005280.3, AL096701.14, AC002985.1, AC007957.36, AL034379.8, AC004257.1, AL033529.25, AL359092.14, Z93023.1, AP001725.1, AL357560.il, AC022261.8, AL031681.16, AC0251667, AC007999.12, AC005874.3, AF134471.1, AC016025.12, AC006254.10, AC004148.1, U95742.1, AC026464.6, AC011462.4, AC005821.1, AC003110.1, AC009756.9, AC011442.5, U78027.1, AC007619.22, AC010605.4, ALI 17344.12, AL121975.9, AL136300.22, AC006337.4, AL157838.24, AL158040.13, AC006970.6, AC007488.15, AC000026.3, AC008687.4, ACOl 8720.5, Z84487.2, AL445222.9, AL132855.4, AC006480.3, AL031286.1, AC004906.3, AF196971.1, Z83843.1, AC003043. 1.
HNTBL27 127 545534 1 - 777 15 - 791 AW169270, BF475369, AL524823, BE903984, AL530691, BE536833, BG230736, BE881512,
Ux
4^
Ux
H- '
Ux
Ux
I— '
ON
Ux
H-** *-J
on
H-»
00
Ux
H- *•
NO
otsJ
on t
AW022796, AV683668, AC015541.21, AC026162.5, AC018816.5, AC004953.1, L44140.1, AC008891.7, AC009131.6, AC020934.7, AB043547.1, AC079844.3, AL080243.21, AC008264.10, AL137792.il, AC008754.8, AP001711.1, AL139100.9, AC007376.9, AL031680.20, AP002847.2, AC005971.5, AL354943.9, AC010319.7, AC006468.9, AC005236.4, AL391119.8, AC011462.4, AC006241.1, AC018663.3, AL031296.1, AC005696.1, AL050308.9, AC011446.6, AC020931.5, AL445184.il, AC006452.4, AC005527.3, AL049869.6, AC011531.7, AC008649.6, AL022336.1, AL034405.16, AC016602.6, Z83826.12, AL022165.1, AL354707.17, AC004019.20, AC002306.1, AP001712.1, AC020916J, AC009996J, AL096840.25, AC004167.1, U80017.1, AC002991.1, AC006538.1, AL160166.10, AF288742.1, AL449305.4, AC010422.7, AC005000.2, AC006345.4, AL121712.27, U73169.1, AC005057.2, AC013449.8, AL121601.13, AL161624.7, AL355480.22, U91327.1, AC012476.8, AP000211.1, AP000133.1, AC011475.6, AF228703.1, Z48051.1, AC005212.1, AC009032J, AC016894.7, AC006162.1, AC020983J, AC006460.3, AJ009616.3, AL031847.17, AC008843.5, AF271269.1, AP000872.5, AC044797.5, AC007957.36, AC002310.1, AL391827.18, AC020896.5, AC063979.4, L78833.1, AL139286.13, AF196779.1, AL590762.1, Z97054.1, AC004895.2, AC089987.26, AL0223237, AC002126.1, AF038458.1, AL034420.16, AL136313.27, AL162505.20, AF129756.1, on t AC011485.6, AL354932.26, AC009502.4, AL591807.1, AL133275.5, AL122035.6, AL031407.3, to AC018636.4, AC005722.1, AP000563.1, AL050328.24, AC009314.4, AL135927.14, AC007227.3, AL021453.1, AL031427.15, AL353804.22, AL445528.16, AC010145.9, AC005529.7, AL139415.10, Z98050.1, AL136126.34, AD000092.1, AL079342.17, AC004814.2, Z82198.2, AC004821.3, AL121886.22,AC012499.7, AC005305.1, AL050349.27, AP001760.1, AC006581.16, AC067941.7, AC005484.2, AC000353.27, AC005840.2, AC073323.5, AC005921.3, AL096814.26, AC022137.5, AC090949.1, AL161747.5, AC008812.7, AP000466.1, AC004150.8, AP000210.1, AP000132.1, AC021016.4, AC000360.35, AP000213.1, AC034203.7, AL035420.15, AP000135.1, AP001870.2, AL359513.12, AL135844.9, AC006057.5, AC007900.5, AL020997.1, AC007404.4, AL117334.29, AC026776.4, AP000250.1, AP000031.1, AP000030.1, AJ003147.1, AL035659.22, AL161937.13, AL137800.12, AL022315.1, AC005003.2, AF023268.1, AF134726.1, AL359236.4, AL138880.14, AL122001.32, AP001486.4, AC008265.15, AC079602.15, AC010271.6, AC005080.2, AC011451.6, AL050335.32, AC007731.14, AL161452.19, AF075069.1, AC005500.2, AC005618.1, AL158198.14, AC007243.3, AC005399.19, AL121992.24, AC005585.1, AC011816.17, AC018751.30, Z93930.10, AC018633.2, AL138756.23, AC026464.6, AL109980.1, AC008773.7, AC073934.1, AL356257.14, AC024076.4, AC005103.3, AP000099.1, AL132713.il, AF047825.1, AC010553.6, AC010605.4, AL355495.10, AF053356.1, AC025207.5, AC005821.1, AC026391.6, AL133551.13, AL354928.9, AL138807.12, AL132642.4, AC008397.7, AC008372.6, Z93015.9, AL022721.1, AC008070.4, AL391647.16, AL136526.27, AC006211.1, AC020928.6,
on to J
on t
AC011895.4, AL590762.1, AC005920.1, AC005527.3, AL132768.15, AL118520.26, AC083866.2, AC005081.3, AL136123.19, AC005520.2, AC018738.4, AC011005J, AC005519.3, AC005098.2, L78810.1, AC074121.16, AC005914.1, AC005399.19, AL162430.15, AC027319.5, Z97054.1, AC002565.1, AL121886.22, AF288742.1, AC005874.3, AF134471.1, AL354808.24, AL136137.15, AF001549.1, AC004686.1, U47924.1, U63721.1, AC006038.2, AC006285.il, AL138724.12, AC018663.3, AL109804.41, AC005803.1, AC011455.6, AC0222U.5, AC009412.6, AL136418.4, AL139054.1, AP001725.1, AC016776.6, AC006057.5, AC008397J, AL590763.1, AP003439.2, AC008521.5, AC019205.4, AC005088.2, AC005225.2, AL122035.6, AC004840.3, AL162231.20, Z93017.6, AC004019.20, AL022476.2, AC072061.8, AC008280.4, AC013449.8, AL031283.26, AL034405.16, AC011475.6, AL139100.9, AC021016.4, AL049843.18, AF134726.1, AC012442J, AP002898.1, AL049539.21, AC005288.1, AC005236.4, AC006329.5, AL136979.16, AL080243.21, AC020552.4, AC010422.7, AC002425.1, AL354932.26, AL022238.1, AL138752.5, AC026464.6, AL355499.15, AL050349.27, AC004216.1, AC004867.5, Z93241.ll, AP001712.1, AC008068.4, AL121652.2, AC002563.1, AC022383.3, AC008267.6, AC005841.3, AL160175.5, AC008622.5, AC005180.2, AC008745.6, AL096701.14, AC013467.8, AJ003147.1, AC003982.1, AC009812.17, on to AC011461.4, AC020550.4, AL139330.17, AL391827.18, AE006467.1, Z98884.ll, AP000466.1, on AC023105.7, AC008738.6, AL049872.3, AL008718.23, AF038458.1, AC005800.1, AC083868.2, AC005839.1, AC002477.1, AC008372.6, AC0084277, AC005412.6, AC083884.6, AL109963.4, AL022336.1, AP001728.1, AC008403.6, AC008569.6, AC000025.2, AF030453.1, AL139082.18, AL132639.4, AL161936.15, Z84487.2, AC011449.6, AC006480.3, AC004971.3, AF196972.1, AC005037.2, AC004983.2, AC006111.3, AF168787.1, AC004846.2, AL049776.3, AL137012.6, AC005368.1, AC004905.1, AC018809.4, AC008655.6, AC009155.3, AC011442.5, AC078962.30, AC011443.6, AL121601.13, AC026172.3, AC004832.3, AC006088.1, AL031591.19, AL009181.1, AC073073.2, AC004966.2, AF001548.1, AL451125.7, AP001711.1, AC010378.6, AC004491.1, AC009032.7, AC009086.5, AC022384.4, AC007637.9, AC005086.2, AL355480.22, AP000011.2, AL035450.1, AC022392.4, AC011446.6, AC011465.4, AC005722.1, AJ246003.1, AL353692.14, AC083863.2, AC004084.1, AL133215.16, AL031774.1, AL034420.16, AL138756.23, AL022316.2, AC004873.3, AF258545.2, AC009144.5, AL050335.32, AC004253.1, AC018751.30, AC008551.5, Z99716.4, AC005355.1, AL050318.13, Z84466.1, AC012076.4, AL158823.il, AC007563.2, AL135902.16, AC020629.6, AC0103197, Z93015.9, AC008395.6, AL160269.14, AC011811.42, AL122020.5, U62293.1, AC010789.9, AC006059.3, AC018720.5, AL157823.9, AC006349.3, AC005670.1, AL358334.3, AC011737.10, AF111168.2, AC006330.5, AC018828.3, AC025166.7, AC073838.6, AL138759.20, AC002302.1, AC051619.7, AL033519.42, AC002544.1, AC011487.5, AL049795.20, AC010530.7, AP000503.1, AF312032.1, AC010271.6, AC004134. 1.
on t
AI815855, AI401697, AW129659, BG024570, AL047763, BG180046, BG109270, AI933574, AI524179, AL513977, AA746619, AI922215, AL514791, AI624475, AI866465, AI539560, AI682958, AI022908, AL036403, BE964147, AW827103, AI926333, AI673278, AI961589, AW190808, AL514691, AW023590, AI307494, AL046849, AI343091, AL513817, AV755821, AW023338, AV758110, AA575874, AI634224, AI859991, AI932794, BG114012, AI476021, AI423326, AL514409, AV682867, AW022102, AL046942, AW059713, BF531023, AW118477, AI345736, AW402571, BG029053, AI573171, AV682218, AW163834, AI619607, AI624548, AI362522, BE873838, AW834282, AI963193, BE910373, AV743129, BE890041, BE964994, AL049085, AI582932, AI890887, AI638644, BF035924, AI681985, AI254226, AI983457, AI537074, AI953852, AI610667, BE843239, AI491775, AI274768, N29277, AI335208, AI828574, AI804983, AI523806, AI383804, BF814447, AI690738, AI590781, AI559752, AV756026, BE964997, BF965523, AW149268, AI521244, AV681837, AI312210, AA764946, AI636456, AI379711, BC006132.1, BC003591.1, AK025099.1, BC008364.1, AB060927.1, AK027188.1, AK025084.1, AF002985.1, BC006440.1, AL359583.1, AK025407.1, BC002688.1, AL512733.1, Z37987.1, BC002985.1, BC001963.1, AB056420.1, AL136915.1, S77771.1, AL136790.1, BC003683.1, AL110296.1, AL136844.1, Y16645.1, AF113222.1, BC007453.1,
Ux t AL389935.1, AF232009.1, AK025015.1, BC008649.1, AB060873.1, AL390079.1, BC006494.1,
VO AB060867.1, BC003619.1, AB050410.1, AL049382.1, AF143723.1, AF177336.1, AB060908.1, AK024974.1, AL137488.1, AL389982.1, BC003569.1, BC004431.1, BC003614.1, AK000074.1, BC008723.1, AK025708.1, BC001977.1, AK026462.1, U54559.1, AK024588.1, AK026528.1, BC008836.1, AK027213.1, BC000316.1, AL512718.1, BC006093.1, AB063100.1, Y14040.1, AB056809.1, AK024538.1, BC000725.1, BC004960.1, BC009284.1, AK026395.1, BC007920.1, BC002752.1, AF109683.1, AL080159.1, AK027161.1, X69819.1, AB063074.1, AB060916.1, AL080234.1, AL137529.1, AL389947.1, AL137658.1, BC002697.1, AL389939.1, AK000476.1, AK024594.1, AK000432.1, AL357195.1, AK026784.1, AK025435.1, AF125948.1, BC007796.1, AF159141.1, AL390154.1, AL122111.1, BC004958.1, BC006525.1, AK000344.1, AK025254.1, AL050155.1, AL122121.1, AF055917.1, S76508.1, L40386.1, AF358829.1, AK027116.1, AL049938.1, AF217998.1, AB050418.1, AK025906.1, BC008387.1, AB055352.1, AB048974.1, AF321617.1, AB052191.1, AL137476.1, X72889.1, AF081571.1, AL137463.1, AJ001838.1, AL133112.1, AF090934.1, AK026547.1, AF090943.1, BC006091.1, AK026480.1, AL137478.1, AL122050.1, AB055370.1, AL137560.1, AB060879.1, AB047941.1, AB048954.1, M85164.1, AL512746.1, AF090886.1, AL136825.1, AL133568.1, U78525.1, AL080126.1, AK026506.1, AL137539.1, AL117648.1, BC006332.1, AK026592.1, BC009026.1, AL359615.1, AL157479.1, AK027217.1, AB048975.1, AL137554.1, AK025573.1, AL162062.1, AL050149.1, AL137533.1, AL389951.1, BC003695.1, AB062750.1, AL122123.1, AL132981.12, AK026534.1, AK026542.1, BC008781.1, AK024992.1, AK025391.1, AK025092.1, AB063093.1, AK027142.1, AB063087.1,
on J o
on J
AL138878.10, AL031727.42, AC074338.1, AL355792.8, AF031078.1, AL022396.1, AL354932.26, AF030876.1, AL049637.43, AC005736.1, AP000116.1, AL133448.4, AL358777.12, AF243527.1, AP001712.1, AC016968.24, AC008736.6, AC073345.10, AC010271.6, AC007546.5, AC007687.16, AL035555.10, AL031678.2, AC010205.5, AC005940.3, AC002996.1, AC002565.1, AL162587.20, AL031228.1, AL109935.39, AL009181.1, AF168787.1, AP001331.1, AL031728.12, AC010150.3, AL157372.18, AC007731.14, AL049653.7, AC004821.3, AC005500.2, AL138759.20, AC009077.7, AC011527.4, AL022320.23, AL034405.16, AC018755.3, AC004611.1, AC021849.5, AL138837.12, AC007011.1, AC002300.1, AC007917.15, AL390209.1, AB038653.1, AL035462.21, AL391834.8, AL121928.13, AC006057.5, AC002432.1, AC009756.9, AC005098.2, AC009721.9, AL109947.19, AC010311.8, AC024563.4, AP001717.1, AL138752.5, AL009172.1, AC000035.2, AC002549.1, AL359494.17, AL008726.3, AL354766.17, AL353807.18, AL138743.5, Z84466.1, AL162424.20, AC073326.6, AP001748.1, AL118501.22, AC010768.9, AC005790.1, AC004222.1, AL035685.21, AC008946.6, AC009570.13, AL121972.17, AC004903.2, AC027130.5, AL049869.6, AC005215.1, AJ009613.4, AC009408.3, AC024561.4, AC005071.2, AL162426.20, AC003104.1, U80017.1, AL117382.28, AL132716.6, on J AC006581.16, AL122020.5, AC066597.4, AL031447.4, AC011445.6, AP001726.1, AL163279.2, to AP001715.1, AC018828.3, AC005067.2, AC005288.1, AL137853.12, AC022383.3, AC010618.7, AL136295.3, AL133453.3, AL591398.2, AF067844.1, AC004032.7, AL034423.21, AC005971.5, AL353692.14, AL136170.12, AC006014.2, AC013467.8, AL117336.22, AC044797.5, AL158817.il, AC020552.4, Z83840.7, AL137077.31, AL031658.il, AC083863.2, AC007055.3, U82828.1, AC020913.6, AL390294.19, AC004253.1, AL132777.4, AC009086.5, AC011890.4, AL359397.3, AL022311.5, AC007993.15, AC000003.1, AC008427.7, AL513366.il, AC005939.1, U52111.2, AC010489.4, AL512666.6, AC005972.1, Z98884.ll, AL137073.13, AC037475.9, AC011236.8, AC005520.2, AC011811.42, AC004089.25, AL137791.19, AP003465.2, AF064863.2, AC005031.1, AL031681.16, AL160163.24, AC009144.5, AL132640.4, AC016995.4, AC006208.3, AP001725.1, AC005089.2, AC011444.5, AF064861.1, AC000025.2, AL133373.5, AC002504.1, AL121891.22, AL358972.13, AF207550.1, AL133445.4, AC005368.1, AC006241.1, AL035659.22, AC011467.7, AL162417.22, AC005527.3, AC078962.30, AL139809.16, AC007991.7, AL096701.14, AC083884.6, AL121992.24, AL121594.6, AL136126.34, AC010458.5, AP002078.3, AC006966.3, AC004659.1, AC005086.2, AF229163.1, AC067722.21, AL031846.2, AP000257.1, AP002982.2, AC005081.3, AC005363.1, AC009068.10, AC007684.3, AL035587.5, AC010363.6, AC020626.6, AP001709.1, AL132639.4, AF190464.1, AC002301.1, AL133294.10, AC004778.1, AL139257, AL139257.
HTJMA95 178 706618 1 - 1636 15 - 1650 AI608603, BE140256, AW872982, BF832764, AW352295, AI767967, AW085774, AW238519, AA863266, AW606Q64, AW117932, AI310728, BF105292, BF350121, BF825661, AW772195,
Ux J
on J ^
on J on
on
OJ ON
on J
-J
BE964700, BG168696, AL048871, AI696626, AW068845, AI612913, AI572418, AI783792, AW238730, N80094, AI802240, BG180996, BG256950, AV757455, AL040243, AV681668, AI610645, AW983783, AI250663, BE876038, AI538085, AI620287, BF970162, AI702433, AL119791, AL045903, AI567351, AI280661, BE621256, AI537617, BF342070, AV682792, AI872914, BF034349, BG027082, BG108324, AA572758, AL036146, AV733824, AV681987, AV757096, AV758806, AI538716, AV755613, BF694790, AW268253, AI591316, BF726160, AI636456, AV682326, BF981774, AL121328, AI312428, AI281779, AI584140, BF673434, BG031815, AI950664, AV729890, AI680498, AV686346, AI682743, AW071417, BF792961, AI349004, BE881155, AV714975, BE966443, AI648663, AW148320, AI340582, BG250190, AI500077, AI349645, AV682051, AW149236, AI224992, AI289937, AI906328, AV716613, AV699193, AI564719, AI922676, BF343172, AW074993, AI349614, BG032208, BE781369, BE172767, BF793644, AK027683.1, AF091092.1, AL133640.1, S78214.1, AK025339.1, AF078844.1, AK000137.1, AB060908.1, AB049758.1, BC008387.1, AF090943.1, AF090934.1, AB063008.1, AF177336.1, AL512718.1, AF125949.1, AL512733.1, AL050393.1, AF090901.1, AL157431.1, AL133016.1, AL133606.1, AF104032.1, AF090900.1, AK000614.1, AL049938.1, BC007021.1, AL136586.1, AK024538.1, AL359596.1, AK025958.1, AK026741.1, AL050146.1, on J BC008485.1, AK027164.1, AL122093.1, BC003687.1, AL137550.1, AL049382.1, BC008365.1, 00 AK000652.1, BC003683.1, BC008488.1, AB056420.1, AL389978.1, AB055303.1, AL136799.1, BC008417.1, AK026504.1, AF218014.1, AK000212.1, AL390167.1, AL117457.1, AF111847.1, AL080060.1, AB048953.1, AK026045.1, AB047801.1, AL442082.1, AL137527.1, AL136749.1, AK000432.1, AL122098.1, AL442072.1, AB063070.1, AF207829.1, AF090903.1, AK026452.1, AL050116.1, AB055361.1, AL110196.1, AL096744.1, AB063046.1, AL136845.1, AL136928.1, AF097996.1, AL122050.1, AJ242859.1, AK026593.1, AK026592.1, AL136787.1, AL049452.1, AL133565.1, AK025084.1, AB019565.1, AF090896.1, AL512719.1, AB055366.1, AK026532.1, AL110221.1, AL136789.1, AL050149.1, AL136892.1, BC007199.1, AL137459.1, AL117585.1, AB056809.1, AB060887.1, AL050108.1, AL117435.1, AF106862.1, AK027868.1, Y16645.1, AK026608.1, Z82022.1, AK026534.1, AK026865.1, AF146568.1, AK026855.1, BC006195.1, AB047615.1, AL117460.1, AL359618.1, AF225424.1, BC008280.1, AK025524.1, AK026542.1, AF056191.1, AL136786.1, BC004951.1, AK026947.1, AB055368.1, AK025772.1, AL133093.1, AL353940.1, AL122110.1, AL359941.1, X72889.1, AB060912.1, AB048964.1, AB056421.1, AK026528.1, AK027113.1, AL162083.1, BC006807.1, AL136844.1, AL133075.1, AK000718.1, AB056768.1, U42766.1, BC001967.1, AL512754.1, AB060883.1, AB060863.1, AK025092.1, AF183393.1, AL512746.1, AL359601.1, AL389982.1, AL050277.1, AB060916.1, AL162006.1, AL133557.1, AL133560.1, AK025484.1, AL080137.1, AL122121.1, BC008070.1, AK026086.1, AL133080.1, AK026583.1, AL359583.1, AL136768.1, AK025414.1, AK000323.1, AB055315.1, AK000647.1, BC004370.1, AL157482.1, AL049466.1, AB052191.1, BC008382.1, AL122123.1,
on J
NO
Ux
O
AV701728, AA780109, AV652156, AV728715, AV709935, AV729220, AV706527, AV706183, AV709407, AV728270, AV704592, AV702026, AV702427, AV703012, AV703591, AV706910, AV728872, AV704924, AV726505, AV705047, AV706851, AV647654, BF366791, AV704974, AV645778, AV728436, AV707171, AV707798, AV687176, AV728289, AV701496, AV709356, AV702787, AV705416, AV725387, AV685688, AV702798, AV702498, AV702409, AV702984, AV726480, AV687909, AV697638, AV705234, BF734995, AV726559, AV707948, AV701560, AV702671, AV702869, AV729983, AV729129, AV705263, AV689800, AV704116, AV705504, AV707117, W74364, AV707783, AV707589, AV706683, AV703417, AV706104, AA978196, AV704611, AV703232, AV726392, AV704981, AV701611, AV704279, AV652808, AV726830, AV727355, AV706047, AV702637, AV729357, AV653845, AV701783, AV702537, AV706989, AV727029, AV709897, AV658362, AV725152, AV726624, AV726067, AV707686, AV659189, AV725386, AV646736, AV727932, AV707690, AV703436, AV706453, AV732002, AV725369, AV690752, AV704605, AV702581, AV706220, AV706724, AV708347, AV701410, AV693005, AV706746, AV650367, AV725927, AV707685, AV706889, AV705343, AV652547, AV707639, AV703367, AV726738, AV706234, AV699156, AV702792, AV701626, AV703505, AV745906, AV727576, AV704916, AV706357, AV706035, AV726681, AV683108, AV701499, AV728884, on
4^ AV706891, AV725281, AV707882, AA029134, AV706814, AV729568, AV706532, AV651503, AV704955, AV728777, AV738934, AV703388, AV731759, AV701875, AV707769, AV708423, AV725497, AV753956, AV704660, AV701012, AV728455, AV655067, AA810705, AV705020, AV732149, AV732255, AV732155, AV730781, AV730288, AV737584, AV662191, AV701059, AV704269, AV699200, AV699148, AV731977, AV725181, AV731043, AV746424, AV725645, AV727469, AV723449, AV731694, AV732353, AV705662, AV728249, AV731078, AV730609, AV745415, AV730115, AV730062, AV730456, AV701237, AV751921, AV727347, AV743601, AV752043, BE464631, AV730165, AV753374, AV730711, AV701586, AV731915, AV709635, AV702728, AV709025, AV731275, AV706290, AV762691, AV726520, AV752443, AV699247, AV704378, AV759410, AK027435.1, AF356518.1, AJ244003.1, AF271371.1, AJ244004.1, D34614.1, X73004.1, Z96142.1, Y11923.1, AJ244005.1, Y11926.1, L27636.1, D78345.1, AJ244007.1, D14548.1, U94592.1, D50010.1, M32676.1, S65373.1, S78798.1. D13316.1, X73003.1, AB025273.1, AK000847.1, AB056777.1, X67155.2, AK027301.1, AF144029.1, AJ276256.1, Y11920.1, AJ276254.1, D88547.1, S83538.1, X12660.1, X92518.1, AF058696.1, AB028859.1, X87559.1, AB035274.1, AB002449.1, Z96422.1, S85459.1, Y14219.1, Z30183.1, X98248.2, X60736.1, AF144028.1, X82834.1, Z82022.1, AJ244006.1, U79457.1, AB033111.1, AB005666.1, AB038216.1, AJ276255.1, D61405.1, U50871.1, X65235.1, T78682, R48289, R48391, R49179, R49179, H42085, R90877, H71948, H73479, H75569, W24023, AA028967, AA043327, AA043328, AA082108, AA131883, AA131882, AA502173, AA588293, AA931102.
Description of Table 4
Table 4 provides a key to the tissue/cell source identifier code disclosed in Table 1B.2, column 5. Column 1 of Table 4 provides the tissue/cell source identifier code disclosed in Table 1B.2, Column 58. Columns 2-5 provide a description of the tissue or cell source. Note that "Description" and "Tissue" sources (i.e. columns 2 and 3) having the prefix "a_" indicates organs, tissues, or cells derived from "adult" sources. Codes corresponding to diseased tissues are indicated in column 6 with the word "disease." The use of the word "disease" in column 6 is non- limiting. The tissue or cell source may be specific (e.g. a neoplasm), or may be disease-associated (e.g., a tissue sample from a normal portion of a diseased organ). Furthermore, tissues and/or cells lacking the "disease" designation may still be derived from sources directly or indirectly involved in a disease state or disorder, and therefore may have a further utility in that disease state or disorder. In numerous cases where the tissue/cell source is a library, column 7 identifies the vector used to generate the library.
Table 4
on on
on -J on
o OS t
Description of Table 5
Table 5 provides a key to the OMIM reference identification numbers disclosed in Table IB.l, column 9. OMIM reference identification numbers (Column 1) were derived from Online Mendelian Inheritance in Man (Online Mendelian Inheritance in Man, OMIM. McKusick- Nathans Institute for Genetic Medicine, Johns Hopkins University (Baltimore, MD) and National Center for Biotechnology Information, National Library of Medicine, (Bethesda, MD) 2000. World Wide Web URL: http://www.ncbi.nlm.nih.gov/omim/. Column 2 provides diseases associated with the cytologic band disclosed in Table IB.l, column 8, as determined using the Morbid Map database.
Table 5
Mature Polypeptides
The present invention also encompasses mature forms of a polypeptide having the amino acid sequence of SEQ D NO:Y and/or the amino acid sequence encoded by the cDNA in a deposited clone. Polynucleotides encoding the mature forms (such as, for example, the polynucleotide sequence in SEQ ID NO:X and/or the polynucleotide sequence contained in the cDNA of a deposited clone) are also encompassed by the invention. Moreover, fragments or variants of these polypeptides (such as, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to these polypeptides, or polypeptides encoded by a polynucleotide that hybridizes under stringent conditions to the complementary strand of the polynucleotide encoding these polypeptides) are also encompassed by the invention, hi preferred embodiments, these fragments or variants retain one or more functional acitivities of the full-length or mature form of the polypeptide (e.g., biological activity (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic disorders), antigenicity (ability to bind, or compete with a polypeptide of the invention for binding, to an anti-polypeptide of the invention antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide of the invention). Antibodies that bind the polypeptides of the invention, and polynucleotides encoding these polypeptides are also encompassed by the invention.
According to the signal hypothesis, proteins secreted by mammalian cells have a signal or secretary leader sequence that is cleaved from the mature protein once export of the growing protein chain across the rough endoplasmic reticulum has been initiated. Most mammalian cells and even insect cells cleave secreted proteins with the same specificity. However, in some cases, cleavage of a secreted protein is not entirely uniform, which results in two or more mature species of the protein. Further, it has long been known that cleavage specificity of a secreted protein is ultimately determined by the primary structure of the complete protein, that is, it is inherent in the amino acid sequence of the polypeptide. Methods for predicting whether a protein has a signal sequence, as well as the cleavage point for that sequence, are available. For instance, the method of McGeoch, Virus Res. 3:271- 286 (1985), uses the information from a short N-terminal charged region and a subsequent uncharged region of the complete (uncleaved) protein. The method of von Heinje, Nucleic Acids Res. 14:4683-4690 (1986) uses the information from the residues surrounding the cleavage site, typically residues -13 to +2, where +1 indicates the amino terminus of the secreted protein. The accuracy of predicting the cleavage points of known mammalian secretory proteins for each of these methods is in the range of 75-80%. (von Heinje, supra.) However, the two methods do not always produce the same predicted cleavage point(s) for a given protein.
In the present case, the deduced amino acid sequence of the secreted polypeptide was analyzed by a computer program called SignalP (Henrik Nielsen et al., Protein Engineering 10: 1-6 (1997)), which predicts the cellular location of a protein based on the amino acid sequence. As part of this computational prediction of localization, the methods of McGeoch and von Heinje are incorporated. The analysis of the amino acid sequences of the secreted proteins described herein by this program provided the results shown in Table IA. In specific embodiments, polypeptides of the invention comprise, or alternatively consist of, the predicted mature form of the polypeptide as delineated in columns 14 and 15 of Table IA. Moreover, fragments or variants of these polypeptides (such as, fragments as described herein, polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to these polypeptides, or polypeptides encoded by a polynucleotide that hybridizes under stringent conditions to the complementary strand of the polynucleotide encoding these polypeptides) are also encompassed by the invention. In preferred embodiments, these fragments or variants retain one or more functional acitivities of the full-length or mature form of the polypeptide (e.g., biological activity (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic disorders), antigenicity (ability to bind, or compete with a polypeptide of the invention for binding, to an anti-polypeptide of the invention antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide of the invention). Antibodies that bind the polypeptides of the invention, and polynucleotides encoding these polypeptides are also encompassed by the invention.
Polynucleotides encoding proteins comprising, or consisting of, the predicted mature form of polypeptides of the invention (e.g., polynucleotides having the sequence of SEQ ID NO: X (Table IA, column 4), the sequence delineated in columns 7 and 8 of Table IA, and a sequence encoding the mature polypeptide delineated in columns 14 and 15 of Table IA (e.g., the sequence of SEQ ID NO:X encoding the mature polypeptide delineated in columns 14 and 15 of Table 1)) are also encompassed by the invention, as are fragments or variants of these polynucleotides (such as, fragments as described herein, polynucleotides at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to these polyncueotides, and nucleic acids which hybridizes under stringent conditions to the complementary strand of the polynucleotide). As one of ordinary skill would appreciate, however, cleavage sites sometimes vary from organism to organism and cannot be predicted with absolute certainty. Accordingly, the present invention provides secreted polypeptides having a sequence shown in SEQ ID NO:Y which have an N-terminus beginning within 15 residues of the predicted cleavage point (i.e., having 1, 2, 3, 4, 5, 6, 7, 8 , 9, 10, 11, 12, 13, 14, or 15 more or less contiguous residues of SEQ ID NO:Y at the N- terminus when compared to the predicted mature form of the polypeptide (e.g., the mature polypeptide delineated in columns 14 and 15 of Table 1). Similarly, it is also recognized that in some cases, cleavage of the signal sequence from a secreted protein is not entirely uniform, resulting in more than one secreted species. These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.
Moreover, the signal sequence identified by the above analysis may not necessarily predict the naturally occurring signal sequence. For example, the naturally occurring signal sequence may be further upstream from the predicted signal sequence. However, it is likely that the predicted signal sequence will be capable of directing the secreted protein to the ER. Nonetheless, the present invention provides the mature protein produced by expression of the polynucleotide sequence of SEQ ID NO:X and/or the polynucleotide sequence contained in the cDNA of a deposited clone, in a mammalian cell (e.g., COS cells, as desribed below). These polypeptides, and the polynucleotides encoding such polypeptides, are contemplated by the present invention.
Polynucleoήde and Polypeptide Variants
The present invention is also directed to variants of the polynucleotide sequence disclosed in SEQ ID NO:X or the complementary strand thereto, nucleotide sequences encoding the polypeptide of SEQ ID NO:Y, the nucleotide sequence of SEQ ID NO:X that encodes the polypeptide sequence as defined in columns 13 and 14 of Table IA, nucleotide sequences encoding the polypeptide sequence as defined in columns 13 and 14 of Table IA, the nucleotide sequence of SEQ ID NO:X encoding the polypeptide sequence as defined in Table IB, nucleotide sequences encoding the polypeptide as defined in Table IB, the nucleotide sequence as defined in columns 8 and 9 of Table 2, nucleotide sequences encoding the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2, the nucleotide sequence as defined in column 6 of Table IC, nucleotide sequences encoding the polypeptide encoded by the nucleotide sequence as defined in column 6 of Table IC, the cDNA sequence contained in ATCC Deposit No:Z, nucleotide sequences encoding the polypeptide encoded by the cDNA sequence contained in ATCC Deposit No:Z, and/or nucleotide sequences encoding a mature (secreted) polypeptide encoded by the cDNA sequence contained in ATCC Deposit No:Z.
The present invention also encompasses variants of the polypeptide sequence disclosed in SEQ ID NO:Y, the polypeptide as defined in columns 13 and 14 of Table IA, the polypeptide sequence as defined in Table IB, a polypeptide sequence encoded by the polynucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2, a polypeptide sequence encoded by the nucleotide sequence as defined in column 6 of Table IC, a polypeptide sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, the polypeptide sequence encoded by the cDNA sequence contained in ATCC Deposit No:Z and/or a mature (secreted) polypeptide encoded by the cDNA sequence contained in ATCC Deposit No:Z.
"Variant" refers to a polynucleotide or polypeptide differing from the polynucleotide or polypeptide of the present invention, but retaining essential properties thereof. Generally, variants are overall closely similar, and, in many regions, identical to the polynucleotide or polypeptide of the present invention.
Thus, one aspect of the invention provides an isolated nucleic acid molecule comprising, or alternatively consisting of, a polynucleotide having a nucleotide sequence selected from the group consisting of: (a) a nucleotide sequence described in SEQ TD NO:X or contained in the cDNA sequence of ATCC Deposit No:Z; (b) a nucleotide sequence in SEQ ID NO:X or the cDNA in ATCC Deposit No:Z which encodes the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (c) a nucleotide sequence in SEQ ID NO:X or the cDNA in ATCC Deposit No:Z which encodes a mature polypeptide (i.e., a secreted polypeptide (e.g., as delineated in columns 14 and 15 of Table IA)); (d) a nucleotide sequence in SEQ ID NO:X or the cDNA sequence of ATCC Deposit No:Z, which encodes a biologically active fragment of a polypeptide; (e) a nucleotide sequence in SEQ ID NO:X or the cDNA sequence of ATCC Deposit No:Z, which encodes an antigenic fragment of a polypeptide; (f) a nucleotide sequence encoding a polypeptide comprising the complete amino acid sequence of SEQ ED NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (g) a nucleotide sequence encoding a mature polypeptide of the amino acid sequence of SEQ ED NO:Y (i.e., a secreted polypeptide (e.g., as delineated in columns 14 and 15 of Table IA)) or a mature polypeptide of the amino acid sequence encoded by the cDNA in ATCC Deposit No:Z ; (h) a nucleotide sequence encoding a biologically active fragment of a polypeptide having the complete amino acid sequence of SEQ ED NO.Υ or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (i) a nucleotide sequence encoding an antigenic fragment of a polypeptide having the complete amino acid sequence of SEQ ED NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; and (j) a nucleotide sequence complementary to any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), or (i) above.
The present invention is also directed to nucleic acid molecules which comprise, or alternatively consist of, a nucleotide sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, any of the nucleotide sequences in (a), (b), (c), (d), (e), (f), (g), (h), (i), or (j) above, the nucleotide coding sequence in SEQ ED NO:X or the complementary strand thereto, the nucleotide coding sequence of the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto, a nucleotide sequence encoding the polypeptide of SEQ ID NO: Y, a nucleotide sequence encoding a polypeptide sequence encoded by the nucleotide sequence in SEQ ID NO:X, a polypeptide sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, a nucleotide sequence encoding the polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, the nucleotide coding sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto, a nucleotide sequence encoding the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto, the nucleotide coding sequence in SEQ ED NO:B as defined in column 6 of Table IC or the complementary strand thereto, a nucleotide sequence encoding the polypeptide encoded by the nucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IC or the complementary strand thereto, the nucleotide sequence in SEQ ID NO:X encoding the polypeptide sequence as defined in Table IB or the complementary strand thereto, nucleotide sequences encoding the polypeptide as defined in Table IB or the complementary strand thereto, and/or polynucleotide fragments of any of these nucleic acid molecules (e.g., those fragments described herein). Polynucleotides that hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides and nucleic acids. hi a preferred embodiment, the invention encompasses nucleic acid molecules which comprise, or alternatively, consist of a polynucleotide which hybridizes under stringent hybridization conditions, or alternatively, under lower stringency conditions, to a polynucleotide in (a), (b), (c), (d), (e), (f), (g), (h), or (i), above, as are polypeptides encoded by these polynucleotides. In another preferred embodiment, polynucleotides which hybridize to the complement of these nucleic acid molecules under stringent hybridization conditions, or alternatively, under lower stringency conditions, are also encompassed by the invention, as are polypeptides encoded by these polynucleotides. In another embodiment, the invention provides a purified protein comprising, or alternatively consisting of, a polypeptide having an amino acid sequence selected from the group consisting of: (a) the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; (b) the amino acid sequence of a mature (secreted) form of a polypeptide having the amino acid sequence of SEQ D NO:Y (e.g., as delineated in columns 14 and 15 of Table IA) or a mature form of the amino acid sequence encoded by the cDNA in ATCC Deposit No:Z mature; (c) the amino acid sequence of a biologicaUy active fragment of a polypeptide having the complete amino acid sequence of SEQ ID NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z; and (d) the amino acid sequence of an antigenic fragment of a polypeptide having the complete amino acid sequence of SEQ ED NO:Y or the complete amino acid sequence encoded by the cDNA in ATCC Deposit No:Z.
The present invention is also directed to proteins which comprise, or alternatively consist of, an amino acid sequence which is at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100%, identical to, for example, any of the amino acid sequences in (a), (b), (c), or (d), above, the amino acid sequence shown in SEQ ID NO:Y, the amino acid sequence encoded by the cDNA contained in ATCC Deposit No:Z, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X as defined in columns 8 and 9 of Table 2, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ED NO:B as defined in column 6 of Table IC, the amino acid sequence as defined in Table IB, an amino acid sequence encoded by the nucleotide sequence in SEQ ED NO:X, and an amino acid sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X. Fragments of these polypeptides are also provided (e.g., those fragments described herein). Further proteins encoded by polynucleotides that hybridize to the complement of the nucleic acid molecules encoding these amino acid sequences under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention, as are the polynucleotides encoding these proteins. By a nucleic acid having a nucleotide sequence at least, for example, 95% "identical" to a reference nucleotide sequence of the present invention, it is intended that the nucleotide sequence of the nucleic acid is identical to the reference sequence except that the nucleotide sequence may include up to five point mutations per each 100 nucleotides of the reference nucleotide sequence encoding the polypeptide. In other words, to obtain a nucleic acid having a nucleotide sequence at least 95% identical to a reference nucleotide sequence, up to 5% of the nucleotides in the reference sequence may be deleted or substituted with another nucleotide, or a number of nucleotides up to 5% of the total nucleotides in the reference sequence may be inserted into the reference sequence. The query sequence may be an entire sequence referred to in Table IB or 2 as the ORF (open reading frame), or any fragment specified as described herein. As a practical matter, whether any particular nucleic acid molecule or polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a nucleotide sequence of the present invention can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci. 6:237-245 (1990)). In a sequence alignment the query and subject sequences are both DNA sequences. An RNA sequence can be compared by converting U's to T's. The result of said global sequence alignment is expressed as percent identity. Preferred parameters used in a FASTDB alignment of DNA sequences to calculate percent identity are: Matrix=Unitary, k- tuple=4, Mismatch Penalty=l, Joining Penalty=30, Randomization Group Length=0, Cutoff Score=l, Gap Penalty=5, Gap Size Penalty 0.05, Window Size=500 or the length of the subject nucleotide sequence, whichever is shorter. If the subject sequence is shorter than the query sequence because of 5' or 3' deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for 5' and 3' truncations of the subject sequence when calculating percent identity. For subject sequences truncated at the 5' or 3' ends, relative to the query sequence, the percent identity is corrected by calculating the number of bases of the query sequence that are 5' and 3' of the subject sequence, which are not matched/aligned, as a percent of the total bases of the query sequence. Whether a nucleotide is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This corrected score is what is used for the purposes of the present invention. Only bases outside the 5' and 3' bases of the subject sequence, as displayed by the FASTDB alignment, which are not matched/aligned with the query sequence, are calculated for the purposes of manually adjusting the percent identity score.
For example, a 90 base subject sequence is aligned to a 100 base query sequence to determine percent identity. The deletions occur at the 5' end of the subject sequence and therefore, the FASTDB alignment does not show a matched/aUgnment of the first 10 bases at 5' end. The 10 unpaired bases represent 10% of the sequence (number of bases at the 5' and 3' ends not matched/total number of bases in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 bases were perfectly matched the final percent identity would be 90%. hi another example, a 90 base subject sequence is compared with a 100 base query sequence. This time the deletions are internal deletions so that there are no bases on the 5' or 3' of the subject sequence that are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only bases 5' and 3' of the subject sequence which are not matched/aligned with the query sequence are manually corrected for. No other manual corrections are to be made for the purposes of the present invention.
By a polypeptide having an amino acid sequence at least, for example, 95% "identical" to a query amino acid sequence of the present invention, it is intended that the amino acid sequence of the subject polypeptide is identical to the query sequence except that the subject polypeptide sequence may include up to five amino acid alterations per each 100 amino acids of the query amino acid sequence. In other words, to obtain a polypeptide having an amino acid sequence at least 95% identical to a query amino acid sequence, up to 5% of the amino acid residues in the subject sequence may be inserted, deleted, (indels) or substituted with another amino acid. These alterations of the reference sequence may occur at the amino or carboxy terminal positions of the reference amino acid sequence or anywhere between those terminal positions, interspersed either individually among residues in the reference sequence or in one or more contiguous groups within the reference sequence. As a practical matter, whether any particular polypeptide is at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to, for instance, the amino acid sequence of a polypeptide referred to in Table IA (e.g., the amino acid sequence delineated in columns 14 and 15) or a fragment thereof, Table IB.l (e.g., the amino acid sequence identified in column 6) or a fragment thereof, Table 2 (e.g., the amino acid sequence of the polypeptide encoded by the polynucleotide sequence defined in columns 8 and 9 of Table 2) or a fragment thereof, the amino acid sequence of the polypeptide encoded by the polynucleotide sequence in SEQ ID NO:B as defined in column 6 of Table IC or a fragment thereof, the amino acid sequence of the polypeptide encoded by the nucleotide sequence in SEQ ID NO:X or a fragment thereof, or the amino acid sequence of the polypeptide encoded by cDNA contained in ATCC Deposit No:Z, or a fragment thereof, the amino acid sequence of a mature (secreted) polypeptide encoded by cDNA contained in ATCC Deposit No:Z, or a fragment thereof, can be determined conventionally using known computer programs. A preferred method for determining the best overall match between a query sequence (a sequence of the present invention) and a subject sequence, also referred to as a global sequence alignment, can be determined using the FASTDB computer program based on the algorithm of Brutlag et al. (Comp. App. Biosci.6:237-245 (1990)). In a sequence alignment the query and subject sequences are either both nucleotide sequences or both amino acid sequences. The result of said global sequence alignment is expressed as percent identity. Preferred parameters used in a FASTDB amino acid alignment are: Matrix=PAM 0, k-tuple=2, Mismatch Penalty=l, Joining Penalty=20, Randomization Group Length=0, Cutoff Score=l, Window Size=sequence length, Gap Penalty=5, Gap Size Penalty=0.05, Window Size=500 or the length of the subject amino acid sequence, whichever is shorter.
If the subject sequence is shorter than the query sequence due to N- or C-terminal deletions, not because of internal deletions, a manual correction must be made to the results. This is because the FASTDB program does not account for N- and C-terminal truncations of the subject sequence when calculating global percent identity. For subject sequences truncated at the N- and C-termini, relative to the query sequence, the percent identity is corrected by calculating the number of residues of the query sequence that are N- and C-terminal of the subject sequence, which are not matched/aligned with a corresponding subject residue, as a percent of the total bases of the query sequence. Whether a residue is matched/aligned is determined by results of the FASTDB sequence alignment. This percentage is then subtracted from the percent identity, calculated by the above FASTDB program using the specified parameters, to arrive at a final percent identity score. This final percent identity score is what is used for the purposes of the present invention. Only residues to the N- and C-termini of the subject sequence, which are not matched/aligned with the query sequence, are considered for the purposes of manually adjusting the percent identity score. That is, only query residue positions outside the farthest N- and C- terminal residues of the subject sequence. For example, a 90 amino acid residue subject sequence is aligned with a 100 residue query sequence to determine percent identity. The deletion occurs at the N-terminus of the subject sequence and therefore, the FASTDB alignment does not show a matching/alignment of the first 10 residues at the N-terminus. The 10 unpaired residues represent 10% of the sequence (number of residues at the N- and C- termini not matched/total number of residues in the query sequence) so 10% is subtracted from the percent identity score calculated by the FASTDB program. If the remaining 90 residues were perfectly matched the final percent identity would be 90%. In another example, a 90 residue subject sequence is compared with a 100 residue query sequence. This time the deletions are internal deletions so there are no residues at the N- or C-termini of the subject sequence that are not matched/aligned with the query. In this case the percent identity calculated by FASTDB is not manually corrected. Once again, only residue positions outside the N- and C- terminal ends of the subject sequence, as displayed in the FASTDB alignment, which are not matched/aligned with the query sequnce are manually corrected for. No other manual corrections are to be made for the purposes of the present invention. The polynucleotide variants of the invention may contain alterations in the coding regions, non-coding regions, or both. Especially preferred are polynucleotide variants containing alterations that produce silent substitutions, additions, or deletions, but do not alter the properties or activities of the encoded polypeptide. Nucleotide variants produced by silent substitutions due to the degeneracy of the genetic code are preferred. Moreover, polypeptide variants in which less than 50, less than 40, less than 30, less than 20, less than 10, or 5-50, 5-25, 5-10, 1-5, or 1-2 amino acids are substituted, deleted, or added in any combination are also preferred. Polynucleotide variants can be produced for a variety of reasons, e.g., to optimize codon expression for a particular host (change codons in the human mRNA to those preferred by a bacterial host such as E. coli). Naturally occurring variants are called "allelic variants," and refer to one of several alternate forms of a gene occupying a given locus on a chromosome of an organism. (Genes II, Lewin, B., ed., John Wiley & Sons, New York (1985)). These allelic variants can vary at either the polynucleotide and/or polypeptide level and are included in the present invention. Alternatively, non-naturally occurring variants may be produced by mutagenesis techniques or by direct synthesis.
Using known methods of protein engineering and recombinant DNA technology, variants may be generated to improve or alter the characteristics of the polypeptides of the present invention. For instance, one or more amino acids can be deleted from the N-terminus or C- terminus of the polypeptide of the present invention without substantial loss of biological function. As an example, Ron et al. (J. Biol. Chem. 268: 2984-2988 (1993)) reported variant KGF proteins having heparin binding activity even after deleting 3, 8, or 27 amino-terminal amino acid residues. Similarly, Interferon gamma exhibited up to ten times higher activity after deleting 8-10 amino acid residues from the carboxy terminus of this protein. (Dobeli et al., J. Biotechnology 7: 199-216 (1988).)
Moreover, ample evidence demonstrates that variants often retain a biological activity similar to that of the naturally occurring protein. For example, Gayle and coworkers (J. Biol. Chem. 268:22105-22111 (1993)) conducted extensive mutational analysis of human cytokine IL- la. They used random mutagenesis to generate over 3,500 individual E -la mutants that averaged 2.5 amino acid changes per variant over the entire length of the molecule. Multiple mutations were examined at every possible amino acid position. The investigators found that "[m]ost of the molecule could be altered with little effect on either [binding or biological activity]." In fact, only 23 unique amino acid sequences, out of more than 3,500 nucleotide sequences examined, produced a protein that significantly differed in activity from wild-type.
Furthermore, even if deleting one or more amino acids from the N-terminus or C-terminus of a polypeptide results in modification or loss of one or more biological functions, other biological activities may still be retained. For example, the ability of a deletion variant to induce and/or to bind antibodies which recognize the secreted form will likely be retained when less than the majority of the residues of the secreted form are removed from the N-teπninus or C-terminus. Whether a particular polypeptide lacking N- or C-terminal residues of a protein retains such immunogenic activities can readily be determined by routine methods described herein and otherwise known in the art. Thus, the invention further includes polypeptide variants that show a biological or functional activity of the polypeptides of the invention (such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic disorders). Such variants include deletions, insertions, inversions, repeats, and substitutions selected according to general rules known in the art so as have little effect on activity. The present application is directed to nucleic acid molecules at least 80%, 85%, 90%,
95%, 96%, 97%, 98%, 99% or 100% identical to the nucleic acid sequences disclosed herein, (e.g., encoding a polypeptide having the amino acid sequence of an N and/or C terminal deletion), irrespective of whether they encode a polypeptide having functional activity. This is because even where a particular nucleic acid molecule does not encode a polypeptide having functional activity, one of skill in the art would still know how to use the nucleic acid molecule, for instance, as a hybridization probe or a polymerase chain reaction (PCR) primer. Uses of the nucleic acid molecules of the present invention that do not encode a polypeptide having functional activity include, inter alia, (1) isolating a gene or allelic or splice variants thereof in a cDNA library; (2) in situ hybridization (e.g., "FISH") to metaphase chromosomal spreads to provide precise chromosomal location of the gene, as described in Verma et al., Human Chromosomes: A Manual of Basic Techniques, Pergamon Press, New York (1988); (3) Northern Blot analysis for detecting mRNA expression in specific tissues (e.g., normal or diseased tissues); and (4) in situ hybridization (e.g., histochemistry) for detecting mRNA expression in specific tissues (e.g., normal or diseased tissues).
Preferred, however, are nucleic acid molecules having sequences at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to the nucleic acid sequences disclosed herein, which do, in fact, encode a polypeptide having functional activity. By a polypeptide having "functional activity" is meant, a polypeptide capable of displaying one or more known functional activities associated with a full-length (complete) protein and/or a mature (secreted) protein of the invention. Such functional activities include, but are not limited to, biological activity (such. as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and or ameliorating allergic and/or asthmatic diseases and disorders), antigenicity (ability to bind, or compete with a polypeptide of the invention for binding, to an anti-polypeptide of the invention antibody), immunogenicity (ability to generate antibody which binds to a specific polypeptide of the invention), ability to form multimers with polypeptides of the invention, and ability to bind to a receptor or ligand for a polypeptide of the invention. The functional activity of the polypeptides, and fragments, variants and derivatives of the invention, can be assayed by various methods.
For example, in one embodiment where one is assaying for the abUity to bind or compete with a full-length polypeptide of the present invention for binding to an anti-polypetide antibody, various immunoassays known in the art can be used, including but not limited to, competitive and non-competitive assay systems using techniques such as radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoradiometric assays, gel diffusion precipitation reactions, immunodiffusion assays, in situ immunoassays (using colloidal gold, enzyme or radioisotope labels, for example), western blots, precipitation reactions, agglutination assays (e.g., gel agglutination assays, hemagglutination assays), complement fixation assays, immunofluorescence assays, protein A assays, and immunoelectrophoresis assays, etc. In one embodiment, antibody binding is detected by detecting a label on the primary antibody. In another embodiment, the primary antibody is detected by detecting binding of a secondary antibody or reagent to the primary antibody. In a further embodiment, the secondary antibody is labeled. Many means are known in the art for detecting binding in an immunoassay and are within the scope of the present invention.
In another embodiment, where a ligand is identified, or the ability of a polypeptide fragment, variant or derivative of the invention to multimerize is being evaluated, binding can be assayed, e.g., by means well-known in the art, such as, for example, reducing and non-reducing gel chromatography, protein affinity chromatography, and affinity blotting. See generally, Phizicky et al., Microbiol. Rev. 59:94-123 (1995). In another embodiment, the ability of physiological correlates of a polypeptide of the present invention to bind to a substrate(s) of the polypeptide of the invention can be routinely assayed using techniques known in the art. In addition, assays described herein (see Examples) and otherwise known in the art may routinely be applied to measure the ability of polypeptides of the present invention and fragments, variants and derivatives thereof to elicit polypeptide related biological activity (either in vitro or in vivo). Other methods will be known to the skilled artisan and are within the scope of the invention.
Of course, due to the degeneracy of the genetic code, one of ordinary skill in the art will immediately recognize that a large number of the nucleic acid molecules having a sequence at least 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99%, or 100% identical to, for example, the nucleic acid sequence of the cDNA contained in ATCC Deposit No:Z, the nucleic acid sequence referred to in Table IB (SEQ ED NO:X), the nucleic acid sequence disclosed in Table IA (e.g., the nucleic acid sequence delineated in columns 7 and 8), the nucleic acid sequence disclosed in Table 2 (e.g., the nucleic acid sequence delineated in columns 8 and 9) or fragments thereof, will encode polypeptides "having functional activity." In fact, since degenerate variants of any of these nucleotide sequences all encode the same polypeptide, in many instances, this will be clear to the skilled artisan even without performing the above described comparison assay. It will be further recognized in the art that, for such nucleic acid molecules that are not degenerate variants, a reasonable number will also encode a polypeptide having functional activity. This is because the skilled artisan is fully aware of amino acid substitutions that are either less likely or not likely to significantly effect protein function (e.g., replacing one aliphatic amino acid with a second aliphatic amino acid), as further described below.
For example, guidance concerning how to make phenotypically silent amino acid substitutions is provided in Bowie et al., "Deciphering the Message in Protein Sequences: Tolerance to Amino Acid Substitutions," Science 247:1306-1310 (1990), wherein the authors indicate that there are two main strategies for studying the tolerance of an amino acid sequence to change.
The first strategy exploits the tolerance of amino acid substitutions by natural selection during the process of evolution. By comparing amino acid sequences in different species, conserved amino acids can be identified. These conserved amino acids are likely important for protein function. In contrast, the amino acid positions where substitutions have been tolerated by natural selection indicates that these positions are not critical for protein function. Thus, positions tolerating amino acid substitution could be modified while still maintaining biological activity of the protein.
The second strategy uses genetic engineering to introduce amino acid changes at specific positions of a cloned gene to identify regions critical for protein function. For example, site directed mutagenesis or alanine-scanning mutagenesis (introduction of single alanine mutations at every residue in the molecule) can be used. See Cunningham and Wells, Science 244:1081-1085 (1989). The resulting mutant molecules can then be tested for biological activity. As the authors state, these two strategies have revealed that proteins are surprisingly tolerant of amino acid substitutions. The authors further indicate which amino acid changes are likely to be permissive at certain amino acid positions in the protein. For example, most buried (within the tertiary structure of the protein) amino acid residues require nonpolar side chains, whereas few features of surface side chains are generally conserved. Moreover, tolerated conservative amino acid substitutions involve replacement of the aliphatic or hydrophobic amino acids Ala, Val, Leu and Ue; replacement of the hydroxyl residues Ser and Thr; replacement of the acidic residues Asp and Glu; replacement of the amide residues Asn and Gin, replacement of the basic residues Lys, Arg, and His; replacement of the aromatic residues Phe, Tyr, and Trp, and replacement of the small-sized amino acids Ala, Ser, Thr, Met, and Gly.
Besides conservative amino acid substitution, variants of the present invention include (i) substitutions with one or more of the non-conserved amino acid residues, where the substituted amino acid residues may or may not be one encoded by the genetic code, or (ii) substitutions with one or more of the amino acid residues having a substituent group, or (iii) fusion of the mature polypeptide with another compound, such as a compound to increase the stability and/or solubility of the polypeptide (for example, polyethylene glycol), (iv) fusion of the polypeptide with additional amino acids, such as, for example, an IgG Fc fusion region peptide, serum albumin (preferably human serum albumin) or a fragment thereof, or leader or secretory sequence, or a sequence facilitating purification, or (v) fusion of the polypeptide with another compound, such as albumin (including but not limited to recombinant albumin (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)). Such variant polypeptides are deemed to be within the scope of those skilled in the art from the teachings herein.
For example, polypeptide variants containing amino acid substitutions of charged amino acids with other charged or neutral amino acids may produce proteins with improved characteristics, such as less aggregation. Aggregation of pharmaceutical formulations both reduces activity and increases clearance due to the aggregate's immunogenic activity. See Pinckard et al., Clin. Exp. Immunol. 2:331-340 (1967); Robbins et al., Diabetes 36: 838-845 (1987); Cleland et al., Crit. Rev. Therapeutic Drug Carrier Systems 10:307-377 (1993). A further embodiment of the invention relates to polypeptides which comprise the amino acid sequence of a polypeptide having an amino acid sequence which contains at least one amino acid substitution, but not more than 50 amino acid substitutions, even more preferably, not more than 40 amino acid substitutions, still more preferably, not more than 30 amino acid substitutions, and still even more preferably, not more than 20 amino acid substitutions from a polypeptide sequence disclosed herein. Of course it is highly preferable for a polypeptide to have an amino acid sequence which, for example, comprises the amino acid sequence of a polypeptide of SEQ ID NO:Y, the amino acid sequence of the mature (e.g., secreted) polypeptide of SEQ ID NO:Y, an amino acid sequence encoded by SEQ ID NO:X, an amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columnns 8 and 9 of Table 2, an amino acid sequence encoded by the complement of SEQ ED NO:X, an amino acid sequence encoded by cDNA contained in ATCC Deposit No:Z, and/or the amino acid sequence of a mature (secreted) polypeptide encoded by cDNA contained in ATCC Deposit No:Z, or a fragment thereof, which contains, in order of ever- increasing preference, at least one, but not more than 10, 9, 8, 7, 6, 5, 4, 3, 2 or 1 amino acid substitutions.
In specific embodiments, the polypeptides of the invention comprise, or alternatively, consist of, fragments or variants of a reference amino acid sequence selected from: (a) the amino acid sequence of SEQ ID NO:Y or fragments thereof (e.g., the mature formand/or other fragments described herein); (b) the amino acid sequence encoded by SEQ ID NO:X or fragments thereof;
(c) the amino acid sequence encoded by the complement of SEQ ED NO:X or fragments thereof;
(d) the amino acid sequence encoded by the portion of SEQ ED NO:X as defined in columns 8 and 9 of Table 2 or fragments thereof; and (e) the amino acid sequence encoded by cDNA contained in ATCC Deposit No:Z or fragments thereof; wherein the fragments or variants have 1-5, 5-10, 5-25, 5-50, 10-50 or 50-150, amino acid residue additions, substitutions, and/or deletions when compared to the reference amino acid sequence. In preferred embodiments, the amino acid substitutions are conservative. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Polynucleotide and Polypeptide Fragments
The present invention is also directed to polynucleotide fragments of the polynucleotides (nucleic acids) of the invention. In the present invention, a "polynucleotide fragment" refers to a polynucleotide having a nucleic acid sequence which, for example: is a portion of the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto; is a portion of the polynucleotide sequence encoding the polypeptide encoded by the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto; is a portion of the polynucleotide sequence encoding the mature (secreted) polypeptide encoded by the cDNA contained in ATCC Deposit No:Z or the complementary strand thereto; is a portion of a polynucleotide sequence encoding the mature amino acid sequence as defined in columns 14 and 15 of Table IA or the complementary strand thereto; is a portion of a polynucleotide sequence encoding the amino acid sequence encoded by the region of SEQ ED NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto; is a portion of the polynucleotide sequence of SEQ ED NO:X as defined in columns 8 and 9 of Table 2 or the complementary strand thereto; is a portion of the polynucleotide sequence in SEQ ID NO:X or the complementary strand thereto; is a polynucleotide sequence encoding a portion of the polypeptide of SEQ ED NO:Y; is a polynucleotide sequence encoding a portion of a polypeptide encoded by SEQ ID NO:X; is a polynucleotide sequence encoding a portion of a polypeptide encoded by the complement of the polynucleotide sequence in SEQ ID NO:X; is a portion of a polynucleotide sequence encoding the amino acid sequence encoded by the region of SEQ ID NO:B as defined in column 6 of Table IC or the complementary strand thereto; or is a portion of the polynucleotide sequence of SEQ ID NO:B as defined in column 6 of Table IC or the complementary strand thereto.
The polynucleotide fragments of the invention are preferably at least about 15 nt, and more preferably at least about 20 nt, still more preferably at least about 30 nt, and even more preferably, at least about 40 nt, at least about 50 nt, at least about 75 nt, or at least about 150 nt in length. A fragment "at least 20 nt in length," for example, is intended to include 20 or more contiguous bases from the cDNA sequence contained in ATCC Deposit No:Z, or the nucleotide sequence shown in SEQ ID NO:X or the complementary stand thereto. In this context "about" includes the particularly recited value or a value larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. These nucleotide fragments have uses that include, but are not limited to, as diagnostic probes and primers as discussed herein. Of course, larger fragments (e.g., at least 160, 170, 180, 190, 200, 250, 500, 600, 1000, or 2000 nucleotides in length) are also encompassed by the invention.
Moreover, representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151- 200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 601-650, 651- 700, 701-750, 751-800, 801-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101- 1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501- 1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901- 1950, 1951-2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2301- 2350, 2351-2400, 2401-2450, 2451-2500, 2501-2550, 2551-2600, 2601-2650, 2651-2700, 2701- 2750, 2751-2800, 2801-2850, 2851-2900, 2901-2950, 2951-3000, 3001-3050, 3051-3100, 3101- 3150, 3151-3200, 3201-3250, 3251-3300, 3301-3350, 3351-3400, 3401-3450, 3451-3500, 3501- 3550, 3551-3600, 3601-3650, 3651-3700, 3701-3750, 3751-3800, 3801-3850, 3851-3900, 3901- 3950, 3951-4000, 4001-4050, 4051-4100, 4101-4150, 4151-4200, 4201-4250, 4251-4300, 4301- 4350, 4351-4400, 4401-4450, 4451-4500, 4501-4550, 4551-4600, 4601-4650, 4651-4700, 4701- 4750, 4751-4800, 4801-4850, 4851-4900, 4901-4950, 4951-5000, 5001-5050, 5051-5100, 5101- 5150, 5151-5200, 5201-5250, 5251-5300, 5301-5350, 5351-5400, 5401-5450, 5451-5500, 5501- 5550, 5551-5600, 5601-5650, 5651-5700, 5701-5750, 5751-5800, 5801-5850, 5851-5900, 5901- 5950, 5951-6000, 6001-6050, 6051-6100, 6101-6150, 6151-6200, 6201-6250, 6251-6300, 6301- 6350, 6351-6400, 6401-6450, 6451-6500, 6501-6550, 6551-6600, 6601-6650, 6651-6700, 6701- 6750, 6751-6800, 6801-6850, 6851-6900, 6901-6950, 6951-7000, 7001-7050, 7051-7100, 7101- 7150, 7151-7200, 7201-7250, 7251-7300 or 7301 to the end of SEQ ID NO:X, or the complementary strand thereto. In this context "about" includes the particularly recited range or a range larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide that has a functional activity (e.g., biological activity; such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic diseases and disorders). More preferably, these polynucleotides can be used as probes or primers as discussed herein. Polynucleotides which hybridize to one or more of these polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.
Further representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a sequence from about nucleotide number 1-50, 51-100, 101-150, 151- 200, 201-250, 251-300, 301-350, 351-400, 401-450, 451-500, 501-550, 551-600, 601-650, 651- 700, 701-750, 751-800, 801-850, 851-900, 901-950, 951-1000, 1001-1050, 1051-1100, 1101- 1150, 1151-1200, 1201-1250, 1251-1300, 1301-1350, 1351-1400, 1401-1450, 1451-1500, 1501- 1550, 1551-1600, 1601-1650, 1651-1700, 1701-1750, 1751-1800, 1801-1850, 1851-1900, 1901- 1950, 1951-2000, 2001-2050, 2051-2100, 2101-2150, 2151-2200, 2201-2250, 2251-2300, 2301- 2350, 2351-2400, 2401-2450, 2451-2500, 2501-2550, 2551-2600, 2601-2650, 2651-2700, 2701- 2750, 2751-2800, 2801-2850, 2851-2900, 2901-2950, 2951-3000, 3001-3050, 3051-3100, 3101- 3150, 3151-3200, 3201-3250, 3251-3300, 3301-3350, 3351-3400, 3401-3450, 3451-3500, 3501- 3550, 3551-3600, 3601-3650, 3651-3700, 3701-3750, 3751-3800, 3801-3850, 3851-3900, 3901- 3950, 3951-4000, 4001-4050, 4051-4100, 4101-4150, 4151-4200, 4201^1250, 4251-4300, 4301- 4350, 4351-4400, 4401-4450, 4451-4500, 4501-4550, 4551-4600, 4601-4650, 4651-4700, 4701-- 4750, 4751-4800, 4801-4850, 4851-4900, 4901-4950, 4951-5000, 5001-5050, 5051-5100, 5101- '5150, 5151-5200, 5201-5250, 5251-5300, 5301-5350, 5351-5400, 5401-5450, 5451-5500, 5501- 5550, 5551-5600, 5601-5650, 5651-5700, 5701-5750, 5751-5800, 5801-5850, 5851-5900, 5901- 5950, 5951-6000, 6001-6050, 6051-6100, 6101-6150, 6151-6200, 6201-6250, 6251-6300, 6301- 6350, 6351-6400, 6401-6450, 6451-6500, 6501-6550, 6551-6600, 6601-6650, 6651-6700, 6701- 6750, 6751-6800, 6801-6850, 6851-6900, 6901-6950, 6951-7000, 7001-7050, 7051-7100, 7101- 7150, 7151-7200, 7201-7250, 7251-7300 or 7301 to the end of the cDNA sequence contained in ATCC Deposit No:Z, or the complementary strand thereto. In this context "about" includes the particularly recited range or a range larger or smaller by several (5, 4, 3, 2, or 1) nucleotides, at either terminus or at both termini. Preferably, these fragments encode a polypeptide that has a functional activity (e.g., biological activity). More preferably, these polynucleotides can be used as probes or primers as discussed herein. Polynucleotides which hybridize to one or more of these polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions are also encompassed by the invention, as are polypeptides encoded by these polynucleotides.
Moreover, representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a nucleic acid sequence comprising one, two, three, four, five, six, seven, eight, nine, ten, or more of the above described polynucleotide fragments of the invention in combination with a polynucleotide sequence delineated in Table IC column 6. Additional, representative examples of polynucleotide fragments of the invention comprise, or alternatively consist of, a nucleic acid sequence comprising one, two, three, four, five, six, seven, eight, nine, ten, or more of the above described polynucleotide fragments of the invention in combination with a polynucleotide sequence that is the complementary strand of a sequence delineated in column 6 of Table IC. In further embodiments, the above-described polynucleotide fragments of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that of the BAC fragment having the sequence disclosed in SEQ ID NO:B (see Table IC, column 5). In additional embodiments, the above-described polynucleotide fragments of the invention comprise, or alternatively consist of, sequences delineated in Table IC, column 6, and have a nucleic acid sequence which is different from that published for the BAC clone identified as BAC ID NO:A (see Table IC, column 4). In additional embodiments, the above-described polynucleotides of the invention comprise, or alternatively consist of, sequences delineated Table IC, column 6, and have a nucleic acid sequence which is different from that contained in the BAC clone identified as BAC ED NO:A (see Table IC, column 4). Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides and polypeptides are also encompassed by the invention. hi additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in column 6 of Table IC, and the polynucleotide sequence of SEQ DD NO:X (e.g., as defined in Table IC, column 2) or fragments or variants thereof. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. hi additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in column 6 of Table IC which correspond to the same ATCC Deposit No:Z (see Table IC, column 1), and the polynucleotide sequence of SEQ ED NO:X (e.g., as defined in Table IA, IB, or IC) or fragments or variants thereof. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. In further specific embodiments, polynucleotides of the invention comprise, or alternatively consist of, one, two, three, four, five, six, seven, eight, nine, ten, or more fragments of the sequences delineated in the same row of column 6 of Table IC, and the polynucleotide sequence of SEQ ID NO:X (e.g., as defined in Table IA, IB, or IC) or fragments or variants thereof. Polypeptides encoded by these polynucleotides, other polynucleotides that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention.
In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of the sequence of SEQ ID NO:X are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids that encode these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In additional specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X (e.g., as described herein) are directly contiguous Nucleic acids which hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention. In further specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of a fragment or variant of the sequence of SEQ ID NO:X and the 5' 10 polynucleotides of the sequence of one of the sequences delineated in column 6 of Table IC are directly contiguous. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In specific embodiments, polynucleotides of the invention comprise, or alternatively consist of a polynucleotide sequence in which the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC and the 5' 10 polynucleotides of another sequence in column 6 are directly contiguous. In preferred embodiments, the 3' 10 polynucleotides of one of the sequences delineated in column 6 of Table IC is directly contiguous with the 5' 10 polynucleotides of the next sequential exon delineated in Table IC, column 6. Nucleic acids that hybridize to the complement of these 20 contiguous polynucleotides under stringent hybridization conditions or alternatively, under lower stringency conditions, are also encompassed by the invention. Polypeptides encoded by these polynucleotides and/or nucleic acids, other polynucleotides and/or nucleic acids encoding these polypeptides, and antibodies that bind these polypeptides are also encompassed by the invention. Additionally, fragments and variants of the above-described polynucleotides, nucleic acids, and polypeptides are also encompassed by the invention.
In the present invention, a "polypeptide fragment" refers to an amino acid sequence which is a portion of the amino acid sequence contained in SEQ ID NO:Y, is a portion of the mature form of SEQ ED NO:Y as defined in columns 14 and 15 of Table IA, a portion of an amino acid sequence encoded by the portion of SEQ ID NO:X as defined in columnns 8 and 9 of Table 2, is a portion of an amino acid sequence encoded by the polynucleotide sequence of SEQ ID NO:X, is a portion of an amino acid sequence encoded by the complement of the polynucleotide sequence in SEQ ID NO:X, is a portion of the amino acid sequence of a mature (secreted) polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or is a portion of an amino acid sequence encoded by the cDNA contained in ATCC Deposit No:Z. Protein (polypeptide) fragments may be "free-standing," or comprised within a larger polypeptide of which the fragment forms a part or region, most preferably as a single continuous region. Representative examples of polypeptide fragments of the invention, include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 101-120, 121-140," 141-160 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301-320, 321-340, 341-360 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481-500, 501-520, 521-540, 541-560 561-580, 581-600, 601-620, 621-640, 641-660, 661-680, 681-700, 701-720, 721-740, 741-760 761-780, 781-800, 801-820, 821-840, 841-860, 861-880, 881-900, 901-920, 921-940, 941-960 961-980, 981-1000, 1001-1020, 1021-1040, 1041-1060, 1061-1080, 1081-1100, 1101-1120, 1121- 1140, 1141-1160, 1161-1180, 1181-1200, 1201-1220, 1221-1240, 1241-1260, 1261-1280, 1281- 1300, 1301-1320, 1321-1340, 1341-1360, 1361-1380, 1381-1400, 1401-1420, 1421-1440, or 1441 to the end of the coding region of cDNA and SEQ ID NO: Y. In a preferred embodiment, polypeptide fragments of the invention include, for example, fragments comprising, or alternatively consisting of, from about amino acid number 1-20, 21-40, 41-60, 61-80, 81-100, 101- 120, 121-140, 141-160, 161-180, 181-200, 201-220, 221-240, 241-260, 261-280, 281-300, 301- 320, 321-340, 341-360, 361-380, 381-400, 401-420, 421-440, 441-460, 461-480, 481-500, 501- 520, 521-540, 541-560, 561-580, 581-600, 601-620, 621-640, 641-660, 661-680, 681-700, 701- 720, 721-740, 741-760, 761-780, 781-800, 801-820, 821-840, 841-860, 861-880, 881-900, 901- 920, 921-940, 941-960, 961-980, 981-1000, 1001-1020, 1021-1040, 1041-1060, 1061-1080, 1081- 1100, 1101-1120, 1121-1140, 1141-1160, 1161-1180, 1181-1200, 1201-1220, 1221-1240, 1241- 1260, 1261-1280, 1281-1300, 1301-1320, 1321-1340, 1341-1360, 1361-1380, 1381-1400, 1401- 1420, 1421-1440, or 1441 to the end of the coding region of SEQ ID NO:Y. Moreover, polypeptide fragments of the invention may be at least about 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 100, 110, 120, 130, 140, or 150 amino acids in length, hi this context "about" includes the particularly recited ranges or values, or ranges or values larger or smaller by several (5, 4, 3, 2, or 1) amino acids, at either extreme or at both extremes. Polynucleotides encoding these polypeptide fragments are also encompassed by the invention.
Even if deletion of one or more amino acids from the N-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities; such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic diseases and disorders; ability to multimerize; ability to bind a ligand; antigenic ability useful for production of polypeptide specific antibodies) may still be retained. For example, the ability of shortened muteins to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptides generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the N-terminus. Whether a particular polypeptide lacking N-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a mutein with a large number of deleted N-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six amino acid residues may often evoke an immune response. Accordingly, polypeptide fragments include the secreted protein as well as the mature form. Further preferred polypeptide fragments include the secreted protein or the mature form having a continuous series of deleted residues from the amino or the carboxy terminus, or both. For example, any number of amino acids, ranging from 1-60, can be deleted from the amino terminus of either the secreted polypeptide or the mature form. Similarly, any number of amino acids, ranging from 1-30, can be deleted from the carboxy terminus of the secreted protein or mature form. Furthermore, any combination of the above amino and carboxy terminus deletions are preferred. Similarly, polynucleotides encoding these polypeptide fragments are also preferred.
The present invention further provides polypeptides having one or more residues deleted from the amino terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO:Y, a polypeptide as defined in columns 14 and 15 of Table IA, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X or the complement thereof, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a polypeptide encoded by the portion of SEQ ID NO:B as defined in column 6 of Table IC, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or a mature polypeptide encoded by the cDNA contained in ATCC Deposit No:Z). hi particular, N- terminal deletions may be described by the general formula m-q, where q is a whole integer representing the total number of amino acid residues in a polypeptide of the invention (e.g., the polypeptide disclosed in SEQ ID NO:Y, the mature (secreted) portion of SEQ ED NO:Y as defined in columns 14 and 15 of Table IA, or the polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2), and m is defined as any integer ranging from 2 to q-6. Polynucleotides encoding these polypeptides are also encompassed by the invention. The present invention further provides polypeptides having one or more residues from the carboxy terminus of the amino acid sequence of a polypeptide disclosed herein (e.g., a polypeptide of SEQ ID NO: Y, the mature (secreted) portion of SEQ ID NO:Y as defined in columns 14 and 15 of Table IA, a polypeptide encoded by the polynucleotide sequence contained in SEQ ID NO:X, a polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, a polypeptide encoded by the portion of SEQ ID NO:B as defined in column 6 of Table IC, a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or a mature polypeptide encoded by the cDNA contained in ATCC Deposit No:Z). In particular, C-terminal deletions may be described by the general formula 1-n, where n is any whole integer ranging from 6 to q-1, and where n corresponds to the position of amino acid residue in a polypeptide of the invention. Polynucleotides encoding these polypeptides are also encompassed by the invention. hi addition, any of the N- or C-terminal deletions described above can be combined to produce a N- and C-terminal deleted polypeptide. The invention also provides polypeptides having one or more amino acids deleted from both the amino and the carboxyl termini, which may be described generally as having residues m-n of a polypeptide encoded by SEQ ID NO:X (e.g., including, but not limited to, the preferred polypeptide disclosed as SEQ ED NO:Y, the mature (secreted) portion of SEQ ED NO:Y as defined in columns 14 and 15 of Table IA, and the polypeptide encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2), the cDNA contained in ATCC Deposit No:Z, and/or the complement thereof, where n and m are integers as described above. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Also as mentioned above, even if deletion of one or more amino acids from the C-terminus of a protein results in modification of loss of one or more biological functions of the protein, other functional activities (e.g., biological activities such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating aUergic and/or asthmatic diseases and disorders; ability to multimerize; ability to bind a ligand; antigenic ability useful for production of polypeptide specific antibodies) may still be retained. For example the ability of the shortened mutein to induce and/or bind to antibodies which recognize the complete or mature forms of the polypeptide generally will be retained when less than the majority of the residues of the complete or mature polypeptide are removed from the C-terminus. Whether a particular polypeptide lacking C-terminal residues of a complete polypeptide retains such immunologic activities can readily be determined by routine methods described herein and otherwise known in the art. It is not unlikely that a mutein with a large number of deleted C-terminal amino acid residues may retain some biological or immunogenic activities. In fact, peptides composed of as few as six amino acid residues may often evoke an immune response.
The present application is also directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to a polypeptide sequence set forth herein. In preferred embodiments, the application is directed to proteins containing polypeptides at least 80%, 85%, 90%, 95%, 96%, 97%, 98% or 99% identical to polypeptides having the amino acid sequence of the specific N- and C-terminal deletions. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Any polypeptide sequence encoded by, for example, the polynucleotide sequences set forth as SEQ ED NO:X or the complement thereof, (presented, for example, in Tables IA and 2), the cDNA contained in ATCC Deposit No:Z, or the polynucleotide sequence as defined in column 6 of Table IC, may be analyzed to determine certain preferred regions of the polypeptide. For example, the amino acid sequence of a polypeptide encoded by a polynucleotide sequence of SEQ ID NO:X (e.g., the polypeptide of SEQ ED NO:Y and the polypeptide encoded by the portion of SEQ ID NO:X as defined in columnns 8 and 9 of Table 2) or the cDNA contained in ATCC Deposit No:Z may be analyzed using the default parameters of the DNASTAR computer algorithm (DNASTAR, Inc., 1228 S. Park St., Madison, WI 53715 USA; http://www.dnastar.com/).
Polypeptide regions that may be routinely obtained using the DNASTAR computer algorithm include, but are not limited to, Garnier-Robson alpha-regions, beta-regions, turn-regions, and coil-regions; Chou-Fasman alpha-regions, beta-regions, and turn-regions; Kyte-Doolittle hydrophilic regions and hydrophobic regions; Eisenberg alpha- and beta-amphipathic regions; Karplus-Schulz flexible regions; Emini surface-forming regions; and Jameson-Wolf regions of high antigenic index. Among highly preferred polynucleotides of the invention in this regard are those that encode polypeptides comprising regions that combine several structural features, such as several (e.g., 1, 2, 3 or 4) of the features set out above.
Additionally, Kyte-Doolittle hydrophilic regions and hydrophobic regions, Emini surface-forming regions, and Jameson-Wolf regions of high antigenic index (i.e., containing four or more contiguous amino acids having an antigenic index of greater than or equal to 1.5, as identified using the default parameters of the Jameson-Wolf program) can routinely be used to determine polypeptide regions that exhibit a high degree of potential for antigenicity. Regions of high antigenicity are determined from data by DNASTAR analysis by choosing values that represent regions of the polypeptide which are likely to be exposed on the surface of the polypeptide in an environment in which antigen recognition may occur in the process of initiation of an immune response.
Preferred polypeptide fragments of the invention are fragments comprising, or alternatively, consisting of, an amino acid sequence that displays a functional activity (e.g. biological activity such as, for example, activity useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating allergic and/or asthmatic diseases and disorders; ability to multimerize; ability to bind a ligand; antigenic ability useful for production of polypeptide specific antibodies) of the polypeptide sequence of which the amino acid sequence is a fragment. By a polypeptide displaying a "functional activity" is meant a polypeptide capable of one or more known functional activities associated with a full-length protein, such as, for example, biological activity, antigenicity, immunogenicity, and/or multimerization, as described herein.
Other preferred polypeptide fragments are biologically active fragments. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
In preferred embodiments, polypeptides of the invention comprise, or alternatively consist of, one, two, three, four, five or more of the antigenic fragments of the polypeptide of SEQ ID NO:Y, or portions thereof. Polynucleotides encoding these polypeptides are also encompassed by the invention.
Epitopes and Antibodies
The present invention encompasses polypeptides comprising, or alternatively consisting of, an epitope of: the polypeptide sequence shown in SEQ ID NO:Y; a polypeptide sequence encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide sequence encoded by the portion of SEQ ED NO:X as defined in columns 8 and 9 of Table 2; the polypeptide sequence encoded by the portion of SEQ ID NO:B as defined in column 6 of Table IC or the complement thereto; the polypeptide sequence encoded by the cDNA contained in ATCC Deposit No:Z; or the polypeptide sequence encoded by a polynucleotide that hybridizes to the sequence of SEQ ID NO:X, the complement of the sequence of SEQ ID NO:X, the complement of a portion of SEQ ED NO:X as defined in columns 8 and 9 of Table 2, or the cDNA sequence contained in ATCC Deposit No:Z under stringent hybridization conditions or alternatively, under lower stringency hybridization as defined supra. The present invention further encompasses polynucleotide sequences encoding an epitope of a polypeptide sequence of the invention (such as, for example, the sequence disclosed in SEQ ED NO:X, or a fragment thereof), polynucleotide sequences of the complementary strand of a polynucleotide sequence encoding an epitope of the invention, and polynucleotide sequences which hybridize to the complementary strand under stringent hybridization conditions or alternatively, under lower stringency hybridization conditions defined supra.
The term "epitopes," as used herein, refers to portions of a polypeptide having antigenic or immunogenic activity in an animal, preferably a mammal, and most preferably in a human. In a preferred embodiment, the present invention encompasses a polypeptide comprising an epitope, as well as the polynucleotide encoding this polypeptide. An "immunogenic epitope," as used herein, is defined as a portion of a protein that elicits an antibody response in an animal, as determined by any method known in the art, for example, by the methods for generating antibodies described infra. (See, for example, Geysen et al., Proc. Natl. Acad. Sci. USA 81:3998- 4002 (1983)). The term "antigenic epitope," as used herein, is defined as a portion of a protein to which an antibody can immunospecifically bind its antigen as determined by any method well known in the art, for example, by the immunoassays described herein. Immunospecific binding excludes non-specific binding but does not necessarily exclude cross- reactivity with other antigens. Antigenic epitopes need not necessarily be immunogenic. Fragments which function as epitopes may be produced by any conventional means. (See, e.g., Houghten, R. A., Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985) further described in U.S. Patent No. 4,631,211.) hi the present invention, antigenic epitopes preferably contain a sequence of at least 4, at least 5, at least 6, at least 7, more preferably at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 20, at least 25, at least 30, at least 40, at least 50, and, most preferably, between about 15 to about 30 amino acids. Preferred polypeptides comprising immunogenic or antigenic epitopes are at least 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, or 100 amino acid residues in length. Additional non-exclusive preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as portions thereof. Antigenic epitopes are useful, for example, to raise antibodies, including monoclonal antibodies, which specifically bind the epitope. Preferred antigenic epitopes include the antigenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these antigenic epitopes. Antigenic epitopes can be used as the target molecules in immunoassays. (See, for instance, Wilson et al., Cell 37:767-778 (1984); Sutcliffe et al., Science 219:660-666 (1983)). Non-limiting examples of epitopes of polypeptides that can be used to generate antibodies of the invention include a polypeptide comprising, or alternatively consisting of, at least one, two, three, four, five, six or more of the portion(s) of SEQ ID NO:Y specified in Table IB. These polypeptide fragments have been determined to bear antigenic epitopes of the proteins of the invention-by the analysis of the Jameson-Wolf antigenic index, which is included in the DNAStar suite of computer programs. By "comprise" it is intended that a polypeptide contains at least one, two, three, four, five, six or more of the portion(s) of SEQ ID NO:Y shown in Table IB, but it may contain additional flanking residues on either the amino or carboxyl termini of the recited portion. Such additional flanking sequences are preferably sequences naturally found adjacent to the portion; i.e., contiguous sequence shown in SEQ DD NO:Y. The flanking sequence may, however, be sequences from a heterolgous polypeptide, such as from another protein described herein or from a heterologous polypeptide not described herein. In particular embodiments, epitope portions of a polypeptide of the invention comprise one, two, three, or more of the portions of SEQ ED NO:Y shown in Table IB.
Similarly, immunogenic epitopes can be used, for example, to induce antibodies according to methods well known in the art. See, for instance, Sutcliffe et al., supra; Wilson et al., supra; Chow et al., Proc. Natl. Acad. Sci. USA 82:910-914; and Bittle et al., J. Gen. Virol. 66:2347-2354 (1985). Preferred immunogenic epitopes include the immunogenic epitopes disclosed herein, as well as any combination of two, three, four, five or more of these immunogenic epitopes. The polypeptides comprising one or more immunogenic epitopes may be presented for eliciting an antibody response together with a carrier protein, such as an albumin, to an animal system (such as rabbit or mouse), or, if the polypeptide is of sufficient length (at least about 25 amino acids), the polypeptide may be presented without a carrier. However, immunogenic epitopes comprising as few as 8 to 10 amino acids have been shown to be sufficient to raise antibodies capable of binding to, at the very least, linear epitopes in a denatured polypeptide (e.g., in Western blotting).
Epitope-bearing polypeptides of the present invention may be used to induce antibodies according to methods well known in the art including, but not limited to, in vivo immunization, in vitro immunization, and phage display methods. See, e.g., Sutcliffe et al., supra; Wilson et al., supra, and Bittle et al., J. Gen. Virol., 66:2347-2354 (1985). If in vivo immunization is used, animals may be immunized with free peptide; however, anti-peptide antibody titer may be boosted by coupling the peptide to a macromolecular carrier, such as keyhole limpet hemacyanin (KLH) or tetanus toxoid. For instance, peptides containing cysteine residues may be coupled to a carrier using a linker such as maleimidobenzoyl- N-hydroxysuccinimide ester (MBS), while other peptides may be coupled to carriers using a more general linking agent such as glutaraldehyde. Animals such as rabbits, rats and mice are immunized with either free or carrier- coupled peptides, for instance, by intraperitoneal and/or intradermal injection of emulsions containing about 100 μg of peptide or carrier protein and Freund's adjuvant or any other adjuvant known for stimulating an immune response. Several booster injections may be needed, for instance, at intervals of about two weeks, to provide a useful titer of anti-peptide antibody that can be detected, for example, by ELISA assay using free peptide adsorbed to a solid surface. The titer of anti-peptide antibodies in serum from an immunized animal may be increased by selection of anti-peptide antibodies, for instance, by adsorption to the peptide on a solid support and elution of the selected antibodies according to methods well known in the art.
As one of skill in the art will appreciate, and as discussed above, the polypeptides of the present invention (e.g., those comprising an immunogenic or antigenic epitope) can be fused to heterologous polypeptide sequences. For example, polypeptides of the present invention (including fragments or variants thereof), may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM), or portions thereof (CHI, CH2, CH3, or any combination thereof and portions thereof, resulting in chimeric polypeptides. By way of another non-limiting example, polypeptides and/or antibodies of the present invention (including fragments or variants thereof) may be fused with albumin (including but not limited to recombinant human serum albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)). In a preferred embodiment, polypeptides and/or antibodies of the present invention (including fragments or variants thereof) are fused with the mature form of human serum albumin (i.e., amino acids 1 - 585 of human serum albumin as shown in Figures 1 and 2 of EP Patent 0 322 094) which is herein incorporated by reference in its entirety. In another preferred embodiment, polypeptides and/or antibodies of the present invention (including fragments or variants thereof) are fused with polypeptide fragments comprising, or alternatively consisting of, amino acid residues 1-z of human serum albumin, where z is an integer from 369 to 419, as described in U.S. Patent 5,766,883 herein incorporated by reference in its entirety. Polypeptides and or antibodies of the present invention (including fragments or variants thereof) may be fused to either the N- or C-terminal end of the heterologous protein (e.g., immunoglobulin Fc polypeptide or human serum albumin polypeptide). Polynucleotides encoding fusion proteins of the invention are also encompassed by the invention.
Such fusion proteins as those described above may facilitate purification and may increase half-life in vivo. This has been shown for chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. See, e.g., EP 394,827; Traunecker et al., Nature, 331:84- 86 (1988). Enhanced delivery of an antigen across the epithelial barrier to the immune system has been demonstrated for antigens (e.g., insulin) conjugated to an FcRn binding partner such as IgG or Fc fragments (see, e.g., PCT Publications WO 96/22024 and WO 99/04813). IgG fusion proteins that have a disulfide-linked dimeric structure due to the IgG portion desulfide bonds have also been found to be more efficient in binding and neutralizing other molecules than monomeric polypeptides or fragments thereof alone. See, e.g., Fountoulakis et al., J. Biochem., 270:3958- 3964 (1995). Nucleic acids encoding the above epitopes can also be recombined with a gene of interest as an epitope tag (e.g., the hemagglutinin (HA) tag or flag tag) to aid in detection and purification of the expressed polypeptide. For example, a system described by Janknecht et al. allows for the ready purification of non-denatured fusion proteins expressed in human cell lines (Janknecht et al., 1991, Proc. Natl. Acad. Sci. USA 88:8972- 897). In this system, the gene of interest is subcloned into a vaccinia recombination plasmid such that the open reading frame of the gene is translationally fused to an amino-terminal tag consisting of six histidine residues. The tag serves as a matrix-binding domain for the fusion protein. Extracts from cells infected with the recombinant vaccinia virus are loaded onto Ni2+ nitriloacetic acid-agarose column and histidine- tagged proteins can be selectively eluted with imidazole-containing buffers.
Fusion Proteins
Any polypeptide of the present invention can be used to generate fusion proteins. For example, the polypeptide of the present invention, when fused to a second protein, can be used as an antigenic tag. Antibodies raised against the polypeptide of the present invention can be used to indirectly detect the second protein by binding to the polypeptide. Moreover, because secreted proteins target cellular locations based on trafficking signals, polypeptides of the present invention which are shown to be secreted can be used as targeting molecules once fused to other proteins.
Examples of domains that can be fused to polypeptides of the present invention include not only heterologous signal sequences, but also other heterologous functional regions. The fusion does not necessarily need to be direct, but may occur through linker sequences. In certain preferred embodiments, proteins of the invention are fusion proteins comprising an amino acid sequence that is an N and/or C- terminal deletion of a polypeptide of the invention. In preferred embodiments, the invention is directed to a fusion protein comprising an amino acid sequence that is at least 90%, 95%, 96%, 97%, 98% or 99% identical to a polypeptide sequence of the invention. Polynucleotides encoding these proteins are also encompassed by the invention. Moreover, fusion proteins may also be engineered to improve characteristics of the polypeptide of the present invention. For instance, a region of additional amino acids, particularly charged amino acids, may be added to the N-terminus of the polypeptide to improve stability and persistence during purification from the host cell or subsequent handling and storage. Also, peptide moieties may be added to the polypeptide to facilitate purification. Such regions may be removed prior to final preparation of the polypeptide. The addition of peptide moieties to facilitate handling of polypeptides is familiar and routine techniques in the art.
As one of skill in the art will appreciate that, as discussed above, polypeptides of the present invention, and epitope-bearing fragments thereof, can be combined with heterologous polypeptide sequences. For example, the polypeptides of the present invention may be fused with heterologous polypeptide sequences, for example, the polypeptides of the present invention may be fused with the constant domain of immunoglobulins (IgA, IgE, IgG, IgM) or portions thereof (CHI, CH2, CH3, and any combination thereof, including both entire domains and portions thereof), or albumin (including, but not limited to, native or recombinant human albumin or fragments or variants thereof (see, e.g., U.S. Patent No. 5,876,969, issued March 2, 1999, EP Patent 0 413 622, and U.S. Patent No. 5,766,883, issued June 16, 1998, herein incorporated by reference in their entirety)), resulting in chimeric polypeptides. For example, EP-A-0 464 533 (Canadian counterpart 2045869) discloses fusion proteins comprising various portions of constant region of immunoglobulin molecules together with another human protein or part thereof. In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties (EP-A 0232 262). Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hE -5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. See, D. Bennett et al., J. Molecular Recognition 8:52-58 (1995); K. Johanson et al., J. Biol. Chem. 270:9459-9471 (1995). Moreover, the polypeptides of the present invention can be fused to marker sequences, such as a polypeptide that facilitates purification of the fused polypeptide. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Another peptide tag useful for purification, the "HA" tag, corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., Cell 37:767 (1984)).
Additional fusion proteins of the invention may be generated through the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling"). DNA shuffling may be employed to modulate the activities of polypeptides of the invention, such methods can be used to generate polypeptides with altered activity, as well as agonists and antagonists of the polypeptides. See, generally, U.S. Patent Nos. 5,605,793; 5,811,238; 5,830,721; 5,834,252; and 5,837,458, and Patten et al., Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, Trends Biotechnol. 16(2):76-82 (1998); Hansson, et al, J. Mol. Biol. 287:265-76 (1999); and Lorenzo and Blasco, Biotechniques 24(2):308- 13 (1998) (each of these patents and publications are hereby incorporated by reference in its entirety). In one embodiment, alteration of polynucleotides corresponding to SEQ ID NO:X and the polypeptides encoded by these polynucleotides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments by homologous or site-specific recombination to generate variation in the polynucleotide sequence. In another embodiment, polynucleotides of the invention, or the encoded polypeptides, may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of a polynucleotide encoding a polypeptide of the invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules.
Thus, any of these above fusions can be engineered using the polynucleotides or the polypeptides of the present invention.
Recombinant and Synthetic Production of Polypeptides of the Invention
The present invention also relates to vectors containing the polynucleotide of the present invention, host cells, and the production of polypeptides by synthetic and recombinant techniques.
The vector may be, for example, a phage, plasmid, viral, or retroviral vector. Retroviral vectors may be replication competent or replication defective. In the latter case, viral propagation generally will occur only in complementing host cells.
The polynucleotides of the invention may be joined to a vector containing a selectable marker for propagation in a host. Generally, a plasmid vector is introduced in a precipitate, such as a calcium phosphate precipitate, or in a complex with a charged lipid. If the vector is a virus, it may be packaged in vitro using an appropriate packaging cell line and then transduced into host cells.
The polynucleotide insert should be operatively linked to an appropriate promoter, such as the phage lambda PL promoter, the E. coli lac, trp, phoA and tac promoters, the SV40 early and late promoters and promoters of retroviral LTRs, to name a few. Other suitable promoters will be known to the skilled artisan. The expression constructs will further contain sites for transcription initiation, termination, and, in the transcribed region, a ribosome-binding site for translation. The coding portion of the transcripts expressed by the constructs will preferably include a translation initiating codon at the beginning and a termination codon (UAA, UGA or UAG) appropriately positioned at the end of the polypeptide to be translated.
As indicated, the expression vectors will preferably include at least one selectable marker. Such markers include dihydrofolate reductase, G418, glutamine synthase, or neomycin resistance for eukaryotic cell culture, and tetracycline, kanamycin or ampicillin resistance genes for culturing in E. coli and other bacteria. Representative examples of appropriate hosts include, but are not limited to, bacterial cells, such as E. coli, Streptomyces and Salmonella typhimurium cells; fungal cells, such as yeast cells (e.g., Saccharomyces cerevisiae or Pichia pastoris (ATCC Accession No. 201178)); insect cells such as Drosophila S2 and Spodoptera Sf9 cells; animal cells such as CHO, COS, 293, and Bowes melanoma cells; and plant cells. Appropriate culture mediums and conditions for the above-described host cells are known in the art.
Among vectors preferred for use in bacteria include pQE70, pQE60 and pQE-9, available from QIAGEN, Inc.; pBluescript vectors, Phagescript vectors, pNH8A, pNH16a, pNH18A, pNH46A, available from Stratagene Cloning Systems, Inc.; and ptrc99a, pKK223-3, pKK233-3, pDR540, pRIT5 available from Pharmacia Biotech, Inc. Among preferred eukaryotic vectors are pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; and pSVK3, pBPV, pMSG and pSVL available from Pharmacia. Preferred expression vectors for use in yeast systems include, but are not limited to pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalph, pPIC9, pPIC3.5, pHEL-D2, pHIL-Sl, pPIC3.5K, pPIC9K, and PA0815 (all available from Invitrogen, Carlbad, CA). Other suitable vectors will be readily apparent to the skilled artisan.
Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively. An advantage of glutamine synthase based vectors is the availabilty of cell lines (e.g., the murine myeloma cell line, NSO) which are glutamine synthase negative. Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g., Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene. A glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and WO91/06657, which are hereby incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors can be obtained fromLonza Biologies, Inc. (Portsmouth, NH). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al., Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol. Prog. 11:1 (1995), which are herein incorporated by reference.
The present invention also relates to host cells containing the above-described vector constructs described herein, and additionally encompasses host cells containing nucleotide sequences of the invention that are operably associated with one or more heterologous control regions (e.g., promoter and/or enhancer) using techniques known of in the art. The host cell can be a higher eukaryotic cell, such as a mammalian cell (e.g., a human derived cell), or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. A host strain may be chosen which modulates the expression of the inserted gene sequences, or modifies and processes the gene product in the specific fashion desired. Expression from certain promoters can be elevated in the presence of certain inducers; thus expression of the genetically engineered polypeptide may be controlled. Furthermore, different host cells have characteristics and specific mechanisms for the translational and post-translational processing and modification (e.g., phosphorylation, cleavage) of proteins. Appropriate cell lines can be chosen to ensure the desired modifications and processing of the foreign protein expressed. Introduction of the nucleic acids and nucleic acid constructs of the invention into the host cell can be effected by calcium phosphate transfection, DEAE-dextran mediated transfection, cationic lipid-mediated transfection, electroporation, transduction, infection, or other methods. Such methods are described in many standard laboratory manuals, such as Davis et al., Basic Methods In Molecular Biology (1986). It is specifically contemplated that the polypeptides of the present invention may in fact be expressed by a host cell lacking a recombinant vector.
In addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., the coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g., US Patent Number 5,641,670, issued June 24, 1997; International Publication Number WO 96/29411; International Publication Number WO 94/12650; Koller et al., Proc. Natl. Acad. Sci. USA 8(5:8932-8935 (1989); and Zijlstra et al, Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).
Polypeptides of the invention can be recovered and purified from recombinant cell cultures by well-known methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification.
Polypeptides of the present invention can also be recovered from: products purified from natural sources, including bodily fluids, tissues and cells, whether directly isolated or cultured; products of chemical synthetic procedures; and products produced by recombinant techniques from a prokaryotic or eukaryotic host, including, for example, bacterial, yeast, higher plant, insect, and mammalian cells. Depending upon the host employed in a recombinant production procedure, the polypeptides of the present invention may be glycosylated or may be non-glycosylated. In addition, polypeptides of the invention may also include an initial modified methionine residue, in some cases as a result of host-mediated processes. Thus, it is well known in the art that the N- terminal methionine encoded by the translation initiation codon generally is removed with high efficiency from any protein after translation in all eukaryotic cells. While the N-terminal methionine on most proteins also is efficiently removed in most prokaryotes, for some proteins, this prokaryotic removal process is inefficient, depending on the nature of the amino acid to which the N-terminal methionine is covalently linked. In one embodiment, the yeast Pichia pastoris is used to express polypeptides of the invention in a eukaryotic system. Pichia pastoris is a methylotrophic yeast which can metabolize methanol as its sole carbon source. A main step in the methanol metabolization pathway is the oxidation of methanol to formaldehyde using 02. This reaction is catalyzed by the enzyme alcohol oxidase. hi order to metabolize methanol as its sole carbon source, Pichia pastoris must generate high levels of alcohol oxidase due, in part, to the relatively low affinity of alcohol oxidase for 02. Consequently, in a growth medium depending on methanol as a main carbon source, the promoter region of one of the two alcohol oxidase genes (AOX1) is highly active. In the presence of methanol, alcohol oxidase produced from the A 0X1 gene comprises up to approximately 30% of the total soluble protein in Pichia pastoris. See Ellis, S.B., et al, Mol. Cell. Biol. 5:1111-21 (1985); Koutz, P.J, et al, Yeast 5:167-77 (1989); Tschopp, J.F., et al, Nucl. Acids Res. 15:3859-76 (1987). Thus, a heterologous coding sequence, such as, for example, a polynucleotide of the present invention, under the transcriptional regulation of all or part of the AOX1 regulatory sequence is expressed at exceptionally high levels in Pichia yeast grown in the presence of methanol.
In one example, the plasmid vector pPIC9K is used to express DNA encoding a polypeptide of the invention, as set forth herein, in a Pichea yeast system essentially as described in "Pichia Protocols: Methods in Molecular Biology," D.R. Higgins and J. Cregg, eds. The Humana Press, Totowa, NJ, 1998. This expression vector allows expression and secretion of a polypeptide of the invention by virtue of the strong AOX1 promoter linked to the Pichia pastoris alkaline phosphatase (PHO) secretory signal peptide (i.e., leader) located upstream of a multiple cloning site.
Many other yeast vectors could be used in place of pPIC9K, such as, pYES2, pYDl, pTEFl/Zeo, pYES2/GS, pPICZ, pGAPZ, pGAPZalpha, pPIC9, pPIC3.5, pHJL-D2, pHIL-Sl, pPIC3.5K, and PA0815, as one skilled in the art would readily appreciate, as long as the proposed expression construct provides appropriately located signals for transcription, translation, secretion (if desired), and the like, including an in-frame AUG as required.
In another embodiment, high-level expression of a heterologous coding sequence, such as, for example, a polynucleotide of the present invention, may be achieved by cloning the heterologous polynucleotide of the invention into an expression vector such as, for example, pGAPZ or pGAPZalpha, and growing the yeast culture in the absence of methanol. hi addition to encompassing host cells containing the vector constructs discussed herein, the invention also encompasses primary, secondary, and immortalized host cells of vertebrate origin, particularly mammalian origin, that have been engineered to delete or replace endogenous genetic material (e.g., coding sequence), and/or to include genetic material (e.g., heterologous polynucleotide sequences) that is operably associated with polynucleotides of the invention, and which activates, alters, and/or amplifies endogenous polynucleotides. For example, techniques known in the art may be used to operably associate heterologous control regions (e.g., promoter and/or enhancer) and endogenous polynucleotide sequences via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; KoUer et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), the disclosures of each of which are incorporated by reference in their entireties).
In addition, polypeptides of the invention can be chemically synthesized using techniques known in the art (e.g., see Creighton, 1983, Proteins: Structures and Molecular Principles, W.H. Freeman & Co., N.Y., and Hunkapiller et al., Nature, 310:105-111 (1984)). For example, a polypeptide corresponding to a fragment of a polypeptide can be synthesized by use of a peptide synthesizer. Furthermore, if desired, nonclassical amino acids or chemical amino acid analogs can be introduced as a substitution or addition into the polypeptide sequence. Non-classical amino acids include, but are not limited to, to the D-isomers of the common amino acids, 2,4- diaminobutyric acid, a-amino isobutyric acid, 4-aminobutyric acid, Abu, 2-amino butyric acid, g-Abu, e-Ahx, 6-amino hexanoic acid, Aib, 2-amino isobutyric acid, 3-amino propionic acid, ornithine, norleucine, norvaline, hydroxyproline, sarcosine, citrulline, homocitrulline, cysteic acid, t-butylglycine, t-butylalanine, phenylglycine, cyclohexylalanine, b-alanine, fluoro-amino acids, designer amino acids such as b-methyl amino acids, Ca-methyl amino acids, Na-methyl amino acids, and amino acid analogs in general. Furthermore, the amino acid can be D (dextrorotary) or L (levorotary).
The invention encompasses polypeptides of the present invention which are differentially modified during or after translation, e.g., by glycosylation, acetylation, phosphorylation, amidation, derivatization by known protecting/blocking groups, proteolytic cleavage, linkage to an antibody molecule or other cellular ligand, etc. Any of numerous chemical modifications may be carried out by known techniques, including but not limited, to specific chemical cleavage by cyanogen bromide, trypsin, chymotrypsin, papain, V8 protease, NaBB^; acetylation, formylation, oxidation, reduction; metabolic synthesis in the presence of tunicamycin; etc.
Additional post-translational modifications encompassed by the invention include, for example, e.g., N-linked or O-linked carbohydrate chains, processing of N-terminal or C-terminal ends), attachment of chemical moieties to the amino acid backbone, chemical modifications of N-linked or O-linked carbohydrate chains, and addition or deletion of an N-terminal methionine residue as a result of procaryotic host cell expression. The polypeptides may also be modified with a detectable label, such as an enzymatic, fluorescent, isotopic or affinity label to allow for detection and isolation of the protein.
Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta- galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazmylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include iodine (1211, 123I, 125I, 131I), carbon (14C), sulfur (35S), tritium (3H), indium (mIn, 112In, U3mIn, π5mIn), teclmetium (99Tc,99raTc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 1 0La, 175Yb, I6δHo, 90Y, 47Sc, I8δRe, 188Re, 142Pr, I05Rh, and 97Ru. hi specific embodiments, a polypeptide of the present invention or fragment or variant thereof is attached to macrocyclic chelators that associate with radiometal ions, including but not limited to, 177Lu, 90Y, 166Ho, and 153Sm, to polypeptides. In a preferred embodiment, the radiometal ion associated with the macrocyclic chelators is mIn. In another preferred embodiment, the radiometal ion associated with the macrocyclic chelator is 90Y. In specific embodiments, the macrocyclic chelator is 1,4,7, 10-tetraazacyclododecane-N,N',N",N'"-tetraacetic acid (DOTA). In other specific embodiments, DOTA is attached to an antibody of the invention or fragment thereof via a linker molecule. Examples of linker molecules useful for conjugating DOTA to a polypeptide are commonly known in the art - see, for example, DeNardo et al., Clin Cancer Res. 4(10):2483-90 (1998); Peterson et al., Bioconjug. Chem. 10(4):553-7 (1999); and Zimmerman et al, Nucl. Med. Biol. 26(8):943-50 (1999); which are hereby incorporated by reference in their entirety.
As mentioned, the proteins of the invention may be modified by either natural processes, such as posttranslational processing, or by chemical modification techniques which are well known in the art. It will be appreciated that the same type of modification may be present in the same or varying degrees at several sites in a given polypeptide. Polypeptides of the invention may be branched, for example, as a result of ubiquitination, and they may be cyclic, with or without branching. Cyclic, branched, and branched cyclic polypeptides may result from posttranslation natural processes or may be made by synthetic methods. Modifications include acetylation, acylation, ADP-ribosylation, amidation, covalent attachment of flavin, covalent attachment of a heme moiety, covalent attachment of a nucleotide or nucleotide derivative, covalent attachment of a lipid or lipid derivative, covalent attachment of phosphotidylinositol, cross-linking, cyclization, disulfide bond formation, demethylation, formation of covalent cross-links, formation of cysteine, formation of pyroglutamate, formylation, gamma-carboxylation, glycosylation, GPI anchor formation, hydroxylation, iodination, methylation, myristoylation, oxidation, pegylation, proteolytic processing, phosphorylation, prenylation, racemization, selenoylation, sulfation, transfer-RNA mediated addition of amino acids to proteins such as arginylation, and ubiquitination. (See, for instance, PROTEINS - STRUCTURE AND MOLECULAR PROPERTIES, 2nd Ed., T. E. Creighton, W. H. Freeman and Company, New York (1993); POSTTRANSLATIONAL COVALENT MODIFICATION OF PROTEINS, B. C. Johnson, Ed., Academic Press, New York, pgs. 1-12 (1983); Seifter et al., Meth. Enzymol. 182:626-646 (1990); Rattan et al., Ann. N.Y. Acad. Sci. 663:48-62 (1992)).
Also provided by the invention are chemically modified derivatives of the polypeptides of the invention which may provide additional advantages such as increased solubility, stability and circulating time of the polypeptide, or decreased immunogenicity (see U.S. Patent No. 4,179,337). The chemical moieties for derivitization may be selected from water soluble polymers such as polyethylene glycol, ethylene glycol/propylene glycol copolymers, carboxymethylcellulose, dextran, polyvinyl alcohol and the like. The polypeptides may be modified at random positions within the molecule, or at predetermined positions within the molecule and may include one, two, three or more attached chemical moieties.
The polymer may be of any molecular weight, and may be branched or unbranched. For polyethylene glycol, the preferred molecular weight is between about 1 kDa and about 100 kDa (the term "about" indicating that in preparations of polyethylene glycol, some molecules will weigh more, some less, than the stated molecular weight) for ease in handling and manufacturing. Other sizes may be used, depending on the desired therapeutic profile (e.g., the duration of sustained release desired, the effects, if any on biological activity, the ease in handling, the degree or lack of antigenicity and other known effects of the polyethylene glycol to a therapeutic protein or analog). For example, the polyethylene glycol may have an average molecular weight of about 200, 500, 1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500, 8000, 8500, 9000, 9500, 10,000, 10,500, 11,000, 11,500, 12,000, 12,500, 13,000, 13,500, 14,000, 14,500, 15,000, 15,500, 16,000, 16,500, 17,000, 17,500, 18,000, 18,500, 19,000, 19,500, 20,000, 25,000, 30,000, 35,000, 40,000, 45,000, 50,000, 55,000, 60,000, 65,000, 70,000, 75,000, 80,000, 85,000, 90,000, 95,000, or 100,000 kDa. As noted above, the polyethylene glycol may have a branched structure. Branched polyethylene glycols are described, for example, in U.S. Patent No. 5,643,575; Morpurgo et al, Appl. Biochem. Biotechnol. 5*5:59-72 (1996); Vorobjev et al, Nucleosides Nucleotides 18:2745- 2750 (1999); and Caliceti et al, Bioconjug. Chem. 70:638-646 (1999), the disclosures of each of which are incorporated herein by reference. The polyethylene glycol molecules (or other chemical moieties) should be attached to the protein with consideration of effects on functional or antigenic domains of the protein. There are a number of attachment methods available to those skilled in the art, such as, for example, the method disclosed in EP 0401 384 (coupling PEG to G-CSF), herein incorporated by reference; see also Malik et al., Exp. Hematol. 20:1028-1035 (1992), reporting pegylation of GM-CSF using tresyl chloride. For example, polyethylene glycol may be covalently bound through amino acid residues via a reactive group, such as a free amino or carboxyl group. Reactive groups are those to which an activated polyethylene glycol molecule may be bound. The amino acid residues having a free aminot group may include lysine residues and the N-terminal amino acid residues; those having a free carboxyl group may include aspartic acid residues glutamic acid residues and the C-terminal amino acid residue. Sulfhydryl groups may also be used as a reactive group for attaching the polyethylene glycol molecules. Preferred for therapeutic purposes is attachment at an amino group, such as attachment at the N-terminus or lysine group. As suggested above, polyethylene glycol may be attached to proteins via linkage to any of a number of amino acid residues. For example, polyethylene glycol can be linked to proteins via covalent bonds to lysine, histidine, aspartic acid, glutamic acid, or cysteine residues. One or more reaction chemistries may be employed to attach polyethylene glycol to specific amino acid residues (e.g., lysine, histidine, aspartic acid, glutamic acid, or cysteine) of the protein or to more than one type of amino acid residue (e.g., lysine, histidine, aspartic acid, glutamic acid, cysteine and combinations thereof) of the protein.
One may specifically desire proteins chemically modified at the N-terminus. Using polyethylene glycol as an illustration of the present composition, one may select from a variety of polyethylene glycol molecules (by molecular weight, branching, etc.), the proportion of polyethylene glycol molecules to protein (polypeptide) molecules in the reaction mix, the type of pegylation reaction to be performed, and the method of obtaining the selected N-terminally pegylated protein. The method of obtaining the N-terminally pegylated preparation (i.e., separating this moiety from other monopegylated moieties if necessary) may be by purification of the N-terminally pegylated material from a population of pegylated protein molecules. Selective proteins chemically modified at the N-terminus modification may be accomplished by reductive alkylation, which exploits differential reactivity of different types of primary amino groups (lysine versus the N-terminal) available for derivatization in a particular protein. Under the appropriate reaction conditions, substantially selective derivatization of the protein at the N-terminus with a carbonyl group containing polymer is achieved.
As indicated above, pegylation of the proteins of the invention may be accomplished by any number of means. For example, polyethylene glycol may be attached to the protein either directly or by an intervening linker. Linkerless systems for attaching polyethylene glycol to proteins are described in Delgado et al., Grit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992); Francis et al., Intern. J. of Hematol. 68:1-18 (1998); U.S. Patent No. 4,002,531; U.S. Patent No. 5,349,052; WO 95/06058; and WO 98/32466, the disclosures of each of which are incorporated herein by reference.
One system for attaching polyethylene glycol directly to amino acid residues of proteins without an intervening linker employs tresylated MPEG, which is produced by the modification of monmethoxy polyethylene glycol (MPEG) using tresylchloride (C1S02CH2CF3). Upon reaction of protein with tresylated MPEG, polyethylene glycol is directly attached to amine groups of the protein. Thus, the invention includes protein-polyethylene glycol conjugates produced by reacting proteins of the invention with a polyethylene glycol molecule having a 2,2,2-trifluoreothane sulphonyl group. Polyethylene glycol can also be attached to proteins using a number of different intervening linkers. For example, U.S. Patent No. 5,612,460, the entire disclosure of which is incorporated herein by reference, discloses urethane linkers for connecting polyethylene glycol to proteins. Protein-polyethylene glycol conjugates wherein the polyethylene glycol is attached to the protein by a linker can also be produced by reaction of proteins with compounds such as MPEG-succinimidylsuccinate, MPEG activated with l,r-carbonyldiimidazole, MPEG- 2,4,5-trichloropenylcarbonate, MPEG-p-nitrophenolcarbonate, and various MPEG-succinate derivatives. A number of additional polyethylene glycol derivatives and reaction chemistries for attaching polyethylene glycol to proteins are described in International Publication No. WO 98/32466, the entire disclosure of which is incorporated herein by reference. Pegylated protein products produced using the reaction chemistries set out herein are included within the scope of the invention. The number of polyethylene glycol moieties attached to each protein of the invention (i.e., the degree of substitution) may also vary. For example, the pegylated proteins of the invention may be linked, on average, to 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 17, 20, or more polyethylene glycol molecules. Similarly, the average degree of substitution within ranges such as 1-3, 2-4, 3-5, 4-6, 5-7, 6-8, 7-9, 8-10, 9-11, 10-12, 11-13, 12-14, 13-15, 14-16, 15-17, 16-18, 17-19, or 18-20 polyethylene glycol moieties per protein molecule. Methods for determining the degree of substitution are discussed, for example, in Delgado et al., Grit. Rev. Thera. Drug Carrier Sys. 9:249-304 (1992).
The polypeptides of the invention can be recovered and purified from chemical synthesis and recombinant cell cultures by standard methods which include, but are not limited to, ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Most preferably, high performance liquid chromatography ("HPLC") is employed for purification. Well- known techniques for refolding protein may be employed to regenerate active conformation when the polypeptide is denatured during isolation and/or purification.
The polypeptides of the invention may be in monomers or multimers (i.e., dimers, trimers, tetramers and higher multimers). Accordingly, the present invention relates to monomers and multimers of the polypeptides of the invention, their preparation, and compositions (preferably, Therapeutics) containing them, hi specific embodiments, the polypeptides of the invention are monomers, dimers, trimers or tetramers. In additional embodiments, the multimers of the invention are at least dimers, at least trimers, or at least tetramers.
Multimers encompassed by the invention may be homomers or heteromers. As used herein, the term homomer refers to a multimer containing only polypeptides corresponding to a protein of the invention (e.g., the amino acid sequence of SEQ ID NO:Y, an amino acid sequence encoded by SEQ ED NO:X or the complement of SEQ ID NO:X, the amino acid sequence encoded by the portion of SEQ ED NO:X as defined in columns 8 and 9 of Table 2, and or an amino acid sequence encoded by cDNA contained in ATCC Deposit No:Z (including fragments, variants, splice variants, and fusion proteins, corresponding to these as described herein)). These homomers may contain polypeptides having identical or different amino acid sequences. In a specific embodiment, a homomer of the invention is a multimer containing only polypeptides having an identical amino acid sequence. In another specific embodiment, a homomer of the invention is a multimer containing polypeptides having different amino acid sequences. In specific embodiments, the multimer of the invention is a homodimer (e.g., containing two polypeptides having identical or different amino acid sequences) or a homotrimer (e.g., containing three polypeptides having identical and/or different amino acid sequences), hi additional embodiments, the homomeric multimer of the invention is at least a homodimer, at least a homotrimer, or at least a homotetramer.
As used herein, the term heteromer refers to a multimer containing one or more heterologous polypeptides (i.e., polypeptides of different proteins) in addition to the polypeptides of the invention, hi a specific embodiment, the multimer of the invention is a heterodimer, a heterotrimer, or a heterotetramer. In additional embodiments, the heteromeric multimer of the invention is at least a heterodimer, at least a heterotrimer, or at least a heterotetramer.
Multimers of the invention may be the result of hydrophobic, hydrophilic, ionic and/or covalent associations and/or may be indirectly linked by, for example, liposome formation. Thus, in one embodiment, multimers of the invention, such as, for example, homodimers or homotrimers, are formed when polypeptides of the invention contact one another in solution. In another embodiment, heteromultimers of the invention, such as, for example, heterotrimers or heterotetramers, are formed when polypeptides of the invention contact antibodies to the polypeptides of the invention (including antibodies to the heterologous polypeptide sequence in a fusion protein of the invention) in solution. In other embodiments, multimers of the invention are formed by covalent associations with and or between the polypeptides of the invention. Such covalent associations may involve one or more amino acid residues contained in the polypeptide sequence (e.g., that recited in SEQ ID NO:Y, encoded by the portion of SEQ ID NO:X as defined in columns 8 and 9 of Table 2, and/or encoded by the cDNA contained in ATCC Deposit No:Z). In one instance, the covalent associations are cross-linking between cysteine residues located within the polypeptide sequences that interact in the native (i.e., naturally occurring) polypeptide. hi another instance, the covalent associations are the consequence of chemical or recombinant manipulation. Alternatively, such covalent associations may involve one or more amino acid residues contained in the heterologous polypeptide sequence in a fusion protein. In one example, covalent associations are between the heterologous sequence contained in a fusion protein of the invention (see, e.g., US Patent Number 5,478,925). In a specific example, the covalent associations are between the heterologous sequence contained in a Fc fusion protein of the invention (as described herein). In another specific example, covalent associations of fusion proteins of the invention are between heterologous polypeptide sequence from another protein that is capable of forming covalently associated multimers, such as for example, osteoprotegerin (see, e.g., International Publication NO: WO 98/49305, the contents of which are herein incorporated by reference in its entirety). In another embodiment, two or more polypeptides of the invention are joined through peptide linkers. Examples include those peptide linkers described in U.S. Pat. No. 5,073,627 (hereby incorporated by reference). Proteins comprising multiple polypeptides of the invention separated by peptide linkers may be produced using conventional recombinant DNA technology.
Another method for preparing multimer polypeptides of the invention involves use of polypeptides of the invention fused to a leucine zipper or isoleucine zipper polypeptide sequence. Leucine zipper and isoleucine zipper domains are polypeptides that promote multimerization of the proteins in which they are found. Leucine zippers were originally identified in several DNA- binding proteins (Landschulz et al., Science 240:1759, (1988)), and have since been found in a variety of different proteins. Among the known leucine zippers are naturally occurring peptides and derivatives thereof that dimerize or trimerize. Examples of leucine zipper domains suitable for producing soluble multimeric proteins of the invention are those described in PCT application WO 94/10308, hereby incorporated by reference. Recombinant fusion proteins comprising a polypeptide of the invention fused to a polypeptide sequence that dimerizes or trimerizes in solution are expressed in suitable host cells, and the resulting soluble multimeric fusion protein is recovered from the culture supernatant using techniques known in the art. Trimeric polypeptides of the invention may offer the advantage of enhanced biological activity. Preferred leucine zipper moieties and isoleucine moieties are those that preferentially form trimers. One example is a leucine zipper derived from lung surfactant protein D (SPD), as described in Hoppe et al. (FEBS Letters 344:191, (1994)) and in U.S. patent application Ser. No. 08/446,922, hereby incorporated by reference. Other peptides derived from naturally occurring trimeric proteins may be employed in preparing trimeric polypeptides of the invention.
In another example, proteins of the invention are associated by interactions between Flag® polypeptide sequence contained in fusion proteins of the invention containing Flag® polypeptide sequence. In a further embodiment, proteins of the invention are associated by interactions between heterologous polypeptide sequence contained in Flag® fusion proteins of the invention and anti-Flag® antibody.
The multimers of the invention may be generated using chemical techniques known in the art. For example, polypeptides desired to be contained in the multimers of the invention may be chemically cross-linked using linker molecules and linker molecule length optimization techniques known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, multimers of the invention may be generated using techniques known in the art to form one or more inter-molecule cross-links between the cysteine residues located within the sequence of the polypeptides desired to be contained in the multimer (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Further, polypeptides of the invention may be routinely modified by the addition of cysteine or biotin to the C-terminus or N-terminus of the polypeptide and techniques known in the art may be applied to generate multimers containing one or more of these modified polypeptides (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). Additionally, techniques known in the art may be applied to generate liposomes containing the polypeptide components desired to be contained in the multimer of the invention (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
Alternatively, multimers of the invention may be generated using genetic engineering techniques known in the art. In one embodiment, polypeptides contained in multimers of the invention are • produced recombinantly using fusion protein technology described herein or otherwise known in the art (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety). In a specific embodiment, polynucleotides coding for a homodimer of the invention are generated by ligating a polynucleotide sequence encoding a polypeptide of the invention to a sequence encoding a linker polypeptide and then further to a synthetic polynucleotide encoding the translated product of the polypeptide in the reverse orientation from the original C-terminus to the N-terminus (lacking the leader sequence) (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety), hi another embodiment, recombinant techniques described herein or otherwise known in the art are applied to generate recombinant polypeptides of the invention which contain a transmembrane domain (or hydrophobic or signal peptide) and which can be incorporated by membrane reconstitution techniques into liposomes (see, e.g., US Patent Number 5,478,925, which is herein incorporated by reference in its entirety).
Antibodies
Further polypeptides of the invention relate to antibodies and T-cell antigen receptors (TCR) which immunospecifically bind a polypeptide, polypeptide fragment, or variant of the invention (e.g., a polypeptide or fragment or variant of the amino acid sequence of SEQ ID NO:Y or a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z, and/or an epitope, of the present invention) as determined by immunoassays well known in the art for assaying specific antibody-antigen binding. Antibodies of the invention include, but are not limited to, polyclonal, monoclonal, multispecific, human, humanized or chimeric antibodies, single chain antibodies, Fab fragments, F(ab') fragments, fragments produced by a Fab expression library, anti-idiotypic (anti- Id) antibodies (including, e.g., anti-Id antibodies to antibodies of the invention), intracellularly- made antibodies (i.e., intrabodies), and epitope-binding fragments of any of the above. The term "antibody," as used herein, refers to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules, i.e., molecules that contain an antigen binding site that immunospecifically binds an antigen. The immunoglobulin molecules of the invention can be of any type (e.g., IgG, IgE, IgM, IgD, IgA and IgY), class (e.g., IgGl, IgG2, IgG3, IgG4, IgAl and IgA2) or subclass of immunoglobulin molecule. In preferred embodiments, the immunoglobulin molecules of the invention are IgGl. In other preferred embodiments, the immunoglobulin molecules of the invention are IgG4.
Most preferably the antibodies are human antigen-binding antibody fragments of the present invention and include, but are not limited to, Fab, Fab' and F(ab')2, Fd, single-chain Fvs (scFv), single-chain antibodies, disulfide-linked Fvs (sdFv) and fragments comprising either a VL or VH domain. Antigen-binding antibody fragments, including single-chain antibodies, may comprise the variable region(s) alone or in combination with the entirety or a portion of the following: hinge region, CHI, CH2, and CH3 domains. Also included in the invention are antigen-binding fragments also comprising any combination of variable region(s) with a hinge region, CHI, CH2, and CH3 domains. The antibodies of the invention may be from any animal origin including birds and mammals. Preferably, the antibodies are human, murine (e.g., mouse and rat), donkey, ship rabbit, goat, guinea pig, camel, horse, or chicken. As used herein, "human" antibodies include antibodies having the amino acid sequence of a human immunoglobulin and include antibodies isolated from human immunoglobulin libraries or from animals transgenic for one or more human immunoglobulin and that do not express endogenous immunoglobulins, as described infra and, for example in, U.S. Patent No. 5,939,598 by Kucherlapati et al. The antibodies of the present invention may be monospecific, bispecific, trispecific or of greater multispecificity. Multispecific antibodies may be specific for different epitopes of a polypeptide of the present invention or may be specific for both a polypeptide of the present invention as weU as for a heterologous epitope, such as a heterologous polypeptide or solid support material. See, e.g., PCT publications WO 93/17715; WO 92/08802; WO 91/00360; WO 92/05793; Tutt, et al., J. Immunol. 147:60-69 (1991); U.S. Patent Nos. 4,474,893; 4,714,681; 4,925,648; 5,573,920; 5,601,819; Kostelny et al., J. Immunol. 148:1547-1553 (1992).
Antibodies of the present invention may be described or specified in terms of the epitope(s) or portion(s) of a polypeptide of the present invention that they recognize or specifically bind. The epitope(s) or polypeptide portion(s) may be specified as described herein, e.g., by N- terminal and C-terminal positions, or by size in contiguous amino acid residues, or listed in the Tables and Figures. Preferred epitopes of the invention include the predicted epitopes shown in Table IB, as well as polynucleotides that encode these epitopes. Antibodies that specifically bind any epitope or polypeptide of the present invention may also be excluded. Therefore, the present invention includes antibodies that specifically bind polypeptides of the present invention, and allows for the exclusion of the same.
Antibodies of the present invention may also be described or specified in terms of their cross-reactivity. Antibodies that do not bind any other analog, ortholog, or homolog of a polypeptide of the present invention are included. Antibodies that bind polypeptides with at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 65%, at least 60%, at least 55%, and at least 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In specific embodiments, antibodies of the present invention cross-react with murine, rat and/or rabbit homologs of human proteins and the corresponding epitopes thereof. Antibodies that do not bind polypeptides with less than 95%, less than 90%, less than 85%, less than 80%, less than 75%, less than 70%, less than 65%, less than 60%, less than 5%, and less than 50% identity (as calculated using methods known in the art and described herein) to a polypeptide of the present invention are also included in the present invention. In a specific embodiment, the above- described cross-reactivity is with respect to any single specific antigenic or immunogenic polypeptide, or combination(s) of 2, 3, 4, 5, or more of the specific antigenic and/or immunogenic polypeptides disclosed herein. Further included in the present invention are antibodies that bind polypeptides encoded by polynucleotides that hybridize to a polynucleotide of the present invention under stringent hybridization conditions (as described herein). Antibodies of the present invention may also be described or specified in terms of their binding affinity to a polypeptide of the invention. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X IO-2 M, IO'2 M, 5 X 10"3 M, 10"3 M, 5 X IO"4 M, IO"4 M, 5 X 10"5 M, 10"5 M, 5 X 10"6 M, 10"6M, 5 X IO"7 M, IO7 M, 5 X 10"8 M, 10"8 M, 5 X IO"9 M, 10"9 M, 5 X 10"10 M, 10"10 M, 5 X 10"11 M, 10"11 M, 5 X IO"12 M, IO"12 M, 5 X IO"13 M, 10"13 M, 5 X IO"14 M, IO"14 M, 5 X IO"15 M, or IO"15 M.
The invention also provides antibodies that competitively inhibit binding of an antibody to an epitope of the invention as determined by any method known in the art for determining competitive binding, for example, the immunoassays described herein. In preferred embodiments, the antibody competitively inhibits binding to the epitope by at least 95%, at least 90%, at least 85 %, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50%.
Antibodies of the present invention may act as agonists or antagonists of the polypeptides of the present invention. For example, the present invention includes antibodies that disrupt the receptor/ligand interactions with the polypeptides of the invention either partially or fully. Preferably, antibodies of the present invention bind an antigenic epitope disclosed herein, or a portion thereof. The invention features both receptor-specific antibodies and ligand-specific antibodies. The invention also features receptor-specific antibodies that do not prevent ligand binding but prevent receptor activation. Receptor activation (i.e., signaling) may be determined by techniques described herein or otherwise known in the art. For example, receptor activation can be determined by detecting the phosphorylation (e.g., tyrosine or serine/threonine) of the receptor or its substrate by immunoprecipitation followed by western blot analysis (for example, as described supra). In specific embodiments, antibodies are provided that inhibit ligand activity or receptor activity by at least 95%, at least 90%, at least 85%, at least 80%, at least 75%, at least 70%, at least 60%, or at least 50% of the activity in absence of the antibody.
The invention also features receptor-specific antibodies which both prevent ligand binding and receptor activation as well as antibodies that recognize the receptor-ligand complex, and, preferably, do not specifically recognize the unbound receptor or the unbound ligand. Likewise, included in the invention are neutralizing antibodies that bind the ligand and prevent binding of the ligand to the receptor, as well as antibodies that bind the ligand, thereby preventing receptor activation, but do not prevent the ligand from binding the receptor. Further included in the invention are antibodies that activate the receptor. These antibodies may act as receptor agonists, i.e., potentiate or activate either all or a subset of the biological activities of the ligand-mediated receptor activation, for example, by inducing dimerization of the receptor. The antibodies may be specified as agonists, antagonists or inverse agonists for biological activities comprising the specific biological activities of the peptides of the invention disclosed herein. The above antibody agonists can be made using methods known in the art. See, e.g., PCT publication WO 96/40281; U.S. Patent No. 5,811,097; Deng et al., Blood 92(6):1981-1988 (1998); Chen et al., Cancer Res. 58(16):3668-3678 (1998); Harrop et al., J. Immunol. 161(4): 1786-1794 (1998); Zhu et al., Cancer Res. 58(15):3209-3214 (1998); Yoon et al., J. Immunol. 160(7):3170-3179 (1998); Prat et al., J. Cell. Sci. lll(Pt2):237-247 (1998); Pitard et al., J. Immunol. Methods 205(2): 177-190 (1997); Liautard et al., Cytokine 9(4):233-241 (1997); Carlson et al., J. Biol. Chem. 272(17): 11295-11301 (1997); Taryman et al., Neuron 14(4):755-762 (1995); Muller et al., Structure 6(9):1153-1167 (1998); Bartunek et al., Cytokine 8(1): 14-20 (1996) (which are all incorporated by reference herein in their entireties).
Antibodies of the present invention may be used, for example, to purify, detect, and target the polypeptides of the present invention, including both in vitro and in vivo diagnostic and therapeutic methods. For example, the antibodies have utility in immunoassays for qualitatively and quantitatively measuring levels of the polypeptides of the present invention in biological samples. See, e.g., Hariow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); incorporated by reference herein in its entirety.
As discussed in more detail below, the antibodies of the present invention may be used either alone or in combination with other compositions. The antibodies may further be recombinantly fused to a heterologous polypeptide at the N- or C-terminus or chemically conjugated (including covalent and non-covalent conjugations) to polypeptides or other compositions. For example, antibodies of the present invention may be recombinantly fused or conjugated to molecules useful as labels in detection assays and effector molecules such as heterologous polypeptides, drugs, radionuclides, or toxins. See, e.g., PCT publications WO 92/08495; WO 91/14438; WO 89/12624; U.S. Patent No. 5,314,995; and EP 396,387; the disclosures of which are mcorporated herein by reference in their entireties. The antibodies of the invention include derivatives that are modified, i.e, by the covalent attachment of any type of molecule to the antibody such that covalent attachment does not prevent the antibody from generating an anti-idiotypic response. For example, but not by way of limitation, the antibody derivatives include antibodies that have been modified, e.g., by glycosylation, acetylation, pegylation, phosphylation, amidation, derivatization by known protecting blocking groups, proteolytic cleavage, linkage to a cellular ligand or other protein, etc. Any of numerous chemical modifications may be carried out by known techniques, including, but not limited to specific chemical cleavage, acetylation, formylation, metabolic synthesis of tunicamycin, etc. Additionally, the derivative may contain one or more non-classical amino acids. The antibodies of the present invention may be generated by any suitable method known in the art. Polyclonal antibodies to an antigen-of- interest can be produced by various procedures well known in the art. For example, a polypeptide of the invention can be administered to various host animals including, but not limited to, rabbits, mice, rats, etc. to induce the production of sera containing polyclonal antibodies specific for the antigen. Various adjuvants may be used to increase the immunological response, depending on the host species, and include but are not limited to, Freund's (complete and incomplete), mineral gels such as aluminum hydroxide, surface active substances such as lysolecithin, pluronic polyols, polyanions, peptides, oil emulsions, keyhole limpet hemocyanins, dinitrophenol, and potentially useful human adjuvants such as BCG (bacille Calmette-Guerin) and corynebacterium parvum. Such adjuvants are also well known in the art.
Monoclonal antibodies can be prepared using a wide variety of techniques known in the art including the use of hybridoma, recombinant, and phage display technologies, or a combination thereof. For example, monoclonal antibodies can be produced using hybridoma techniques including those known in the art and taught, for example, in Hariow et al., Antibodies: A Laboratory Manual, (Cold Spring Harbor Laboratory Press, 2nd ed. 1988); Hammerling, et al., in: Monoclonal Antibodies and T-Cell Hybridomas 563-681 (Elsevier, N.Y., 1981) (said references incorporated by reference in their entireties). The term "monoclonal antibody" as used herein is not limited to antibodies produced through hybridoma technology. The term "monoclonal antibody" refers to an antibody that is derived from a single clone, including any eukaryotic, prokaryotic, or phage clone, and not the method by which it is produced.
Methods for producing and screening for specific antibodies using hybridoma technology are routine and well known in the art and are discussed in detail in the Examples. In a non- limiting example, mice can be immunized with a polypeptide of the invention or a ceU expressing such peptide. Once an immune response is detected, e.g., antibodies specific for the antigen are detected in the mouse serum, the mouse spleen is harvested and splenocytes isolated. The splenocytes are then fused by well-known techniques to any suitable myeloma cells, for example cells from cell line SP20 available from the ATCC. Hybridomas are selected and cloned by limited dilution. The hybridoma clones are then assayed by methods known in the art for cells that secrete antibodies capable of binding a polypeptide of the invention. Ascites fluid, which generally contains high levels of antibodies, can be generated by immunizing mice with positive hybridoma clones. Accordingly, the present invention provides methods of generating monoclonal antibodies as well as antibodies produced by the method comprising culturing a hybridoma cell secreting an antibody of the invention wherein, preferably, the hybridoma is generated by fusing splenocytes isolated from a mouse immunized with an antigen of the invention with myeloma cells and then screening the hybridomas resulting from the fusion for hybridoma clones that secrete an antibody able to bind a polypeptide of the invention.
Another well-known method for producing both polyclonal and monoclonal human B cell lines is transformation using Epstein Barr Virus (EBV). Protocols for generating EBV- transformed B cell lines are commonly known in the art, such as, for example, the protocol outlined in Chapter 7.22 of Current Protocols in Immunology, Coligan et al., Eds., 1994, John Wiley & Sons, NY, which is hereby incorporated in its entirety by reference. The source of B cells for transformation is commonly human peripheral blood, but B cells for transformation may also be derived from other sources including, but not limited to, lymph nodes, tonsil, spleen, tumor tissue, and infected tissues. Tissues are generally made into single cell suspensions prior to EBV transformation. AdditionaUy, steps may be taken to either physically remove or inactivate T cells (e.g., by treatment with cyclosporin A) in B cell-containing samples, because T cells from individuals seropositive for anti-EBV antibodies can suppress B cell immortalization by EBV. hi general, the sample containing human B cells is innoculated with EBV, and cultured for 3-4 weeks. A typical source of EBV is the culture supernatant of the B95-8 cell line (ATCC #VR- 1492). Physical signs of EBV transformation can generally be seen towards the end of the 3-4 week culture period. By phase-contrast microscopy, transformed cells may appear large, clear, hairy and tend to aggregate in tight clusters of cells. Initially, EBV lines are generally polyclonal. However, over prolonged periods of cell cultures, EBV lines may become monoclonal or polyclonal as a result of the selective outgrowth of particular B cell clones. Alternatively, polyclonal EBV transformed lines may be subcloned (e.g., by limiting dilution culture) or fused with a suitable fusion partner and plated at limiting dilution to obtain monoclonal B cell lines. Suitable fusion partners for EBV transformed cell lines include mouse myeloma cell lines (e.g., SP2/0, X63-Ag8.653), heteromyeloma cell lines (human x mouse; e.g, SPAM-8, SBC-H20, and CB-F7), and human cell lines (e.g., GM 1500, SKO-007, RPMI 8226, and KR-4). Thus, the present invention also provides a method of generating polyclonal or monoclonal human antibodies against polypeptides of the invention or fragments thereof, comprising EBV- transformation of human B cells.
Antibody fragments that recognize specific epitopes may be generated by known techniques. For example, Fab and F(ab')2 fragments of the invention may be produced by proteolytic cleavage of immunoglobulin molecules, using enzymes such as papain (to produce Fab fragments) or pepsin (to produce F(ab')2 fragments). F(ab')2 fragments contain the variable region, the light chain constant region and the CHI domain of the heavy chain. For example, the antibodies of the present invention can also be generated using various phage display methods known in the art. In phage display methods, functional antibody domains are displayed on the surface of phage particles that carry the polynucleotide sequences encoding them, hi a particular embodiment, such phage can be utilized to display antigen-binding domains expressed from a repertoire or combinatorial antibody library (e.g., human or murine). Phage expressing an antigen binding domain that binds the antigen of interest can be selected or identified with antigen, e.g., using labeled antigen or antigen bound or captured to a solid surface or bead. Phage used in these methods are typically filamentous phage including fd and M13 binding domains expressed from phage with Fab, Fv or disulfide stabilized Fv antibody domains recombinantly fused to either the phage gene III or gene VIII protein. Examples of phage display methods that can be used to make the antibodies of the present invention include those disclosed in Brinkman et al., J. Immunol. Methods 182:41-50 (1995); Ames et al., J. Immunol. Methods 184:177-186 (1995); Kettleborough et al., Eur. J. Immunol. 24:952-958 (1994); Persic et al., Gene 187 9-18 (1997); Burton et al., Advances in Immunology 57:191-280 (1994); PCT application No. PCT/GB91/01134; PCT publications WO 90/02809; WO 91/10737; WO 92/01047; WO 92/18619; WO 93/11236; WO 95/15982; WO 95/20401; and U.S. Patent Nos. 5,698,426; 5,223,409; 5,403,484; 5,580,717; 5,427,908; 5,750,753; 5,821,047; 5,571,698; 5,427,908; 5,516,637; 5,780,225; 5,658,727; 5,733,743 and 5,969,108; each of which is incorporated herein by reference in its entirety.
As described in the above references, after phage selection, the antibody coding regions from the phage can be isolated and used to generate whole antibodies, including human antibodies, or any other desired antigen binding fragment, and expressed in any desired host, including mammalian cells, insect cells, plant cells, yeast, and bacteria, e.g., as described in detail below. For example, techniques to recombinantly produce Fab, Fab' and F(ab')2 fragments can also be employed using methods known in the art such as those disclosed in PCT publication WO 92/22324; Mullinax et al., BioTechniques 12(6):864-869 (1992); and Sawai et al., AJRI 34:26-34 (1995); and Better et al., Science 240:1041-1043 (1988) (said references incorporated by reference in their entireties).
Examples of techniques which can be used to produce single-chain Fvs and antibodies include those described in U.S. Patents 4,946,778 and 5,258,498; Huston et al., Methods in Enzymology 203:46-88 (1991); Shu et al., PNAS 90:7995-7999 (1993); and Skerra et al., Science 240:1038-1040 (1988). For some uses, including in vivo use of antibodies in humans and in vitro detection assays, it may be preferable to use chimeric, humanized, or human antibodies. A chimeric antibody is a molecule in which different portions of the antibody are derived from different animal species, such as antibodies having a variable region derived from a murine monoclonal antibody and a human immunoglobulin constant region. Methods for producing chimeric antibodies are known in the art. See e.g., Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Gillies et al., (1989) J. Immunol. Methods 125:191-202; U.S. Patent Nos. 5,807,715; 4,816,567; and 4,816397, which are incorporated herein by reference in their entirety. Humanized antibodies are antibody molecules from non-human species antibody that binds the desired antigen having one or more complementarity determining regions (CDRs) from the non-human species and framework regions from a human immunoglobulin molecule. Often, framework residues in the human framework regions will be substituted with the corresponding residue from the CDR donor antibody to alter, preferably improve, antigen binding. These framework substitutions are identified by methods well known in the art, e.g., by modeling of the interactions of the CDR and framework residues to identify framework residues important for antigen binding and sequence comparison to identify unusual framework residues at particular positions. (See, e.g., Queen et al., U.S. Patent No. 5,585,089; Riechmann et al., Nature 332:323 (1988), which are incorporated herein by reference in their entireties.) Antibodies can be humanized using a variety of techniques known in the art including, for example, CDR-grafting (EP 239,400; PCT publication WO 91/09967; U.S. Patent Nos. 5,225,539; 5,530,101; and 5,585,089), veneering or resurfacing (EP 592,106; EP 519,596; Padlan, Molecular Immunology 28(4/5):489-498 (1991); Studnicka et al., Protein Engineering 7(6):805-814 (1994); Roguska. et al., PNAS 91:969-973 (1994)), and chain shuffling (U.S. Patent No. 5,565,332).
Completely human antibodies are particularly desirable for therapeutic treatment of human patients. Human antibodies can be made by a variety of methods known in the art including phage display methods described above using antibody libraries derived from human immunoglobulin sequences. See also, U.S. Patent Nos. 4,444,887 and 4,716,111; and PCT publications WO 98/46645, WO 98/50433, WO 98/24893, WO 98/16654, WO 96/34096, WO 96/33735, and WO 91/10741; each of which is incorporated herein by reference in its entirety.
Human antibodies can also be produced using transgenic mice which are incapable of expressing functional endogenous immunoglobulins, but which can express human immunoglobulin genes. For example, the human heavy and light chain immunoglobulin gene complexes may be introduced randomly or by homologous recombination into mouse embryonic stem cells. Alternatively, the human variable region, constant region, and diversity region may be introduced into mouse embryonic stem cells in addition to the human heavy and Ught chain genes. The mouse heavy and light chain immunoglobulin genes may be rendered non-functional separately or simultaneously with the introduction of human immunoglobulin loci by homologous recombination. In particular, homozygous deletion of the JH region prevents endogenous antibody production. The modified embryonic stem cells are expanded and microinjected into blastocysts to produce chimeric mice. The chimeric mice are then bred to produce homozygous offspring that express human antibodies. The transgenic mice are immunized in the normal fashion with a selected antigen, e.g., all or a portion of a polypeptide of the invention. Monoclonal antibodies directed against the antigen can be obtained from the immunized, transgenic mice using conventional hybridoma technology. The human immunoglobulin transgenes harbored by the transgenic mice rearrange during B cell differentiation, and subsequently undergo class switching and somatic mutation. Thus, using such a technique, it is possible to produce therapeutically useful IgG, IgA, IgM and IgE antibodies. For an overview of this technology for producing human antibodies, see Lonberg and Huszar, Int. Rev. Immunol. 13:65-93 (1995). For a detailed discussion of this technology for producing human antibodies and human monoclonal antibodies and protocols for producing such antibodies, see, e.g., PCT publications WO 98/24893; WO 92/01047; WO 96/34096; WO 96/33735; European Patent No. 0 598 877; U.S. Patent Nos. 5,413,923; 5,625,126; 5,633,425; 5,569,825; 5,661,016; 5,545,806; 5,814,318; 5,885,793; 5,916,771; 5,939,598; 6,075,181; and 6,114,598, which are incorporated by reference herein in their entirety. In addition, companies such as Abgenix, Inc. (Freemont, CA) and Genpharm (San Jose, CA) can be engaged to provide human antibodies directed against a selected antigen using technology similar to that described above.
Completely human antibodies that recognize a selected epitope can be generated using a technique referred to as "guided selection." i this approach a selected non-human monoclonal antibody, e.g., a mouse antibody, is used to guide the selection of a completely human antibody recognizing the same epitope. (Jespers et al., Bio/technology 12:899-903 (1988)).
Further, antibodies to the polypeptides of the invention can, in turn, be utilized to generate anti-idiotype antibodies that "mimic" polypeptides of the invention using techniques well known to those skilled in the art. (See, e.g., Greenspan & Bona, FASEB J. 7(5):437-444; (1989) and Nissinoff, J. Immunol. 147(8):2429-2438 (1991)). For example, antibodies which bind to and competitively inhibit polypeptide multimerization and/or binding of a polypeptide of the invention to a ligand can be used to generate anti-idiotypes that "mimic" the polypeptide multimerization and/or binding domain and, as a consequence, bind to and neutralize polypeptide and/or its ligand. Such neutralizing anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens to neutralize polypeptide ligand(s)/receptor(s). For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligand(s)/receptor(s), and thereby block its biological activity. Alternatively, antibodies which bind to and enhance polypeptide multimerization and/or binding, and/or receptor/ligand multimerization, binding and/or signaUng can be used to generate anti-idiotypes that function as agonists of a polypeptide of the invention and/or its ligand/receptor. Such agonistic anti-idiotypes or Fab fragments of such anti-idiotypes can be used in therapeutic regimens as agonists of the polypeptides of the invention or its ligand(s)/receptor(s). For example, such anti-idiotypic antibodies can be used to bind a polypeptide of the invention and/or to bind its ligand(s)/receptor(s), and thereby promote or enhance its biological activity.
Intrabodies of the invention can be produced using methods known in the art, such as those disclosed and reviewed in Chen et al., Hum. Gene Ther. 5:595-601 (1994); Marasco, W.A., Gene Ther. 4:11-15 (1997); Rondon and Marasco, Annu. Rev. Microbiol. 51:257-283 (1997); Proba et al., J. Mol. Biol. 275:245-253 (1998); Cohen et al., Oncogene 17:2445-2456 (1998); Ohage and Steipe, J. Mol. Biol. 291:1119-1128 (1999); Ohage et al., J. Mol. Biol. 291:1129-1134 (1999); Wirtz and Steipe, Protein Sci. 8:2245-2250 (1999); Zhu et al., J. Immunol. Methods 231:207-222 (1999); and references cited therein.
Polynucleotides Encoding Antibodies
The invention further provides polynucleotides comprising a nucleotide sequence encoding an antibody of the invention and fragments thereof. The invention also encompasses polynucleotides that hybridize under stringent or alternatively, under lower stringency hybridization conditions, e.g., as defined supra, to polynucleotides that encode an antibody, preferably, that specifically binds to a polypeptide of the invention, preferably, an antibody that binds to a polypeptide having the amino acid sequence of SEQ ED NO:Y, to a polypeptide encoded by a portion of SEQ LD NO:X as defined in columns 8 and 9 of Table 2, and/or to a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z. The polynucleotides may be obtained, and the nucleotide sequence of the polynucleotides determined, by any method known in the art. For example, if the nucleotide sequence of the antibody is known, a polynucleotide encoding the antibody may be assembled from chemically synthesized oligonucleotides (e.g., as described in Kutmeier et al., BioTechniques 17:242 (1994)), which, briefly, involves the synthesis of overlapping oligonucleotides containing portions of the sequence encoding the antibody, annealing and ligating of those oligonucleotides, and then amplification of the ligated oligonucleotides by PCR.
Alternatively, a polynucleotide encoding an antibody may be generated from nucleic acid from a suitable source. If a clone containing a nucleic acid encoding a particular antibody is not available, but the sequence of the antibody molecule is known, a nucleic acid encoding the immunoglobulin may be chemically synthesized or obtained from a suitable source (e.g., an antibody cDNA library, or a cDNA library generated from, or nucleic acid, preferably poly A+ RNA, isolated from, any tissue or cells expressing the antibody, such as hybridoma cells selected to express an antibody of the invention) by PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the sequence or by cloning using an oligonucleotide probe specific for the particular gene sequence to identify, e.g., a cDNA clone from a cDNA library that encodes the antibody. Amplified nucleic acids generated by PCR may then be cloned into replicable cloning vectors using any method well known in the art. Once the nucleotide sequence and corresponding amino acid sequence of the antibody is determined, the nucleotide sequence of the antibody may be manipulated using methods well known in the art for the manipulation of nucleotide sequences, e.g., recombinant DNA techniques, site directed mutagenesis, PCR, etc. (see, for example, the techniques described in Sambrook et al., 1990, Molecular Cloning, A Laboratory Manual, 2d Ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, NY and Ausubel et al., eds., 1998, Current Protocols in Molecular Biology, John Wiley & Sons, NY, which are both incorporated by reference herein in their entireties ), to generate antibodies having a different amino acid sequence, for example to create amino acid substitutions, deletions, and/or insertions. hi a specific embodiment, the amino acid sequence of the heavy and/or light chain variable domains may be inspected to identify the sequences of the complementarity determining regions (CDRs) by methods that are well know in the art, e.g., by comparison to known amino acid sequences of other heavy and light chain variable regions to determine the regions of sequence hypervariability. Using routine recombinant DNA techniques, one or more of the CDRs may be inserted within framework regions, e.g., into human framework regions to humanize a non-human antibody, as described supra. The framework regions may be naturally occurring or consensus framework regions, and preferably human framework regions (see, e.g., Chothia et al., J. Mol. Biol. 278: 457-479 (1998) for a listing of human framework regions). Preferably, the polynucleotide generated by the combination of the framework regions and CDRs encodes an antibody that specifically binds a polypeptide of the invention. Preferably, as discussed supra, one or more amino acid substitutions may be made within the framework regions, and, preferably, the amino acid substitutions improve binding of the antibody to its antigen. Additionally, such methods may be used to make amino acid substitutions or deletions of one or more variable region cysteine residues participating in an intrachain disulfide bond to generate antibody molecules lacking one or more intrachain disulfide bonds. Other alterations to the polynucleotide are encompassed by the present invention and within the skill of the art.
In addition, techniques developed for the production of "chimeric antibodies" (Morrison et al, Proc. Natl. Acad. Sci. 81:851-855 (1984); Neuberger et al., Nature 312:604-608 (1984); Takeda et al., Nature 314:452-454 (1985)) by splicing genes from a mouse antibody molecule of appropriate antigen specificity together with genes from a human antibody molecule of appropriate biological activity can be used. As described supra, a chimeric antibody is a molecule in which different portions are derived from different animal species, such as those having a variable region derived from a murine mAb and a human immunoglobulin constant region, e.g., humanized antibodies. Alternatively, techniques described for the production of single chain antibodies (U.S.
Patent No. 4,946,778; Bird, Science 242:423- 42 (1988); Huston et al., Proc. Natl. Acad. Sci. USA 85:5879-5883 (1988); and Ward et al., Nature 334:544-54 (1989)) can be adapted to produce single chain antibodies. Single chain antibodies are formed by linking the heavy and light chain fragments of the Fv region via an amino acid bridge, resulting in a single chain polypeptide. Techniques for the assembly of functional Fv fragments in E. coli may also be used (Skerra et al., Science 242:1038- 1041 (1988)).
Methods of Producing Antibodies
The antibodies of the invention can be produced by any method known in the art for the synthesis of antibodies, in particular, by chemical synthesis or preferably, by recombinant expression techniques. Methods of producing antibodies include, but are not limited to, hybridoma technology, EBV transformation, and other methods discussed herein as well as through the use recombinant DNA technology, as discussed below.
Recombinant expression of an antibody of the invention, or fragment, derivative or analog thereof, (e.g., a heavy or light chain of an antibody of the invention or a single chain antibody of the invention), requires construction of an expression vector containing a polynucleotide that encodes the antibody. Once a polynucleotide encoding an antibody molecule or a heavy or light chain of an antibody, or portion thereof (preferably containing the heavy or light chain variable domain), of the invention has been obtained, the vector for the production of the antibody molecule may be produced by recombinant DNA technology using techniques well known in the art. Thus, methods for preparing a protein by expressing a polynucleotide containing an antibody encoding nucleotide sequence are described herein. Methods that are well known to those skilled in the art can be used to construct expression vectors containing antibody coding sequences and appropriate transcriptional and translational control signals. These methods include, for example, in vitro recombinant DNA techniques, synthetic techniques, and in vivo genetic recombination. The invention, thus, provides replicable vectors comprising a nucleotide sequence encoding an antibody molecule of the invention, or a heavy or light chain thereof, or a heavy or light chain variable domain, operably linked to a promoter. Such vectors may include the nucleotide sequence encoding the constant region of the antibody molecule (see, e.g., PCT Publication WO 86/05807; PCT PubUcation WO 89/01036; and U.S. Patent No. 5,122,464) and the variable domain of the antibody may be cloned into such a vector for expression of the entire heavy or light chain.
The expression vector is transferred to a host cell by conventional techniques and the transfected cells are then cultured by conventional techniques to produce an antibody of the invention. Thus, the invention includes host cells containing a polynucleotide encoding an antibody of the invention, or a heavy or light chain thereof, or a single chain antibody of the invention, operably linked to a heterologous promoter, hi preferred embodiments for the expression of double-chained antibodies, vectors encoding both the heavy and light chains may be co-expressed in the host cell for expression of the entire immunoglobulin molecule, as detailed below.
A variety of host-expression vector systems may be utilized to express the antibody molecules of the invention. Such host-expression systems represent vehicles by which the coding sequences of interest may be produced and subsequently purified, but also represent cells which may, when transformed or transfected with the appropriate nucleotide coding sequences, express an antibody molecule of the invention in situ. These include but are not limited to microorganisms such as bacteria (e.g., E. coli, B. subtilis) transformed with recombinant bacteriophage DNA, plasmid DNA or cosmid DNA expression vectors containing antibody coding sequences; yeast (e.g., Saccharomyces, Pichia) transformed with recombinant yeast expression vectors containing antibody coding sequences; insect cell systems infected with recombinant virus expression vectors (e.g., baculovirus) containing antibody coding sequences; plant cell systems infected with recombinant virus expression vectors (e.g., cauliflower mosaic virus, CaMV; tobacco mosaic virus, TMV) or transformed with recombinant plasmid expression vectors (e.g., Ti plasmid) containing antibody coding sequences; or mammalian cell systems (e.g., COS, CHO, BHK, 293, 3T3 cells) harboring recombinant expression constructs containing promoters derived from the genome of mammalian cells (e.g., metallothionem promoter) or from mammalian viruses (e.g., the adenovirus late promoter; the vaccinia virus 7.5K promoter). Preferably, bacterial cells such as Escherichia coli, and more preferably, eukaryotic cells, especially for the expression of whole recombinant antibody molecule, are used for the expression of a recombinant antibody molecule. For example, mammalian cells such as Chinese hamster ovary cells (CHO), in conjunction with a vector such as the major intermediate early gene promoter element from human cytomegalovirus is an effective expression system for antibodies (Foecking et al., Gene 45:101 (1986); Cockett et al., Bio/Technology 8:2 (1990)).
In bacterial systems, a number of expression vectors may be advantageously selected depending upon the use intended for the antibody molecule being expressed. For example, when a large quantity of such a protein is to be produced, for the generation of pharmaceutical compositions of an antibody molecule, vectors which direct the expression of high levels of fusion protein products that are readily purified may be desirable. Such vectors include, but are not limited, to the E. coli expression vector pUR278 (Ruther et al., EMBO J. 2:1791 (1983)), in which the antibody coding sequence may be ligated individually into the vector in frame with the lac Z coding region so that a fusion protein is produced; pIN vectors (Inouye & Inouye, Nucleic Acids Res. 13:3101-3109 (1985); Van Heeke & Schuster, J. Biol. Chem. 24:5503-5509 (1989)); and the like. pGEX vectors may also be used to express foreign polypeptides as fusion proteins with glutathione S-transferase (GST). In general, such fusion proteins are soluble and can easily be purified from lysed cells by adsorption and binding to matrix glutathione-agarose beads followed by elution in the presence of free glutathione. The pGEX vectors are designed to include thrombin or factor Xa protease cleavage sites so that the cloned target gene product can be released from the GST moiety.
In an insect system, Autographa californica nuclear polyhedrosis virus (AcNPV) is used as a vector to express foreign genes. The virus grows in Spodoptera frugiperda cells. The antibody coding sequence may be cloned individually into non-essential regions (for example the polyhedrin gene) of the virus and placed under control of an AcNPV promoter (for example the polyhedrin promoter). hi mammalian host cells, a number of viral-based expression systems may be utilized. In cases where an adenovirus is used as an expression vector, the antibody coding sequence of interest may be ligated to an adenovirus transcription/translation control complex, e.g., the late promoter and tripartite leader sequence. This chimeric gene may then be inserted in the adenovirus genome by in vitro or in vivo recombination. Insertion in a non- essential region of the viral genome (e.g., region El or E3) will result in a recombinant virus that is viable and capable of expressing the antibody molecule in infected hosts, (e.g., see Logan & Shenk, Proc. Natl. Acad. Sci. USA 81:355-359 (1984)). Specific initiation signals may also be required for efficient translation of inserted antibody coding sequences. These signals include the ATG initiation codon and adjacent sequences. Furthermore, the initiation codon must be in phase with the reading frame of the desired coding sequence to ensure translation of the entire insert. These exogenous translational control signals and initiation codons can be of a variety of origins, both natural and synthetic. The efficiency of expression may be enhanced by the inclusion of appropriate transcription enhancer elements, transcription terminators, etc. (see Bittner et al., Methods in Enzymol. 153:51-544 (1987)).
In addition, a host cell strain may be chosen which modulates the expression of the inserted sequences, or modifies and processes the gene product in the specific fashion desired. Such modifications (e.g., glycosylation) and processing (e.g., cleavage) of protein products may be important for the function of the protein. Different host cells have characteristic and specific mechanisms for the post-translational processing and modification of proteins and gene products. Appropriate cell lines or host systems can be chosen to ensure the correct modification and processing of the foreign protein expressed. To this end, eukaryotic host cells which possess the cellular machinery for proper processing of the primary transcript, glycosylation, and phosphorylation of the gene product may be used. Such mammalian host cells include but are not limited to CHO, VERY, BHK, Hela, COS, MDCK, 293, 3T3, WI38, and in particular, breast cancer cell lines such as, for example, BT483, Hs578T, HTB2, BT20 and T47D, and normal mammary gland cell line such as, for example, CRL7030 and Hs578Bst.
For long-term, high-yield production of recombinant proteins, stable expression is preferred. For example, cell lines which stably express the antibody molecule may be engineered. Rather than using expression vectors which contain viral origins of replication, host cells can be transformed with DNA controlled by appropriate expression control elements (e.g., promoter, enhancer, sequences, transcription terminators, polyadenylation sites, etc.), and a selectable marker. Following the introduction of the foreign DNA, engineered cells may be allowed to grow for 1-2 days in an enriched media, and then are switched to a selective media. The selectable marker in the recombinant plasmid confers resistance to the selection and allows cells to stably integrate the plasmid into their chromosomes and grow to form foci which in turn can be cloned and expanded into cell lines. This method may advantageously be used to engineer cell lines which express the antibody molecule. Such engineered cell lines may be particularly useful in screening and evaluation of compounds that interact directly or indirectly with the antibody molecule. A number of selection systems may be used, including but not limited to the herpes simplex virus thymidine kinase (Wigler et al., Cell 11:223 (1977)), hypoxanthine-guanine phosphoribosyltransferase (Szybalska & Szybalski, Proc. Natl. Acad. Sci. USA 48:202 (1992)), and adenine phosphoribosyltransferase (Lowy et al., Cell 22:817 (1980)) genes can be employed in tk-, hgprt- or aprt- cells, respectively. Also, antimetabolite resistance can be used as the basis of selection for the following genes: dhfr, which confers resistance to methotrexate (Wigler et al., Natl. Acad. Sci. USA 77:357 (1980); O'Hare et al., Proc. Natl. Acad. Sci. USA 78:1527 (1981)); gpt, which confers resistance to mycophenolic acid (Mulligan & Berg, Proc. Natl. Acad. Sci. USA 78:2072 (1981)); neo, which confers resistance to the aminoglycoside G-418 Clinical Pharmacy 12:488-505; Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, 1993, TIB TECH 11(5): 155-215 (1993)); and hygro, which confers resistance to hygromycin (Santerre et al., Gene 30:147 (1984)). Methods commonly known in the art of recombinant DNA technology may be routinely applied to select the desired recombinant clone, and such methods are described, for example, in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990); and in Chapters 12 and 13, Dracopoli et al. (eds), Current Protocols in Human Genetics, John Wiley & Sons, NY (1994); Colberre-Garapin et al, J. Mol. Biol. 150:1 (1981), which are mcorporated by reference herein in their entireties. The expression levels of an antibody molecule can be increased by vector amplification
(for a review, see Bebbington and Hentschel, The use of vectors based on gene amplification for the expression of cloned genes in mammalian cells in DNA cloning, Vol.3. (Academic Press, New York, 1987)). When a marker in the vector system expressing antibody is amplifiable, increase in the level of inhibitor present in culture of host cell will increase the number of copies of the marker gene. Since the amplified region is associated with the antibody gene, production of the antibody will also increase (Crouse et al., Mol. Cell. Biol. 3:257 (1983)).
Vectors which use glutamine synthase (GS) or DHFR as the selectable markers can be amplified in the presence of the drugs methionine sulphoximine or methotrexate, respectively. An advantage of glutamine synthase based vectors are the availabilty of cell lines (e.g., the murine myeloma cell line, NSO) which are glutamine synthase negative. Glutamine synthase expression systems can also function in glutamine synthase expressing cells (e.g. Chinese Hamster Ovary (CHO) cells) by providing additional inhibitor to prevent the functioning of the endogenous gene. A glutamine synthase expression system and components thereof are detailed in PCT publications: WO87/04462; WO86/05807; WO89/01036; WO89/10404; and W091/06657 which are incorporated in their entireties by reference herein. Additionally, glutamine synthase expression vectors that may be used according to the present invention are commercially available from sup iers, including, for example Lonza Biologies, Inc. (Portsmouth, NH). Expression and production of monoclonal antibodies using a GS expression system in murine myeloma cells is described in Bebbington et al, Bio/technology 10:169(1992) and in Biblia and Robinson Biotechnol Prog. 11:1 (1995) which are incorporated in their entirities by reference herein.
The host cell may be co-transfected with two expression vectors of the invention, the first vector encoding a heavy chain derived polypeptide and the second vector encoding a light chain derived polypeptide. The two vectors may contain identical selectable markers which enable equal expression of heavy and light chain polypeptides. Alternatively, a single vector may be used which encodes, and is capable of expressing, both heavy and light chain polypeptides. In such situations, the light chain should be placed before the heavy chain to avoid an excess of toxic free heavy chain (Proudfoot, Nature 322:52 (1986); Kohler, Proc. Natl. Acad. Sci. USA 77:2197 (1980)). The coding sequences for the heavy and light chains may comprise cDNA or genomic DNA.
Once an antibody molecule of the invention has been produced by an animal, chemically synthesized, or recombinantly expressed, it may be purified by any method known in the art for purification of an immunoglobulin molecule, for example, by chromatography (e.g., ion exchange, affinity, particularly by affinity for the specific antigen after Protein A, and sizing column chromatography), centrifugation, differential solubility, or by any other standard technique for the purification of proteins. In addition, the antibodies of the present invention or fragments thereof can be fused to heterologous polypeptide sequences described herein or otherwise known in the art, to facilitate purification.
The present invention encompasses antibodies recombinantly fused or chemically conjugated (including both covalently and non-covalently conjugations) to a polypeptide (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention to generate fusion proteins. The fusion does not necessarily need to be direct, but may occur through linker sequences. The antibodies may be specific for antigens other than polypeptides (or portion thereof, preferably at least 10, 20, 30, 40, 50, 60, 70, 80, 90 or 100 amino acids of the polypeptide) of the present invention. For example, antibodies may be used to target the polypeptides of the present invention to particular cell types, either in vitro or in vivo, by fusing or conjugating the polypeptides of the present invention to antibodies specific for particular cell surface receptors. Antibodies fused or conjugated to the polypeptides of the present invention may also be used in in vitro immunoassays and purification methods using methods known in the art. See e.g., Harbor et al., supra, and PCT publication WO 93/21232; EP 439,095; Naramura et al., Immunol. Lett. 39:91-99 (1994); U.S. Patent 5,474,981; Gillies et al., PNAS 89:1428-1432 (1992); Fell et al., J. Immunol. 146:2446-2452 (1991), which are incorporated by reference in their entireties.
The present invention further includes compositions comprising the polypeptides of the present invention fused or conjugated to antibody domains other than the variable regions. For example, the polypeptides of the present invention may be fused or conjugated to an antibody Fc region, or portion thereof. The antibody portion fused to a polypeptide of the present invention may comprise the constant region, hinge region, CHI domain, CH2 domain, and CH3 domain or any combination of whole domains or portions thereof. The polypeptides may also be fused or conjugated to the above antibody portions to form multimers. For example, Fc portions fused to the polypeptides of the present invention can form dimers through disulfide bonding between the Fc portions. Higher multimeric forms can be made by fusing the polypeptides to portions of IgA and IgM. Methods for fusing or conjugating the polypeptides of the present invention to antibody portions are known in the art. See, e.g., U.S. Patent Nos. 5,336,603; 5,622,929; 5,359,046; 5,349,053; 5,447,851; 5,112,946; EP 307,434; EP 367,166; PCT publications WO 96/04388; WO 91/06570; Ashkenazi et al., Proc. Natl. Acad. Sci. USA 88:10535-10539 (1991); Zheng et al., J. Immunol. 154:5590-5600 (1995); and Nil et al., Proc. Νatl. Acad. Sci. USA 89:11337- 11341 (1992) (said references incorporated by reference in their entireties).
As discussed, supra, the polypeptides corresponding to a polypeptide, polypeptide fragment, or a variant of SEQ ID NO: Y may be fused or conjugated to the above antibody portions to increase the in vivo half life of the polypeptides or for use in immunoassays using methods known in the art. Further, the polypeptides corresponding to SEQ ID NO:Y may be fused or conjugated to the above antibody portions to facilitate purification. One reported example describes chimeric proteins consisting of the first two domains of the human CD4-polypeptide and various domains of the constant regions of the heavy or light chains of mammalian immunoglobulins. See EP 394,827; and Traunecker et al., Nature 331:84-86 (1988). The polypeptides of the present invention fused or conjugated to an antibody having disulfide- linked dimeric structures (due to the IgG) may also be more efficient in binding and neutralizing other molecules, than the monomeric secreted protein or protein fragment alone. See, for example, Fountoulakis et al., J. Biochem. 270:3958-3964 (1995). In many cases, the Fc part in a fusion protein is beneficial in therapy and diagnosis, and thus can result in, for example, improved pharmacokinetic properties. See, for example, EP A 232,262. Alternatively, deleting the Fc part after the fusion protein has been expressed, detected, and purified, would be desired. For example, the Fc portion may hinder therapy and diagnosis if the fusion protein is used as an antigen for immunizations. In drug discovery, for example, human proteins, such as hIL-5, have been fused with Fc portions for the purpose of high-throughput screening assays to identify antagonists of hIL-5. (See, Bennett et al., J. Molecular Recognition 8:52-58 (1995); Johanson et al., J. Biol. Chem. 270:9459-9471 (1995)).
Moreover, the antibodies or fragments thereof of the present invention can be fused to marker sequences, such as a peptide to facilitate purification. In preferred embodiments, the marker amino acid sequence is a hexa-histidine peptide, such as the tag provided in a pQE vector (QIAGEN, Inc., 9259 Eton Avenue, Chatsworth, CA, 91311), among others, many of which are commercially available. As described in Gentz et al., Proc. Natl. Acad. Sci. USA 86:821-824 (1989), for instance, hexa-histidine provides for convenient purification of the fusion protein. Other peptide tags useful for purification include, but are not limited to, the "HA" tag, which corresponds to an epitope derived from the influenza hemagglutinin protein (Wilson et al., CeU 37:767 (1984)) and the "flag" tag.
The present invention further encompasses antibodies or fragments thereof conjugated to a diagnostic or therapeutic agent. The antibodies can be used diagnostically to, for example, monitor the development or progression of a tumor as part of a clinical testing procedure to, e.g., determine the efficacy of a given treatment regimen. Detection can be facilitated by coupling the antibody to a detectable substance. Examples of detectable substances include various enzymes, prosthetic groups, fluorescent materials, luminescent materials, bioluminescent materials, radioactive materials, positron emitting metals using various positron emission tomographies, and nonradioactive paramagnetic metal ions. The detectable substance may be coupled or conjugated either directly to the antibody (or fragment thereof) or indirectly, through an intermediate (such as, for example, a linker known in the art) using techniques known in the art. See, for example, U.S. Patent No. 4,741,900 for metal ions that can be conjugated to antibodies for use as diagnostics according to the present invention. Examples of suitable enzymes include horseradish peroxidase, alkaline phosphatase, beta-galactosidase, or acetylcholinesterase; examples of suitable prosthetic group complexes include streptavidin/biotin and avidin/biotin; examples of suitable fluorescent materials include umbelliferone, fluorescein, fluorescein isothiocyanate, rhodamine, dichlorotriazinylamine fluorescein, dansyl chloride or phycoerythrin; an example of a luminescent material includes luminol; examples of bioluminescent materials include luciferase, luciferin, and aequorin; and examples of suitable radioactive material include 1251, 1311, lllln or 99Tc.
Further, an antibody or fragment thereof may be conjugated to a therapeutic moiety such as a cytotoxin, e.g., a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi. A cytotoxin or cytotoxic agent includes any agent that is detrimental to cells. Examples include paclitaxol, cytochalasin B, gramicidin D, ethidium bromide, emetine, mitomycin, etoposide, tenoposide, vincristine, vinblastine, colchicin, doxorubicin, daunorubicin, dihydroxy anthracin dione, mitoxantrone, mithramycin, actinomycin D, 1-dehydrotestosterone, glucocorticoids, procaine, tetracaine, lidocaine, propranolol, and puromycin and analogs or homologs thereof. Therapeutic agents include, but are not limited to, antimetabolites (e.g., methotrexate, 6-mercaptopurine, 6-thioguanine, cytarabine, 5-fluorouracil decarbazine), alkylating agents (e.g., mechlorethamine, thioepa chlorambucil, melphalan, carmustine (BSNU) and lomustine (CCNU), cyclothosphamide, busulfan, dibromomannitol, streptozotocin. mitomycin C, and cis- dichlorodiamine platinum (II) (DDP) cisplatin), anthracyclines (e.g., daunorubicin (formerly daunomycin) and doxorubicin), antibiotics (e.g., dactinomycin (formerly actinomycin), bleomycin, mithramycin, and anthramycin (AMC)), and anti-mitotic agents (e.g., vincristine and vinblastine).
The conjugates of the invention can be used for modifying a given biological response, the therapeutic agent or drug moiety is not to be construed as limited to classical chemical therapeutic agents. For example, the drug moiety may be a protein or polypeptide possessing a desired biological activity. Such proteins may include, for example, a toxin such as abrin, ricin A, pseudomonas exotoxin, or diphtheria toxin; a protein such as tumor necrosis factor, a-interferon, β- interferon, nerve growth factor, platelet derived growth factor, tissue plasminogen activator, an apoptotic agent, e.g., TNF-alpha, TNF-beta, AIM I (See, International Publication No. WO 97/33899), AIM II (See, Intemational Publication No. WO 97/34911), Fas Ligand (Takahashi et al, Int. Immunol, 6: 1567-1574 (1994)), VEGI (See, International Publication No. WO 99/23105), a thrombotic agent or an anti- angiogenic agent, e.g., angiostatin or endostatin; or, biological response modifiers such as, for example, lymphokines, interleukin-1 ("IL-1"), interleukin-2 ("IL- 2"), interleukin-6 ("IL-6"), granulocyte macrophage colony stimulating factor ("GM-CSF"), granulocyte colony stimulating factor ("G-CSF"), or other growth factors. Antibodies may also be attached to solid supports, which are particularly useful for immunoassays or purification of the target antigen. Such solid supports include, but are not limited to, glass, cellulose, polyacrylamide, nylon, polystyrene, polyvinyl chloride or polypropylene.
Techniques for conjugating such therapeutic moiety to antibodies are well known. See, for example, Arnon et al., "Monoclonal Antibodies For Immunotargeting Of Drugs hi Cancer Therapy", in Monoclonal Antibodies And Cancer Therapy, Reisfeld et al. (eds.), pp. 243-56 (Alan R. Liss, hie. 1985); Hellstrom et al., "Antibodies For Drug Delivery", in Controlled Drug Delivery (2nd Ed.), Robinson et al. (eds.), pp. 623-53 (Marcel Dekker, Inc. 1987); Thorpe, "Antibody Carriers Of Cytotoxic Agents In Cancer Therapy: A Review", in Monoclonal Antibodies '84: Biological And Clinical Applications, Pinchera et al. (eds.), pp. 475-506 (1985); "Analysis, Results, And Future Prospective Of The Therapeutic Use Of Radiolabeled Antibody hi Cancer Therapy", in Monoclonal Antibodies For Cancer Detection And Therapy, Baldwin et al. (eds.), pp. 303-16 (Academic Press 1985), and Thorpe et al., "The Preparation And Cytotoxic Properties Of Antibody-Toxin Conjugates", Immunol. Rev. 62:119-58 (1982).
Alternatively, an antibody can be conjugated to a second antibody to form an antibody heteroconjugate as described by Segal in U.S. Patent No. 4,676,980, which is incorporated herein by reference in its entirety.
An antibody, with or without a therapeutic moiety conjugated to it, administered alone or in combination with cytotoxic factor(s) and/or cytokine(s) can be used as a therapeutic.
Immunophenotyping The antibodies of the invention may be utilized for immunophenotyping of cell lines and biological samples. Translation products of the gene of the present invention may be useful as cell- specific markers, or more specifically as cellular markers that are differentially expressed at various stages of differentiation and/or maturation of particular cell types. Monoclonal antibodies directed against a specific epitope, or combination of epitopes, will allow for the screening of cellular populations expressing the marker. Narious techniques can be utilized using monoclonal antibodies to screen for cellular populations expressing the marker(s), and include magnetic separation using antibody-coated magnetic beads, "panning" with antibody attached to a solid matrix (i.e., plate), and flow cytometry (See, e.g., U.S. Patent 5,985,660; and Morrison et al, Cell, 96:131 '-49 (1999)). These techniques allow for the screening of particular populations of cells, such as might be found with hematological malignancies (i.e. minimal residual disease (MRD) in acute leukemic patients) and "non-self cells in transplantations to prevent Graft-versus-Host Disease (GVHD). Alternatively, these techniques allow for the screening of hematopoietic stem and progenitor cells capable of undergoing proliferation and/or differentiation, as might be found in human umbilical cord blood.
Assays For Antibody Binding
The antibodies of the invention may be assayed for immunospecific binding by any method known in the art. The immunoassays which can be used include but are not limited to competitive and non-competitive assay systems using techniques such as western blots, radioimmunoassays, ELISA (enzyme linked immunosorbent assay), "sandwich" immunoassays, immunoprecipitation assays, precipitin reactions, gel diffusion precipitin reactions, immunodiffusion assays, agglutination assays, complement-fixation assays, immunoradiometric assays, fluorescent immunoassays, and protein A immunoassays, to name but a few. Such assays are routine and well known in the art (see, e.g., Ausubel et al, eds, 1994, Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, which is incorporated by reference herein in its entirety). Exemplary immunoassays are described briefly below (but are not intended by way of limitation).
Immunoprecipitation protocols generally comprise lysing a population of cells in a lysis buffer such as RIPA buffer (1% NP-40 or Triton X- 100, 1% sodium deoxycholate, 0.1% SDS, 0.15 M NaCl, 0.01 M sodium phosphate at pH 7.2, 1% Trasylol) supplemented with protein phosphatase and/or protease inhibitors (e.g., EDTA, PMSF, aprotinin, sodium vanadate), adding the antibody of interest to the cell lysate, incubating for a period of time (e.g., 1-4 hours) at 4° C, adding protein A and/or protein G sepharose beads to the cell lysate, incubating for about an hour or more at 4° C, washing the beads in lysis buffer and resuspending the beads in SDS/sample buffer. The ability of the antibody of interest to immunoprecipitate a particular antigen can be assessed by, e.g., western blot analysis. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the binding of the antibody to an antigen and decrease the background (e.g., pre-clearing the cell lysate with sepharose beads). For further discussion regarding immunoprecipitation protocols see, e.g., Ausubel et al., eds., (1994), Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, section 10.16.1. Western blot analysis generally comprises preparing protein samples, electrophoresis of the protein samples in a polyacrylamide gel (e.g., 8%- 20% SDS-PAGE depending on the molecular weight of the antigen), transferring the protein sample from the polyacrylamide gel to a membrane such as nitrocellulose, PVDF or nylon, blocking the membrane in blocking solution (e.g., PBS with 3% BSA or non-fat milk), washing the membrane in washing buffer (e.g., PBS- Tween 20), blocking the membrane with primary antibody (the antibody of interest) diluted in blocking buffer, washing the membrane in washing buffer, blocking the membrane with a secondary antibody (which recognizes the primary antibody, e.g., an anti-human antibody) conjugated to an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) or radioactive molecule (e.g., 32P or 1251) diluted in blocking buffer, washing the membrane in wash buffer, and detecting the presence of the antigen. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected and to reduce the background noise. For further discussion regarding western blot protocols see, e.g., Ausubel et al, eds, (1994), Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, section 10.8.1. ELISAs comprise preparing antigen, coating the well of a 96 well microtiter plate with the antigen, adding the antibody of interest conjugated to a detectable compound such as an enzymatic substrate (e.g., horseradish peroxidase or alkaline phosphatase) to the well and incubating for a period of time, and detecting the presence of the antigen. In ELISAs the antibody of interest does not have to be conjugated to a detectable compound; instead, a second antibody (which recognizes the antibody of interest) conjugated to a detectable compound may be added to the well. Further, instead of coating the well with the antigen, the antibody may be coated to the well. In this case, a second antibody conjugated to a detectable compound may be added following the addition of the antigen of interest to the coated well. One of skill in the art would be knowledgeable as to the parameters that can be modified to increase the signal detected as well as other variations of ELISAs known in the art. For further discussion regarding ELISAs see, e.g., Ausubel et al, eds, (1994), Current Protocols in Molecular Biology, Vol. 1, John Wiley & Sons, Inc., New York, section 11.2.1.
The binding affinity of an antibody to an antigen and the off-rate of an antibody-antigen interaction can be determined by competitive binding assays. One example of a competitive binding assay is a radioimmunoassay comprising the incubation of labeled antigen (e.g., 3H or 1251) with the antibody of interest in the presence of increasing amounts of unlabeled antigen, and the detection of the antibody bound to the labeled antigen. The affinity of the antibody of interest for a particular antigen and the binding off-rates can be determined from the data by scatchard plot analysis. Competition with a second antibody can also be determined using radioimmunoassays. In this case, the antigen is incubated with antibody of interest conjugated to a labeled compound (e.g., 3H or 1251) in the presence of increasing amounts of an unlabeled second antibody. Antibodies of the invention may be characterized using immunocytochemisty methods on cells (e.g., mammalian cells, such as CHO cells) transfected with a vector enabling the expression of an antigen or with vector alone using techniques commonly known in the art. Antibodies that bind antigen transfected cells, but not vector-only transfected cells, are antigen specific.
Therapeutic Uses
Table ID also provides information regarding biological activities and preferred therapeutic uses (i.e. see, "Preferred Indications" column) for polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof). Table ID also provides information regarding assays which may be used to test polynucleotides and polypeptides of the invention (including antibodies, agonists, and/or antagonists thereof) for the corresponding biological activities. The first column ("Gene No.") provides the gene number in the application for each clone identifier. The second column ("cDNA ATCC Deposit No:Z") provides the unique clone identifier for each clone as previously described and indicated in Table IA, Table IB, and Table IC. The third column ("AA SEQ ED NO:Y") indicates the Sequence Listing SEQ ID Number for polypeptide sequences encoded by the corresponding cDNA clones (also as indicated in Table IA, Table IB, and Table 2). The fourth column ("Biological Activity") indicates a biological activity corresponding to the indicated polypeptides (or polynucleotides encoding said polypeptides). The fifth column ("Exemplary Activity Assay") further describes the corresponding biological activity and also provides information pertaining to the various types of assays that may be performed to test, demonstrate, or quantify the corresponding biological activity.
The present invention is further directed to antibody-based therapies which involve administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating one or more of the disclosed diseases, disorders, or conditions. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein). The antibodies of the invention can be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention, including, but not limited to, allergic and/or asthmatic diseases and disorders. The treatment and/or prevention of allergic and/or asthmatic diseases and disorders associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with allergic and/or asthmatic diseases and disorders. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
In a specific and preferred embodiment, the present invention is directed to antibody- based therapies which involve administering antibodies of the invention to an animal, preferably a mammal, and most preferably a human, patient for treating allergic and/or asthmatic diseases and disorders. Therapeutic compounds of the invention include, but are not limited to, antibodies of the invention (e.g., antibodies directed to the full length protein expressed on the cell surface of a mammalian cell; antibodies directed to an epitope of a polypeptide of the invention (such as, for example, a predicted linear epitope shown in Table IB; or a conformational epitope, including fragments, analogs and derivatives thereof as described herein) and nucleic acids encoding antibodies of the invention (including fragments, analogs and derivatives thereof and anti-idiotypic antibodies as described herein). The antibodies of the invention can be used to detect, diagnose, prevent, treat, prognosticate, and/or ameliorate allergic and/or asthmatic diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention. The treatment and/or prevention of allergic and/or asthmatic diseases, disorders or conditions associated with aberrant expression and/or activity of a polypeptide of the invention includes, but is not limited to, alleviating symptoms associated with those diseases, disorders or conditions. Antibodies of the invention may be provided in pharmaceutically acceptable compositions as known in the art or as described herein.
A summary of the ways in which the antibodies of the present invention may be used therapeutically includes binding polynucleotides or polypeptides of the present invention locally or systemically in the body or by direct cytotoxicity of the antibody, e.g. as mediated by complement (CDC) or by effector cells (ADCC). Some of these approaches are described in more detail below. Armed with the teachings provided herein, one of ordinary skill in the art will know how to use the antibodies of the present invention for diagnostic, monitoring or therapeutic purposes without undue experimentation. The antibodies of this invention may be advantageously utilized in combination with other monoclonal or chimeric antibodies, or with lymphokines or hematopoietic growth factors (such as, e.g., IL-2, EL-3 and IL-7), for example, which serve to increase the number or activity of effector cells that interact with the antibodies. The antibodies of the invention may be administered alone or in combination with other types of treatments (e.g., radiation therapy, chemotherapy, hormonal therapy, immunotherapy and anti-tumor agents). Generally, administration of products of a species origin or species reactivity (in the case of antibodies) that is the same species as that of the patient is preferred. Thus, in a preferred embodiment, human antibodies, fragments derivatives, analogs, or nucleic acids, are administered to a human patient for therapy or prophylaxis.
It is preferred to use high affinity and/or potent in vivo inhibiting and/or neutralizing antibodies against polypeptides or polynucleotides of the present invention, fragments or regions thereof, for both immunoassays directed to and therapy of allergic and/or asthmatic diseases or disorders related to polynucleotides or polypeptides, including fragments thereof, of the present invention. Such antibodies, fragments, or regions, will preferably have an affinity for polynucleotides or polypeptides of the invention, including fragments thereof. Preferred binding affinities include those with a dissociation constant or Kd less than 5 X IO"2 M, IO"2 M, 5 X 10"3 M, 10"3 M, 5 X IO"4 M, IO"4 M, 5 X IO"5 M, 10"5 M, 5 X 10"6 M, 10"6 M, 5 X IO"7 M, IO"7 M, 5 X IO"8 M, 10"8 M, 5 X IO"9 M, 10"9 M, 5 X 10"10 M, 10"10 M, 5 X 10"11 M, 10"11 M, 5 X IO"12 M, IO"12 M, 5 X 10"13 M, 10" 13 M, 5 X IO"14 M, IO"14 M, 5 X IO"15 M, and 10"15 M.
Gene Therapy
In a specific embodiment, nucleic acids comprising sequences encoding antibodies or functional derivatives thereof, are administered to treat, inhibit or prevent an allergic and/or asthmatic disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention, by way of gene therapy. Gene therapy refers to therapy performed by the administration to a subject of an expressed or expressible nucleic acid. In this embodiment of the invention, the nucleic acids produce their encoded protein that mediates a therapeutic effect.
Any of the methods for gene therapy available in the art can be used according to the present invention. Exemplary methods are described below.
For general reviews of the methods of gene therapy, see Goldspiel et al., Clinical Pharmacy 12:488-505 (1993); Wu and Wu, Biotherapy 3:87-95 (1991); Tolstoshev, Ann. Rev. Pharmacol. Toxicol. 32:573-596 (1993); Mulligan, Science 260:926-932 (1993); and Morgan and Anderson, Ann. Rev. Biochem. 62:191-217 (1993); May, TIBTECH 11(5):155-215 (1993). Methods commonly known in the art of recombinant DNA technology which can be used are described in Ausubel et al. (eds.), Current Protocols in Molecular Biology, John Wiley & Sons, NY (1993); and Kriegler, Gene Transfer and Expression, A Laboratory Manual, Stockton Press, NY (1990).
In a preferred embodiment, the compound comprises nucleic acid sequences encoding an antibody, said nucleic acid sequences being part of expression vectors that express the antibody or fragments or chimeric proteins or heavy or light chains thereof in a suitable host, i particular, such nucleic acid sequences have promoters operably linked to the antibody coding region, said promoter being inducible or constitutive, and, optionally, tissue-specific. In another particular embodiment, nucleic acid molecules are used in which the antibody coding sequences and any other desired sequences are flanked by regions that promote homologous recombination at a desired site in the genome, thus providing for intrachromosomal expression of the antibody encoding nucleic acids (KoUer and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989). In specific embodiments, the expressed antibody molecule is a single chain antibody; alternatively, the nucleic acid sequences include sequences encoding both the heavy and light chains, or fragments thereof, of the antibody.
Delivery of the nucleic acids into a patient may be either direct, in which case the patient is directly exposed to the nucleic acid or nucleic acid- carrying vectors, or indirect, in which case, cells are first transformed with the nucleic acids in vitro, then transplanted into the patient. These two approaches are known, respectively, as in vivo or ex vivo gene therapy. i a specific embodiment, the nucleic acid sequences are directly administered in vivo, where it is expressed to produce the encoded product. This can be accomplished by any of numerous methods known in the art, e.g., by constructing them as part of an appropriate nucleic acid expression vector and administering it so that they become intracellular, e.g., by infection using defective or attenuated retrovirals or other viral vectors (see U.S. Patent No. 4,980,286), or by direct injection of naked DNA, or by use of microparticle bombardment (e.g., a gene gun; Biolistic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, encapsulation in liposomes, microparticles, or microcapsules, or by administering them in linkage to a peptide which is known to enter the nucleus, by administering it in linkage to a ligand subject to receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)) (which can be used to target cell types specifically expressing the receptors), etc. In another embodiment, nucleic acid-ligand complexes can be formed in which the ligand comprises a fusogenic viral peptide to disrupt endosomes, allowing the nucleic acid to avoid lysosomal degradation. In yet another embodiment, the nucleic acid can be targeted in vivo for cell specific uptake and expression, by targeting a specific receptor (see, e.g., PCT Publications WO 92/06180; WO 92/22635; WO92/20316; W093/14188, WO 93/20221). Alternatively, the nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination (KoUer and Smithies, Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); Zijlstra et al., Nature 342:435-438 (1989)).
In a specific embodiment, viral vectors that contain nucleic acid sequences encoding an antibody of the invention are used. For example, a retroviral vector can be used (see Miller et al., Meth. Enzymol. 217:581-599 (1993)). These retroviral vectors contain the components necessary for the correct packaging of the viral genome and integration into the host cell DNA. The nucleic acid sequences encoding the antibody to be used in gene therapy are cloned into one or more vectors, which facilitate delivery of the gene into a patient. More detail about retroviral vectors can be found in Boesen et al., Biotherapy 6:291-302 (1994), which describes the use of a retroviral vector to deliver the mdrl gene to hematopoietic stem cells in order to make the stem cells more resistant to chemotherapy. Other references illustrating the use of retroviral vectors in gene therapy are: Clowes et al., J. Clin. Invest. 93:644-651 (1994); Kiem et al., Blood 83:1467-1473 (1994); Salmons and Gunzberg, Human Gene Therapy 4:129-141 (1993); and Grossman and Wilson, Curr. Opin. in Genetics and Devel. 3:110-114 (1993).
Adenoviruses are other viral vectors that can be used in gene therapy. Adenoviruses are especially attractive vehicles for delivering genes to respiratory epithelia. Adenoviruses naturally infect respiratory epithelia where they cause a mild disease. Other targets for adenovirus-based delivery systems are liver, the central nervous system, endothelial cells, and muscle. Adenoviruses have the advantage of being capable of infecting non-dividing cells. Kozarsky and Wilson, Current Opinion in Genetics and Development 3:499-503 (1993) present a review of adenovirus-based gene therapy. Bout et al., Human Gene Therapy 5:3-10 (1994) demonstrated the use of adenovirus vectors to transfer genes to the respiratory epithelia of rhesus monkeys. Other instances of the use of adenoviruses in gene therapy can be found in Rosenfeld et al., Science 252:431-434 (1991); Rosenfeld et al., Cell 68:143- 155 (1992); Mastrangeli et al, J. Clin. Invest. 91:225-234 (1993); PCT Publication W094/12649; and Wang, et al., Gene Therapy 2:775-783 (1995). hi a preferred embodiment, adenovirus vectors are used.
Adeno-associated virus (AAV) has also been proposed for use in gene therapy (Walsh et al., Proc. Soc. Exp. Biol. Med. 204:289-300 (1993); U.S. Patent No. 5,436,146).
Another approach to gene therapy involves transferring a gene to cells in tissue culture by such methods as electroporation, lipofection, calcium phosphate mediated transfection, or viral infection. Usually, the method of transfer includes the transfer of a selectable marker to the cells. The cells are then placed under selection to isolate those cells that have taken up and are expressing the transferred gene. Those cells are then delivered to a patient.
In this embodiment, the nucleic acid is introduced into a cell prior to administration in vivo of the resulting recombinant cell. Such introduction can be carried out by any method known in the art, including but not limited to transfection, electroporation, microinjection, infection with a viral or bacteriophage vector containing the nucleic acid sequences, cell fusion, chromosome- mediated gene transfer, microcell-mediated gene transfer, spheroplast fusion, etc. Numerous techniques are known in the art for the introduction of foreign genes into cells (see, e.g., Loeffler and Behr, Meth. Enzymol. 217:599-618 (1993); Cohen et al., Meth. Enzymol. 217:618-644 (1993); Cline, Pharmac. Ther. 29:69-92m (1985) and may be used in accordance with the present invention, provided that the necessary developmental and physiological functions of the recipient cells are not disrupted. The technique should provide for the stable transfer of the nucleic acid to the cell, so that the nucleic acid is expressible by the cell and preferably heritable and expressible by its cell progeny.
The resulting recombinant cells can be delivered to a patient by various methods known in the art. Recombinant blood cells (e.g., hematopoietic stem or progenitor cells) are preferably administered intravenously. The amount of cells envisioned for use depends on the desired effect, patient state, etc., and can be determined by one skilled in the art. Cells into which a nucleic acid can be introduced for purposes of gene therapy encompass any desired, available cell type, and include but are not limited to epithelial cells, endothelial cells, keratinocytes, fibroblasts, muscle cells, hepatocytes; blood cells such as T lymphocytes, B lymphocytes, monocytes, macrophages, neutrophils, eosinophils, megakaryocytes, granulocytes; various stem or progenitor cells, in particular hematopoietic stem or progenitor cells, e.g., as obtained from bone marrow, umbilical cord blood, peripheral blood, fetal liver, etc.
In a preferred embodiment, the cell used for gene therapy is autologous to the patient. In an embodiment in which recombinant cells are used in gene therapy, nucleic acid sequences encoding an antibody are introduced into the cells such that they are expressible by the cells or their progeny, and the recombinant cells are then administered in vivo for therapeutic effect. In a specific embodiment, stem or progenitor cells are used. Any stem and/or progenitor cells which can be isolated and maintained in vitro can potentially be used in accordance with this embodiment of the present invention (see e.g. PCT Publication WO 94/08598; Stemple and Anderson, Cell 71:973-985 (1992); Rheinwald, Meth. Cell Bio. 21A:229 (1980); and Pittelkow and Scott, Mayo Clinic Proc. 61:771 (1986)). In a specific embodiment, the nucleic acid to be introduced for purposes of gene therapy comprises an inducible promoter operably linked to the coding region, such that expression of the nucleic acid is controllable by the presence or absence of an appropriate inducer of transcription.
Demonstration of Tlierapeutic or Prophylactic Activity The compounds or pharmaceutical compositions of the invention are preferably tested in vitro, and then in vivo for the desired therapeutic or prophylactic activity, prior to use in humans. For example, in vitro assays to demonstrate the therapeutic or prophylactic utility of a compound or pharmaceutical composition include, the effect of a compound on a cell line or a patient tissue sample. The effect of the compound or composition on the cell line and/or tissue sample can be determined utUizing techniques known to those of skill in the art including, but not limited to, rosette formation assays and cell lysis assays. In accordance with the invention, in vitro assays which can be used to determine whether administration of a specific compound is indicated, include in vitro cell culture assays in which a patient tissue sample is grown in culture, and exposed to or otherwise administered a compound, and the effect of such compound upon the tissue sample is observed.
Therapeutic/Prophylactic Administration and Composition
The invention provides methods of treatment, inhibition and prophylaxis by administration to a subject of an effective amount of a compound or pharmaceutical composition of the invention, preferably a polypeptide or antibody of the invention. In a preferred embodiment, the compound is substantially purified (e.g., substantially free from substances that limit its effect or produce undesired side-effects). The subject is preferably an animal, including but not limited to animals such as cows, pigs, horses, chickens, cats, dogs, etc., and is preferably a mammal, and most preferably human.
Formulations and methods of administration that can be employed when the compound comprises a nucleic acid or an immunoglobulin are described above; additional appropriate formulations and routes of administration can be selected from among those described herein below.
Various delivery systems are known and can be used to administer a compound of the invention, e.g., encapsulation in liposomes, microparticles, microcapsules, recombinant cells capable of expressing the compound, receptor-mediated endocytosis (see, e.g., Wu and Wu, J. Biol. Chem. 262:4429-4432 (1987)), construction of a nucleic acid as part of a retroviral or other vector, etc. Methods of introduction include but are not limited to intradermal, intramuscular, intraperitoneal, intravenous, subcutaneous, intranasal, epidural, and oral routes. The compounds or compositions may be administered by any convenient route, for example by infusion or bolus injection, by absorption through epithelial or mucocutaneous linings (e.g., oral mucosa, rectal and intestinal mucosa, etc.) and may be administered together with other biologically active agents. Administration can be systemic or local. In addition, it may be desirable to introduce the pharmaceutical compounds or compositions of the invention into the central nervous system by any suitable route, including intraventricular and intrathecal injection; intraventricular injection may be facilitated by an intraventricular catheter, for example, attached to a reservoir, such as an Ommaya reservoir. Pulmonary administration can also be employed, e.g., by use of an inhaler or nebulizer, and formulation with an aerosolizing agent.
In a specific embodiment, it may be desirable to administer the pharmaceutical compounds or compositions of the invention locally to the area in need of treatment; this may be achieved by, for example, and not by way of limitation, local infusion during surgery, topical application, e.g., in conjunction with a wound dressing after surgery, by injection, by means of a catheter, by means of a suppository, or by means of an implant, said implant being of a porous, non-porous, or gelatinous material, including membranes, such as sialastic membranes, or fibers. Preferably, when administering a protein, including an antibody, of the invention, care must be taken to use materials to which the protein does not absorb.
In another embodiment, the compound or composition can be delivered in a vesicle, in particular a liposome (see Langer, Science 249:1527-1533 (1990); Treat et al., in Liposomes in the Therapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 353- 365 (1989); Lopez-Berestein, ibid., pp. 317-327; see generally ibid.)
In yet another embodiment, the compound or composition can be delivered in a controlled release system, hi one embodiment, a pump may be used (see Langer, supra; Sefton, CRC Grit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al., Surgery 88:507 (1980); Saudek et al., N. Engl. J. Med. 321:574 (1989)). In another embodiment, polymeric materials can be used (see Medical Applications of Controlled Release, Langer and Wise (eds.), CRC Pres., Boca Raton, Florida (1974); Controlled Drug Bioavailability, Drug Product Design and Performance, Smolen and BaU (eds.), Wiley, New York (1984); Ranger and Peppas, J., Macromol. Sci. Rev. Macromol. Chem. 23:61 (1983); see also Levy et al., Science 228:190 (1985); During et al., Ann. Neurol. 25:351 (1989); Howard et al., J.Neurosurg. 71:105 (1989)). In yet another embodiment, a controlled release system can be placed in proximity of the therapeutic target, e.g., the brain, thus requiring only a fraction of the systemic dose (see, e.g., Goodson, in Medical Applications of Controlled Release, supra, vol. 2, pp. 115-138 (1984)).
Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)). hi a specific embodiment where the compound of the invention is a nucleic acid encoding a protein, the nucleic acid can be administered in vivo to promote expression of its encoded protein, by constructing it as part of an appropriate nucleic acid expression vector and administering it so that it becomes intracellular, e.g., by use of a retroviral vector (see U.S. Patent No. 4,980,286), or by direct injection, or by use of microparticle bombardment (e.g., a gene gun; BioUstic, Dupont), or coating with lipids or cell-surface receptors or transfecting agents, or by administering it in linkage to a homeobox- like peptide which is known to enter the nucleus (see e.g., Joliot et al., Proc. Natl. Acad. Sci. USA 88:1864-1868 (1991)), etc. Alternatively, a nucleic acid can be introduced intracellularly and incorporated within host cell DNA for expression, by homologous recombination.
The present invention also provides pharmaceutical compositions. Such compositions comprise a therapeutically effective amount of a compound, and a pharmaceutically acceptable carrier. In a specific embodiment, the term "pharmaceutically acceptable" means approved by a regulatory agency of the Federal or a state government or listed in the U.S. Pharmacopeia or other generally recognized pharmacopeia for use in animals, and more particularly in humans. The term "carrier" refers to a diluent, adjuvant, excipient, or vehicle with which the therapeutic is administered. Such pharmaceutical carriers can be sterile liquids, such as water and oils, including those of petroleum, animal, vegetable or synthetic origin, such as peanut oil, soybean oil, mineral oil, sesame oil and the like. Water is a preferred carrier when the pharmaceutical composition is administered intravenously. Saline solutions and aqueous dextrose and glycerol solutions can also be employed as liquid carriers, particularly for injectable solutions. Suitable pharmaceutical excipients include starch, glucose, lactose, sucrose, gelatin, malt, rice, flour, chalk, silica gel, sodium stearate, glycerol monostearate, talc, sodium chloride, dried skim milk, glycerol, propylene, glycol, water, ethanol and the like. The composition, if desired, can also contain minor amounts of wetting or emulsifying agents, or pH buffering agents. These compositions can take the form of solutions, suspensions, emulsion, tablets, pills, capsules, powders, sustained-release formulations and the like. The composition can be formulated as a suppository, with traditional binders and carriers such as triglycerides. Oral formulation can include standard carriers such as pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate, etc. Examples of suitable pharmaceutical carriers are described in "Remington's Pharmaceutical Sciences" by E.W. Martin. Such compositions will contain a therapeutically effective amount of the compound, preferably in purified form, together with a suitable amount of carrier so as to provide the form for proper administration to the patient. The formulation should suit the mode of administration. hi a preferred embodiment, the composition is formulated in accordance with routine procedures as a pharmaceutical composition adapted for intravenous administration to human beings. Typically, compositions for intravenous administration are solutions in sterile isotonic aqueous buffer. Where necessary, the composition may also include a solubilizing agent and a local anesthetic such as lignocaine to ease pain at the site of the injection. Generally, the ingredients are supplied either separately or mixed together in unit dosage form, for example, as a dry lyophilized powder or water free concentrate in a hermetically sealed container such as an ampoule or sachette indicating the quantity of active agent. Where the composition is to be administered by infusion, it can be dispensed with an infusion bottle containing sterile pharmaceutical grade water or saline. Where the composition is administered by injection, an ampoule of sterile water for injection or saline can be provided so that the ingredients may be mixed prior to administration. The compounds of the invention can be formulated as neutral or salt forms.
Pharmaceutically acceptable salts include those formed with anions such as those derived from hydrochloric, phosphoric, acetic, oxalic, tartaric acids, etc., and those formed with cations such as those derived from sodium, potassium, ammonium, calcium, ferric hydroxides, isopropylamine, triethylamine, 2-ethylamino ethanol, histidine, procaine, etc. The amount of the compound of the invention which will be effective in the treatment, inhibition and prevention of a disease or disorder associated with aberrant expression and/or activity of a polypeptide of the invention can be determined by standard clinical techniques. In addition, in vitro assays may optionally be employed to help identify optimal dosage ranges. The precise dose to be employed in the formulation will also depend on the route of administration, and the seriousness of the disease or disorder, and should be decided according to the judgment of the practitioner and each patient's circumstances. Effective doses may be extrapolated from dose- response curves derived from in vitro or animal model test systems.
For antibodies, the dosage administered to a patient is typically 0.1 mg/kg to 100 mg/kg of the patient's body weight. Preferably, the dosage administered to a patient is between 0.1 mg/kg and 20 mg/kg of the patient's body weight, more preferably 1 mg/kg to 10 mg/kg of the patient's body weight. Generally, human antibodies have a longer half-life within the human body than antibodies from other species due to the immune response to the foreign polypeptides. Thus, lower dosages of human antibodies and less frequent administration is often possible. Further, the dosage and frequency of administration of antibodies of the invention may be reduced by enhancing uptake and tissue penetration (e.g., into the brain) of the antibodies by modifications such as, for example, lipidation. The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the pharmaceutical compositions of the invention. Optionally associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration.
Diagnosis and Imaging
Labeled antibodies, and derivatives and analogs thereof, which specifically bind to a polypeptide of interest can be used for diagnostic purposes to detect, diagnose, prognosticate, or monitor allergic and/or asthmatic diseases, disorders, and/or conditions associated with the aberrant expression and/or activity of a polypeptide of the invention. The invention provides for the detection of aberrant expression of a polypeptide of interest, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of aberrant expression.
The invention provides a diagnostic assay for diagnosing an allergic and/or asthmatic disease or disorder, comprising (a) assaying the expression of the polypeptide of interest in cells or body fluid of an individual using one or more antibodies specific to the polypeptide interest and (b) comparing the level of gene expression with a standard gene expression level, whereby an increase or decrease in the assayed polypeptide gene expression level compared to the standard expression level is indicative of a particular allergic and/or asthmatic disease or disorder. With respect to an allergic and/or asthmatic disease or disorder, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the allergic and/or asthmatic disease or disorder.
Antibodies of the invention can be used to assay protein levels in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine (1251, 1211), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99Tc); luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
One facet of the invention is the detection and diagnosis of a disease or disorder associated with aberrant expression of a polypeptide of interest in an animal, preferably a mammal and most preferably a human. In one embodiment, diagnosis comprises: a) administering (for example, parenterally, subcutaneously, or intraperitoneally) to a subject an effective amount of a labeled molecule which specifically binds to the polypeptide of interest; b) waiting for a time interval following the administering for permitting the labeled molecule to preferentially concentrate at sites in the subject where the polypeptide is expressed (and for unbound labeled molecule to be cleared to background level); c) determining background level; and d) detecting the labeled molecule in the subject, such that detection of labeled molecule above the background level indicates that the subject has a particular disease or disorder associated with aberrant expression of the polypeptide of interest. Background level can be determined by various methods including, comparing the amount of labeled molecule detected to a standard value previously determined for a particular system.
It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells that contain the specific protein. In vivo tumor imaging is described in S.W. Burchiel et al., "Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments." (Chapter 13 in Tumor Imaging: The Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing hie. (1982)).
Depending on several variables, including the type of label used and the mode of administration, the time interval following the administration for permitting the labeled molecule to preferentially concentrate at sites in the subject and for unbound labeled molecule to be cleared to background level is 6 to 48 hours or 6 to 24 hours or 6 to 12 hours. In another embodiment the time interval following administration is 5 to 20 days or 5 to 10 days. hi an embodiment, monitoring of the disease or disorder is carried out by repeating the method for diagnosing the disease or disease, for example, one month after initial diagnosis, six months after initial diagnosis, one year after initial diagnosis, etc.
Presence of the labeled molecule can be detected in the patient using methods known in the art for in vivo scanning. These methods depend upon the type of label used. Skilled artisans will be able to determine the appropriate method for detecting a particular label. Methods and devices that may be used in the diagnostic methods of the invention include, but are not limited to, computed tomography (CT), whole body scan such as position emission tomography (PET), magnetic resonance imaging (MRI), and sonography.
In a specific embodiment, the molecule is labeled with a radioisotope and is detected in the patient using a radiation responsive surgical instrument (Thurston et al., U.S.. Patent No. 5,441,050). In another embodiment, the molecule is labeled with a fluorescent compound and is detected in the patient using a fluorescence responsive scanning instrument. In another embodiment, the molecule is labeled with a positron emitting metal and is detected in the patent using positron emission-tomography. In yet another embodiment, the molecule is labeled with a paramagnetic label and is detected in a patient using magnetic resonance imaging (MRI).
Kits
The present invention provides kits that can be used in the above methods, hi one embodiment, a kit comprises an antibody of the invention, preferably a purified antibody, in one or more containers. In a specific embodiment, the kits of the present invention contain a substantially isolated polypeptide comprising an epitope that is specifically immunoreactive with an antibody included in the kit. Preferably, the kits of the present invention further comprise a control antibody that does not react with the polypeptide of interest. In another specific embodiment, the kits of the present invention contain a means for detecting the binding of an antibody to a polypeptide of interest (e.g., the antibody may be conjugated to a detectable substrate such as a fluorescent compound, an enzymatic substrate, a radioactive compound or a luminescent compound, or a second antibody which recognizes the first antibody may be conjugated to a detectable substrate).
In another specific embodiment of the present invention, the kit is a diagnostic kit for use in screening serum containing antibodies specific against proliferative and/or cancerous polynucleotides and polypeptides. Such a kit may include a control antibody that does not react with the polypeptide of interest. Such a kit may include a substantially isolated polypeptide antigen comprising an epitope that is specifically immunoreactive with at least one anti- polypeptide antigen antibody. Further, such a kit includes means for detecting the binding of said antibody to the antigen (e.g., the antibody may be conjugated to a fluorescent compound such as fluorescein or rhodamine which can be detected by flow cytometry). In specific embodiments, the kit may include a recombinantly produced or chemically synthesized polypeptide antigen. The polypeptide antigen of the kit may also be attached to a solid support. hi a more specific embodiment the detecting means of the above-described kit includes a solid support to which said polypeptide antigen is attached. Such a kit may also include a non- attached reporter-labeled anti-human antibody. In this embodiment, binding of the antibody to the polypeptide antigen can be detected by binding of the said reporter-labeled antibody.
In an additional embodiment, the invention includes a diagnostic kit for use in screening serum containing antigens of the polypeptide of the invention. The diagnostic kit includes a substantially isolated antibody specifically immunoreactive with polypeptide or polynucleotide antigens, and means for detecting the binding of the polynucleotide or polypeptide antigen to the antibody, hi one embodiment, the antibody is attached to a solid support, hi a specific embodiment, the antibody may be a monoclonal antibody. The detecting means of the kit may include a second, labeled monoclonal antibody. Alternatively, or in addition, the detecting means may include a labeled, competing antigen.
In one diagnostic configuration, test serum is reacted with a solid phase reagent having a surface-bound antigen obtained by the methods of the present invention. After binding with specific antigen antibody to the reagent and removing unbound serum components by washing, the reagent is reacted with reporter-labeled anti-human antibody to bind reporter to the reagent in proportion to the amount of bound anti-antigen antibody on the solid support. The reagent is again washed to remove unbound labeled antibody, and the amount of reporter associated with the reagent is determined. Typically, the reporter is an enzyme that is detected by incubating the solid phase in the presence of a suitable fluorometric, luminescent or colorimetric substrate (Sigma, St. Louis, MO).
The solid surface reagent in the above assay is prepared by known techniques for attaching protein material to solid support material, such as polymeric beads, dip sticks, 96-well plate or filter material. These attachment methods generally include non-specific adsorption of the protein to the support or covalent attachment of the protein, typically through a free amine group, to a chemically reactive group on the solid support, such as an activated carboxyl, hydroxyl, or aldehyde group. Alternatively, streptavidin coated plates can be used in conjunction with biotinylated antigen(s). Thus, the invention provides an assay system or kit for carrying out this diagnostic method. The kit generally includes a support with surface- bound recombinant antigens, and a reporter-labeled anti-human antibody for detecting surface-bound anti-antigen antibody. Uses of the Polynucleotides
Each of the polynucleotides identified herein can be used in numerous ways as reagents. The following description should be considered exemplary and utilizes known techniques.
The polynucleotides of the present invention are useful for chromosome identification. There exists an ongoing need to identify new chromosome markers, since few chromosome marking reagents, based on actual sequence data (repeat polymorphisms), are presently available. Each sequence is specifically targeted to and can hybridize with a particular location on an individual human chromosome, thus each polynucleotide of the present invention can routinely be used as a chromosome marker using techniques known in the art. Table IB.l, column 8 provides the chromosome location of some of the polynucleotides of the invention.
Briefly, sequences can be mapped to chromosomes by preparing PCR primers (preferably at least 15 bp (e.g., 15-25 bp) from the sequences shown in SEQ ID NO:X. Primers can optionally be selected using computer analysis so that primers do not span more than one predicted exon in the genomic DNA. These primers are then used for PCR screening of somatic cell hybrids containing individual human chromosomes. Only those hybrids containing the human gene corresponding to SEQ ED NO:X will yield an amplified fragment.
Similarly, somatic hybrids provide a rapid method of PCR mapping the polynucleotides to particular chromosomes. Three or more clones can be assigned per day using a single thermal cycler. Moreover, sublocalization of the polynucleotides can be achieved with panels of specific chromosome fragments. Other gene mapping strategies that can be used include in situ hybridization, prescreening with labeled flow-sorted chromosomes, preselection by hybridization to construct chromosome specific-cDNA libraries, and computer mapping techniques (See, e.g., Shuler, Trends Biotechnol 16:456-459 (1998) which is hereby incorporated by reference in its entirety).
Precise chromosomal location of the polynucleotides can also be achieved using fluorescence in situ hybridization (FISH) of a metaphase chromosomal spread. This technique uses polynucleotides as short as 500 or 600 bases; however, polynucleotides 2,000-4,000 bp are preferred. For a review of this technique, see Verma et al., "Human Chromosomes: a Manual of Basic Techniques," Pergamon Press, New York (1988).
For chromosome mapping, the polynucleotides can be used individually (to mark a single chromosome or a single site on that chromosome) or in panels (for marking multiple sites and/or multiple chromosomes). Thus, the present invention also provides a method for chromosomal localization which involves (a) preparing PCR primers from the polynucleotide sequences in Table IB and/or Table 2 and SEQ ED NO:X and (b) screening somatic cell hybrids containing individual chromosomes. The polynucleotides of the present invention would likewise be useful for radiation hybrid mapping, HAPPY mapping, and long range restriction mapping. For a review of these techniques and others known in the art, see, e.g. Dear, "Genome Mapping: A Practical Approach," IRL Press at Oxford University Press, London (1997); Aydin, J. Mol. Med. 77:691-694 (1999); Hacia et al., Mol. Psychiatry 3:483-492 (1998); Herrick et al., Chromosome Res. 7:409-423 (1999); Hamilton et al., Methods Cell Biol. 62:265-280 (2000); and/or Ott, J. Hered. 90:68-70 (1999) each of which is hereby incorporated by reference in its entirety.
Once a polynucleotide has been mapped to a precise chromosomal location, the physical position of the polynucleotide can be used in linkage analysis. Linkage analysis establishes coinheritance between a chromosomal location and presentation of a particular disease. (Disease mapping data are found, for example, in V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library)). Column 9 of Table IB.l provides an OMIM reference identification number of diseases associated with the cytologic band disclosed in column 8 of Table IB.l, as determined using techniques described herein and by reference to Table 5. Assuming 1 megabase mapping resolution and one gene per 20 kb, a cDNA precisely localized to a chromosomal region associated with the disease could be one of 50-500 potential causative genes.
Thus, once coinheritance is established, differences in a polynucleotide of the invention and the corresponding gene between affected and unaffected individuals can be examined. First, visible structural alterations in the chromosomes, such as deletions or translocations, are examined in chromosome spreads or by PCR. If no structural alterations exist, the presence of point mutations are ascertained. Mutations observed in some or all affected individuals, but not in normal individuals, indicates that the mutation may cause the disease. However, complete sequencing of the polypeptide and the corresponding gene from several normal individuals is required to distinguish the mutation from a polymorphism. If a new polymorphism is identified, this polymorphic polypeptide can be used for further linkage analysis.
Furthermore, increased or decreased expression of the gene in affected individuals as compared to unaffected individuals can be assessed using the polynucleotides of the invention. Any of these alterations (altered expression, chromosomal rearrangement, or mutation) can be used as a diagnostic or prognostic marker. Diagnostic and prognostic methods, kits and reagents encompassed by the present invention are briefly described below and more thoroughly elsewhere herein (see e.g., the sections labeled "Antibodies", "Diagnostic Assays", and "Methods for Detecting Diseases").
Thus, the invention also provides a diagnostic method useful during diagnosis of a disorder, involving measuring the expression level of polynucleotides of the present invention in cells or body fluid from an individual and comparing the measured gene expression level with a standard level of polynucleotide expression level, whereby an increase or decrease in the gene expression level compared to the standard is indicative of a disorder. Additional non-limiting examples of diagnostic methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., Example 12).
In still another embodiment, the invention includes a kit for analyzing samples for the presence of proliferative and/or cancerous polynucleotides derived from a test subject. In a general embodiment, the kit includes at least one polynucleotide probe containing a nucleotide sequence that will specifically hybridize with a polynucleotide of the invention and a suitable container. In a specific embodiment, the kit includes two polynucleotide probes defining an internal region of the polynucleotide of the invention, where each probe has one strand containing a 31'mer-end internal to the region. In a further embodiment, the probes may be useful as primers for polymerase chain reaction amplification.
Where a diagnosis of a related disorder, including, for example, diagnosis of a tumor, has already been made according to conventional methods, the present invention is useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed polynucleotide of the invention expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.
By "measuring the expression level of polynucleotides of the invention" is intended qualitatively or quantitatively measuring or estimating the level of the polypeptide of the invention or the level of the mRNA encoding the polypeptide of the invention in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the polypeptide level or mRNA level in a second biological sample). Preferably, the polypeptide level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the related disorder or being determined by averaging levels from a population of individuals not having a related disorder. As will be appreciated in the art, once a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.
By "biological sample" is intended any biological sample obtained from an individual, body fluid, cell line, tissue culture, or other source that contains polypeptide of the present invention or the corresponding mRNA. As indicated, biological samples include body fluids (such as semen, lymph, vaginal pool, sera, plasma, urine, synovial fluid and spinal fluid) that contain the polypeptide of the present invention, and tissue sources found to express the polypeptide of the present invention. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source.
The method(s) provided above may preferably be applied in a diagnostic method and/or kits in which polynucleotides and/or polypeptides of the invention are attached to a solid support. In one exemplary method, the support may be a "gene chip" or a "biological chip" as described in US Patents 5,837,832, 5,874,219, and 5,856,174. Further, such a gene chip with polynucleotides of the invention attached may be used to identify polymorphisms between the isolated polynucleotide sequences of the invention, with polynucleotides isolated from a test subject. The knowledge of such polymorphisms (i.e. their location, as well as, their existence) would be beneficial in identifying disease loci for many disorders, such as for example, in neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, digestive disorders, metabolic disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions. Such a method is described in US Patents 5,858,659 and 5,856,104. The US Patents referenced supra are hereby incorporated by reference in their entirety herein.
The present invention encompasses polynucleotides of the present invention that are chemically synthesized, or reproduced as peptide nucleic acids (PNA), or according to other methods known in the art. The use of PNAs would serve as the preferred form if the polynucleotides of the invention are incorporated onto a solid support, or gene chip. For the purposes of the present invention, a peptide nucleic acid (PNA) is a polyamide type of DNA analog and the monomeric units for adenine, guanine, thymine and cytosine are available commercially (Perceptive Biosystems). Certain components of DNA, such as phosphorus, phosphorus oxides, or deoxyribose derivatives, are not present in PNAs. As disclosed by Nielsen et al., Science 254, 1497 (1991); and Egholm et al., Nature 365, 666 (1993), PNAs bind specifically and tightly to complementary DNA strands and are not degraded by nucleases. In fact, PNA binds more strongly to DNA than DNA itself does. This is probably because there is no electrostatic repulsion between the two strands, and also the polyamide backbone is more flexible. Because of this, PNA/DNA duplexes bind under a wider range of stringency conditions than DNA/DNA duplexes, making it easier to perform multiplex hybridization. Smaller probes can be used than with DNA due to the strong binding, hi addition, it is more likely that single base mismatches can be determined with PNA/DNA hybridization because a single mismatch in a PNA DNA 15-mer lowers the melting point (T.sub.m) by 8°-20° C, vs. 4°-16° C for the DNA/DNA 15-mer duplex. Also, the absence of charge groups in PNA means that hybridization can be done at low ionic strengths and reduce possible interference by salt during the analysis.
The compounds of the present invention have uses that include, but are not limited to, detecting cancer in mammals. In particular the invention is useful during diagnosis of pathological cell proliferative neoplasias which include, but are not limited to: acute myelogenous leukemias including acute monocytic leukemia, acute myeloblastic leukemia, acute promyelocytic leukemia, acute myelomonocytic leukemia, acute erythroleukemia, acute megakaryocytic leukemia, and acute undifferentiated leukemia, etc.; and chronic myelogenous leukemias including chronic myelomonocytic leukemia, chronic granulocytic leukemia, etc. Preferred mammals include monkeys, apes, cats, dogs, cows, pigs, horses, rabbits and humans. Particularly preferred are humans.
Pathological cell proliferative disorders are often associated with inappropriate activation of proto-oncogenes. (Gelmann, E. P. et al., "The Etiology of Acute Leukemia: Molecular Genetics and Viral Oncology," in Neoplastic Diseases of the Blood, Vol 1., Wiernik, P. H. et al. eds., 161- 182 (1985)). Neoplasias are now believed to result from the qualitative alteration of a normal cellular gene product, or from the quantitative modification of gene expression by insertion into the chromosome of a viral sequence, by chromosomal translocation of a gene to a more actively transcribed region, or by some other mechanism. (Gelmann et al., supra) It is likely that mutated or altered expression of specific genes is involved in the pathogenesis of some leukemias, among other tissues and cell types. (Gelmann et al., supra) Indeed, the human counterparts of the oncogenes involved in some animal neoplasias have been amplified or translocated in some cases of human leukemia and carcinoma. (Gelmann et al., supra)
For example, c-myc expression is highly amplified in the non-lymphocytic leukemia cell line HL-60. When HL-60 cells are chemically induced to stop proliferation, the level of c-myc is found to be downregulated. (International Publication Number WO 91/15580). However, it has been shown that exposure of HL-60 cells to a DNA construct that is complementary to the 5' end of c-myc or c-myb blocks translation of the corresponding mRNAs which downregulates expression of the c-myc or c-myb proteins and causes arrest of cell proliferation and differentiation of the treated cells. (International Publication Number WO 91/15580; Wickstrom et al., Proc. Natl. Acad. Sci. 85:1028 (1988); Anfossi et al., Proc. Natl. Acad. Sci. 86:3379 (1989)). However, the skilled artisan would appreciate the present invention's usefulness is not be limited to treatment, prevention, and/or prognosis of proliferative disorders of cells and tissues of hematopoietic origin, in light of the numerous cells and cell types of varying origins which are known to exhibit proliferative phenotypes.
In addition to the foregoing, a polynucleotide of the present invention can be used to control gene expression through triple helix formation or through antisense DNA or RNA. Antisense techniques are discussed, for example, in Okano, J. Neurochem. 56: 560 (1991); "Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance Lee et al., Nucleic Acids Research 6: 3073 (1979); Cooney et al., Science 241: 456 (1988); and Dervan et al., Science 251: 1360 (1991). Both methods rely on binding of the polynucleotide to a complementary DNA or RNA. For these techniques, preferred polynucleotides are usually oligonucleotides 20 to 40 bases in length and complementary to either the region of the gene involved in transcription (triple helix - see Lee et al., Nucl. Acids Res. 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1360 (1991)) or to the mRNA itself (antisense - Okano, J. Neurochem. 56:560 (1991); Oligodeoxy-nucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988)). Triple helix formation optimally results in a shut-off of RNA transcription from DNA, while antisense RNA hybridization blocks translation of an mRNA molecule into polypeptide. The oligonucleotide described above can also be delivered to cells such that the antisense RNA or DNA may be expressed in vivo to inhibit production of polypeptide of the present invention antigens. Both techniques are effective in model systems, and the information disclosed herein can be used to design antisense or triple helix polynucleotides in an effort to treat disease, and in particular, for the treatment of proliferative diseases and/or conditions. Non-limiting antisense and triple helix methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., the section labeled "Antisense and Ribozyme (Antagonists)"). Polynucleotides of the present invention are also useful in gene therapy. One goal of gene therapy is to insert a normal gene into an organism having a defective gene, in an effort to correct the genetic defect. The polynucleotides disclosed in the present invention offer a means of targeting such genetic defects in a highly accurate manner. Another goal is to insert a new gene that was not present in the host genome, thereby producing a new trait in the host cell. Additional non-limiting examples of gene therapy methods encompassed by the present invention are more thoroughly described elsewhere herein (see, e.g., the sections labeled "Gene Therapy Methods", and Examples 16, 17 and 18).
The polynucleotides are also useful for identifying individuals from minute biological samples. The United States military, for example, is considering the use of restriction fragment length polymorphism (RFLP) for identification of its personnel, hi this technique, an individual's genomic DNA is digested with one or more restriction enzymes, and probed on a Southern blot to yield unique bands for identifying personnel. This method does not suffer from the current limitations of "Dog Tags" which can be lost, switched, or stolen, making positive identification difficult. The polynucleotides of the present invention can be used as additional DNA markers for RFLP.
The polynucleotides of the present invention can also be used as an alternative to RFLP, by determining the actual base-by-base DNA sequence of selected portions of an individual's genome. These sequences can be used to prepare PCR primers for amplifying and isolating such selected DNA, which can then be sequenced. Using this technique, individuals can be identified because each individual will have a unique set of DNA sequences. Once an unique DD database is established for an individual, positive identification of that individual, living or dead, can be made from extremely small tissue samples.
Forensic biology also benefits from using DNA-based identification techniques as disclosed herein. DNA sequences taken from very small biological samples such as tissues, e.g., hair or skin, or body fluids, e.g., blood, saliva, semen, synovial fluid, amniotic fluid, breast milk, lymph, pulmonary sputum or surfactant, urine, fecal matter, etc., can be amplified using PCR. In one prior art technique, gene sequences amplified from polymorphic loci, such as DQa class II HLA gene, are used in forensic biology to identify individuals. (Erlich, H., PCR Technology, Freeman and Co. (1992)). Once these specific polymorphic loci are amplified, they are digested with one or more restriction enzymes, yielding an identifying set of bands on a Southern blot probed with DNA corresponding to the DQa class II HLA gene. Similarly, polynucleotides of the present invention can be used as polymorphic markers for forensic purposes.
There is also a need for reagents capable of identifying the source of a particular tissue. Such need arises, for example, in forensics when presented with tissue of unknown origin. Appropriate reagents can comprise, for example, DNA probes or primers prepared from the sequences of the present invention, specific to tissues, including but not limited to those shown in Table IB. Panels of such reagents can identify tissue by species and or by organ type, hi a similar fashion, these reagents can be used to screen tissue cultures for contamination. Additional non- limiting examples of such uses are further described herein.
The polynucleotides of the present invention are also useful as hybridization probes for differential identification of the tissue(s) or cell type(s) present in a biological sample. Similarly, polypeptides and antibodies directed to polypeptides of the present invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays) or cell type(s) (e.g., immunocytochemistry assays). In addition, for a number of disorders of the above tissues or cells, significantly higher or lower levels of gene expression of the polynucleotides/polypeptides of the present invention may be detected in certain tissues (e.g., tissues expressing polypeptides and/or polynucleotides of the present invention, for example, those disclosed in column 7 of Table IB.l, and/or cancerous and/or wounded tissues) or bodily fluids (e.g., semen, lymph, vaginal pool, serum, plasma, urine, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" gene expression level, i.e., the expression level in healthy tissue from an individual not having the disorder. Thus, the invention provides a diagnostic method of a disorder, which involves: (a) assaying gene expression level in cells or body fluid of an individual; (b) comparing the gene expression level with a standard gene expression level, whereby an increase or decrease in the assayed gene expression level compared to the standard expression level is indicative of a disorder. h the very least, the polynucleotides of the present invention can be used as molecular weight markers on Southern gels, as diagnostic probes for the presence of a specific mRNA in a particular cell type, as a probe to "subtract-out" known sequences in the process of discovering novel polynucleotides, for selecting and making oligomers for attachment to a "gene chip" or other support, to raise anti-DNA antibodies using DNA immunization techniques, and as an antigen to elicit an immune response.
Uses of the Polypeptides Each of the polypeptides identified herein can be used in numerous ways. The following description should be considered exemplary and utilizes known techniques.
Polypeptides and antibodies directed to polypeptides of the present invention are useful to provide immunological probes for differential identification of the tissue(s) (e.g., immunohistochemistry assays such as, for example, ABC immunoperoxidase (Hsu et al., J. Histochem. Cytochem. 29:577-580 (1981)) or cell type(s) (e.g., immunocytochemistry assays).
Antibodies can be used to assay levels of polypeptides encoded by polynucleotides of the invention in a biological sample using classical immunohistological methods known to those of skill in the art (e.g., see Jalkanen, et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting protein gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase; radioisotopes, such as iodine ( I, I, I, I), carbon (1 C), sulfur (35S), tritium (3H), indium (115πTn, 113mIn, U2In, In), and technetium (99Tc, 99mTc), thallium (201Ti), gallium (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F), 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 47Sc, 186Re, 188Re, 142Pr, 105Rh, 97Ru; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin.
In addition to assaying levels of polypeptide of the present invention in a biological sample, proteins can also be detected in vivo by imaging. Antibody labels or markers for in vivo imaging of protein include those detectable by X-radiography, NMR or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma.
A protein-specific antibody or antibody fragment which has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 131I, n2tα, 99mTc, (131I, 125I, 123I, 121I), carbon (I C), sulfur (35S), tritium (3H), indium (π5raIn, 113nTn, 112hι, mIn), and technetium (99Tc, 99mTc), thaUium (201Ti), galhum (68Ga, 67Ga), palladium (103Pd), molybdenum (99Mo), xenon (133Xe), fluorine (18F, 153Sm, 177Lu, 159Gd, 149Pm, 140La, 175Yb, 166Ho, 90Y, 7Sc, 186Re, 188Re, 14 Pr, 105Rh, 97Ru), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for immune system disorder. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images, hi the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99raTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells that express the polypeptide encoded by a polynucleotide of the invention. In vivo tumor imaging is described in S.W. Burchiel et al., "Emmunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in Tumor Imaging: Tlie Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing hie. (1982)). In one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (e.g., polypeptides encoded by polynucleotides of the invention and/or antibodies) that are associated with heterologous polypeptides or nucleic acids, hi one example, the invention provides a method for delivering a therapeutic protein into the targeted cell. In another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell.
In another embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention in association with toxins or cytotoxic prodrugs.
By "toxin" is meant one or more compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. "Toxin" also includes a cytostatic or cytocidal agent, a therapeutic agent or a radioactive metal ion, e.g., alpha-emitters such as, for example, 213Bi, or other radioisotopes such as, for example, 103Pd, 133Xe, 1311, 6sGe, 57Co, 65Zn, S5Sr, 32P, 35S, 90Y, 153Sm, 153Gd, 169Yb, 51Cr, 54Mn, 75Se, 113Sn, 90Yttrium, 117Tin, 186Rhenium, 166Holmium, and 188Rhenium; luminescent labels, such as luminol; and fluorescent labels, such as fluorescein and rhodamine, and biotin. hi a specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope 90Y. In another specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope mIn. In a further specific embodiment, the invention provides a method for the specific destruction of cells (e.g., the destruction of tumor cells) by administering polypeptides of the invention or antibodies of the invention in association with the radioisotope 131I. Techniques known in the art may be applied to label polypeptides of the invention
(including antibodies). Such techniques include, but are not limited to, the use of bifunctional conjugating agents (see e.g., U.S. Patent Nos. 5,756,065; 5,714,631; 5,696,239; 5,652,361;
5,505,931; 5,489,425; 5,435,990; 5,428,139; 5,342,604; 5,274,119; 4,994,560; and 5,808,003; the contents of each of which are hereby incorporated by reference in its entirety).
Thus, the invention provides a diagnostic method of a disorder, which involves (a) assaying the expression level of a polypeptide of the present invention in cells or body fluid of an individual; and (b) comparing the assayed polypeptide expression level with a standard polypeptide expression level, whereby an increase or decrease in the assayed polypeptide expression level compared to the standard expression level is indicative of a disorder. With respect to cancer, the presence of a relatively high amount of transcript in biopsied tissue from an individual may indicate a predisposition for the development of the disease, or may provide a means for detecting the disease prior to the appearance of actual clinical symptoms. A more definitive diagnosis of this type may allow health professionals to employ preventative measures or aggressive treatment earlier thereby preventing the development or further progression of the cancer.
Moreover, polypeptides of the present invention can be used to treat or prevent diseases or conditions such as, for example, neural disorders, immune system disorders, muscular disorders, reproductive disorders, gastrointestinal disorders, pulmonary disorders, cardiovascular disorders, renal disorders, proliferative disorders, and/or cancerous diseases and conditions. For example, patients can be administered a polypeptide of the present invention in an effort to replace absent or decreased levels of the polypeptide (e.g., insulin), to supplement absent or decreased levels of a different polypeptide (e.g., hemoglobin S for hemoglobin B, SOD, catalase, DNA repair proteins), to inhibit the activity of a polypeptide (e.g., an oncogene or tumor supressor), to activate the activity of a polypeptide (e.g., by binding to a receptor), to reduce the activity of a membrane bound receptor by competing with it for free ligand (e.g., soluble TNF receptors used in reducing inflammation), or to bring about a desired response (e.g., blood vessel growth inhibition, enhancement of the immune response to proliferative cells or tissues).
Similarly, antibodies directed to a polypeptide of the present invention can also be used to treat disease (as described supra, and elsewhere herein). For example, administration of an antibody directed to a polypeptide of the present invention can bind, and/or neutralize the polypeptide, and/or reduce overproduction of the polypeptide. Similarly, administration of an antibody can activate the polypeptide, such as by binding to a polypeptide bound to a membrane (receptor). At the very least, the polypeptides of the present invention can be used as molecular weight markers on SDS-PAGE gels or on molecular sieve gel filtration columns using methods well known to those of skill in the art. Polypeptides can also be used to raise antibodies, which in turn are used to measure protein expression from a recombinant cell, as a way of assessing transformation of the host cell. Moreover, the polypeptides of the present invention can be used to test the biological activities described herein.
Diagnostic Assays
The compounds of the present invention are useful for diagnosis, treatment, prevention and/or prognosis of various disorders in mammals, preferably humans. Such disorders include, but are not limited to, those related to biological activities described in Table ID and, also as described herein under the section heading "Biological Activities". For a number of disorders, substantially altered (increased or decreased) levels of gene expression can be detected in tissues, cells or bodily fluids (e.g., sera, plasma, urine, semen, synovial fluid or spinal fluid) taken from an individual having such a disorder, relative to a "standard" gene expression level, that is, the expression level in tissues or bodily fluids from an individual not having the disorder. Thus, the invention provides a diagnostic method useful during diagnosis of a disorder, which involves measuring the expression level of the gene encoding the polypeptide in tissues, cells or body fluid from an individual and comparing the measured gene expression level with a standard gene expression level, whereby an increase or decrease in the gene expression level(s) compared to the standard is indicative of a disorder. These diagnostic assays may be performed in vivo or in vitro, such as, for example, on blood samples, biopsy tissue or autopsy tissue.
The present invention is also useful as a prognostic indicator, whereby patients exhibiting enhanced or depressed gene expression will experience a worse clinical outcome relative to patients expressing the gene at a level nearer the standard level.
In certain embodiments, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be- used to diagnose and/or prognosticate diseases and/or disorders associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table 1B.2, column 5 (Tissue Distribution Library Code).
By "assaying the expression level of the gene encoding the polypeptide" is intended qualitatively or quantitatively measuring or estimating the level of the polypeptide of the invention or the level of the mRNA encoding the polypeptide of the invention in a first biological sample either directly (e.g., by determining or estimating absolute protein level or mRNA level) or relatively (e.g., by comparing to the polypeptide level or mRNA level in a second biological sample). Preferably, the polypeptide expression level or mRNA level in the first biological sample is measured or estimated and compared to a standard polypeptide level or mRNA level, the standard being taken from a second biological sample obtained from an individual not having the disorder or being determined by averaging levels from a population of individuals not having the disorder. As will be appreciated in the art, once a standard polypeptide level or mRNA level is known, it can be used repeatedly as a standard for comparison.
By "biological sample" is intended any biological sample obtained from an individual, cell line, tissue culture, or other source containing polypeptides of the invention (including portions thereof) or mRNA. As indicated, biological samples include body fluids (such as sera, plasma, urine, synovial fluid and spinal fluid) and tissue sources found to express the full length or fragments thereof of a polypeptide or mRNA. Methods for obtaining tissue biopsies and body fluids from mammals are well known in the art. Where the biological sample is to include mRNA, a tissue biopsy is the preferred source. Total cellular RNA can be isolated from a biological sample using any suitable technique such as the single-step guanidinium-thiocyanate-phenol-chloroform method described in Chomczynski and Sacchi, Anal. Biochem. 162:156-159 (1987). Levels of mRNA encoding the polypeptides of the invention are then assayed using any appropriate method. These include Northern blot analysis, SI nuclease mapping, the polymerase chain reaction (PCR), reverse transcription in combination with the polymerase chain reaction ,(RT-PCR), and reverse transcription in combination with the ligase chain reaction (RT-LCR).
The present invention also relates to diagnostic assays such as quantitative and diagnostic assays for detecting levels of polypeptides of the invention, in a biological sample (e.g., cells and tissues), including determination of normal and abnormal levels of polypeptides. Thus, for instance, a diagnostic assay in accordance with the invention for detecting over-expression of polypeptides of the invention compared to normal control tissue samples may be used to detect the presence of tumors. Assay techniques that can be used to determine levels of a polypeptide, such as a polypeptide of the present invention in a sample derived from a host are well-known to those of skill in the art. Such assay methods include radioimmunoassays, competitive-binding assays, Western Blot analysis and ELISA assays. Assaying polypeptide levels in a biological sample can occur using any art-known method.
Assaying polypeptide levels in a biological sample can occur using antibody-based techniques. For example, polypeptide expression in tissues can be studied with classical immunohistological methods (Jalkanen et al., J. Cell. Biol. 101:976-985 (1985); Jalkanen, M., et al., J. Cell. Biol. 105:3087-3096 (1987)). Other antibody-based methods useful for detecting polypeptide gene expression include immunoassays, such as the enzyme linked immunosorbent assay (ELISA) and the radioimmunoassay (RIA). Suitable antibody assay labels are known in the art and include enzyme labels, such as, glucose oxidase, and radioisotopes, such as iodine (125I, 121I), carbon (14C), sulfur (35S), tritium (3H), indium (112In), and technetium (99mTc), and fluorescent labels, such as fluorescein and rhodamine, and biotin.
The tissue or cell type to be analyzed will generally include those that are known, or suspected, to express the gene of inteest (such as, for example, cancer). The protein isolation methods employed herein may, for example, be such as those described in Hariow and Lane (Hariow, E. and Lane, D., 1988, "Antibodies: A Laboratory Manual", Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York), which is incorporated herein by reference in its entirety. The isolated cells can be derived from cell culture or from a patient. The analysis of cells taken from culture may be a necessary step in the assessment of cells that could be used as part of a cell-based gene therapy technique or, alternatively, to test the effect of compounds on the expression of the gene.
For example, antibodies, or fragments of antibodies, such as those described herein, may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.
In a preferred embodiment, antibodies, or fragments of antibodies directed to any one or all of the predicted epitope domains of the polypeptides of the invention (shown in Table IB) may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection.
In an additional preferred embodiment, antibodies, or fragments of antibodies directed to a conformational epitope of a polypeptide of the invention may be used to quantitatively or qualitatively detect the presence of gene products or conserved variants or peptide fragments thereof. This can be accomplished, for example, by immunofluorescence techniques employing a fluorescently labeled antibody coupled with light microscopic, flow cytometric, or fluorimetric detection. The antibodies (or fragments thereof), and/or polypeptides of the present invention may, additionally, be employed histologically, as in immunofluorescence, immunoelectron microscopy or non-immunological assays, for in situ detection of gene products or conserved variants or peptide fragments thereof. In situ detection may be accomplished by removing a histological specimen from a patient, and applying thereto a labeled antibody or polypeptide of the present invention. The antibody (or fragment thereof) or polypeptide is preferably applied by overlaying the labeled antibody (or fragment) onto a biological sample. Through the use of such a procedure, it is possible to determine not only the presence of the gene product, or conserved variants or peptide fragments, or polypeptide binding, but also its distribution in the examined tissue. Using the present invention, those of ordinary skill will readily perceive that any of a wide variety of histological methods (such as staining procedures) can be modified in order to achieve such in situ detection.
Immunoassays and non-immunoassays for gene products or conserved variants or peptide fragments thereof will typically comprise incubating a sample, such as a biological fluid, a tissue extract, freshly harvested cells, or lysates of cells which have been incubated in cell culture, in the presence of a detectably labeled antibody capable of binding gene products or conserved variants or peptide fragments thereof, and detecting the bound antibody by any of a number of techniques well-known in the art.
The biological sample may be brought in contact with and immobilized onto a solid phase support or carrier such as nitrocellulose, or other solid support that is capable of immobilizing cells, cell particles or soluble proteins. The support may then be washed with suitable buffers followed by treatment with the detectably labeled antibody or detectable polypeptide of the invention. The solid phase support may then be washed with the buffer a second time to remove unbound antibody or polypeptide. Optionally the antibody is subsequently labeled. The amount of bound label on solid support may then be detected by conventional means.
By "solid phase support or carrier" is intended any support capable of binding an antigen or an antibody. Well-known supports or carriers include glass, polystyrene, polypropylene, polyethylene, dextran, nylon, amylases, natural and modified celluloses, polyacrylamides, gabbros, and magnetite. The nature of the carrier can be either soluble to some extent or insoluble for the purposes of the present invention. The support material may have virtually any possible structural configuration so long as the coupled molecule is capable of binding to an antigen or antibody. Thus, the support configuration may be spherical, as in a bead, or cylindrical, as in the inside surface of a test tube, or the external surface of a rod. Alternatively, the surface may be flat such as a sheet, test strip, etc. Preferred supports include polystyrene beads. Those skilled in the art will know many other suitable carriers for binding antibody or antigen, or will be able to ascertain the same by use of routine experimentation.
The binding activity of a given lot of antibody or antigen polypeptide may be determined according to well-known methods. Those skilled in the art will be able to determine operative and optimal assay conditions for each determination by employing routine experimentation.
In addition to assaying polypeptide levels or polynucleotide levels in a biological sample obtained from an individual, polypeptide or polynucleotide can also be detected in vivo by imaging. For example, in one embodiment of the invention, polypeptides and/or antibodies of the invention are used to image diseased cells, such as neoplasms. In another embodiment, polynucleotides of the invention (e.g., polynucleotides complementary to all or a portion of an mRNA) and/or antibodies (e.g., antibodies directed to any one or a combination of the epitopes of a polypeptide of the invention, antibodies directed to a conformational epitope of a polypeptide of the invention, or antibodies directed to the full length polypeptide expressed on the cell surface of a mammalian cell) are used to image diseased or neoplastic cells.
Antibody labels or markers for in vivo imaging of polypeptides of the invention include those detectable by X-radiography, NMR, MRI, CAT-scans or ESR. For X-radiography, suitable labels include radioisotopes such as barium or cesium, which emit detectable radiation but are not overtly harmful to the subject. Suitable markers for NMR and ESR include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by labeling of nutrients for the relevant hybridoma. Where in vivo imaging is used to detect enhanced levels of polypeptides for diagnosis in humans, it may be preferable to use human antibodies or "humanized" chimeric monoclonal antibodies. Such antibodies can be produced using techniques described herein or otherwise known in the art. For example methods for producing chimeric antibodies are known in the art. See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., WO 8702671; Boulianne et al, Nature 312:643 (1984); Neuberger et al, Nature 314:268 (1985).
Additionally, any polypeptides of the invention whose presence can be detected can be administered. For example, polypeptides of the invention labeled with a radio-opaque or other appropriate compound can be administered and visualized in vivo, as discussed, above for labeled antibodies. Further, such polypeptides can be utilized for in vitro diagnostic procedures.
A polypeptide-specific antibody or antibody fragment that has been labeled with an appropriate detectable imaging moiety, such as a radioisotope (for example, 13II, I12lh, 99mTc), a radio-opaque substance, or a material detectable by nuclear magnetic resonance, is introduced (for example, parenterally, subcutaneously or intraperitoneally) into the mammal to be examined for a disorder. It will be understood in the art that the size of the subject and the imaging system used will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of 99mTc. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells that contain the antigenic protein. In vivo tumor imaging is described in S.W. Burchiel et al., ''Immunopharmacokinetics of Radiolabeled Antibodies and Their Fragments" (Chapter 13 in Tumor Imaging: Tlie Radiochemical Detection of Cancer, S.W. Burchiel and B. A. Rhodes, eds., Masson Publishing hie. (1982)).
With respect to antibodies, one of the ways in which an antibody of the present invention can be detectably labeled is by linking the same to a reporter enzyme and using the linked product in an enzyme immunoassay (EIA) (Voller, A., "The Enzyme Linked Immunosorbent Assay (ELISA)", 1978, Diagnostic Horizons 2:1-7, Microbiological Associates Quarterly Publication, Walkersville, MD); Voller et al., J. Clin. Pathol. 31:507-520 (1978); Butler, J.E., Meth. Enzymol 73:482-523 (1981); Maggio, E. (ed.), 1980, Enzyme Immunoassay, CRC Press, Boca Raton, FL,; Ishikawa, E. et al., (eds.), 1981, Enzyme Immunoassay, Kgaku Shoin, Tokyo). The reporter enzyme that is bound to the antibody will react with an appropriate substrate, preferably a chromogenic substrate, in such a manner as to produce a chemical moiety which can be detected, for example, by spectrophotometric, fluorimetric or by visual means. Reporter enzymes which can be used to detectably label the antibody include, but are not limited to, malate dehydrogenase, staphylococcal nuclease, delta-5-steroid isomerase, yeast alcohol dehydrogenase, alpha- glycerophosphate, dehydrogenase, triose phosphate isomerase, horseradish peroxidase, alkaline phosphatase, asparaginase, glucose oxidase, beta-galactosidase, ribonuclease, urease, catalase, glucose-6-phosphate dehydrogenase, glucoamylase and acetylcholinesterase. Additionally, the detection can be accomplished by colorimetric methods that employ a chromogenic substrate for the reporter enzyme. Detection may also be accomplished by visual comparison of the extent of enzymatic reaction of a substrate in comparison with similarly prepared standards.
Detection may also be accomplished using any of a variety of other immunoassays. For example, by radioactively labeling the antibodies or antibody fragments, it is possible to detect polypeptides through the use of a radioimmunoassay (RIA) (see, for example, Weintraub, B., Principles of Radioimmunoassays, Seventh Training Course on Radioligand Assay Techniques, The Endocrine Society, March, 1986, which is incorporated by reference herein). The radioactive isotope can be detected by means including, but not limited to, a gamma counter, a scintillation counter, or autoradiography.
It is also possible to label the antibody with a fluorescent compound. When the fluorescently labeled antibody is exposed to light of the proper wave length, its presence can then be detected due to fluorescence. Among the most commonly used fluorescent labeling compounds are fluorescein isothiocyanate, rhodamine, phycoerythrin, phycocyanin, allophycocyanin, ophthaldehyde and fluorescamine.
The antibody can also be detectably labeled using fluorescence emitting metals such as 152Eu, or others of the lanthanide series. These metals can be attached to the antibody using such metal chelating groups as diethylenetriaminepentacetic acid (DTPA) or ethylenediaminetetraacetic acid (EDTA). The antibody also can be detectably labeled by coupling it to a chemiluminescent compound. The presence of the chemiluminescent-tagged antibody is then determined by detecting the presence of luminescence that arises during the course of a chemical reaction. Examples of particularly useful chemiluminescent labeling compounds are luminol, isoluminol, theromatic acridinium ester, imidazole, acridinium salt, and oxalate ester. Likewise, a bioluminescent compound may be used to label the antibody of the present invention. Bioluminescence is a type of chemiluminescence found in biological systems in, which a catalytic protein increases the efficiency of the chemiluminescent reaction. The presence of a bioluminescent protein is determined by detecting the presence of luminescence. Important bioluminescent compounds for purposes of labeling are luciferin, luciferase and aequorin.
Methods for Detecting Diseases
In general, a disease may be detected in a patient based on the presence of one or more proteins of the invention and/or polynucleotides encoding such proteins in a biological sample (for example, blood, sera, urine, and/or tumor biopsies) obtained from the patient. In other words, such proteins may be used as markers to indicate the presence or absence of a disease or disorder, including cancer and/or as described elsewhere herein. In addition, such proteins may be useful for the detection of other diseases and cancers. The binding agents provided herein generally permit detection of the level of antigen that binds to the agent in the biological sample. Polynucleotide primers and probes may be used to detect the level of mRNA encoding polypeptides of the invention, which is also indicative of the presence or absence of a disease or disorder, including cancer, hi general, polypeptides of the invention should be present at a level that is at least three fold higher in diseased tissue than in normal tissue.
There are a variety of assay formats known to those of ordinary skill in the art for using a binding agent to detect polypeptide markers in a sample. See, e.g., Hariow and Lane, supra. In general, the presence or absence of a disease in a patient may be determined by (a) contacting a biological sample obtained from a patient with a binding agent; (b) detecting in the sample a level of polypeptide that binds to the binding agent; and (c) comparing the level of polypeptide with a predetermined cut-off value.
In a preferred embodiment, the assay involves the use of a binding agent(s) immobilized on a solid support to bind to and remove the polypeptide of the invention from the remainder of the sample. The bound polypeptide may then be detected using a detection reagent that contains a reporter group and specifically binds to the binding agent/polypeptide complex. Such detection reagents may comprise, for example, a binding agent that specifically binds to the polypeptide or an antibody or other agent that specifically binds to the binding agent, such as an anti- immunoglobulin, protein G, protein A or a lectin. Alternatively, a competitive assay may be utilized, in which a polypeptide is labeled with a reporter group and allowed to bind to the immobilized binding agent after incubation of the binding agent with the sample. The extent to which components of the sample inhibit the binding of the labeled polypeptide to the binding agent is indicative of the reactivity of the sample with the immobilized binding agent. Suitable polypeptides for use within such assays include polypeptides of the invention and portions thereof, or antibodies, to which the binding agent binds, as described above. The solid support may be any material known to those of skill in the art to which polypeptides of the invention may be attached. For example, the solid support may be a test well in a microtiter plate or a nitrocellulose or other suitable membrane. Alternatively, the support may be a bead or disc, such as glass fiberglass, latex or a plastic material such as polystyrene or polyvinylchloride. The support may also be a magnetic particle or a fiber optic sensor, such as those disclosed, for example, in U.S. Patent No. 5,359,681. The binding agent may be immobilized on the solid support using a variety of techniques known to those of skill in the art, which are amply described in the patent and scientific literature. In the context of the present invention, the term "immobilization" refers to both noncovalent association, such as adsorption, and covalent attachment (which may be a direct linkage between the agent and functional groups on the support or may be a linkage by way of a cross-linking agent). Immobilization by adsorption to a well in a microtiter plate or to a membrane is preferred. In such cases, adsorption may be achieved by contacting the binding agent, in a suitable buffer, with the solid support for the suitable amount of time. The contact time varies with temperature, but is typically between about 1 hour and about 1 day. In general, contacting a well of plastic microtiter plate (such as polystyrene or polyvinylchloride) with an amount of binding agent ranging from about 10 ng to about 10 ug, and preferably about 100 ng to about 1 ug, is sufficient to immobilize an adequate amount of binding agent.
Covalent attachment of binding agent to a solid support may generally be achieved by first reacting the support with a bifunctional reagent that will react with both the support and a functional group, such as a hydroxyl or amino group, on the binding agent. For example, the binding agent may be covalently attached to supports having an appropriate polymer coating using benzoquinone or by condensation of an aldehyde group on the support with an amine and an active hydrogen on the binding partner (see, e.g., Pierce Immunotechnology Catalog and Handbook, 1991, at A12-A13).
Gene Therapy Methods
Also encompassed by the invention are gene therapy methods for treating or preventing disorders, diseases and conditions. The gene therapy methods relate to the introduction of nucleic acid (DNA, RNA and antisense DNA or RNA) sequences into an animal to achieve expression of the polypeptide of the present invention. This method requires a polynucleotide that codes for a polypeptide of the present invention operatively linked to a promoter and any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques are known in the art, see, for example, WO90/11092, which is herein incorporated by reference.
Thus, for example, cells from a patient may be engineered with a polynucleotide (DNA or RNA) comprising a promoter operably linked to a polynucleotide of the present invention ex vivo, with the engineered cells then being provided to a patient to be treated with the polypeptide of the present invention. Such methods are well-known in the art. For example, see Belldegrun, A., et al., J. Natl. Cancer Inst. 85: 207-216 (1993); Ferrantini, M. et al., Cancer Research 53: 1107-1112 (1993); Ferrantini, M. et al., J. Immunology 153: 4604-4615 (1994); Kaido, T., et al., Int. J. Cancer 60: 221-229 (1995); Ogura, H., et al., Cancer Research 50: 5102-5106 (1990); Santodonato, L., et al., Human Gene Therapy 7:1-10 (1996); Santodonato, L., et al., Gene Therapy 4:1246-1255 (1997); and Zhang, J.-F. et al., Cancer Gene Therapy 3: 31-38 (1996)), which are herein incorporated by reference. In one embodiment, the cells thatare engineered are arterial cells. The arterial cells may be reintroduced into the patient through direct injection to the artery, the tissues surrounding the artery, or through catheter injection.
As discussed in more detail below, the polynucleotide constructs can be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, and the like). The polynucleotide constructs may be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
In one embodiment, the polynucleotide of the present invention is delivered as a naked polynucleotide. The term "naked" polynucleotide, DNA or RNA refers to sequences that are free from any delivery vehicle that acts to assist, promote or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotide of the present invention can also be delivered in liposome formulations and lipofectin formulations and the like can be prepared by methods well known to those skilled in the art. Such methods are described, for example, in U.S. Patent Nos. 5,593,972, 5,589,466, and 5,580,859, which are herein incorporated by reference.
The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Appropriate vectors include pWLNEO, pSV2CAT, pOG44, pXTl and pSG available from Stratagene; pSVK3, pBPV, pMSG and pSVL available from Pharmacia; and pEFl/V5, pcDNA3.1, and pRc/CMV2 available from Invitrogen. Other suitable vectors will be readily apparent to the skilled artisan.
Any strong promoter known to those skilled in the art can be used for driving the expression of the polynucleotide sequence. Suitable promoters include adenoviral promoters, such as the adenoviral major late promoter; or heterologous promoters, such as the cytomegalovirus (CMV) promoter; the respiratory syncytial virus (RSV) promoter; inducible promoters, such as the MMT promoter, the metallothionem promoter; heat shock promoters; the albumin promoter; the ApoAI promoter; human globin promoters; viral thymidine kinase promoters, such as the Herpes Simplex thymidine kinase promoter; retroviral LTRs; the b-actin promoter; and human growth hormone promoters. The promoter also may be the native promoter for the polynucleotide of the present invention.
Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months. The polynucleotide construct can be delivered to the interstitial space of tissues within the an animal, including of muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular, fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells that are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides.
For the naked nucleic acid sequence injection, an effective dosage amount of DNA or
RNA will be in the range of from about 0.05 mg/kg body weight to about 50 mg/kg body weight.
Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration.
The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. In addition, naked DNA constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.
The naked polynucleotides are delivered by any method known in the art, including, but not limited to, direct needle injection at the delivery site, intravenous injection, topical administration, catheter infusion, and so-called "gene guns". These delivery methods are known in the art.
The constructs may also be delivered with delivery vehicles such as viral sequences, viral particles, liposome formulations, lipofectin, precipitating agents, etc. Such methods of delivery are known in the art.
In certain embodiments, the polynucleotide constructs are complexed in a liposome preparation. Liposomal preparations for use in the instant invention include cationic (positively charged), anionic (negatively charged) and neutral preparations. However, cationic liposomes are particularly preferred because a tight charge complex can be formed between the cationic liposome and the polyanionic nucleic acid. Cationic liposomes have been shown to mediate intracellular delivery of plasmid DNA (Feigner et al., Proc. Natl. Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference); mRNA (Malone et al., Proc. Natl. Acad. Sci. USA (1989) 86:6077-6081, which is herein incorporated by reference); and purified transcription factors (Debs et al., J. Biol. Chem. (1990) 265:10189-10192, which is herein incorporated by reference), in functional form.
Cationic liposomes are readily available. For example, N[l-2,3-dioleyloxy)propyl]-N,N,N-triethylammonium (DOTMA) liposomes are particularly useful and are available under the trademark Lipofectin, from GIBCO BRL, Grand Island, N.Y. (See, also, Feigner et al., Proc. Natl Acad. Sci. USA (1987) 84:7413-7416, which is herein incorporated by reference). Other commercially available liposomes include transfectace (DDAB/DOPE) and DOTAP/DOPE (Boehringer). Other cationic liposomes can be prepared from readily available materials using techniques well known in the art. See, e.g. PCT Publication No. WO 90/11092 (which is herein incorporated by reference) for a description of the synthesis of DOTAP (l,2-bis(oleoyloxy)-3- (trimethylammonio)propane) liposomes. Preparation of DOTMA liposomes is explained in the literature, see, e.g., P. Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, which is herein incorporated by reference. Similar methods can be used to prepare liposomes from other cationic lipid materials.
Similarly, anionic and neutral liposomes are readily available, such as from Avanti Polar Lipids (Birmingham, Ala.), or can be easily prepared using readily available materials. Such materials include phosphatidyl, choline, cholesterol, phosphatidyl ethanolamine, dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), dioleoylphoshatidyl ethanolamine (DOPE), among others. These materials can also be mixed with the DOTMA and DOTAP starting materials in appropriate ratios. Methods for making liposomes using these materials are well known in the art.
For example, commercially dioleoylphosphatidyl choline (DOPC), dioleoylphosphatidyl glycerol (DOPG), and dioleoylphosphatidyl ethanolamine (DOPE) can be used in various combinations to make conventional liposomes, with or without the addition of cholesterol. Thus, for example, DOPG7DOPC vesicles can be prepared by drying 50 mg each of DOPG and DOPC under a stream of nitrogen gas into a sonication vial. The sample is placed under a vacuum pump overnight and is hydrated the following day with deionized water. The sample is then sonicated for 2 hours in a capped vial, using a Heat Systems model 350 sonicator equipped with an inverted cup (bath type) probe at the maximum setting while the bath is circulated at 15EC. Alternatively, negatively charged vesicles can be prepared without sonication to produce multilamellar vesicles or by extrusion through nucleopore membranes to produce unilamellar vesicles of discrete size. Other methods are known and available to those of skill in the art. The liposomes can comprise multilamellar vesicles (MLVs), small unilamellar vesicles
(SUVs), or large unilamellar vesicles (LUVs), with SUVs being preferred. The various liposome-nucleic acid complexes are prepared using methods well known in the art. See, e.g., Straubinger et al., Methods of Immunology (1983), 101:512-527, which is herein incorporated by reference. For example, MLVs containing nucleic acid can be prepared by depositing a thin film of phospholipid on the walls of a glass tube and subsequently hydrating with a solution of the material to be encapsulated. SUVs are prepared by extended sonication of MLVs to produce a homogeneous population of unilamellar liposomes. The material to be entrapped is added to a suspension of preformed MLVs and then sonicated. When using liposomes containing cationic lipids, the dried lipid film is resuspended in an appropriate solution such as sterile water or an isotonic buffer solution such as 10 mM Tris/NaCl, sonicated, and then the preformed liposomes are mixed directly with the DNA. The liposome and DNA form a very stable complex due to binding of the positively charged liposomes to the cationic DNA. SUVs find use with small nucleic acid fragments. LUVs are prepared by a number of methods, well known in the art. Commonly used methods include Ca2+-EDTA chelation (Papahadjopoulos et al., Biochim. Biophys. Acta (1975) 394:483; Wilson et al., Cell 17:77 (1979)); ether injection (Deamer, D. and Bangham, A., Biochim. Biophys. Acta 443:629 (1976); Ostro et al., Biochem. Biophys. Res. Commun. 76:836 (1977); Fraley et al., Proc. Natl. Acad. Sci. USA 76:3348 (1979)); detergent dialysis (Enoch, H. and Strittmatter, P., Proc. Natl. Acad. Sci. USA 76:145 (1979)); and reverse-phase evaporation (REV) (Fraley et al., J. Biol. Chem. 255:10431 (1980); Szoka, F. and Papahadjopoulos, D., Proc. Natl. Acad. Sci. USA 75:145 (1978); Schaefer-Ridder et al., Science 215: 166 (1982)), which are herein incorporated by reference. Generally, the ratio of DNA to liposomes will be from about 10:1 to about 1:10.
Preferably, the ration will be from about 5:1 to about 1:5. More preferably, the ration will be about 3:1 to about 1:3. Still more preferably, the ratio will be about 1:1.
U.S. Patent No. 5,676,954 (which is herein incorporated by reference) reports on the injection of genetic material, complexed with cationic liposomes carriers, into mice. U.S. Patent Nos. 4,897,355, 4,946,787, 5,049,386, 5,459,127, 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 (which are herein incorporated by reference) provide cationic lipids for use in transfecting DNA into cells and mammals. U.S. Patent Nos. 5,589,466, 5,693,622, 5,580,859, 5,703,055, and international publication no. WO 94/9469 provides methods for delivering DNA-cationic lipid complexes to mammals. In certain embodiments, cells are engineered, ex vivo or in vivo, using a retroviral particle containing RNA that comprises a sequence encoding a polypeptide of the present invention. Retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, Rous sarcoma Virus, Harvey Sarcoma Virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.
The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, R-2, R-AM, PA12, T19-14X, VT-19-17-H2, RCRE, RCRIP, GP+E-86, GP+envAml2, and DAN cell lines as described in Miller, Human Gene Therapy 1:5-14 (1990), which is mcorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and CaP0 precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.
The producer cell line generates infectious retroviral vector particles that include polynucleotide encoding a polypeptide of the present invention. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express a polypeptide of the present invention. hi certain other embodiments, cells are engineered, ex vivo or in vivo, with polynucleotide contained in an adenovirus vector. Adenovirus can be manipulated such that it encodes and expresses a polypeptide of the present invention, and at the same time is inactivated in terms of its ability to replicate in a normal lytic viral life cycle. Adenovirus expression is achieved without integration of the viral DNA into the host cell chromosome, thereby alleviating concerns about insertional mutagenesis. Furthermore, adenoviruses have been used as live enteric vaccines for many years with an excellent safety profile (Schwartz et al. Am. Rev. Respir. Dis.109:233-238 (1974)). Finally, adenovirus mediated gene transfer has been demonstrated in a number of instances including transfer of alpha- 1-antitrypsin and CFTR to the lungs of cotton rats (Rosenfeld, M. A. et al. (1991) Science 252:431-434; Rosenfeld et al., (1992) Cell 68:143-155). Furthermore, extensive studies to attempt to establish adenovirus as a causative agent in human cancer were uniformly negative (Green, M. et al. (1979) Proc. Natl. Acad. Sci. USA 76:6606).
Suitable adenoviral vectors useful in the present invention are described, for example, in Kozarsky and Wilson, Curr. Opin. Genet. Devel. 3:499-503 (1993); Rosenfeld et al, Cell 68:143- 155 (1992); Engelhardt et al., Human Genet. Ther. 4:759-769 (1993); Yang et al., Nature Genet. 7:362-369 (1994); Wilson et al., Nature 365:691-692 (1993); and U.S. Patent No. 5,652,224, which are herein incorporated by reference. For example, the adenovirus vector Ad2 is useful and can be grown in human 293 cells. These cells contain the El region of adenovirus and constitutively express Ela and Elb, which complement the defective adenoviruses by providing the products of the genes deleted from the vector. In addition to Ad2, other varieties of adenovirus (e.g., Ad3, Ad5, and Ad7) are also useful in the present invention.
Preferably, the adenoviruses used in the present invention are replication deficient. Replication deficient adenoviruses require the aid of a helper virus and/or packaging cell line to form infectious particles. The resulting virus is capable of infecting cells and can express a polynucleotide of interest that is operably linked to a promoter, but cannot replicate in most cells. Replication deficient adenoviruses may be deleted in one or more of aU or a portion of the foUowing genes: Ela, Elb, E3, E4, E2a, or LI through L5.
In certain other embodiments, the cells are engineered, ex vivo or in vivo, using an adeno- associated virus (AAV). AAVs are naturally occurring defective viruses that require helper viruses to produce infectious particles (Muzyczka, N., Curr. Topics in Microbiol. Immunol. 158:97 (1992)). It is also one of the few viruses that may integrate its DNA into non-dividing cells. Vectors containing as little as 300 base pairs of AAV can be packaged and can integrate, but space for exogenous DNA is limited to about 4.5 kb. Methods for producing and using such AAVs are known in the art. See, for example, U.S. Patent Nos. 5,139,941, 5,173,414, 5,354,678, 5,436,146, 5,474,935, 5,478,745, and 5,589,377. For example, an appropriate AAV vector for use in the present invention will include all the sequences necessary for DNA replication, encapsidation, and host-cell integration. The polynucleotide construct is inserted into the AAV vector using standard cloning methods, such as those found in Sambrook et al., Molecxύar Cloning: A Laboratory Manual, Cold Spring Harbor Press (1989). The recombinant AAV vector is then transfected into packaging cells which are infected with a helper virus, using any standard technique, including lipofection, electroporation, calcium phosphate precipitation, etc. Appropriate helper viruses include adenoviruses, cytomegaloviruses, vaccinia viruses, or herpes viruses. Once the packaging cells are transfected and infected, they will produce infectious AAV viral particles that contain the polynucleotide construct. These viral particles are then used to transduce eukaryotic cells, either ex vivo or in vivo. The transduced cells wiU contain the polynucleotide construct integrated into its genome, and will express a polypeptide of the invention.
Another method of gene therapy involves operably associating heterologous control regions and endogenous polynucleotide sequences (e.g. encoding a polypeptide of the present invention) via homologous recombination (see, e.g., U.S. Patent No. 5,641,670, issued June 24, 1997; International Publication No. WO 96/29411, published September 26, 1996; International Publication No. WO 94/12650, published August 4, 1994; KoUer et al., Proc. Natl. Acad. Sci. USA 86:8932-8935 (1989); and Zijlstra et al., Nature 342:435-438 (1989), which are herein encorporated by reference. This method involves the activation of a gene which is present in the target cells, but which is not normally expressed in the cells, or is expressed at a lower level than desired.
Polynucleotide constructs are made, using standard techniques known in the art, which contain the promoter with targeting sequences flanking the promoter. Suitable promoters are described herein. The targeting sequence is sufficiently complementary to an endogenous sequence to permit homologous recombination of the promoter-targeting sequence with the endogenous sequence. The targeting sequence will be sufficiently near the 5' end of the desired endogenous polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination. The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter. The amplified promoter and targeting sequences are digested and ligated together.
The promoter-targeting sequence construct is delivered to the cells, either as naked polynucleotide, or in conjunction with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, whole viruses, lipofection, precipitating agents, etc., described in more detail above. The P promoter-targeting sequence can be delivered by any method, included direct needle injection, intravenous injection, topical administration, catheter infusion, particle accelerators, etc. The methods are described in more detail below.
The promoter-targeting sequence construct is taken up by cells. Homologous recombination between the construct and the endogenous sequence takes place, such that an endogenous sequence is placed under the control of tlie promoter. The promoter then drives the expression of the endogenous sequence.
The polynucleotide encoding a polypeptide of the present invention may contain a secretory signal sequence that facilitates secretion of the protein. Typically, the signal sequence is positioned in the coding region of the polynucleotide to be expressed towards or at the 5' end of the coding region. The signal sequence may be homologous or heterologous to the polynucleotide of interest and may be homologous or heterologous to the cells to be transfected. Additionally, the signal sequence may be chemically synthesized using methods known in the art.
Any mode of administration of any of the above-described polynucleotides constructs can be used so long as the mode results in the expression of one or more molecules in an amount sufficient to provide a therapeutic effect. This includes direct needle injection, systemic injection, catheter infusion, biolistic injectors, particle accelerators (i.e., "gene guns"), gelfoam sponge depots, other commercially available depot materials, osmotic pumps (e.g., Alza minipumps), oral or suppositorial solid (tablet or pill) pharmaceutical formulations, and decanting or topical applications during surgery. For example, direct injection of naked calcium phosphate-precipitated plasmid into rat liver and rat spleen or a protein-coated plasmid into the portal vein has resulted in gene expression of the foreign gene in the rat livers (Kaneda et al., Science 243:375 (1989)).
A preferred method of local administration is by direct injection. Preferably, a recombinant molecule of the present invention complexed with a delivery vehicle is administered by direct injection into or locally within the area of arteries. Administration of a composition locally within the area of arteries refers to injecting the composition centimeters and preferably, millimeters within arteries. Another method of local administration is to contact a polynucleotide construct of the present invention in or around a surgical wound. For example, a patient can undergo surgery and the polynucleotide construct can be coated on the surface of tissue inside the wound or the construct can be injected into areas of tissue inside the wound. Therapeutic compositions useful in systemic administration include recombinant molecules of the present invention complexed to a targeted delivery vehicle of the present invention. Suitable delivery vehicles for use with systemic administration comprise liposomes comprising ligands for targeting the vehicle to a particular site. In specific embodiments, suitable delivery vehicles for use with systemic administration comprise liposomes comprising polypeptides of the invention for targeting the vehicle to a particular site.
Preferred methods of systemic administration, include intravenous injection, aerosol, oral and percutaneous (topical) delivery. Intravenous injections can be performed using methods standard in the art. Aerosol delivery can also be performed using methods standard in the art (see, for example, Stribling et al., Proc. Natl. Acad. Sci. USA 189:11277-11281, 1992, which is incorporated herein by reference). Oral delivery can be performed by complexing a polynucleotide construct of the present invention to a carrier capable of withstanding degradation by digestive enzymes in the gut of an animal. Examples of such carriers include plastic capsules or tablets, such as those known in the art. Topical delivery can be performed by mixing a polynucleotide construct of the present invention with a lipophilic reagent (e.g., DMSO) that is capable of passing into the skin.
Determining an effective amount of substance to be delivered can depend upon a number of factors including, for example, the chemical structure and biological activity of the substance, the age and weight of the animal, the precise condition requiring treatment and its severity, and the route of administration. The frequency of treatments depends upon a number of factors, such as the amount of polynucleotide constructs administered per dose, as well as the health and history of the subject. The precise amount, number of doses, and timing of doses will be determined by the attending physician or veterinarian.
Therapeutic compositions of the present invention can be administered to any animal, preferably to mammals and birds. Preferred mammals include humans, dogs, cats, mice, rats, rabbits sheep, cattle, horses and pigs, with humans being particularly preferred.
Biological Activities
Polynucleotides or polypeptides, or agonists or antagonists of the present invention, can be used in assays to test for one or more biological activities. If these polynucleotides or polypeptides, or agonists or antagonists of the present invention, do exhibit activity in a particular assay, it is likely that these molecules may be involved in the diseases associated with the biological activity. Thus, the polynucleotides and polypeptides, and agonists or antagonists could be used to treat the associated disease.
Members of the secreted family of proteins are believed to be involved in biological activities associated with, for example, cellular signaling. Accordingly, compositions of the invention (including polynucleotides, polypeptides and antibodies of the invention, and fragments and variants thereof) may be used in diagnosis, prognosis, prevention and/or treatment of diseases and/or disorders associated with aberrant activity of secreted polypeptides.
In preferred embodiments, compositions of the invention (including polynucleotides, polypeptides and antibodies of the invention, and fragments and variants thereof) may be used in the diagnosis, prognosis, prevention, treatment, and/or amelioration of diseases and/or disorders relating to the immune system (e.g., allergic reactions, asthma, anaphylaxis, hypersensitivity to an antigenic molecule, rhinitis, eczema, and as described in the "Gastrointestinal Disorders", "Respiratory Disorders", and "Wound Healing and Epithelial Cell Proliferation" sections below).
In certain embodiments, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to diagnose and/or prognosticate diseases and or disorders associated with the tissue(s) in which the polypeptide of the invention is expressed including one, two, three, four, five, or more tissues disclosed in Table
IB.2, column 5 (Tissue Distribution Library Code).
Thus, polynucleotides, translation products and antibodies of the invention are useful in the diagnosis, detection, prevention, prognistication, and or treatment of diseases and/or disorders associated with activities that include, but are not limited to, prohormone activation, neurotransmitter activity, cellular signaling, cellular proliferation, cellular differentiation, and cell migration.
More generally, polynucleotides, translation products and antibodies corresponding to this gene may be useful for the diagnosis, prognosis, prevention, treatment and/or amelioration of diseases and/or disorders associated with the following system or systems.
Immune Activity
Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in preventing, diagnosing, prognosticating, treating, and/or ameliorating diseases, disorders, and/or conditions of the immune system, by, for example, activating or inhibiting the proliferation, differentiation, or mobilization (chemotaxis) of immune cells. Immune cells develop through a process called hematopoiesis, producing myeloid (platelets, red blood cells, neutrophils, and macrophages) and lymphoid (B and T lymphocytes) cells from pluripotent stem cells. The etiology of these immune diseases, disorders, and/or conditions may be genetic, somatic, such as cancer and some autoimmune diseases, acquired (e.g., by chemotherapy or toxins), or infectious. Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention can be used as a marker or detector of a particular immune system disease or disorder.
In another embodiment, a polypeptide of the invention, or polynucleotides, antibodies, agonists, or antagonists corresponding to that polypeptide, may be used to treat diseases and disorders of the immune system and/or to inhibit or enhance an immune response generated by cells associated with the tissue(s) in which the polypeptide of the invention is expressed, including one, two, three, four, five, or more tissues disclosed in Table IB.2, column 5 (Tissue Distribution Library Code).
Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in preventing, diagnosing, prognosticating, treating and/or ameliorating immunodeficiencies, including both congenital and acquired immunodeficiencies. Examples of B cell immunodeficiencies in which immunoglobulin levels B cell function and/or B cell numbers are decreased include: X-linked agammaglobulinemia (Bruton's disease), X-linked infantile agammaglobulinemia, X-linked immunodeficiency with hyper IgM, non X-linked immunodeficiency with hyper IgM, X-linked lymphoproliferative syndrome (XLP), agammaglobulinemia including congenital and acquired agammaglobulinemia, adult onset agammaglobulinemia, late-onset agammaglobulinemia, dysgammaglobulinemia, hypogammaglobulinemia, unspecified hypogammaglobulinemia, recessive agammaglobulinemia (Swiss type), Selective IgM deficiency, selective IgA deficiency, selective IgG subclass deficiencies, IgG subclass deficiency (with or without IgA deficiency), Ig deficiency with increased IgM, IgG and IgA deficiency with increased IgM, antibody deficiency with normal or elevated Igs, Ig heavy chain deletions, kappa chain deficiency, B cell lymphoproliferative disorder (BLPD), common variable immunodeficiency (CVID), common variable immunodeficiency (CVI) (acquired), and transient hypogammaglobulinemia of infancy. i specific embodiments, ataxia-telangiectasia or conditions associated with ataxia- telangiectasia are detected, prevented, diagnosed, prognosticated, treated, and/or ameliorated using the polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof.
Examples of congenital immunodeficiencies in which T cell and/or B cell function and/or number is decreased include, but are not limited to: DiGeorge anomaly, severe combined immunodeficiencies (SCED) (including, but not limited to, X-linked SCID, autosomal recessive SCID, adenosine deaminase deficiency, purine nucleoside phosphorylase (PNP) deficiency, Class II MHC deficiency (Bare lymphocyte syndrome), Wiskott-Aldrich syndrome, and ataxia telangiectasia), thymic hypoplasia, third and fourth pharyngeal pouch syndrome, 22qll.2 deletion, chronic mucocutaneous candidiasis, natural killer cell deficiency (NK), idiopathic CD4+ T- lymphocytopenia, immunodeficiency with predominant T cell defect (unspecified), and unspecified immunodeficiency of cell mediated immunity.
In specific embodiments, DiGeorge anomaly or conditions associated with DiGeorge anomaly are prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polypeptides or polynucleotides of the invention, or antagonists or agonists thereof.
Other immunodeficiencies that may be prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof, include, but are not limited to, chronic granulomatous disease, Chediak- Higashi syndrome, myeloperoxidase deficiency, leukocyte glucose-6-phosphate dehydrogenase deficiency, X-linked lymphoproliferative syndrome (XLP), leukocyte adhesion deficiency, complement component deficiencies (including CI, C2, C3, C4, C5, C6, C7, C8 and/or C9 deficiencies), reticular dysgenesis, thymic alymphoplasia-aplasia, immunodeficiency with thymoma, severe congenital leukopenia, dysplasia with immunodeficiency, neonatal neutropenia, short limbed dwarfism, and Nezelof syndrome-combined immunodeficiency with Igs. i a preferred embodiment, the immunodeficiencies and/or conditions associated with the immunodeficiencies recited above are prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.
In a preferred embodiment polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used as an agent to boost immunoresponsiveness among immunodeficient individuals, hi specific embodiments, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used as an agent to boost immunoresponsiveness among B cell and/or T cell immunodeficient individuals.
The polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in preventing, detecting, diagnosing, prognosticating, treating and/or ameliorating autoimmune disorders. Many autoimmune disorders result from inappropriate recognition of self as foreign material by immune cells. This inappropriate recognition results in an immune response leading to the destruction of the host tissue. Therefore, the administration of polynucleotides and polypeptides of the invention that can inhibit an immune response, particularly the proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing autoimmune disorders.
Autoimmune diseases or disorders that may be prevented, detected, diagnosed, prognosticated, treated, and/or ameliorated by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, one or more of the following: systemic lupus erythematosus, rheumatoid arthritis, ankylosing spondylitis, multiple sclerosis, autoimmune thyroiditis, Hashimoto's thyroiditis, autoimmune hemolytic anemia, hemolytic anemia, thrombocytopenia, autoimmune thrombocytopenia purpura, autoimmune neonatal thrombocytopenia, idiopathic thrombocytopenia purpura, purpura (e.g., Henloch- Scoenlein purpura), autoimmunocytopenia, Goodpasture's syndrome, Pemphigus vulgaris, myasthenia gravis, Grave's disease (hyperthyroidism), and insulin-resistant diabetes mellitus. Additional disorders that are likely to have an autoimmune component that may be prevented, detected, diagnosed, prognosticated, treated and/or ameliorated with the compositions of the invention include, but are not limited to, type II collagen-induced arthritis, antiphospholipid syndrome, dermatitis, allergic encephalomyelitis, myocarditis, relapsing polychondritis, rheumatic heart disease, neuritis, uveitis ophthalmia, polyendocrinopathies, Reiter's Disease, Stiff-Man Syndrome, autoimmune pulmonary inflammation, autism, Guillain-Barre Syndrome, insulin dependent diabetes mellitus, and autoimmune inflammatory eye disorders.
Additional disorders that are likely to have an autoimmune component that may be prevented, detected, diagnosed, prognosticated, treated and/or ameliorated with the compositions of the invention include, but are not limited to, scleroderma with anti-collagen antibodies (often characterized, e.g., by nucleolar and other nuclear antibodies), mixed connective tissue disease (often characterized, e.g., by antibodies to extractable nuclear antigens (e.g., ribonucleoprotein)), polymyositis (often characterized, e.g., by nonhistone ANA), pernicious anemia (often characterized, e.g., by antiparietal cell, microsomes, and intrinsic factor antibodies), idiopathic Addison's disease (often characterized, e.g., by humoral and cell-mediated adrenal cytotoxicity, infertility (often characterized, e.g., by antispermatozoal antibodies), glomerulonephritis (often characterized, e.g., by glomerular basement membrane antibodies or immune complexes), bullous pemphigoid (often characterized, e.g., by IgG and complement in basement membrane), Sjogren's syndrome (often characterized, e.g., by multiple tissue antibodies, and/or a specific nonhistone ANA (SS-B)), diabetes mellitus (often characterized, e.g., by cell-mediated and humoral islet cell antibodies), and adrenergic drug resistance (including adrenergic drug resistance with asthma or cystic fibrosis) (often characterized, e.g., by beta-adrenergic receptor antibodies).
Additional disorders that may have an autoimmune component that may be prevented, detected, diagnosed, prognosticated, treated and/or ameliorated with the compositions of the invention include, but are not limited to, chronic active hepatitis (often characterized, e.g., by smooth muscle antibodies), primary biliary cirrhosis (often characterized, e.g., by mitochondria antibodies), other endocrine gland failure (often characterized, e.g., by specific tissue antibodies in some cases), vitiligo (often characterized, e.g., by melanocyte antibodies), vasculitis (often characterized, e.g., by Ig and complement in vessel walls and/or low serum complement), post-MI (often characterized, e.g., by myocardial antibodies), cardiotomy syndrome (often characterized, e.g., by myocardial antibodies), urticaria (often characterized, e.g., by IgG and IgM antibodies to IgE), atopic dermatitis (often characterized, e.g., by IgG and IgM antibodies to IgE), asthma (often characterized, e.g., by IgG and IgM antibodies to IgE), and many other inflammatory, granulomatous, degenerative, and atrophic disorders. In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using for example, antagonists or agonists, polypeptides or polynucleotides, or antibodies of the present invention, i a specific preferred embodiment, rheumatoid arthritis is prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention. In another specific preferred embodiment, systemic lupus erythematosus is prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention. In another specific preferred embodiment, idiopathic thrombocytopenia purpura is prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention. hi another specific preferred embodiment IgA nephropathy is prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention.
In a preferred embodiment, the autoimmune diseases and disorders and/or conditions associated with the diseases and disorders recited above are prevented, detected, diagnosed, prognosticated, treated and/or ameliorated using polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention
In preferred embodiments, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a immunosuppressive agent(s). Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating diseases, disorders, and/or conditions of hematopoietic cells. Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with a decrease in certain (or many) types hematopoietic cells, including but not limited to, leukopenia, neutropenia, anemia, and thrombocytopenia. Alternatively, Polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention could be used to increase differentiation and proliferation of hematopoietic cells, including the pluripotent stem cells, in an effort to treat or prevent those diseases, disorders, and/or conditions associated with an increase in certain (or many) types of hematopoietic cells, including but not limited to, histiocytosis.
Allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems, may also be detected, prevented, diagnosed, prognosticated, treated, and/or ameliorated using polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof. Moreover, these molecules can be used to treat, prevent, prognose, and/or diagnose anaphylaxis, hypersensitivity to an antigenic molecule, or blood group incompatibility.
Additionally, polypeptides or polynucleotides of the invention, and/or agonists or antagonists thereof, may be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate IgE-mediated allergic reactions. Such allergic reactions include, but are not limited to, asthma, rhinitis, and eczema. In specific embodiments, polynucleotides, polypeptides, antibodies, and or agonists or antagonists of the present invention may be used to modulate IgE concentrations in vitro or in vivo.
Moreover, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention have uses in the detection, prevention, diagnosis, prognostication, treatment, and/or amelioration of inflammatory conditions. For example, since polypeptides, antibodies, or polynucleotides of the invention, and or agonists or antagonists of the invention may inhibit the activation, proliferation and/or differentiation of cells involved in an inflammatory response, these molecules can be used to prevent and/or treat chronic and acute inflammatory conditions. Such inflammatory conditions include, but are not limited to, for example, inflammation associated with infection (e.g., septic shock, sepsis, or systemic inflammatory response syndrome), ischemia- reperfusion injury, endotoxin lethality, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine induced lung injury, inflammatory bowel disease, Crohn's disease, over production of cytokines (e.g., TNF or IL-L), respiratory disorders (e.g., asthma and allergy); gastrointestinal disorders (e.g., inflammatory bowel disease); cancers (e.g., gastric, ovarian, lung, bladder, liver, and breast); CNS disorders (e.g., multiple sclerosis; ischemic brain injury and/or stroke, traumatic brain injury, neurodegenerative disorders (e.g., Parkinson's disease and Alzheimer's disease); AJDS-related dementia; and prion disease); cardiovascular disorders (e.g., atherosclerosis, myocarditis, cardiovascular disease, and cardiopulmonary bypass complications); as well as many additional diseases, conditions, and disorders that are characterized by inflammation (e.g., hepatitis, rheumatoid arthritis, gout, trauma, pancreatitis, sarcoidosis, dermatitis, renal ischemia-reperfusion injury, Grave's disease, systemic lupus erythematosus, diabetes mellitus, and allogenic transplant rejection).
Because inflammation is a fundamental defense mechanism, inflammatory disorders can affect virtually any tissue of the body. Accordingly, polynucleotides, polypeptides, and antibodies of the invention, as well as agonists or antagonists thereof, have uses in the treatment of tissue- specific inflammatory disorders, including, but not limited to, adrenalitis, alveolitis, angiocholecystitis, appendicitis, balanitis, blepharitis, bronchitis, bursitis, carditis, cellulitis, cervicitis, cholecystitis, chorditis, cochlitis, colitis, conjunctivitis, cystitis, dermatitis, diverticulitis, encephalitis, endocarditis, esophagitis, eustachitis, fibrositis, folliculitis, gastritis, gastroenteritis, gingivitis, glossitis, hepatosplenitis, keratitis, labyrinthitis, laryngitis, lymphangitis, mastitis, media otitis, meningitis, metritis, mucitis, myocarditis, myosititis, myringitis, nephritis, neuritis, orchitis, osteochondritis, otitis, pericarditis, peritendonitis, peritonitis, pharyngitis, phlebitis, poliomyelitis, prostatitis, pulpitis, retinitis, rhinitis, salpingitis, scleritis, sclerochoroiditis, scrotitis, sinusitis, spondylitis, steatitis, stomatitis, synovitis, syringitis, tendonitis, tonsihitis, urethritis, and vaginitis.
In specific embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, are useful to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate organ transplant rejections and graft-versus-host disease. Organ rejection occurs by host immune cell destruction of the transplanted tissue through an immune response. Similarly, an immune response is also involved in GVHD, but, in this case, the foreign transplanted immune cells destroy the host tissues. Polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing organ rejection or GVHD. In specific embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, that inhibit an immune response, particularly the activation, proliferation, differentiation, or chemotaxis of T-cells, may be an effective therapy in preventing experimental allergic and hyperacute xenograft rejection.
In other embodiments, polypeptides, antibodies, or polynucleotides of the invention, and/or agonists or antagonists thereof, are useful to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate immune complex diseases, including, but not limited to, serum sickness, post streptococcal glomerulonephritis, polyarteritis nodosa, and immune complex-induced vasculitis.
Polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the invention can be used to treat, detect, and/or prevent infectious agents. For example, by increasing the immune response, particularly increasing the proliferation activation and/or differentiation of B and/or T cells, infectious diseases may be treated, detected, and/or prevented. The immune response may be increased by either enhancing an existing immune response, or by initiating a new immune response. Alternatively, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may also directly inhibit the infectious agent (refer to section of application listing infectious agents, etc), without necessarily eliciting an immune response.
In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a vaccine adjuvant that enhances immune responsiveness to an antigen. In a specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance tumor- specific immune responses.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-viral immune responses. Anti-viral immune responses that may be enhanced using the compositions of the invention as an adjuvant, include virus and virus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: AEDS, meningitis, Dengue, EBV, and hepatitis (e.g., hepatitis B). In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a virus, disease, or symptom selected from the group consisting of: HIV/AIDS, respiratory syncytial virus, Dengue, rotavirus, Japanese B encephalitis, influenza A and B, parainfluenza, measles, cytomegalovirus, rabies, Junin, Chikungunya, Rift Valley Fever, herpes simplex, and yellow fever. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-bacterial or anti- fungal immune responses. Anti-bacterial or anti-fungal immune responses that may be enhanced using the compositions of the invention as an adjuvant, include bacteria or fungus and bacteria or fungus associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: tetanus, Diphtheria, botulism, and meningitis type B. hi another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to a bacteria or fungus, disease, or symptom selected from the group consisting of: Vibrio cholerae, Mycobacterium leprae, Salmonella typhi, Salmonella paratyphi, Meisseria meningitidis, Streptococcus pneumoniae, Group B streptococcus, Shigella spp., Enterotoxigenic Escherichia coli, Enterohemorrhagic E. coli, and Borrelia burgdorferi. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an adjuvant to enhance anti-parasitic immune responses. Anti-parasitic immune responses that may be enhanced using the compositions of the invention as an adjuvant, include parasite and parasite associated diseases or symptoms described herein or otherwise known in the art. In specific embodiments, the compositions of the invention are used as an adjuvant to enhance an immune response to a parasite. In another specific embodiment, the compositions of the invention are used as an adjuvant to enhance an immune response to Plasmodium (malaria) or Leishmania.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed to treat infectious diseases including silicosis, sarcoidosis, and idiopathic pulmonary fibrosis; for example, by preventing the recruitment and activation of mononuclear phagocytes.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an antigen for the generation of antibodies to inhibit or enhance immune mediated responses against polypeptides of the invention. In one embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are administered to an animal (e.g., mouse, rat, rabbit, hamster, guinea pig, pigs, micro-pig, chicken, camel, goat, horse, cow, sheep, dog, cat, non-human primate, and human, most preferably human) to boost the immune system to produce increased quantities of one or more antibodies (e.g., IgG, IgA, IgM, and IgE), to induce higher affinity antibody production and immunoglobulin class switching (e.g., IgG, IgA, IgM, and IgE), and/or to increase an immune response. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a stimulator of B cell responsiveness to pathogens. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an activator of T cells. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent that elevates the immune status of an individual prior to their receipt of immunosuppressive therapies.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to induce higher affinity antibodies. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to increase serum immunoglobulin concentrations.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to accelerate recovery of immunocompromised individuals. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among aged populations and/or neonates. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an immune system enhancer prior to, during, or after bone marrow transplant and/or other transplants (e.g., allogeneic or xenogeneic organ transplantation). With respect to transplantation, compositions of the invention may be administered prior to, concomitant with, and/or after transplantation. In a specific embodiment, compositions of the invention are administered after transplantation, prior to the beginning of recovery of T-cell populations. In another specific embodiment, compositions of the invention are first administered after transplantation after the beginning of recovery of T cell populations, but prior to full recovery of B cell populations.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among individuals having an acquired loss of B cell function. Conditions resulting in an acquired loss of
B cell function that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, HIV Infection, AIDS, bone marrow transplant, and B cell chronic lymphocytic leukemia (CLL).
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to boost immunoresponsiveness among individuals having a temporary immune deficiency. Conditions resulting in a temporary immune deficiency that may be ameliorated or treated by administering the polypeptides, antibodies, polynucleotides and/or agonists or antagonists thereof, include, but are not limited to, recovery from viral infections (e.g., influenza), conditions associated with malnutrition, recovery from infectious mononucleosis, or conditions associated with stress, recovery from measles, recovery from blood transfusion, and recovery from surgery. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a regulator of antigen presentation by monocytes, dendritic cells, and/or B-cells. hi one embodiment, polynucleotides, polypeptides, antibodies, and or agonists or antagonists of the present invention enhance antigen presentation or antagonizes antigen presentation in vitro or in vivo. Moreover, in related embodiments, said enhancement or antagonism of antigen presentation may be useful as an anti-tumor treatment or to modulate the immune system.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as an agent to direct an individual's immune system towards development of a humoral response (i.e. TH2) as opposed to a TH1 cellular response.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means to induce tumor proliferation and thus make it more susceptible to anti-neoplastic agents. For example, multiple myeloma is a slowly dividing disease and is thus refractory to virtually all anti-neoplastic regimens. If these cells were forced to proliferate more rapidly their susceptibility profile would likely change. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a stimulator of B cell production in pathologies such as A DS, chronic lymphocyte disorder and/or Common Variable Immunodificiency.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for generation and/or regeneration of lymphoid tissues following surgery, trauma or genetic defect. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in the pretreatment of bone marrow samples prior to transplant.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a gene-based therapy for genetically inherited disorders resulting in immuno-incompetence/immunodeficiency such as observed among SCED patients. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of activating monocytes/macrophages to defend against parasitic diseases that effect monocytes such as Leishmania.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of regulating secreted cytokines that are elicited by polypeptides of the invention.
In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used in one or more of the applications decribed herein, as they may apply to veterinary medicine. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of blocking various aspects of immune responses to foreign agents or self. Examples of diseases or conditions in which blocking of certain aspects of immune responses may be desired include autoimmune disorders such as lupus, and arthritis, as well as immunoresponsiveness to skin allergies, inflammation, bowel disease, injury and diseases/disorders associated with pathogens. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for preventing the B cell proliferation and Ig secretion associated with autoimmune diseases such as idiopathic thrombocytopenic purpura, systemic lupus erythematosus and multiple sclerosis. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a inhibitor of B and/or T cell migration in endothelial cells. This activity disrupts tissue architecture or cognate responses and is useful, for example in disrupting immune responses, and blocking sepsis.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for chronic hypergammaglobulinemia evident in such diseases as monoclonal gammopathy of undetermined significance (MGUS), Waldenstrom's disease, related idiopathic monoclonal gammopathies, and plasmacytomas.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed for instance to inhibit polypeptide chemotaxis and activation of macrophages and their precursors, and of neutrophils, basophils, B lymphocytes and some T-cell subsets, e.g., activated and CD8 cytotoxic T cells and natural killer cells, in certain autoimmune and chronic inflammatory and infective diseases. Examples of autoimmune diseases are described herein and include multiple sclerosis, and insulin-dependent diabetes. The polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed to treat idiopathic hyper-eosinophilic syndrome by, for example, preventing eosinophil production and migration. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used to enhance or inhibit complement mediated cell lysis. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used to enhance or inhibit antibody dependent cellular cytotoxicity.
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may also be employed for treating atherosclerosis, for example, by preventing monocyte infiltration in the artery wall. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed to treat adult respiratory distress syndrome (ARDS).
In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be useful for stimulating wound and tissue repair, stimulating angiogenesis, and/or stimulating the repair of vascular or lymphatic diseases or disorders. Additionally, agonists and antagonists of the invention may be used to stimulate the regeneration of mucosal surfaces.
In a specific embodiment, polynucleotides or polypeptides, and/or agonists thereof are used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate a disorder characterized by primary or acquired immunodeficiency, deficient serum immunoglobulin production, recurrent infections, and/or immune system dysfunction. Moreover, polynucleotides or polypeptides, and/or agonists thereof may be used to treat or prevent infections of the joints, bones, skin, and/or parotid glands, blood-borne infections (e.g., sepsis, meningitis, septic arthritis, and/or osteomyelitis), autoimmune diseases (e.g., those disclosed herein), inflammatory disorders, and malignancies, and/or any disease or disorder or condition associated with these infections, diseases, disorders and or malignancies) including, but not limited to, CVID, other primary immune deficiencies, HIV disease, CLL, recurrent bronchitis, sinusitis, otitis media, conjunctivitis, pneumonia, hepatitis, meningitis, herpes zoster (e.g., severe herpes zoster), and/or pneumocystis carnii. Other diseases and disorders that may be detected, prevented, diagnosed, prognosticated, treated, and/or ameliorated with polynucleotides or polypeptides, and/or agonists of the present invention include, but are not limited to, HTV infection, HTLV-BLV infection, lymphopenia, phagocyte bactericidal dysfunction anemia, thrombocytopenia, and hemoglobinuria.
In another embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention are used to treat, and/or diagnose an individual having common variable immunodeficiency disease ("CNID"; also known as "acquired agammaglobulinemia" and "acquired hypogammaglobulinemia") or a subset of this disease.
In a specific embodiment, polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention may be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate cancers or neoplasms including immune cell or immune tissue-related cancers or neoplasms. Examples of cancers or neoplasms that may be detected, prevented, diagnosed, prognosticated, treated, and/or ameliorated by polynucleotides, polypeptides, antibodies, and/or agonists or antagonists of the present invention include, but are not limited to, acute myelogenous leukemia, chronic myelogenous leukemia, Hodgkin's disease, non-Hodgkin's lymphoma, acute lymphocytic anemia (ALL) Chronic lymphocyte leukemia, plasmacytomas, multiple myeloma, Burkitt's lymphoma, EBV-transformed diseases, and/or diseases and disorders described in the section entitled "Hyperproliferative Disorders" elsewhere herein. In another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a therapy for decreasing cellular proliferation of Large B-cell Lymphomas. hi another specific embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are used as a means of decreasing the involvement of B cells and Ig associated with Chronic Myelogenous Leukemia.
In specific embodiments, the compositions of the invention are used as an agent to boost immunoresponsiveness among B cell immunodeficient individuals, such as, for example, an individual who has undergone a partial or complete splenectomy.
Antagonists of the invention include, for example, binding and/or inhibitory antibodies, antisense nucleic acids, ribozymes or soluble forms of the polypeptides of the present invention (e.g., Fc fusion protein; see, e.g., Example 9). Agonists of the invention include, for example, binding or stimulatory antibodies, and soluble forms of the polypeptides (e.g., Fc fusion proteins; see, e.g., Example 9), polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention may be employed in a composition with a pharmaceutically acceptable carrier, e.g., as described herein.
In another embodiment, polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention are administered to an animal (including, but not limited to, those listed above, and also including transgenic animals) incapable of producing functional endogenous antibody molecules or having an otherwise compromised endogenous immune system, but which is capable of producing human immunoglobulin molecules by means of a reconstituted or partially reconstituted immune system from another animal (see, e.g., published PCT Application Nos. W098/24893, WO/9634096, WO/9633735, and WO/9110741). Administration of polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention to such animals is useful for the generation of monoclonal antibodies against the polypeptides, antibodies, polynucleotides and/or agonists or antagonists of the present invention. Respiratory Disorders
Polynucleotides or polypeptides, or agonists or antagonists of the present invention may be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate diseases and/or disorders of the respiratory system. Diseases and disorders of the respiratory system include, but are not limited to, nasal vestibulitis, nonallergic rhinitis (e.g., acute rhinitis, chronic rhinitis, atrophic rhinitis, vasomotor rhinitis), nasal polyps, and sinusitis, juvenile angiofibromas, cancer of the nose and juvenile papillomas, vocal cord polyps, nodules (singer's nodules), contact ulcers, vocal cord paralysis, laryngoceles, pharyngitis (e.g., viral and bacterial), tonsillitis, tonsillar cellulitis, parapharyngeal abscess, laryngitis, laryngoceles, and throat cancers (e.g., cancer of the nasopharynx, tonsil cancer, larynx cancer), lung cancer (e.g., squamous cell carcinoma, small cell (oat cell) carcinoma, large cell carcinoma, and adenocarcinoma), allergic disorders (eosinophilic pneumonia, hypersensitivity pneumonitis (e.g., extrinsic allergic alveolitis, allergic interstitial pneumonitis, organic dust pneumoconiosis, allergic bronchopulmonary aspergillosis, asthma, Wegener's granulomatosis (granulomatous vasculitis), Goodpasture's syndrome)), pneumonia (e.g., bacterial pneumonia (e.g., Streptococcus pneumoniae (pneumoncoccal pneumonia), Staphylococcus aureus (staphylococcal pneumonia), Gram-negative bacterial pneumonia (caused by, e.g., Klebsiella and Pseudomas spp.), Mycoplasma pneumoniae pneumonia, Hemophilus influenzae pneumonia, Legionella pneumophila (Legionnaires' disease), and Chlamydia psittaci (Psittacosis)), and viral pneumonia (e.g., influenza, chickenpox (varicella).
Additional diseases and disorders of the respiratory system include, but are not limited to bronchiolitis, polio (poliomyelitis), croup, respiratory syncytial viral infection, mumps, erythema infectiosum (fifth disease), roseola infantum, progressive rubella panencephalitis, german measles, and subacute sclerosing panencephalitis), fungal pneumonia (e.g., Histoplasmosis, Coccidioidomycosis, Blastomycosis, fungal infections in people with severely suppressed immune systems (e.g., cryptococcosis, caused by Cryptococcus neoformans; aspergillosis, caused by Aspergillus spp.; candidiasis, caused by Candida; and mucormycosis)), Pneumocystis carinii (pneumocystis pneumonia), atypical pneumonias (e.g., Mycoplasma and Chlamydia spp.), opportunistic infection pneumonia, nosocomial pneumonia, chemical pneumonitis, and aspiration pneumonia, pleural disorders (e.g., pleurisy, pleural effusion, and pneumothorax (e.g., simple spontaneous pneumothorax, complicated spontaneous pneumothorax, tension pneumothorax)), obstructive airway diseases (e.g., asthma, chronic obstructive pulmonary disease (COPD), emphysema, chronic or acute bronchitis), occupational lung diseases (e.g., silicosis, black lung (coal workers' pneumoconiosis), asbestosis, berylliosis, occupational asthsma, byssinosis, and benign pneumoconioses), ifiltrative Lung Disease (e.g., pulmonary fibrosis (e.g., fibrosing alveolitis, usual interstitial pneumonia), idiopathic pulmonary fibrosis, desquamative interstitial pneumonia, lymphoid interstitial pneumonia, histiocytosis X (e.g., Letterer-Siwe disease, Hand- Schϋller-Christian disease, eosinophilic granuloma), idiopathic pulmonary hemosiderosis, sarcoidosis and pulmonary alveolar proteinosis), Acute respiratory distress syndrome (also called, e.g., adult respiratory distress syndrome), edema, pulmonary embolism, bronchitis (e.g., viral, bacterial), bronchiectasis, atelectasis, lung abscess (caused by, e.g., Staphylococcus aureus or Legionella pneumophila), and cystic fibrosis.
Wound Healing and Epithelial Cell Proliferation
In accordance with yet a further aspect of the present invention, there is provided a process for utilizing polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, for therapeutic purposes, for example, to stimulate epithelial cell proliferation and basal keratinocytes for the purpose of wound healing, and to stimulate hair follicle production and healing of dermal wounds. Polynucleotides or polypeptides, as weU as agonists or antagonists of the present invention, may be clinically useful in stimulating wound healing including surgical wounds, excisional wounds, deep wounds involving damage of the dermis and epidermis, eye tissue wounds, dental tissue wounds, oral cavity wounds, diabetic ulcers, dermal ulcers, cubitus ulcers, arterial ulcers, venous stasis ulcers, burns resulting from heat exposure or chemicals, and other abnormal wound healing conditions such as uremia, malnutrition, vitamin deficiencies and complications associated with systemic treatment with steroids, radiation therapy and antineoplastic drugs and antimetabolites. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote dermal reestablishment subsequent to dermal loss
Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to increase the adherence of skin grafts to a wound bed and to stimulate re-epithelialization from the wound bed. The following are types of grafts that polynucleotides or polypeptides, agonists or antagonists of the present invention, could be used to increase adherence to a wound bed: autografts, artificial skin, allografts, autodermic graft, autoepdermic grafts, avacular grafts, Blair-Brown grafts, bone graft, brephoplastic grafts, cutis graft, delayed graft, dermic graft, epidermic graft, fascia graft, full thickness graft, heterologous graft, xenograft, homologous graft, hyperplastic graft, lamellar graft, mesh graft, mucosal graft, OUier-Thiersch graft, omenpal graft, patch graft, pedicle graft, penetrating graft, split skin graft, thick split graft. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, can be used to promote skin strength and to improve the appearance of aged skin.
It is believed that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, wiU also produce changes in hepatocyte proliferation, and epithelial cell proliferation in the lung, breast, pancreas, stomach, small intestine, and large intestine. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could promote proliferation of epithelial cells such as sebocytes, hair follicles, hepatocytes, type II pneumocytes, mucin-producing goblet cells, and other epithelial cells and their progenitors contained within the skin, lung, liver, and gastrointestinal tract. Polynucleotides or polypeptides, agonists or antagonists of the present invention, may promote proliferation of endothelial cells, keratinocytes, and basal keratinocytes. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to reduce the side effects of gut toxicity that result from radiation, chemotherapy treatments or viral infections. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may have a cytoprotective effect on the small intestine mucosa. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, may also stimulate heahng of mucositis (mouth ulcers) that result from chemotherapy and viral infections.
Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could further be used in full regeneration of skin in full and partial thickness skin defects, including burns, (i.e., repopulation of hair follicles, sweat glands, and sebaceous glands), treatment of other skin defects such as psoriasis. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat epidermolysis bullosa, a defect in adherence of the epidermis to the underlying dermis which results in frequent, open and painful blisters by accelerating reepithelialization of these lesions. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could also be used to treat gastric and doudenal ulcers and help heal by scar formation of the mucosal lining and regeneration of glandular mucosa and duodenal mucosal lining more rapidly. Inflammatory bowel diseases, such as Crohn's disease and ulcerative colitis, are diseases which result in destruction of the mucosal surface of the small or large intestine, respectively. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to promote the resurfacing of the mucosal surface to aid more rapid healing and to prevent progression of inflammatory bowel disease. Treatment with polynucleotides or polypeptides, agonists or antagonists of the present invention, is expected to have a significant effect on the production of mucus throughout the gastrointestinal tract and could be used to protect the intestinal mucosa from injurious substances that are ingested or following surgery. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to treat diseases associate with the under expression.
Moreover, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to prevent and heal damage to the lungs due to various pathological states. Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, which could stimulate proliferation and differentiation and promote the repair of alveoU and brochiolar epithelium to prevent or treat acute or chronic lung damage. For example, emphysema, which results in the progressive loss of aveoli, and inhalation injuries, i.e., resulting from smoke inhalation and burns, that cause necrosis of the bronchiolar epithelium and alveoli could be effectively treated using polynucleotides or polypeptides, agonists or antagonists of the present invention. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to stimulate the proliferation of and differentiation of type II pneumocytes, which may help treat or prevent disease such as hyaline membrane diseases, such as infant respiratory distress syndrome and bronchopulmonary displasia, in premature infants.
Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could stimulate the proliferation and differentiation of hepatocytes and, thus, could be used to alleviate or treat liver diseases and pathologies such as fulminant liver failure caused by cirrhosis, liver damage caused by viral hepatitis and toxic substances (i.e., acetaminophen, carbon tetraholoride and other hepatotoxins known in the art).
In addition, polynucleotides or polypeptides, as weU as agonists or antagonists of the present invention, could be used treat or prevent the onset of diabetes mellitus. hi patients with newly diagnosed Types I and II diabetes, where some islet cell function remains, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used to maintain the islet function so as to alleviate, delay or prevent permanent manifestation of the disease. Also, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention, could be used as an auxiliary in islet cell transplantation to improve or promote islet cell function.
Gastrointestinal Disorders
Polynucleotides or polypeptides, or agonists or antagonists of the present invention, may be used to detect, prevent, diagnose, prognosticate, treat, and/or ameliorate gastrointestinal diseases and disorders, including inflammatory diseases and/or conditions, infections, cancers (e.g., intestinal neoplasms (carcinoid tumor of the small intestine, non-Hodgkin' s lymphoma of the small intestine, small bowl lymphoma)), and ulcers, such as peptic ulcers.
Gastrointestinal disorders include dysphagia, odynophagia, inflammation of the esophagus, peptic esophagitis, gastric reflux, submucosal fibrosis and stricturing, Mallory-Weiss lesions, leiomyomas, lipomas, epidermal cancers, adeoncarcinomas, gastric retention disorders, gastroenteritis, gastric atrophy, gastric/stomach cancers, polyps of the stomach, autoimmune disorders such as pernicious anemia, pyloric stenosis, gastritis (bacterial, viral, eosinophilic, stress- induced, chronic erosive, atrophic, plasma cell, and Menetrier's), and peritoneal diseases (e.g., chyloperioneum, hemoperitoneum, mesenteric cyst, mesenteric lymphadenitis, mesenteric vascular occlusion, pannicuUtis, neoplasms, peritonitis, pneumoperitoneum, bubphrenic abscess,). Gastrointestinal disorders also include disorders associated with the small intestine, such as malabsorption syndromes, distension, irritable bowel syndrome, sugar intolerance, celiac disease, duodenal ulcers, duodenitis, tropical sprue, Whipple's disease, intestinal lymphangiectasia, Crohn's disease, appendicitis, obstructions of the ileum, Meckel's diverticulum, multiple diverticula, failure of complete rotation of the small and large intestine, lymphoma, and bacterial and parasitic diseases (such as Traveler's diarrhea, typhoid and paratyphoid, cholera, infection by Roundworms (Ascariasis lumbricoides), Hookworms (Ancylostoma duodenale), Threadworms (Enterobius vermicularis), Tapeworms (Taenia saginata, Echinococcus granulosus, Diphyllobothrium spp., and T. solium).
Liver diseases and/or disorders include intrahepatic cholestasis (alagille syndrome, biliary liver cirrhosis), fatty liver (alcoholic fatty liver, reye syndrome), hepatic vein thrombosis, hepatolentricular degeneration, hepatomegaly, hepatopulmonary syndrome, hepatorenal syndrome, portal hypertension (esophageal and gastric varices), liver abscess (amebic liver abscess), liver cirrhosis (alcoholic, biliary and experimental), alcoholic liver diseases (fatty liver, hepatitis, cirrhosis), parasitic (hepatic echinococcosis, fascioliasis, amebic liver abscess), jaundice (hemolytic, hepatocellular, and cholestatic), cholestasis, portal hypertension, liver enlargement, ascites, hepatitis (alcoholic hepatitis, animal hepatitis, chronic hepatitis (autoimmune, hepatitis B, hepatitis C, hepatitis D, drug induced), toxic hepatitis, viral human hepatitis (hepatitis A, hepatitis B, hepatitis C, hepatitis D, hepatitis E), Wilson's disease, granulomatous hepatitis, secondary biliary cirrhosis, hepatic encephalopathy, portal hypertension, varices, hepatic encephalopathy, primary biliary cirrhosis, primary sclerosing cholangitis, hepatocellular adenoma, hemangiomas, bile stones, liver failure (hepatic encephalopathy, acute liver failure), and liver neoplasms (angiomyolipoma, calcified liver metastases, cystic liver metastases, epithelial tumors, fibrolamellar hepatocarcinoma, focal nodular hyperplasia, hepatic adenoma, hepatobiliary cystadenoma, hepatoblastoma, hepatocellular carcinoma, hepatoma, liver cancer, liver hemangioendothelioma, mesenchymal hamartoma, mesenchymal tumors of liver, nodular regenerative hyperplasia, benign liver tumors (Hepatic cysts [Simple cysts, Polycystic liver disease, Hepatobiliary cystadenoma, Choledochal cyst], Mesenchymal tumors [Mesenchymal hamartoma, Infantile hemangioendothelioma, Hemangioma, Peliosis hepatis, Lipomas, Inflammatory pseudotumor, Miscellaneous], Epithelial tumors [Bile duct epithelium (Bile duct hamartoma, Bile duct adenoma), Hepatocyte (Adenoma, Focal nodular hyperplasia, Nodular regenerative hyperplasia)], malignant liver tumors [hepatocellular, hepatoblastoma, hepatocellular carcinoma, cholangiocellular, cholangiocarcinoma, cystadenocarcinoma, tumors of blood vessels, angiosarcoma, Karposi's sarcoma, hemangioendothelioma, other tumors, embryonal sarcoma, fibrosarcoma, leiomyosarcoma, rhabdomyosarcoma, carcinosarcoma, teratoma, carcinoid, squamous carcinoma, primary lymphoma]), peliosis hepatis, erythrohepatic porphyria, hepatic porphyria (acute intermittent porphyria, porphyria cutanea tarda), Zellweger syndrome). Pancreatic diseases and/or disorders include acute pancreatitis, chronic pancreatitis (acute necrotizing pancreatitis, alcoholic pancreatitis), neoplasms (adenocarcinoma of the pancreas, cystadenocarcinoma, insulinoma, gastrinoma, and glucagonoma, cystic neoplasms, islet-cell tumors, pancreoblastoma), and other pancreatic diseases (e.g., cystic fibrosis, cyst (pancreatic pseudocyst, pancreatic fistula, insufficiency)).
Gallbladder diseases include gallstones (cholelithiasis and choledocholithiasis), postcholecystectomy syndrome, diverticulosis of the gallbladder, acute cholecystitis, chronic cholecystitis, bile duct tumors, and mucocele.
Diseases and/or disorders of the large intestine include antibiotic-associated colitis, diverticulitis, ulcerative colitis, acquired megacolon, abscesses, fungal and bacterial infections, anorectal disorders (e.g., fissures, hemorrhoids), colonic diseases (colitis, colonic neoplasms [colon cancer, adenomatous colon polyps (e.g., villous adenoma), colon carcinoma, colorectal cancer], colonic diverticulitis, colonic diverticulosis, megacolon [Hirschsprung disease, toxic megacolon]; sigmoid diseases [proctocolitis, sigmoin neoplasms]), constipation, Crohn's disease, diarrhea (infantile diarrhea, dysentery), duodenal diseases (duodenal neoplasms, duodenal obstruction, duodenal ulcer, duodenitis), enteritis (enterocolitis), HIV enteropathy, ileal diseases (ileal neoplasms, ileitis), immunoproliferative small intestinal disease, inflammatory bowel disease (ulcerative colitis, Crohn's disease), intestinal atresia, parasitic diseases (anisakiasis, balantidiasis, blastocystis infections, cryptosporidiosis, dientamoebiasis, amebic dysentery, giardiasis), intestinal fistula (rectal fistula), intestinal neoplasms (cecal neoplasms, colonic neoplasms, duodenal neoplasms, ileal neoplasms, intestinal polyps, jejunal neoplasms, rectal neoplasms), intestinal obstruction (afferent loop syndrome, duodenal obstruction, impacted feces, intestinal pseudo- obstruction [cecal volvulus], intussusception), intestinal perforation, intestinal polyps (colonic polyps, gardner syndrome, peutz-jeghers syndrome), jejunal diseases (jejunal neoplasms), malabsorption syndromes (blind loop syndrome, celiac disease, lactose intolerance, short bowl syndrome, tropical sprue, whipple's disease), mesenteric vascular occlusion, pneumatosis cystoides intestinalis, protein-losing enteropathies (intestinal lymphagiectasis), rectal diseases (anus diseases, fecal incontinence, hemorrhoids, proctitis, rectal fistula, rectal prolapse, rectocele), peptic ulcer (duodenal ulcer, peptic esophagitis, hemorrhage, perforation, stomach ulcer, Zollinger-EUison syndrome), postgastrectomy syndromes (dumping syndrome), stomach diseases (e.g., achlorhydria, duodenogastric reflux (bile reflux), gastric antral vascular ectasia, gastric fistula, gastric outlet obstruction, gastritis (atrophic or hypertrophic), gastroparesis, stomach dilatation, stomach diverticulum, stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, hyperplastic gastric polyp), stomach rupture, stomach ulcer, stomach volvulus), tuberculosis, visceroptosis, vomiting (e.g., hematemesis, hyperemesis gravidarum, postoperative nausea and vomiting) and hemorrhagic colitis.
Further diseases and/or disorders of the gastrointestinal system include biliary tract diseases, such as, gastroschisis, fistula (e.g., biliary fistula, esophageal fistula, gastric fistula, intestinal fistula, pancreatic fistula), neoplasms (e.g., biliary tract neoplasms, esophageal neoplasms, such as adenocarcinoma of the esophagus, esophageal squamous cell carcinoma, gastrointestinal neoplasms, pancreatic neoplasms, such as adenocarcinoma of the pancreas, mucinous cystic neoplasm of the pancreas, pancreatic cystic neoplasms, pancreatoblastoma, and peritoneal neoplasms), esophageal disease (e.g., bullous diseases, candidiasis, glycogenic acanthosis, ulceration, barrett esophagus varices, atresia, cyst, diverticulum (e.g., Zenker's diverticulum), fistula (e.g., tracheoesophageal fistula), motility disorders (e.g., CREST syndrome, deglutition disorders, achalasia, spasm, gastroesophageal reflux), neoplasms, perforation (e.g., Boerhaave syndrome, Mallory-Weiss syndrome), stenosis, esophagitis, diaphragmatic hernia (e.g., hiatal hernia); gastrointestinal diseases, such as, gastroenteritis (e.g., cholera morbus, norwalk virus infection), hemorrhage (e.g., hematemesis, melena, peptic ulcer hemorrhage), stomach neoplasms (gastric cancer, gastric polyps, gastric adenocarcinoma, stomach cancer)), hernia (e.g., congenital diaphragmatic hernia, femoral hernia, inguinal hernia, obturator hernia, umbilical hernia, ventral hernia), and intestinal diseases (e.g., cecal diseases (appendicitis, cecal neoplasms)).
Chemotaxis
Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may have chemotaxis activity. A chemotaxic molecule attracts or mobilizes cells (e.g., monocytes, fibroblasts, neutrophils, T-cells, mast cells, eosinophils, epithelial and/or endothelial cells) to a particular site in the body, such as inflammation, infection, or site of hyperproliferation. The mobilized cells can then fight off and/or heal the particular trauma or abnormality.
Polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may increase chemotaxic activity of particular cells. These chemotactic molecules can then be used to treat inflammation, infection, hyperproliferative disorders, or any immune system disorder by increasing the number of cells targeted to a particular location in the body. For example, chemotaxic molecules can be used to treat wounds and other trauma to tissues by attracting immune cells to the injured location. Chemotactic molecules of the present invention can also attract fibroblasts, which can be used to treat wounds.
It is also contemplated that polynucleotides or polypeptides, as well as agonists or antagonists of the present invention may inhibit chemotactic activity. These molecules could also be used to treat disorders. Thus, polynucleotides or polypeptides, as well as agonists or antagonists of the present invention could be used as an inhibitor of chemotaxis.
Binding Activity A polypeptide of the present invention may be used to screen for molecules that bind to the polypeptide or for molecules to which the polypeptide binds. The binding of the polypeptide and the molecule may activate (agonist), increase, inhibit (antagonist), or decrease activity of the polypeptide or the molecule bound. Examples of such molecules include antibodies, oligonucleotides, proteins (e.g., receptors),or small molecules.
Preferably, the molecule is closely related to the natural ligand of the polypeptide, e.g., a fragment of the ligand, or a natural substrate, a ligand, a structural or functional mimetic. (See, Coligan et al., Current Protocols in Immunology l(2):Chapter 5 (1991)). Similarly, the molecule can be closely related to the natural receptor to which the polypeptide binds, or at least, a fragment of the receptor capable of being bound by the polypeptide (e.g., active site). In either case, the molecule can be rationally designed using known techniques.
Preferably, the screening for these molecules involves producing appropriate cells which express the polypeptide. Preferred cells include cells from mammals, yeast, Drosophila, or E. coli.
Cells expressing the polypeptide (or cell membrane containing the expressed polypeptide) are then preferably contacted with a test compound potentially containing the molecule to observe binding, stimulation, or inhibition of activity of either the polypeptide or the molecule.
The assay may simply test binding of a candidate compound to the polypeptide, wherein binding is detected by a label, or in an assay involving competition with a labeled competitor. Further, the assay may test whether the candidate compound results in a signal generated by binding to the polypeptide.
Alternatively, the assay can be carried out using cell-free preparations, polypeptide/molecule affixed to a solid support, chemical libraries, or natural product mixtures. The assay may also simply comprise the steps of mixing a candidate compound with a solution containing a polypeptide, measuring polypeptide/molecule activity or binding, and comparing the polypeptide/molecule activity or binding to a standard.
Preferably, an ELISA assay can measure polypeptide level or activity in a sample (e.g., biological sample) using a monoclonal or polyclonal antibody. The antibody can measure polypeptide level or activity by either binding, directly or indirectly, to the polypeptide or by competing with the polypeptide for a substrate.
Additionally, the receptor to which the polypeptide of the present invention binds can be identified by numerous methods known to those of skill in the art, for example, ligand panning and FACS sorting (Coligan, et al., Current Protocols in Immun., 1(2), Chapter 5, (1991)). For example, expression cloning is employed wherein polyadenylated RNA is prepared from a cell responsive to the polypeptides, for example, NEH3T3 cells which are known to contain multiple receptors for the FGF family proteins, and SC-3 cells, and a cDNA library created from this RNA is divided into pools and used to transfect COS cells or other cells that are not responsive to the polypeptides. Transfected cells which are grown on glass slides are exposed to the polypeptide of the present invention, after they have been labeled. The polypeptides can be labeled by a variety of means including iodination or inclusion of a recognition site for a site-specific protein kinase.
Following fixation and incubation, the slides are subjected to auto-radiographic analysis. Positive pools are identified and sub-pools are prepared and re-transfected using an iterative sub- pooling and re-screening process, eventually yielding a single clones that encodes the putative receptor.
As an alternative approach for receptor identification, the labeled polypeptides can be photoaffmity linked with cell membrane or extract preparations that express the receptor molecule. Cross-linked material is resolved by PAGE analysis and exposed to X-ray film. The labeled complex containing the receptors of the polypeptides can be excised, resolved into peptide fragments, and subjected to protein microsequencing. The amino acid sequence obtained from microsequencing would be used to design a set of degenerate oligonucleotide probes to screen a cDNA library to identify the genes encoding the putative receptors.
Moreover, the techniques of gene-shuffling, motif-shuffling, exon-shuffling, and/or codon-shuffling (collectively referred to as "DNA shuffling") may be employed to modulate the activities of the polypeptide of the present invention thereby effectively generating agonists and antagonists of the polypeptide of the present invention. See generally, U.S. Patent Nos. 5,605,793, 5,811,238, 5,830,721, 5,834,252, and 5,837,458, and Patten, P. A., et al, Curr. Opinion Biotechnol. 8:724-33 (1997); Harayama, S. Trends Biotechnol. 16(2):76-82 (1998); Hansson, L. O., et al, J. Mol. Biol. 287:265-76 (1999); and Lorenzo, M. M. and Blasco, R. Biotechniques 24(2):308-13 (1998); each of these patents and publications are hereby incorporated by reference). In one embodiment, alteration of polynucleotides and corresponding polypeptides may be achieved by DNA shuffling. DNA shuffling involves the assembly of two or more DNA segments into a desired molecule by homologous, or site-specific, recombination. In another embodiment, polynucleotides and corresponding polypeptides may be altered by being subjected to random mutagenesis by error-prone PCR, random nucleotide insertion or other methods prior to recombination. In another embodiment, one or more components, motifs, sections, parts, domains, fragments, etc., of the polypeptide of the present invention may be recombined with one or more components, motifs, sections, parts, domains, fragments, etc. of one or more heterologous molecules. In preferred embodiments, the heterologous molecules are family members. In further preferred embodiments, the heterologous molecule is a growth factor such as, for example, platelet-derived growth factor (PDGF), insulin-like growth factor (IGF-I), transforming growth factor (TGF)-alpha, epidermal growth factor (EGF), fibroblast growth factor Q?GF), TGF-beta, bone morphogenetic protein (BMP)-2, BMP-4, BMP-5, BMP-6, BMP-7, activins A and B, decapentaplegic(dρp), 60A, OP-2, dorsalin, growth differentiation factors (GDFs), nodal, MIS, inhibin-alpha, TGF-betal, TGF-beta2, TGF-beta3, TGF-beta5, and glial-derived neurotrophic factor (GDNF). Other preferred fragments are biologically active fragments of the polypeptide of the present invention. Biologically active fragments are those exhibiting activity similar, but not necessarily identical, to an activity of the polypeptide of the present invention. The biological activity of the fragments may include an improved desired activity, or a decreased undesirable activity.
Additionally, this invention provides a method of screening compounds to identify those which modulate the action of the polypeptide of the present invention. An example of such an assay comprises combining a mammalian fibroblast cell, a the polypeptide of the present invention, the compound to be screened and 3[H] thymidine under cell culture conditions where the fibroblast cell would normally proliferate. A control assay may be performed in the absence of the compound to be screened and compared to the amount of fibroblast proliferation in the presence of the compound to determine if the compound stimulates proliferation by determining the uptake of [H] thymidine in each case. The amount of fibroblast cell proliferation is measured by liquid scintillation chromatography which measures the incorporation of ^[H] thymidine. Both agonist and antagonist compounds may be identified by this procedure. hi another method, a mammalian cell or membrane preparation expressing a receptor for a polypeptide of the present invention is incubated with a labeled polypeptide of the present invention in the presence of the compound. The ability of the compound to enhance or block this interaction could then be measured. Alternatively, the response of a known second messenger system following interaction of a compound to be screened and the receptor is measured and the ability of the compound to bind to the receptor and elicit a second messenger response is measured to determine if the compound is a potential agonist or antagonist. Such second messenger systems include but are not limited to, cAMP guanylate cyclase, ion channels or phosphoinositide hydrolysis.
All of these above assays can be used as diagnostic or prognostic markers. The molecules discovered using these assays can be used to treat disease or to bring about a particular result in a patient (e.g., blood vessel growth) by activating or inhibiting the polypeptide/molecule. Moreover, the assays can discover agents which may inhibit or enhance the production of the polypeptides of the invention from suitably manipulated cells or tissues.
Therefore, the invention includes a method of identifying compounds which bind to a polypeptide of the invention comprising the steps of: (a) incubating a candidate binding compound with a polypeptide of the present invention; and (b) determining if binding has occurred. Moreover, the invention includes a method of identifying agonists/antagonists comprising the steps of: (a) incubating a candidate compound with a polypeptide of the present invention, (b) assaying a biological activity, and (b) determining if a biological activity of the polypeptide has been altered.
Targeted Delivery
In another embodiment, the invention provides a method of delivering compositions to targeted cells expressing a receptor for a polypeptide of the invention, or cells expressing a cell bound form of a polypeptide of the invention.
As discussed herein, polypeptides or antibodies of the invention may be associated with heterologous polypeptides, heterologous nucleic acids, toxins, or prodrugs via hydrophobic, hydrophilic, ionic and/or covalent interactions, hi one embodiment, the invention provides a method for the specific delivery of compositions of the invention to cells by administering polypeptides of the invention (including antibodies) that are associated with heterologous polypeptides or nucleic acids. In one example, the invention provides a method for delivering a therapeutic protein into the targeted cell, hi another example, the invention provides a method for delivering a single stranded nucleic acid (e.g., antisense or ribozymes) or double stranded nucleic acid (e.g., DNA that can integrate into the cell's genome or replicate episomally and that can be transcribed) into the targeted cell. hi another embodiment, the invention provides a method for the specific destruction of ceUs (e.g., the destruction of tumor cells) by administering polypeptides of the invention (e.g., polypeptides of the invention or antibodies of the invention) in association with toxins or cytotoxic prodrugs.
By "toxin" is meant compounds that bind and activate endogenous cytotoxic effector systems, radioisotopes, holotoxins, modified toxins, catalytic subunits of toxins, or any molecules or enzymes not normally present in or on the surface of a cell that under defined conditions cause the cell's death. Toxins that may be used according to the methods of the invention include, but are not limited to, radioisotopes known in the art, compounds such as, for example, antibodies (or complement fixing containing portions thereof) that bind an inherent or induced endogenous cytotoxic effector system, thymidine kinase, endonuclease, RNAse, alpha toxin, ricin, abrin, Pseudomonas exotoxin A, diphtheria toxin, saporin, momordin, gelonin, pokeweed antiviral protein, alpha-sarcin and cholera toxin. By "cytotoxic prodrug" is meant a non-toxic compound that is converted by an enzyme, normally present in the cell, into a cytotoxic compound. Cytotoxic prodrugs that may be used according to the methods of the invention include, but are not limited to, glutamyl derivatives of benzoic acid mustard alkylating agent, phosphate derivatives of etoposide or mitomycin C, cytosine arabinoside, daunorubisin, and phenoxyacetamide derivatives of doxorubicin.
Drug Screening
Further contemplated is the use of the polypeptides of the present invention, or the polynucleotides encoding these polypeptides, to screen for molecules which modify the activities of the polypeptides of the present invention. Such a method would include contacting the polypeptide of the present invention with a selected compound(s) suspected of having antagonist or agonist activity, and assaying the activity of these polypeptides following binding.
This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the present invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells that are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drugs are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and a polypeptide of the present invention.
Thus, the present invention provides methods of screening for drugs or any other agents that affect activities mediated by the polypeptides of the present invention. These methods comprise contacting such an agent with a polypeptide of the present invention or a fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or a fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the present invention.
Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the present invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is incorporated herein by reference herein. Briefly stated, large numbers of different small peptide test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. T,he peptide test compounds are reacted with polypeptides of the present invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.
This invention also contemplates the use of competitive drug screening assays in which neutralizing antibodies capable of binding polypeptides of the present invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.
Antisense And Ribozyme (Antagonists)
In specific embodiments, antagonists according to the present invention are nucleic acids corresponding to the sequences contained in SEQ ID NO:X, or the complementary strand thereof, and/or to cDNA sequences contained in cDNA ATCC Deposit No:Z identified for example, in Table IA and/or IB. In one embodiment, antisense sequence is generated internally, by the organism, in another embodiment, the antisense sequence is separately administered (see, for example, O'Connor, J., Neurochem. 56:560 (1991). Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Antisense technology can be used to control gene expression through antisense DNA or RNA, or through triple-helix formation. Antisense techniques are discussed for example, in Okano, J., Neurochem. 56:560 (1991); Oligodeoxynucleotides as Antisense Inhibitors of Gene Expression, CRC Press, Boca Raton, FL (1988). Triple helix formation is discussed in, for instance, Lee et al., Nucleic Acids Research 6:3073 (1979); Cooney et al., Science 241:456 (1988); and Dervan et al., Science 251:1300
(1991). The methods are based on binding of a polynucleotide to a complementary DNA or RNA.
For example, the use of c-myc and c-myb antisense RNA constructs to inhibit the growth of the non-lymphocytic leukemia cell line HL-60 and other cell lines was previously described.
(Wickstrom et al. (1988); Anfossi et al. (1989)). These experiments were performed in vitro by incubating cells with the oligoribonucleotide. A similar procedure for in vivo use is described in WO 91/15580. Briefly, a pair of oligonucleotides for a given antisense RNA is produced as follows: A sequence complimentary to the first 15 bases of the open reading frame is flanked by an EcoRl site on the 5 end and a Hindfll site on the 3 end. Next, the pair of oligonucleotides is heated at 90°C for one minute and then annealed in 2X ligation buffer (20mM TRIS HCI pH 7.5, lOmM MgC12, lOMM dithiothreitol (DTT) and 0.2 mM ATP) and then ligated to the EcoRl/Hind III site of the retroviral vector PMV7 (WO 91/15580).
For example, the 5' coding portion of a polynucleotide that encodes the polypeptide of the present invention may be used to design an antisense RNA oligonucleotide of from about 10 to 40 base pairs in length. A DNA oligonucleotide is designed to be complementary to a region of the gene involved in transcription thereby preventing transcription and the production of the receptor. The antisense RNA oligonucleotide hybridizes to the mRNA in vivo and blocks translation of the mRNA molecule into receptor polypeptide.
In one embodiment, the antisense nucleic acid of the invention is produced intracellularly by transcription from an exogenous sequence. For example, a vector or a portion thereof, is transcribed, producing an antisense nucleic acid (RNA) of the invention. Such a vector would contain a sequence encoding the antisense nucleic acid. Such a vector can remain episomal or become chromosomally integrated, as long as it can be transcribed to produce the desired antisense RNA. Such vectors can be constructed by recombinant DNA technology methods standard in the art. Vectors can be plasmid, viral, or others known in the art, used for replication and expression in vertebrate cells. Expression of the sequence encoding the polypeptide of the present invention or fragments thereof, can be by any promoter known in the art to act in vertebrate, preferably human cells. Such promoters can be inducible or constitutive. Such promoters include, but are not limited to, the SV40 early promoter region (Bernoist and Chambon, Nature 29:304-310 (1981), the promoter contained in the 3' long terminal repeat of Rous sarcoma virus (Yamamoto et al., Cell 22:787-797 (1980), the herpes thymidine promoter (Wagner et al., Proc. Natl. Acad. Sci. U.S.A. 78:1441-1445 (1981), the regulatory sequences of the metallothionem gene (Brinster, et al., Nature 296:39-42 (1982)), etc.
The antisense nucleic acids of the invention comprise a sequence complementary to at least a portion of an RNA transcript of a gene of the present invention. However, absolute complementarity, although preferred, is not required. A sequence "complementary to at least a portion of an RNA," referred to herein, means a sequence having sufficient complementarity to be able to hybridize with the RNA, forming a stable duplex; in the case of double stranded antisense nucleic acids, a single strand of the duplex DNA may thus be tested, or triplex formation may be assayed. The ability to hybridize will depend on both the degree of complementarity and the length of the antisense nucleic acid. Generally, the larger the hybridizing nucleic acid, the more base mismatches with a RNA it may contain and still form a stable duplex (or triplex as the case may be). One skilled in the art can ascertain a tolerable degree of mismatch by use of standard procedures to determine the melting point of the hybridized complex.
Oligonucleotides that are complementary to the 5' end of the message, e.g., the 5' untranslated sequence up to and including the AUG initiation codon, should work most efficiently at inhibiting translation. However, sequences complementary to the 3' untranslated sequences of mRNAs have been shown to be effective at inhibiting translation of mRNAs as well. See generally, Wagner, R., 1994, Nature 372:333-335. Thus, oligonucleotides complementary to either the 5'- or 3'- non- translated, non-coding regions of polynucleotide sequences described herein could be used in an antisense approach to inhibit translation of endogenous mRNA. Oligonucleotides complementary to the 5' untranslated region of the mRNA should include the complement of the AUG start codon. Antisense oligonucleotides complementary to mRNA coding regions are less efficient inhibitors of translation but could be used in accordance with the invention. Whether designed to hybridize to the 5'-, 3'- or coding region of mRNA of the present invention, antisense nucleic acids should be at least six nucleotides in length, and are preferably oligonucleotides ranging from 6 to about 50 nucleotides in length, hi specific aspects the oligonucleotide is at least 10 nucleotides, at least 17 nucleotides, at least 25 nucleotides or at least 50 nucleotides.
The polynucleotides of the invention can be DNA or RNA or chimeric mixtures or derivatives or modified versions thereof, single-stranded or double-stranded. The oligonucleotide can be modified at the base moiety, sugar moiety, or phosphate backbone, for example, to improve stability of the molecule, hybridization, etc. The oligonucleotide may include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:6553-6556; Lemaitre et al., 1987, Proc. Natl. Acad. Sci. 84:648-652; PCT Publication No. WO88/09810, published December 15, 1988) or the blood-brain barrier (see, e.g., PCT Publication No. WO89/10134, published April 25, 1988), hybridization-triggered cleavage agents. (See, e.g., Krol et al., 1988, BioTechniques 6:958-976) or intercalating agents. (See, e.g., Zon, 1988, Pharm. Res. 5:539-549). To this end, the oligonucleotide may be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.
The antisense oligonucleotide may comprise at least one modified base moiety which is selected from the group including, but not limited to, 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xantine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, Nό-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5'-methoxycarboxymethyIuracil, 5-methoxyuraciI, 2-methyIthio-N6- isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxyacetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2- carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. The antisense oligonucleotide may also comprise at least one modified sugar moiety selected from the group including, but not limited to, arabinose, 2-fluoroarabinose, xylulose, and hexose. h yet another embodiment, the antisense oligonucleotide comprises at least one modified phosphate backbone selected from the group including, but not limited to, a phosphorothioate, a phosphorodithioate, a phosphoramidothioate, a phosphoramidate, a phosphordiamidate, a methylphosphonate, an alkyl phosphotriester, and a formacetal or analog thereof. i yet another embodiment, the antisense oligonucleotide is an a-anomeric oligonucleotide. An a-anomeric oligonucleotide forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual b-units, the strands run parallel to each other (Gautier et al., 1987, Nucl. Acids Res. 15:6625-6641). The oligonucleotide is a 2'-0- methylribonucleotide (Inoue et al., 1987, Nucl. Acids Res. 15:6131-6148), or a chimeric RNA- DNA analogue (Inoue et al., 1987, FEBS Lett. 215:327-330).
Polynucleotides of the invention may be synthesized by standard methods known in the art, e.g. by use of an automated DNA synthesizer (such as are commercially available from Biosearch, Applied Biosystems, etc.). As examples, phosphorothioate oligonucleotides may be synthesized by the method of Stein et al. (1988, Nucl. Acids Res. 16:3209), methylphosphonate oligonucleotides can be prepared by use of controlled pore glass polymer supports (Sarin et al., 1988, Proc. Natl. Acad. Sci. U.S.A. 85:7448-7451), etc.
While antisense nucleotides complementary to the coding region sequence could be used, those complementary to the transcribed untranslated region are most preferred.
Potential antagonists according to the invention also include catalytic RNA, or a ribozyme (See, e.g., PCT International Publication WO 90/11364, published October 4, 1990; Sarver et al,
Science 247:1222-1225 (1990). While ribozymes that cleave mRNA at site specific recognition sequences can be used to destroy mRNAs, the use of hammerhead ribozymes is preferred.
Hammerhead ribozymes cleave mRNAs at locations dictated by flanking regions that form complementary base pairs with the target mRNA. The sole requirement is that the target mRNA have the following sequence of two bases: 5'-UG-3'. The construction and production of hammerhead ribozymes is well known in the art and is described more fully in Haseloff and
Gerlach, Nature 334:585-591 (1988). There are numerous potential hammerhead ribozyme cleavage sites within the nucleotide sequence of SEQ ID NO:X. Preferably, the ribozyme is engineered so that the cleavage recognition site is located near the 5' end of the mRNA; i.e., to increase efficiency and minimize the intracellular accumulation of non-functional mRNA transcripts.
As in the antisense approach, the ribozymes of the invention can be composed of modified oligonucleotides (e.g., for improved stability, targeting, etc.) and should be delivered to cells which express in vivo. DNA constructs encoding the ribozyme may be introduced into the cell in the same manner as described above for the introduction of antisense encoding DNA. A preferred method of delivery involves using a DNA construct "encoding" the ribozyme under the control of a strong constitutive promoter, such as, for example, pol III or pol II promoter, so that transfected cells will produce sufficient quantities of the ribozyme to destroy endogenous messages and inhibit translation. Since ribozymes unlike antisense molecules, are catalytic, a lower intracellular concentration is required for efficiency.
Antagonist/agonist compounds may be employed to inhibit the cell growth and proliferation effects of the polypeptides of the present invention on neoplastic cells and tissues, i.e. stimulation of angiogenesis of tumors, and, therefore, retard or prevent abnormal cellular growth and proliferation, for example, in tumor formation or growth. The antagonist/agonist may also be employed to prevent hyper-vascular diseases, and prevent the proliferation of epithelial lens cells after extracapsular cataract surgery. Prevention of the mitogenic activity of the polypeptides of the present invention may also be desirous in cases such as restenosis after balloon angioplasty.
The antagonist/agonist may also be employed to prevent the growth of scar tissue during wound healing.
The antagonist/agonist may also be employed to treat the diseases described herein. Thus, the invention provides a method of treating disorders or diseases, including but not limited to the disorders or diseases listed throughout this application, associated with overexpression of a polynucleotide of the present invention by administering to a patient (a) an antisense molecule directed to the polynucleotide of the present invention, and/or (b) a ribozyme directed to the polynucleotide of the present invention.
Binding Peptides and Other Molecules
The invention also encompasses screening methods for identifying polypeptides and nonpolypeptides that bind polypeptides of the invention, and the binding molecules identified thereby. These binding molecules are useful, for example, as agonists and antagonists of the polypeptides of the invention. Such agonists and antagonists can be used, in accordance with the invention, in the therapeutic embodiments described in detail, below. This method comprises the steps of: contacting polypeptides of the invention with a pluraUty of molecules; and identifying a molecule that binds the polypeptides of the invention. The step of contacting the polypeptides of the invention with the plurality of molecules may be effected in a number of ways. For example, one may contemplate immobilizing the polypeptides on a solid support and bringing a solution of the plurality of molecules in contact with the immobilized polypeptides. Such a procedure would be akin to an affinity chromatographic process, with the affinity matrix being comprised of the immobilized polypeptides of the invention. The molecules having a selective affinity for the polypeptides can then be purified by affinity selection. The nature of the solid support, process for attachment of the polypeptides to the solid support, solvent, and conditions of the affinity isolation or selection are largely conventional and well known to those of ordinary skill in the art.
Alternatively, one may also separate a plurality of polypeptides into substantially separate fractions comprising a subset of or individual polypeptides. For instance, one can separate the plurality of polypeptides by gel electrophoresis, column chromatography, or like method known to those of ordinary skUl for the separation of polypeptides. The individual polypeptides can also be produced by a transformed host cell in such a way as to be expressed on or about its outer surface (e.g., a recombinant phage). Individual isolates can then be "probed" by the polypeptides of the invention, optionally in the presence of an inducer should one be required for expression, to determine if any selective affinity interaction takes place between the polypeptides and the individual clone. Prior to contacting the polypeptides with each fraction comprising individual polypeptides, the polypeptides could first be transferred to a solid support for additional convenience. Such a solid support may simply be a piece of filter membrane, such as one made of nitrocellulose or nylon. In this manner, positive clones could be identified from a collection of transformed host cells of an expression library, which harbor a DNA construct encoding a polypeptide having a selective affinity for polypeptides of the invention. Furthermore, the amino acid sequence of the polypeptide having a selective affinity for the polypeptides of the invention can be determined directly by conventional means or the coding sequence of the DNA encoding the polypeptide can frequently be determined more conveniently. The primary sequence can then be deduced from the corresponding DNA sequence. If the amino acid sequence is to be determined from the polypeptide itself, one may use microsequencing techniques. The sequencing technique may include mass spectroscopy. hi certain situations, it may be desirable to wash away any unbound polypeptides from a mixture of the polypeptides of the invention and the plurality of polypeptides prior to attempting to determine or to detect the presence of a selective affinity interaction. Such a wash step may be particularly desirable when the polypeptides of the invention or the plurality of polypeptides are bound to a solid support.
The plurality of molecules provided according to this method may be provided by way of diversity libraries, such as random or combinatorial peptide or nonpeptide libraries which can be screened for molecules that specifically bind polypeptides of the invention. Many libraries are known in the art that can be used, e.g., chemically synthesized libraries, recombinant (e.g., phage display libraries), and in vitro translation-based libraries. Examples of chemically synthesized libraries are described in Fodor et al., 1991, Science 251:767-773; Houghten et al., 1991, Nature 354:84-86; Lam et al., 1991, Nature 354:82-84; Medynski, 1994, Bio/Technology 12:709- 710;Gallop et al., 1994, J. Medicinal Chemistry 37(9): 1233-1251; Ohlmeyer et al., 1993, Proc. Natl. Acad. Sci. USA 90:10922-10926; Erb et al., 1994, Proc. Natl. Acad. Sci. USA 91:11422- 11426; Houghten et al., 1992, Biotechniques 13:412; Jayawickreme et al., 1994, Proc. Natl. Acad. Sci. USA 91:1614-1618; Salmon et al., 1993, Proc. Natl. Acad. Sci. USA 90:11708-11712; PCT Publication No. WO 93/20242; and Brenner and Lerner, 1992, Proc. Natl. Acad. Sci. USA 89:5381-5383. * Examples of phage display libraries are described in Scott and Smith, 1990, Science
249:386-390; Devlin et al., 1990, Science, 249:404-406; Christian, R. B., et al., 1992, J. Mol. Biol. 227:711-718); Lenstra, 1992, J. Immunol. Meth. 152:149-157; Kay et al., 1993, Gene 128:59-65; and PCT Publication No. WO 94/18318 dated Aug. 18, 1994.
In vitro translation-based libraries include but are not limited to those described in PCT Publication No. WO 91/05058 dated Apr. 18, 1991; and Mattheakis et al., 1994, Proc. Natl. Acad. Sci. USA 91:9022-9026.
By way of examples of nonpeptide libraries, a benzodiazepine library (see e.g., Bunin et al., 1994, Proc. Natl. Acad. Sci. USA 91:4708-4712) can be adapted for use. Peptoid libraries (Simon et al., 1992, Proc. Natl. Acad. Sci. USA 89:9367-9371) can also be used. Another example of a library that can be used, in which the amide functionalities in peptides have been permethylated to generate a chemically transformed combinatorial library, is described by Ostresh et al. (1994, Proc. Natl. Acad. Sci. USA 91:11138-11142). The variety of non-peptide libraries that are useful in the present invention is great. For example, Ecker and Crooke, 1995, Bio Technology 13:351-360 list benzodiazepines, hydantoins, piperazinediones, biphenyls, sugar analogs, beta-mercaptoketones, arylacetic acids, acylpiperidines, benzopyrans, cubanes, xanthines, aminimides, and oxazolones as among the chemical species that form the basis of various libraries.
Non-peptide libraries can be classified broadly into two types: decorated monomers and oligomers. Decorated monomer libraries employ a relatively simple scaffold structure upon which a variety functional groups is added. Often the scaffold will be a molecule with a known useful pharmacological activity. For example, the scaffold might be the benzodiazepine structure. Non-peptide oligomer libraries utilize a large number of monomers that are assembled together in ways that create new shapes that depend on the order of the monomers. Among the monomer units that have been used are carbamates, pyrrolinones, and morpholinos. Peptoids, peptide-like oligomers in which the side chain is attached to the alpha amino group rather than the alpha carbon, form the basis of another version of non-peptide oligomer libraries. The first non- peptide oligomer libraries utilized a single type of monomer and thus contained a repeating backbone. Recent libraries have utilized more than one monomer, giving the libraries added flexibility.
Screening the libraries can be accomplished by any of a variety of commonly known methods. See, e.g., the following references, which disclose screening of peptide libraries: Parmley and Smith, 1989, Adv. Exp. Med. Biol. 251:215-218; Scott and Smith, 1990, Science 249:386- 390; Fowlkes et al., 1992; BioTechniques 13:422-427; Oldenburg et al., 1992, Proc. Natl. Acad. Sci. USA 89:5393-5397; Yu et al., 1994, Cell 76:933-945; Staudt et al., 1988, Science 241:577- 580; Bock et al., 1992, Nature 355:564-566; Tuerk et al., 1992, Proc. Natl. Acad. Sci. USA 89:6988-6992; Ellington et al., 1992, Nature 355:850-852; U.S. Pat. No. 5,096,815, U.S. Pat. No. 5,223,409, and U.S. Pat. No. 5,198,346, all to Ladner et al.; Rebar and Pabo, 1993, Science 263:671-673; and CT Publication No. WO 94/18318. hi a specific embodiment, screening to identify a molecule that binds polypeptides of the invention can be carried out by contacting the library members with polypeptides of the invention immobilized on a solid phase and harvesting those library members that bind to the polypeptides of the invention. Examples of such screening methods, termed "panning" techniques are described by way of example in Parmley and Smith, 1988, Gene 73:305-318; Fowlkes et al., 1992, BioTechniques 13:422-427; PCT Publication No. WO 94/18318; and in references cited herein.
In another embodiment, the two-hybrid system for selecting interacting proteins in yeast (Fields and Song, 1989, Nature 340:245-246; Chien et al., 1991, Proc. Natl. Acad. Sci. USA 88:9578-9582) can be used to identify molecules that specifically bind to polypeptides of the invention.
Where the binding molecule is a polypeptide, the polypeptide can be conveniently selected from any peptide library, including random peptide libraries, combinatorial peptide libraries, or biased peptide libraries. The term "biased" is used herein to mean that the method of generating the library is manipulated so as to restrict one or more parameters that govern the diversity of the resulting collection of molecules, in this case peptides. Thus, a truly random peptide library would generate a collection of peptides in which the probability of finding a particular amino acid at a given position of the peptide is the same for all 20 amino acids. A bias can be introduced into the library, however, by specifying, for example, that a lysine occur every fifth amino acid or that positions 4, 8, and 9 of a decapeptide library be fixed to include only arginine. Clearly, many types of biases can be contemplated, and the present invention is not restricted to any particular bias. Furthermore, the present invention contemplates specific types of peptide libraries, such as phage displayed peptide libraries and those that utilize a DNA construct comprising a lambda phage vector with a DNA insert.
As mentioned above, in the case of a binding molecule that is a polypeptide, the polypeptide may have about 6 to less than about 60 amino acid residues, preferably about 6 to about 10 amino acid residues, and most preferably, about 6 to about 22 amino acids. In another embodiment, a binding polypeptide has in the range of 15-100 amino acids, or 20-50 amino acids.
The selected binding polypeptide can be obtained by chemical synthesis or recombinant expression.
Other Activities
A polypeptide, polynucleotide, agonist, or antagonist of the present invention, as a result of the ability to stimulate vascular endothelial cell growth, may be employed in treatment for stimulating re-vascularization of ischemic tissues due to various disease conditions such as thrombosis, arteriosclerosis, and other cardiovascular conditions. The polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to stimulate angiogenesis and limb regeneration, as discussed above.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for treating wounds due to injuries, burns, post-operative tissue repair, and ulcers since they are mitogenic to various cells of different origins, such as fibroblast cells and skeletal muscle cells, and therefore, facilitate the repair or replacement of damaged or diseased tissue.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed stimulate neuronal growth and to treat and prevent neuronal damage which occurs in certain neuronal disorders or neuro-degenerative conditions such as Alzheimer's disease, Parkinson's disease, and AIDS-related complex. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may have the ability to stimulate chondrocyte growth, therefore, they may be employed to enhance bone and periodontal regeneration and aid in tissue transplants or bone grafts. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be also be employed to prevent skin aging due to sunburn by stimulating keratinocyte growth.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for preventing hair loss, since FGF family members activate hair-forming cells and promotes melanocyte growth. Along the same lines, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be employed to stimulate growth and differentiation of hematopoietic cells and bone marrow cells when used in combination with other cytokines.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed to maintain organs before transplantation or for supporting cell culture of primary tissues. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be employed for inducing tissue of mesodermal origin to differentiate in early embryos.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also increase or decrease the differentiation or proliferation of embryonic stem cells, besides, as discussed above, hematopoietic lineage. A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used to modulate mammalian characteristics, such as body height, weight, hair color, eye color, skin, percentage of adipose tissue, pigmentation, size, and shape (e.g., cosmetic surgery). Similarly, a polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to modulate mammalian metabolism affecting catabolism, anabolism, processing, utilization, and storage of energy.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may be used to change a mammal's mental state or physical state by influencing biorhythms, caricadic rhythms, depression (including depressive disorders), tendency for violence, tolerance for pain, reproductive capabilities (preferably by Activin or Inhibin-like activity), hormonal or endocrine levels, appetite, libido, memory, stress, or other cognitive qualities.
A polypeptide, polynucleotide, agonist, or antagonist of the present invention may also be used as a food additive or preservative, such as to increase or decrease storage capabilities, fat content, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional components.
The above-recited applications have uses in a wide variety of hosts. Such hosts include, but are not limited to, human, murine, rabbit, goat, guinea pig, camel, horse, mouse, rat, hamster, pig, micro-pig, chicken, goat, cow, sheep, dog, cat, non-human primate, and human. In specific embodiments, the host is a mouse, rabbit, goat, guinea pig, chicken, rat, hamster, pig, sheep, dog or cat. In preferred embodiments, the host is a mammal. In most preferred embodiments, the host is a human.
Other Preferred Embodiments
Other preferred embodiments of the claimed invention include an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 50 contiguous nucleotides in the nucleotide sequence of SEQ ED NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table IB or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.
Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of the portion of SEQ ED NO:X as defined in column 5, "ORF (From-To)", in Table IB.l.
Also preferred is a nucleic acid molecule wherein said sequence of contiguous nucleotides is included in the nucleotide sequence of the portion of SEQ ID NO:X as defined in columns 8 and 9, "NT From" and "NT To" respectively, in Table 2.
Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 150 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.
Further preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least about 500 contiguous nucleotides in the nucleotide sequence of SEQ ID NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.
A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of the portion of SEQ ID NO:X defined in column 5, "ORF (From-To)", in Table IB.l. A further preferred embodiment is a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the nucleotide sequence of the portion of SEQ ED NO:X defined in columns 8 and 9, "NT From" and "NT To", respectively, in Table 2.
A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence of SEQ ED NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of
Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z.
Also preferred is an isolated nucleic acid molecule which hybridizes under stringent hybridization conditions to a nucleic acid molecule comprising a nucleotide sequence of SEQ ED NO:X or the complementary strand thereto, the nucleotide sequence as defined in column 5 of
Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto, and/or cDNA contained in ATCC Deposit No:Z, wherein said nucleic acid molecule which hybridizes does not hybridize under stringent hybridization conditions to a nucleic acid molecule having a nucleotide sequence consisting of only A residues or of only T residues.
Also preferred is a composition of matter comprising a DNA molecule which comprises the cDNA contained in ATCC Deposit No:Z. Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides of the cDNA sequence contained in ATCC Deposit No:Z.
Also preferred is an isolated nucleic acid molecule, wherein said sequence of at least 50 contiguous nucleotides is included in the nucleotide sequence of an open reading frame sequence encoded by cDNA contained in ATCC Deposit No:Z.
Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 150 contiguous nucleotides in the nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z.
A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to sequence of at least 500 contiguous nucleotides in the nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z.
A further preferred embodiment is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to the complete nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z. A further preferred embodiment is a method for detecting in a biological sample a nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ED NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z; which method comprises a step of comparing a nucleotide sequence of at least one nucleic acid molecule in said sample with a sequence selected from said group and determining whether the sequence of said nucleic acid molecule in said sample is at least 95% identical to said selected sequence.
Also preferred is the above method wherein said step of comparing sequences comprises determining the extent of nucleic acid hybridization between nucleic acid molecules in said sample and a nucleic acid molecule comprising said sequence selected from said group. Similarly, also preferred is the above method wherein said step of comparing sequences is performed by comparing the nucleotide sequence determined from a nucleic acid molecule in said sample with said sequence selected from said group. The nucleic acid molecules can comprise DNA molecules or RNA molecules.
A further preferred embodiment is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting nucleic acid molecules in said sample, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ED NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence of the cDNA contained in ATCC Deposit No:Z.
The method for identifying the species, tissue or cell type of a biological sample can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.
Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto; or the cDNA contained in ATCC Deposit No:Z which encodes a protein, wherein the method comprises a step of detecting in a biological sample obtained from said subject nucleic acid molecules, if any, comprising a nucleotide sequence that is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence of cDNA contained in ATCC Deposit No:Z.
The method for diagnosing a pathological condition can comprise a step of detecting nucleic acid molecules comprising a nucleotide sequence in a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from said group.
Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a panel of at least two nucleotide sequences, wherein at least one sequence in said panel is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X or the complementary strand thereto; the nucleotide sequence as defined in column 5 of Table IB.l or columns 8 and 9 of Table 2 or the complementary strand thereto; and a nucleotide sequence encoded by cDNA contained in ATCC Deposit No:Z. The nucleic acid molecules can comprise DNA molecules or RNA molecules.
Also preferred is a composition of matter comprising isolated nucleic acid molecules wherein the nucleotide sequences of said nucleic acid molecules comprise a DNA microarray or "chip" of at least 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50, 100, 150, 200, 250, 300, 500, 1000, 2000, 3000, or 4000 nucleotide sequences, wherein at least one sequence in said DNA microarray or "chip" is at least 95% identical to a sequence of at least 50 contiguous nucleotides in a sequence selected from the group consisting of: a nucleotide sequence of SEQ ID NO:X wherein X is any integer as defined in Table IA and/or IB; and a nucleotide sequence encoded by a human cDNA clone identified by a cDNA "Clone ED" in Table IA and/or IB. Also preferred is an isolated polypeptide comprising an amino acid sequence at least 90% identical to a sequence of at least about 10 contiguous amino acids in the polypeptide sequence of SEQ ED NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z. Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z. Further preferred is an isolated polypeptide comprising an amino acid sequence at least
95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of SEQ ED NO: Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z. Further preferred is an isolated polypeptide comprising an amino acid sequence at least
95% identical to the complete amino acid sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or a polypeptide encoded by cDNA contained in ATCC Deposit No:Z. Further preferred is an isolated polypeptide comprising an amino acid sequence at least
90% identical to a sequence of at least about 10 contiguous amino acids in the complete amino acid sequence of a polypeptide encoded by contained in ATCC Deposit No:Z
Also preferred is a polypeptide wherein said sequence of contiguous amino acids is included in the amino acid sequence of a portion of said polypeptide encoded by cDNA contained in ATCC Deposit No:Z; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and/or the polypeptide sequence of SEQ ED NO:Y.
Also prefenred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 30 contiguous amino acids in the amino acid sequence of a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to a sequence of at least about 100 contiguous amino acids in the amino acid sequence of a polypeptide encoded by cDNA contained in ATCC Deposit No:Z.
Also preferred is an isolated polypeptide comprising an amino acid sequence at least 95% identical to the amino acid sequence of a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z. Further preferred is an isolated antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ED NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.
Further preferred is a method for detecting in a biological sample a polypeptide comprising an amino acid sequence which is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ED NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z; which method comprises a step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group and determining whether the sequence of said polypeptide molecule in said sample is at least 90% identical to said sequence of at least 10 contiguous amino acids.
Also preferred is the above method wherein said step of comparing an amino acid sequence of at least one polypeptide molecule in said sample with a sequence selected from said group comprises determining the extent of specific binding of polypeptides in said sample to an antibody which binds specifically to a polypeptide comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: a polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z. Also preferred is the above method wherein said step of comparing sequences is performed by comparing the amino acid sequence determined from a polypeptide molecule in said sample with said sequence selected from said group.
Also preferred is a method for identifying the species, tissue or cell type of a biological sample which method comprises a step of detecting polypeptide molecules in said sample, if any, comprising an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ED NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.
Also preferred is the above method for identifying the species, tissue or cell type of a biological sample, which method comprises a step of detecting polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the above group.
Also preferred is a method for diagnosing in a subject a pathological condition associated with abnormal structure or expression of a nucleic acid sequence identified in Table IA, IB or Table 2 encoding a polypeptide, which method comprises a step of detecting in a biological sample obtained from said subject polypeptide molecules comprising an amino acid sequence in a panel of at least two amino acid sequences, wherein at least one sequence in said panel is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as' defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.
In any of these methods, the step of detecting said polypeptide molecules includes using an antibody. Also preferred is an isolated nucleic acid molecule comprising a nucleotide sequence which is at least 95% identical to a nucleotide sequence encoding a polypeptide wherein said polypeptide comprises an amino acid sequence that is at least 90% identical to a sequence of at least 10 contiguous amino acids in a sequence selected from the group consisting of: polypeptide sequence of SEQ ED NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z.
Also preferred is an isolated nucleic acid molecule, wherein said nucleotide sequence encoding a polypeptide has been optimized for expression of said polypeptide in a prokaryotic host. Also preferred is a polypeptide molecule, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID NO:Y; a polypeptide encoded by SEQ ED NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z. Further preferred is a method of making a recombinant vector comprising inserting any of the above isolated nucleic acid molecule into a vector. Also preferred is the recombinant vector produced by this method. Also preferred is a method of making a recombinant host cell comprising introducing the vector into a host cell, as well as the recombinant host cell produced by this method.
Also preferred is a method of making an isolated polypeptide comprising culturing this recombinant host cell under conditions such that said polypeptide is expressed and recovering said polypeptide. Also preferred is this method of making an isolated polypeptide, wherein said recombinant host cell is a eukaryotic cell and said polypeptide is a human protein comprising an amino acid sequence selected from the group consisting of: polypeptide sequence of SEQ ID
NO:Y; a polypeptide encoded by SEQ ID NO:X or the complementary strand thereto; the polypeptide encoded by the nucleotide sequence as defined in columns 8 and 9 of Table 2; and a polypeptide encoded by the cDNA contained in ATCC Deposit No:Z. The isolated polypeptide produced by this method is also preferred.
Also preferred is a method of treatment of an individual in need of an increased level of a protein activity, which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to increase the level of said protein activity in said individual.
Also preferred is a method of treatment of an individual in need of a decreased level of a protein activity, which method comprised administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide, polynucleotide, immunogenic fragment or analogue thereof, binding agent, antibody, or antigen binding fragment of the claimed invention effective to decrease the level of said protein activity in said individual.
Also preferred is a method of treatment of an individual in need of a specific delivery of toxic compositions to diseased cells (e.g., tumors, leukemias or lymphomas), which method comprises administering to such an individual a Therapeutic comprising an amount of an isolated polypeptide of the invention, including, but not limited to a binding agent, or antibody of the claimed invention that are associated with toxin or cytotoxic prodrugs.
Having generally described the invention, the same will be more readily understood by reference to the following examples, which are provided by way of illustration and are not intended as limiting.
Description of Table 6
Table 6 summarizes some of the ATCC Deposits, Deposit dates, and ATCC designation numbers of deposits made with the ATCC in connection with the present application. These deposits were made in addition to those described in the Table IA. Table 6
ATCC Deposits Deposit Date ATCC Designation Number
LP01, LP02, LP03, LP04, May-20-97 209059, 209060, 209061, 209062, 209063,
Examples Example 1: Isolation of a Selected cDNA Clone From the Deposited Sample
Each ATCC Deposit No:Z is contained in a plasmid vector. Table 7 identifies the vectors used to construct the cDNA library from which each clone was isolated, i many cases, the vector used to construct the library is a phage vector from which a plasmid has been excised. The following correlates the related plasmid for each phage vector used in constructing the cDNA library. For example, where a particular clone is identified in Table 7 as being isolated in the vector "Lambda Zap," the corresponding deposited clone is in "pBluescript."
Vector Used to Construct Library Corresponding Deposited Plasmid
Lambda Zap pBluescript (pBS)
Uni-Zap XR pBluescript (pBS)
Zap Express pBK lafmid BA plafmid BA pSportl pSportl pCMVSport 2.0 pCMVSport 2.0 pCMVSport 3.0 pCMVSport 3.0 pCR®2.1 pCR®2.1
Vectors Lambda Zap (U.S. Patent Nos. 5,128,256 and 5,286,636), Uni-Zap XR (U.S. Patent Nos. 5,128, 256 and 5,286,636), Zap Express (U.S. Patent Nos. 5,128,256 and 5,286,636), pBluescript (pBS) (Short, J. M. et al., Nucleic Acids Res. 16:7583-7600 (1988); Alting-Mees, M. A. and Short, J. M., Nucleic Acids Res. 17:9494 (1989)) and pBK (Alting-Mees, M. A. et al., Strategies 5:58-61 (1992)) are commercially available from Stratagene Cloning Systems, hie, 11011 N. Torrey Pines Road, La Jolla, CA, 92037. pBS contains an ampicillin resistance gene and pBK contains a neomycin resistance gene. Both can be transformed into E. coli strain XL-1 Blue, also available from Stratagene. pBS comes in 4 forms SK+, SK-, KS+ and KS. The S and K refers to the orientation of the polylinker to the T7 and T3 primer sequences which flank the polylinker region ("S" is for Sad and "K" is for Kpnl which are the first sites on each respective end of the linker). "+" or "-" refer to the orientation of the fl origin of replication ("ori"), such that in one orientation, single stranded rescue initiated from the f 1 ori generates sense strand DNA and in the other, antisense.
Vectors pSportl, pCMVSport 2.0 and pCMVSport 3.0, were obtained from Life Technologies, Inc., P. O. Box 6009, Gaithersburg, MD 20897. All Sport vectors contain an ampicillin resistance gene and may be transformed into E. coli strain DH10B, also available from Life Technologies. (See, for instance, Gruber, C. R, et al., Focus 15:59 (1993)). Vector lafmid BA (Bento Soares, Columbia University, NY) contains an ampicillin resistance gene and can be transformed into E. coli strain XL-1 Blue. Vector pCR®2.1, which is available from Invitrogen, 1600 Faraday Avenue, Carlsbad, CA 92008, contains an ampicillin resistance gene and may be transformed into E. coli strain DH10B, available from Life Technologies. (See, for instance, Clark, J. M., Nuc. Acids Res. 16:9677-9686 (1988) and Mead, D. et al., Bio/Technology 9: (1991)). Preferably, a polynucleotide of the present invention does not comprise the phage vector sequences identified for the particular clone in Table 7, as well as the corresponding plasmid vector sequences designated above.
The deposited material in the sample assigned the ATCC Deposit Number cited by reference to Table IA, Table 2, Table 6 and Table 7 for any given cDNA clone also may contain one or more additional plasmids, each comprising a cDNA clone different from that given clone. Thus, deposits sharing the same ATCC Deposit Number contain at least a plasmid for each ATCC Deposit No:Z.
TABLE 7
Two nonlimiting examples are provided below for isolating a particular clone from the deposited sample of plasmid cDNAs cited for that clone in Table 7. First, a plasmid is directly isolated by screening the clones using a polynucleotide probe corresponding to the nucleotide sequence of SEQ ID NO:X.
Particularly, a specific polynucleotide with 30-40 nucleotides is synthesized using an Applied Biosystems DNA synthesizer according to the sequence reported. The oligonucleotide is labeled, for instance, with 32P-γ-ATP using T4 polynucleotide kinase and purified according to routine methods. (E.g., Maniatis et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Press, Cold Spring, NY (1982)). The plasmid mixture is transformed into a suitable host, as indicated above (such as XL-1 Blue (Stratagene)) using techniques known to those of skill in the art, such as those provided by the vector supplier or in related publications or patents cited above. The transformants are plated on 1.5% agar plates (containing the appropriate selection agent, e.g., ampicillin) to a density of about 150 transformants (colonies) per plate. These plates are screened using Nylon membranes according to routine methods for bacterial colony screening (e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd Edit., (1989), Cold Spring Harbor Laboratory Press, pages 1.93 to 1.104), or other techniques known to those of skill in the art.
Alternatively, two primers of 17-20 nucleotides derived from both ends of the nucleotide sequence of SEQ ID NO:X are synthesized and used to amplify the desired cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 μl of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl2, 0.01% (w/v) gelatin, 20 μM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94°C for 1 min; annealing at 55°C for 1 min; elongation at 72°C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis and the DNA band with expected molecular weight is excised and purified. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product.
Several methods are available for the identification of the 5' or 3' non-coding portions of a gene which may not be present in the deposited clone. These methods include but are not limited to, filter probing, clone enrichment using specific probes, and protocols similar or identical to 5' and 3' "RACE" protocols which are well known in the art. For instance, a method similar to 5' RACE is available for generating the missing 5' end of a desired full-length transcript. (Fromont- Racine et al., Nucleic Acids Res. 21(7): 1683-1684 (1993)).
Briefly, a specific RNA oligonucleotide is ligated to the 5' ends of a population of RNA presumably containing full-length gene RNA transcripts. A primer set containing a primer specific to the ligated RNA oligonucleotide and a primer specific to a known sequence of the gene of interest is used to PCR amplify the 5' portion of the desired full-length gene. This amplified product may then be sequenced and used to generate the full length gene.
This above method starts with total RNA isolated from the desired source, although poly- A+ RNA can be used. The RNA preparation can then be treated with phosphatase if necessary to eliminate 5' phosphate groups on degraded or damaged RNA which may interfere with the later RNA ligase step. The phosphatase should then be inactivated and the RNA treated with tobacco acid pyrophosphatase in order to remove the cap structure present at the 5' ends of messenger RNAs. This reaction leaves a 5' phosphate group at the 5' end of the cap cleaved RNA which can then be ligated to an RNA oligonucleotide using T4 RNA ligase. This modified RNA preparation is used as a template for first strand cDNA synthesis using a gene specific oligonucleotide. The first strand synthesis reaction is used as a template for PCR amplification of the desired 5' end using a primer specific to the ligated RNA oligonucleotide and a primer specific to the known sequence of the gene of interest. The resultant product is then sequenced and analyzed to confirm that the 5' end sequence belongs to the desired gene.
Example 2: Isolation of Genomic Clones Corresponding to a Polynucleotide
A human genomic PI library (Genomic Systems, Inc.) is screened by PCR using primers selected for the sequence corresponding to SEQ ED NO:X according to the method described in Example 1. (See also, Sambrook.)
Example 3: Tissue specific expression analysis
The Human Genome Sciences, hie. (HGS) database is derived from sequencing tissue and/or disease specific cDNA libraries. Libraries generated from a particular tissue are selected and the specific tissue expression pattern of EST groups or assembled contigs within these libraries is determined by comparison of the expression patterns of those groups or contigs within the entire database. ESTs and assembled contigs which show tissue specific expression are selected.
The original clone from which the specific EST sequence was generated, or in the case of an assembled contig, the clone from which the 5' most EST sequence was generated, is obtained from the catalogued library of clones and the insert amplified by PCR using methods known in the art. The PCR product is denatured and then transferred in 96 or 384 well format to a nylon membrane (Schleicher and Scheull) generating an array filter of tissue specific clones.
Housekeeping genes, maize genes, and known tissue specific genes are included on the filters.
These, targets can be used in signal normalization and to validate assay sensitivity. Additional targets are included to monitor probe length and specificity of hybridization.
Radioactively labeled hybridization probes are generated by first strand cDNA synthesis per the manufacturer's instructions (Life Technologies) from mRNA RNA samples prepared from the specific tissue being analyzed (e.g., prostate, prostate cancer, ovarian, ovarian cancer, etc.). The hybridization probes are purified by gel exclusion chromatography, quantitated, and hybridized with the array filters in hybridization bottles at 65°C overnight. The filters are washed under stringent conditions and signals are captured using a Fuji phosphorimager. Data is extracted using AIS software and following background subtraction, signal normalization is performed. This includes a normalization of filter-wide expression levels between different experimental runs. Genes that are differentially expressed in the tissue of interest are identified.
Example 4: Chromosomal Mapping of the Polynucleotides
An oligonucleotide primer set is designed according to the sequence at the 5' end of SEQ ID NO:X. This primer preferably spans about 100 nucleotides. This primer set is then used in a polymerase chain reaction under the following set of conditions: 30 seconds, 95°C; 1 minute, 56°C; 1 minute, 70°C. This cycle is repeated 32 times followed by one 5 minute cycle at 70°C. Human, mouse, and hamster DNA is used as template in addition to a somatic cell hybrid panel containing individual chromosomes or chromosome fragments (Bios, Inc). The reactions are analyzed on either 8% polyacrylamide gels or 3.5 % agarose gels. Chromosome mapping is determined by the presence of an approximately 100 bp PCR fragment in the particular somatic cell hybrid.
Example 5: Bacterial Expression of a Polypeptide A polynucleotide encoding a polypeptide of the present invention is amplified using PCR oligonucleotide primers corresponding to the 5' and 3' ends of the DNA sequence, as outlined in Example 1, to synthesize insertion fragments. The primers used to amplify the cDNA insert should preferably contain restriction sites, such as BamHI and Xbal, at the 5' end of the primers in order to clone the amplified product into the expression vector. For example, BamHI and Xbal correspond to the restriction enzyme sites on the bacterial expression vector pQE-9. (Qiagen, hie,
Chatsworth, CA). This plasmid vector encodes antibiotic resistance (Amp1), a bacterial origin of replication (ori), an IPTG-regulatable promoter/operator (P/O), a ribosome binding site (RBS), a 6-histidine tag (6-His), and restriction enzyme cloning sites.
The pQE-9 vector is digested with BamHI and Xbal and the amplified fragment is ligated into the pQE-9 vector maintaining the reading frame initiated at the bacterial RBS. The ligation mixture is then used to transform the E. coli strain M15/rep4 (Qiagen, Inc.) which contains multiple copies of the plasmid pREP4, which expresses the lad repressor and also confers kanamycin resistance (Kan1)- Transformants are identified by their ability to grow on LB plates and ampicillin/kanamycin resistant colonies are selected. Plasmid DNA is isolated and confirmed by restriction analysis.
Clones containing the desired constructs are grown overnight (O/N) in liquid culture in LB media supplemented with both Amp (100 ug/ml) and Kan (25 ug/ml). The O/N culture is used to inoculate a large culture at a ratio of 1:100 to 1:250. The cells are grown to an optical density 600 (O.D.600) of between 0.4 and 0.6. EPTG (Isopropyl-B-D-thiogalacto pyranoside) is then added to a final concentration of 1 mM. IPTG induces by inactivating the lad repressor, clearing the P/O leading to increased gene expression.
Cells are grown for an extra 3 to 4 hours. Cells are then harvested by centrifugation (20 mins at 6000Xg). The cell pellet is solubilized in the chaotropic agent 6 Molar Guanidine HCI by stirring for 3-4 hours at 4°C. The ceU debris is removed by centrifugation, and the supernatant containing the polypeptide is loaded onto a nickel-nitrilo-tri-acetic acid ("Ni-NTA") affinity resin column (available from QIAGEN, Inc., supra). Proteins with a 6 x His tag bind to the Ni-NTA resin with high affinity and can be purified in a simple one-step procedure (for details see: The QIAexpressionist (1995) QIAGEN, Inc., supra). Briefly, the supernatant is loaded onto the column in 6 M guanidine-HCl, pH 8. The column is first washed with 10 volumes of 6 M guanidine-HCl, pH 8, then washed with 10 volumes of 6 M guanidine-HCl pH 6, and finally the polypeptide is eluted with 6 M guanidine- HCl, pH 5.
The purified protein is then renatured by dialyzing it against phosphate-buffered saline (PBS) or 50 mM Na-acetate, pH 6 buffer plus 200 mM NaCl. Alternatively, the protein can be successfully refolded while immobilized on the Ni-NTA column. The recommended conditions are as follows: renature using a linear 6M-1M urea gradient in 500 mM NaCl, 20% glycerol, 20 mM Tris/HCl pH 7.4, containing protease inhibitors. The renaturation should be performed over a period of 1.5 hours or more. After renaturation the proteins are eluted by the addition of 250 mM immidazole. Immidazole is removed by a final dialyzing step against PBS or 50 mM sodium acetate pH 6 buffer plus 200 mM NaCl. The purified protein is stored at 4° C or frozen at -80° C.
In addition to the above expression vector, the present invention further includes an expression vector, called pHE4a (ATCC Accession Number 209645, deposited on February 25, 1998) which contains phage operator and promoter elements operatively linked to a polynucleotide of the present invention, called ρHE4a. (ATCC Accession Number 209645, deposited on February 25, 1998.) This vector contains: 1) a neomycinphosphotransferase gene as a selection marker, 2) an E. coli origin of replication, 3) a T5 phage promoter sequence, 4) two lac operator sequences, 5) a Shine-Delgarno sequence, and 6) the lactose operon repressor gene (laclq). The origin of replication (oriC) is derived from ρUC19 (LTI, Gaithersburg, MD). The promoter and operator sequences are made synthetically.
DNA can be inserted into the pHE4a by restricting the vector with Ndel and Xbal, BamHI, Xhol, or Asρ718, running the restricted product on a gel, and isolating the larger fragment (the stuffer fragment should be about 310 base pairs). The DNA insert is generated according to the PCR protocol described in Example 1, using PCR primers having restriction sites for Ndel (5' primer) and Xbal, BamHI, Xhol, or Asp718 (3' primer). The PCR insert is gel purified and restricted with compatible enzymes. The insert and vector are ligated according to standard protocols.
The engineered vector could easily be substituted in the above protocol to express protein in a bacterial system.
Example 6: Purification of a Polypeptide from an Inclusion Body The following alternative method can be used to purify a polypeptide expressed in E coli when it is present in the form of inclusion bodies. Unless otherwise specified, all of the following steps are conducted at 4-10°C.
Upon completion of the production phase of the E. coli fermentation, the cell culture is cooled to 4-10°C and the cells harvested by continuous centrifugation at 15,000 rpm (Heraeus Sepatech). On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, is suspended in a buffer solution containing 100 mM Tris, 50 mM EDTA, pH 7.4. The cells are dispersed to a homogeneous suspension using a high shear mixer.
The cells are then lysed by passing the solution through a microfluidizer (Microfuidics, Corp. or APV Gaulin, Inc.) twice at 4000-6000 psi. The homogenate is then mixed with NaCl solution to a final concentration of 0.5 M NaCl, followed by centrifugation at 7000 xg for 15 min.
The resultant pellet is washed again using 0.5M NaCl, 100 mM Tris, 50 mM EDTA, pH 7.4.
The resulting washed inclusion bodies are solubilized with 1.5 M guanidine hydrochloride
(GuHCl) for 2-4 hours. After 7000 xg centrifugation for 15 min., the pellet is discarded and the polypeptide containing supernatant is incubated at 4°C overnight to allow further GuHCl extraction.
Following high speed centrifugation (30,000 xg) to remove insoluble particles, the GuHCl solubilized protein is refolded by quickly mixing the GuHCl extract with 20 volumes of buffer containing 50 mM sodium, pH 4.5, 150 mM NaCl, 2 mM EDTA by vigorous stirring. The refolded diluted protein solution is kept at 4°C without mixing for 12 hours prior to further purification steps.
To clarify the refolded polypeptide solution, a previously prepared tangential filtration unit equipped with 0.16 μm membrane filter with appropriate surface area (e.g., Filtron), equilibrated with 40 mM sodium acetate, pH 6.0 is employed. The filtered sample is loaded onto a cation exchange resin (e.g., Poros HS-50, Perseptive Biosystems). The column is washed with 40 mM sodium acetate, pH 6.0 and eluted with 250 mM, 500 mM, 1000 mM, and 1500 mM NaCl in the same buffer, in a stepwise manner. The absorbance at 280 nm of the effluent is continuously monitored. Fractions are collected and further analyzed by SDS-PAGE.
Fractions containing the polypeptide are then pooled and mixed with 4 volumes of water.
The diluted sample is then loaded onto a previously prepared set of tandem columns of strong anion (Poros HQ-50, Perseptive Biosystems) and weak anion (Poros CM-20, Perseptive
Biosystems) exchange resins. The columns are equilibrated with 40 mM sodium acetate, pH 6.0.
Both columns are washed with 40 mM sodium acetate, pH 6.0, 200 mM NaCl. The CM-20 column is then eluted using a 10 column volume linear gradient ranging from 0.2 M NaCl, 50 mM sodium acetate, pH 6.0 to 1.0 M NaCl, 50 mM sodium acetate, pH 6.5. Fractions are collected under constant A28o monitoring of the effluent. Fractions containing the polypeptide (determined, for instance, by 16% SDS-PAGE) are then pooled.
The resultant polypeptide should exhibit greater than 95% purity after the above refolding and purification steps. No major contaminant bands should be observed from Commassie blue stained 16% SDS-PAGE gel when 5 μg of purified protein is loaded. The purified protein can also be tested for endotoxin/LPS contamination, and typically the LPS content is less than 0.1 ng/ml according to LAL assays.
Example 7: Cloning and Expression of a Polypeptide in a Baculovirus Expression System
In this example, the plasmid shuttle vector pA2 is used to insert a polynucleotide into a baculovirus to express a polypeptide. This expression vector contains the strong polyhedrin promoter of the Autographa californica nuclear polyhedrosis virus (AcMNPV) followed by convenient restriction sites such as BamHI, Xba I and Asp718. The polyadenylation site of the simian virus 40 ("SV40") is used for efficient polyadenylation. For easy selection of recombinant virus, the plasmid contains the beta-galactosidase gene from E. coli under control of a weak Drosophila promoter in the same orientation, followed by the polyadenylation signal of the polyhedrin gene. The inserted genes are flanked on both sides by viral sequences for cell- mediated homologous recombination with wild-type viral DNA to generate a viable virus that express the cloned polynucleotide.
Many other baculovirus vectors can be used in place of the vector above, such as pAc373, pVL941, and pAcIMl, as one skilled in the art would readily appreciate, as long as the construct provides appropriately located signals for transcription, translation, secretion and the like, including a signal peptide and an in-frame AUG as required. Such vectors are described, for instance, in Luckow et al., Virology 170:31-39 (1989).
Specifically, the cDNA sequence contained in the deposited clone, including the AUG initiation codon, is amplified using the PCR protocol described in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the pA2 vector does not need a second signal peptide. Alternatively, the vector can be modified (pA2 GP) - to include a baculovirus leader sequence, using the standard methods described in Summers et al., "A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures," Texas Agricultural Experimental Station Bulletin No. 1555 (1987).
The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.
The plasmid is digested with the corresponding restriction enzymes and optionally, can be dephosphorylated using calf intestinal phosphatase, using routine procedures known in the art. The DNA is then isolated from a 1% agarose gel using a commercially available kit ("Geneclean" BIO 101 Inc., La Jolla, Ca.).
The fragment and the dephosphorylated plasmid are ligated together with T4 DNA ligase. E. coli HB101 or other suitable E. coli hosts such as XL-1 Blue (Stratagene Cloning Systems, La Jolla, CA) cells are transformed with the ligation mixture and spread on culture plates. Bacteria containing the plasmid are identified by digesting DNA from individual colonies and analyzing the digestion product by gel electrophoresis. The sequence of the cloned fragment is confirmed by DNA sequencing.
Five μg of a plasmid containing the polynucleotide is co-transfected with 1.0 μg of a commercially available linearized baculovirus DNA ("BaculoGold™ baculovirus DNA, Pharmingen, San Diego, CA), using the lipofection method described by Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417 (1987). One μg of BaculoGold™ virus DNA and 5 μg of the plasmid are mixed in a sterile well of a microtiter plate containing 50 μl of serum-free Grace's medium (Life Technologies Inc., Gaithersburg, MD). Afterwards, 10 μl Lipofectin plus 90 μl Grace's medium are added, mixed and incubated for 15 minutes at room temperature. Then the transfection mixture is added drop-wise to Sf9 insect cells (ATCC CRL 1711) seeded in a 35 mm tissue culture plate with 1 ml Grace's medium without serum. The plate is then incubated for 5 hours at 27° C. The transfection solution is then removed from the plate and 1 ml of Grace's insect medium supplemented with 10% fetal calf serum is added. Cultivation is then continued at 27° C for four days.
After four days the supernatant is collected and a plaque assay is performed, as described by Summers and Smith, supra. An agarose gel with. "Blue Gal" (Life Technologies Inc., Gaithersburg) is used to allow easy identification and isolation of gal-expressing clones, which produce blue-stained plaques. (A detailed description of a "plaque assay" of this type can also be found in the user's guide for insect cell culture and baculovirology distributed by Life Technologies Inc., Gaithersburg, page 9-10.) After appropriate incubation, blue stained plaques are picked with the tip of a micropipettor (e.g., Eppendorf). The agar containing the recombinant viruses is then resuspended in a microcentrifuge tube containing 200 μl of Grace's medium and the suspension containing the recombinant baculovirus is used to infect Sf9 ceUs seeded in 35 mm dishes. Four days later the supematants of these culture dishes are harvested and then they are stored at 4° C.
To verify the expression of the polypeptide, Sf9 cells are grown in Grace's medium supplemented with 10% heat-inactivated FBS. The cells are infected with the recombinant baculovirus containing the polynucleotide at a multiplicity of infection ("MOI") of about 2. If radiolabeled proteins are desired, 6 hours later the medium is removed and is replaced with SF900 II medium minus methionine and cysteine (available from Life Technologies ie, Rockville, MD). After 42 hours, 5 μCi of 35S-methionine and 5 μCi 35S-cysteine (available from Amersham) are added. The cells are further incubated for 16 hours and then are harvested by centrifugation. The proteins in the supernatant as well as the intracellular proteins are analyzed by SDS-PAGE followed by autoradiography (if radiolabeled).
Microsequencing of the amino acid sequence of the amino terminus of purified protein may be used to determine the amino terminal sequence of the produced protein.
Example 8: Expression of a Polypeptide in Mammalian Cells
The polypeptide of the present invention can be expressed in a mammalian cell. A typical mammalian expression vector contains a promoter element, which mediates the initiation of transcription of mRNA, a protein coding sequence, and signals required for the termination of transcription and polyadenylation of the transcript. Additional elements include enhancers, Kozak sequences and intervening sequences flanked by donor and acceptor sites for RNA splicing. Highly efficient transcription is achieved with the early and late promoters from SV40, the long terminal repeats (LTRs) from Retroviruses, e.g., RSV, HTLVI, HEVI and the early promoter of the cytomegalovirus (CMV). However, cellular elements can also be used (e.g., the human actin promoter). Suitable expression vectors for use in practicing the present invention include, for example, vectors such as pSVL and pMSG (Pharmacia, Uppsala, Sweden), pRSVcat (ATCC 37152), pSV2dhfr (ATCC 37146), pBC12MI (ATCC 67109), pCMVSport 2.0, and pCMVSport 3.0. Mammalian host cells that could be used include, human Hela, 293, H9 and Jurkat cells, mouse NIH3T3 and C 127 cells, Cos 1, Cos 7 and CV1, quail QC1-3 cells, mouse L cells and Chinese hamster ovary (CHO) cells.
Alternatively, the polypeptide can be expressed in stable cell lines containing the polynucleotide integrated into a chromosome. The co-transfection with a selectable marker such as DHFR, gpt, neomycin, or hygromycin allows the identification and isolation of the transfected cells. The transfected gene can also be amplified to express large amounts of the encoded protein. The DHFR (dihydrofolate reductase) marker is useful in developing cell lines that carry several hundred or even several thousand copies of the gene of interest. (See, e.g., Alt, F. W., et al., J. Biol. Chem. 253:1357-1370 (1978); Hamlin, J. L. and Ma, C, Biochem. et Biophys. Acta, 1097:107-143 (1990); Page, M. J. and Sydenham, M. A., Biotechnology 9:64-68 (1991)). Another useful selection marker is the enzyme glutamine synthase (GS) (Murphy et al., Biochem J. 227:277-279 (1991); Bebbington et al., Bio/Technology 10:169-175 (1992). Using these markers, the mammalian cells are grown in selective medium and the cells with the highest resistance are selected. These cell lines contain the amplified gene(s) integrated into a chromosome. Chinese hamster ovary (CHO) and NSO cells are often used for the production of proteins.
Derivatives of the plasmid pSV2-dhfr (ATCC Accession No. 37146), the expression vectors pC4 (ATCC Accession No. 209646) and pC6 (ATCC Accession No.209647) contain the strong promoter (LTR) of the Rous Sarcoma Virus (Cullen et al., Molecular and Cellular Biology, 438-447 (March, 1985)) plus a fragment of the CMV-enhancer (Boshart et al., Cell 41:521-530 (1985)). Multiple cloning sites, e.g., with the restriction enzyme cleavage sites BamHI, Xbal and Asp718, facilitate the cloning of the gene of interest. The vectors also contain the 3' intron, the polyadenylation and termination signal of the rat preproinsulin gene, and the mouse DHFR gene under control of the SV40 early promoter.
Specifically, the plasmid pC6, for example, is digested with appropriate restriction enzymes and then dephosphorylated using calf intestinal phosphates by procedures known in the art. The vector is then isolated from a 1% agarose gel.
A polynucleotide of the present invention is amplified according to the protocol outlined in Example 1. If a naturally occurring signal sequence is used to produce the polypeptide of the present invention, the vector does not need a second signal peptide. Alternatively, if a naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., International Publication No. WO 96/34891.)
The amplified fragment is isolated from a 1% agarose gel using a commercially available kit ("Geneclean," BIO 101 Inc., La Jolla, Ca.). The fragment then is digested with appropriate restriction enzymes and again purified on a 1% agarose gel.
The amplified fragment is then digested with the same restriction enzyme and purified on a 1% agarose gel. The isolated fragment and the dephosphorylated vector are then ligated with T4 DNA ligase. E. coli HB101 or XL-1 Blue cells are then transformed and bacteria are identified that contain the fragment inserted into plasmid ρC6 using, for instance, restriction enzyme analysis.
Chinese hamster ovary cells lacking an active DHFR gene is used for transfection. Five μg of the expression plasmid pC6 or pC4 is cotransfected with 0.5 μg of the plasmid pSVneo using lipofectin (Feigner et al., supra). The plasmid pSV2-neo contains a dominant selectable marker, the neo gene from Tn5 encoding an enzyme that confers resistance to a group of antibiotics including G418. The cells are seeded in alpha minus MEM supplemented with 1 mg/ml G418. After 2 days, the cells are trypsinized and seeded in hybridoma cloning plates (Greiner, Germany) in alpha minus MEM supplemented with 10, 25, or 50 ng/ml of methotrexate plus 1 mg/ml G418. After about 10-14 days single clones are trypsinized and then seeded in 6- well petri dishes or 10 ml flasks using different concentrations of methotrexate (50 nM, 100 nM, 200 nM, 400 nM, 800 nM). Clones growing at the highest concentrations of methotrexate are then transferred to new 6-well plates containing even higher concentrations of methotrexate (1 μM, 2 μM, 5 μM, 10' mM, 20 mM). The same procedure is repeated until clones are obtained which grow at a concentration of 100 - 200 μM. Expression of the desired gene product is analyzed, for instance, by SDS-PAGE and Western blot or by reversed phase HPLC analysis.
Example 9: Protein Fusions
The polypeptides of the present invention are preferably fused to other proteins. These fusion proteins can be used for a variety of applications. For example, fusion of the present polypeptides to His-tag, HA-tag, protein A, IgG domains, and maltose binding protein facilitates purification. (See Example 5; see also EP A 394,827; Traunecker, et al., Nature 331:84-86 (1988)). Similarly, fusion to IgG-1, IgG-3, and albumin increases the halflife time in vivo. Nuclear localization signals fused to the polypeptides of the present invention can target the protein to a specific subceUular localization, while covalent heterodimer or homodimers can increase or decrease the activity of a fusion protein. Fusion proteins can also create chimeric molecules having more than one function. Finally, fusion proteins can increase solubility and/or stability of the fused protein compared to the non-fused protein. AU of the types of fusion proteins described above can be made by modifying the following protocol, which outlines the fusion of a polypeptide to an IgG molecule, or the protocol described in Example 5.
Briefly, the human Fc portion of the IgG molecule can be PCR amplified, using primers that span the 5' and 3' ends of the sequence described below. These primers also should have convenient restriction enzyme sites that will facilitate cloning into an expression vector, preferably a mammalian expression vector.
For example, if pC4 (ATCC Accession No. 209646) is used, the human Fc portion can be ligated into the BamHI cloning site. Note that the 3' BamHI site should be destroyed. Next, the vector containing the human Fc portion is re-restricted with BamHI, linearizing the vector, and a polynucleotide of the present invention, isolated by the PCR protocol described in Example 1, is ligated into this BamHI site. Note that the polynucleotide is cloned without a stop codon, otherwise a fusion protein will not be produced.
If the naturally occurring signal sequence is used to produce the polypeptide of the present invention, pC4 does not need a second signal peptide. Alternatively, if the naturally occurring signal sequence is not used, the vector can be modified to include a heterologous signal sequence. (See, e.g., International Publication No. WO 96/34891.) Human IgG Fc region:
GGGATCCGGAGCCCAAATCTTCTGACAAAACTCACACATGCCCACCGTGCCCAGCAC CTGAATTCGAGGGTGCACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCT CATGATCTCCCGGACTCCTGAGGTCACATGCGTGGTGGTGGACGTAAGCCACGAAGA CCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGAC AAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGT CCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGC CCTCCCAACCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACC ACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCT GACCTGCCTGGTCAAAGGCTTCTATCCAAGCGACATCGCCGTGGAGTGGGAGAGCAA TGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTC CTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGT CTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTC TCCCTGTCTCCGGGTAAATGAGTGCGACGGCCGCGACTCTAGAGGAT (SEQ ID NO: 1)
Example 10: Production of an Antibody from a Polypeptide a) Hybridoma Technology
The antibodies of the present invention can be prepared by a variety of methods. (See, Current Protocols, Chapter 2.) As one example of such methods, cells expressing a polypeptide of the present invention are administered to an animal to induce the production of sera containing polyclonal antibodies, hi a preferred method, a preparation of a polypeptide of the present invention is prepared and purified to render it substantially free of natural contaminants. Such a preparation is then introduced into an animal in order to produce polyclonal antisera of greater specific activity. Monoclonal antibodies specific for a polypeptide of the present invention are prepared using hybridoma technology (Kohler et al., Nature 256:495 (1975); Kohler et al., Eur. J. Immunol. 6:511 (1976); Kohler et al., Eur. J. Immunol. 6:292 (1976); Hammerling et al., in: Monoclonal Antibodies and T-Cell Hybridomas, Elsevier, N.Y., pp. 563-681 (1981)). In general, an animal (preferably a mouse) is immunized with a polypeptide of the present invention or, more preferably, with a secreted polypeptide-expressing cell. Such polypeptide-expressing cells are cultured in any suitable tissue culture medium, preferably in Earle's modified Eagle's medium supplemented with 10% fetal bovine serum (inactivated at about 56°C), and supplemented with about 10 g/1 of nonessential amino acids, about 1,000 U/ml of penicillin, and about 100 μg/ml of streptomycin.
The splenocytes of such mice are extracted and fused with a suitable myeloma cell line. Any suitable myeloma cell line may be employed in accordance with the present invention; however, it is preferable to employ the parent myeloma cell line (SP20), available from the ATCC. After fusion, the resulting hybridoma cells are selectively maintained in HAT medium, and then cloned by limiting dilution as described by Wands et al. (Gastroenterology 80:225-232 (1981)). The hybridoma cells obtained through such a selection are then assayed to identify clones which secrete antibodies capable of binding the polypeptide of the present invention .
Alternatively, additional antibodies capable of binding to a polypeptide of the present invention can be produced in a two-step procedure using anti-idiotypic antibodies. Such a method makes use of the fact that antibodies are themselves antigens, and therefore, it is possible to obtain an antibody which binds to a second antibody, hi accordance with this method, protein specific antibodies are used to immunize an animal, preferably a mouse. The splenocytes of such an animal are then used to produce hybridoma cells, and the hybridoma cells are screened to identify clones which produce an antibody whose ability to bind to the polypeptide-specific antibody can be blocked by said polypeptide. Such antibodies comprise anti-idiotypic antibodies to the polypeptide-specific antibody and are used to immunize an animal to induce formation of further polypeptide-specific antibodies.
For in vivo use of antibodies in humans, an antibody is "humanized". Such antibodies can be produced using genetic constructs derived from hybridoma cells producing the monoclonal antibodies described above. Methods for producing chimeric and humanized antibodies are known in the art and are discussed herein. (See, for review, Morrison, Science 229:1202 (1985); Oi et al., BioTechniques 4:214 (1986); Cabilly et al., U.S. Patent No. 4,816,567; Taniguchi et al., EP 171496; Morrison et al., EP 173494; Neuberger et al., WO 8601533; Robinson et al., International Publication No. WO 8702671; BouUanne et al, Nature 312:643 (1984); Neuberger et al, Nature 314:268 (1985)).
b) Isolation Of Antibody Fragments Directed Against a Polypeptide of the Present Invention From A Library Of scFvs Naturally occurring V-genes isolated from human PBLs are constructed into a library of antibody fragments which contain reactivities against a polypeptide of the present invention to which the donor may or may not have been exposed (see e.g., U.S. Patent 5,885,793 incorporated herein by reference in its entirety).
Rescue of the Library. A library of scFvs is constructed from the RNA of human PBLs as described in International Publication No. WO 92/01047. To rescue phage displaying antibody fragments, approximately 109 E. coli harboring the phagemid are used to inoculate 50 ml of 2xTY containing 1% glucose and 100 μg ml of ampicillin (2xTY-AMP-GLU) and grown to an O.D. of 0.8 with shaking. Five ml of this culture is used to inoculate 50 ml of 2xTY-AMP-GLU, 2 x 108 TU of delta gene 3 helper (M13 delta gene in, see International Publication No. WO 92/01047) are added and the culture incubated at 37°C for 45 minutes without shaking and then at 37°C for 45 minutes with shaking. The culture is centrifuged at 4000 r.p.m. for 10 min. and the pellet resuspended in 2 liters of 2xTY containing 100 μg/ml ampicillin and 50 ug/ml kanamycin and grown overnight. Phage are prepared as described in Intemational Publication No. WO 92/01047. M13 delta gene III is prepared as follows: M13 delta gene III helper phage does not encode gene III protein, hence the phage(mid) displaying antibody fragments have a greater avidity of binding to antigen. Infectious M13 delta gene III particles are made by growing the helper phage in cells harboring a pUC19 derivative supplying the wild type gene III protein during phage morphogenesis. The culture is incubated for 1 hour at 37° C without shaking and then for a further hour at 37°C with shaking. Cells are spun down (EEC-Centra 8,400 r.p.m. for 10 min), resuspended in 300 ml 2xTY broth containing 100 μg ampicillin ml and 25 μg kanamycin/ml (2xTY-AMP-KAN) and grown overnight, shaking at 37°C. Phage particles are purified and concentrated from the culture medium by two PEG-precipitations (Sambrook et al., 1990), resuspended in 2 ml PBS and passed through a 0.45 μm filter (Minisart NML; Sartorius) to give a final concentration of approximately 1013 transducing units/ml (ampicillin-resistant clones).
Panning of the Library. Immunotubes (Nunc) are coated overnight in PBS with 4 ml of either 100 μg/ml or 10 μg/ml of a polypeptide of the present invention. Tubes are blocked with 2% Marvel-PBS for 2 hours at 37°C and then washed 3 times in PBS. Approximately 1013 TU of phage is apphed to the tube and incubated for 30 minutes at room temperature tumbling on an over and under turntable and then left to stand for another 1.5 hours. Tubes are washed 10 times with PBS 0.1% Tween-20 and 10 times with PBS. Phage are eluted by adding 1 ml of 100 mM triethylamine and rotating 15 minutes on an under and over turntable after which the solution is immediately neutralized with 0.5 ml of l.OM Tris-HCl, pH 7.4. Phage are then used to infect 10 ml of mid-log E. coli TGI by incubating eluted phage with bacteria for 30 minutes at 37°C. The E. coli are then plated on TYE plates containing 1% glucose and 100 μg/ml ampicillin. The resulting bacterial library is then rescued with delta gene 3 helper phage as described above to prepare phage for a subsequent round of selection. This process is then repeated for a total of 4 rounds of affinity purification with tube-washing increased to 20 times with PBS, 0.1% Tween-20 and 20 times with PBS for rounds 3 and 4.
Characterization of Binders. Eluted phage from the 3rd and 4th rounds of selection are used to infect E. coli HB 2151 and soluble scFv is produced (Marks, et al, 1991) from single colonies for assay. ELISAs are performed with microtitre plates coated with either 10 pg/ml of the polypeptide of the present invention in 50 mM bicarbonate pH 9.6. Clones positive in ELISA are further characterized by PCR fingerprinting (see, e.g., International Publication No. WO 92/01047) and then by sequencing. These ELISA positive clones may also be further characterized by techniques known in the art, such as, for example, epitope mapping, binding affinity, receptor signal transduction, ability to block or competitively inhibit antibody/antigen binding, and competitive agonistic or antagonistic activity. Example 11: Method of Determining Alterations in a Gene Corresponding to a Polynucleotide
RNA isolated from entire families or individual patients presenting with an allergic and/or asthmatic disease or disorder is isolated. cDNA is then generated from these RNA samples using protocols known in the art. (See, Sambrook.) The cDNA is then used as a template for PCR, employing primers surrounding regions of interest in SEQ ID NO:X; and/or the nucleotide sequence of the cDNA contained in ATCC Deposit No:Z. Suggested PCR conditions consist of 35 cycles at 95 degrees C for 30 seconds; 60-120 seconds at 52-58 degrees C; and 60-120 seconds at 70 degrees C, using buffer solutions described in Sidransky et al, Science 252:706 (1991).
PCR products are then sequenced using primers labeled at their 5' end with T4 polynucleotide kinase, employing SequiTherm Polymerase (Epicentre Technologies). The intron- exon boundaries of selected exons is also determined and genomic PCR products analyzed to confirm the results. PCR products harboring suspected mutations are then cloned and sequenced to validate the results of the direct sequencing.
PCR products are cloned into T-tailed vectors as described in Holton et al, Nucleic Acids Research, 19:1156 (1991) and sequenced with T7 polymerase (United States Biochemical). Affected individuals are identified by mutations not present in unaffected individuals.
Genomic rearrangements are also observed as a method of determining alterations in a gene corresponding to a polynucleotide. Genomic clones isolated according to Example 2 are nick-translated with digoxigenindeoxy-uridine 5'-triphosphate (Boehringer Manheim), and FISH performed as described in Johnson et al, Methods Cell Biol. 35:73-99 (1991). Hybridization with the labeled probe is carried out using a vast excess of human cot-1 DNA for specific hybridization to the corresponding genomic locus.
Chromosomes are counterstained with 4,6-diamino-2-phenylidole and propidium iodide, producing a combination of C- and R-bands. Aligned images for precise mapping are obtained using a triple-band filter set (Chroma Technology, Brattleboro, VT) in combination with a cooled charge-coupled device camera (Photometries, Tucson, AZ) and variable excitation wavelength filters. (Johnson et al., Genet. Anal. Tech. Appl, 8:75 (1991)). Image collection, analysis and chromosomal fractional length measurements are performed using the ISee Graphical Program System. (Inovision Corporation, Durham, NC.) Chromosome alterations of the genomic region hybridized by the probe are identified as insertions, deletions, and translocations. These alterations are used as a diagnostic marker for an associated disease.
Example 12: Method of Detecting Abnormal Levels of a Polypeptide in a Biological Sample
A polypeptide of the present invention can be detected in a biological sample, and if an increased or decreased level of the polypeptide is detected, this polypeptide is a marker for a particular phenotype. Methods of detection are numerous, and thus, it is understood that one skilled in the art can modify the following assay to fit their particular needs. For example, antibody-sandwich ELISAs are used to detect polypeptides in a sample, preferably a biological sample. Wells of a microtiter plate are coated with specific antibodies, at a final concentration of 0.2 to 10 ug/ml. The antibodies are either monoclonal or polyclonal and are produced by the method described in Example 10. The wells are blocked so that non-specific binding of the polypeptide to the well is reduced.
The coated wells are then incubated for > 2 hours at RT with a sample containing the polypeptide. Preferably, serial dilutions of the sample should be used to validate results. The plates are then washed three times with deionized or distilled water to remove unbound polypeptide. Next, 50 ul of specific antibody-alkaline phosphatase conjugate, at a concentration of 25-
400 ng, is added and incubated for 2 hours at room temperature. The plates are again washed three times with deionized or distilled water to remove unbound conjugate.
Add 75 ul of 4-methylumbelliferyl phosphate (MUP) or p-nitrophenyl phosphate (NPP) substrate solution to each well and incubate 1 hour at room temperature. Measure the reaction by a microtiter plate reader. Prepare a standard curve, using serial dilutions of a control sample, and plot polypeptide concentration on the X-axis (log scale) and fluorescence or absorbance of the Y- axis (linear scale). Interpolate the concentration of the polypeptide in the sample using the standard curve.
Example 13: Formulation
The invention also provides methods of preventing, treating and/or ameliorating an allergic and/or asthmatic disease or disorder by administration to a subject of an effective amount of a Therapeutic. By therapeutic is meant polynucleotides or polypeptides of the invention (including fragments and variants), agonists or antagonists thereof, and/or antibodies thereto, in combination with a pharmaceutically acceptable carrier type (e.g., a sterile carrier).
The Therapeutic will be formulated and dosed in a fashion consistent with good medical practice, taking into account the clinical condition of the individual patient (especially the side effects of treatment with the Therapeutic alone), the site of delivery, the method of administration, the scheduling of administration, and other factors known to practitioners. The "effective amount" for purposes herein is thus determined by such considerations.
As a general proposition, the total pharmaceutically effective amount of the Therapeutic administered parenterally per dose will be in the range of about lug/kg/day to 10 mg/kg/day of patient body weight, although, as noted above, this will be subject to therapeutic discretion. More preferably, this dose is at least 0.01 mg/kg/day, and most preferably for humans between about 0.01 and 1 mg/kg/day for the hormone. If given continuously, the Therapeutic is typically administered at a dose rate of about 1 ug/kg/hour to about 50 ug/kg/hour, either by 1-4 injections per day or by continuous subcutaneous infusions, for example, using a mini-pump. An intravenous bag solution may also be employed. The length of treatment needed to observe changes and the interval following treatment for responses to occur appears to vary depending on the desired effect.
Therapeutics can be are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non- toxic solid, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics are administered orally, rectally, parenterally, intracistemally, intravaginally, intraperitoneally, topically (as by powders, ointments, gels, drops or transdermal patch), bucally, or as an oral or nasal spray. "Pharmaceutically acceptable carrier" refers to a non-toxic soUd, semisolid or liquid filler, diluent, encapsulating material or formulation auxiliary of any type. The term "parenteral" as used herein refers to modes of administration which include intravenous, intramuscular, intraperitoneal, intrasternal, subcutaneous and intraarticular injection and infusion.
Therapeutics of the invention are also suitably administered by sustained-release systems. Suitable examples of sustained-release Therapeutics include suitable polymeric materials (such as, for example, semi-permeable polymer matrices in the form of shaped articles, e.g., films, or mirocapsules), suitable hydrophobic materials (for example as an emulsion in an acceptable oil) or ion exchange resins, and sparingly soluble derivatives (such as, for example, a sparingly soluble salt). Sustained-release matrices include polylactides (U.S. Pat. No. 3,773,919, EP 58,481), copolymers of L-glutamic acid and gamma-ethyl-L-glutamate (Sidman et al, Biopolymers 22:547-556 (1983)), poly (2- hydroxyethyl methacrylate) (Langer et al, J. Biomed. Mater. Res. 15:167-277 (1981), and Langer, Chem. Tech. 12:98-105 (1982)), ethylene vinyl acetate (Langer et al, Id.) or poly-D- (-)-3-hydroxybutyric acid (EP 133,988). In a preferred embodiment, polypeptide, polynucleotide, and antibody compositions of the invention are formulated in a biodegradable, polymeric drug delivery system, for example as described in U.S. Patent Nos. 4,938,763; 5,278,201; 5,278,202; 5,324,519; 5,340,849; and 5,487,897 and in International Publication Numbers WOO 1/35929, WO00/24374, and WO00/06117 which are hereby incorporated by reference in their entirety, hi specific preferred embodiments the polypeptide, polynucleotide, and antibody compositions of the invention are formulated using the ATRIGEL® Biodegradable System of Atrix Laboratories, Inc. (Fort Collins, Colorado). Examples of biodegradable polymers which can be used in the formulation of polypeptide, polynucleotide, and antibody compositions, include but are not limited to, polylactides, polyglycolides, polycaprolactones, polyanhydrides, polyamides, polyurethanes, polyesteramides, polyorthoesters, polydioxanones, polyacetals, polyketals, polycarbonates, polyorthocarbonates, polyphosphazenes, polyhydroxybutyrates, polyhydroxyvalerates, polyalkylene oxalates, polyalkylene succinates, poly(malic acid), poly(amino acids), poly(methyl vinyl ether), poly(maleic anhydride), polyvinylpyrrolidone, polyethylene glycol, polyhydroxycellulose, chitin, chitosan, and copolymers, terpolymers, or combinations or mixtures of the above materials. The preferred polymers are those that have a lower degree of crystallization and are more hydrophobic. These polymers and copolymers are more soluble in the biocompatible solvents than the highly crystalline polymers such as polyglycolide and chitin which also have a high degree of hydrogen- bonding. Preferred materials with the desired solubility parameters are the polylactides, polycaprolactones, and copolymers of these with glycolide in which there are more amorphous regions to enhance solubility. In specific preferred embodiments, the biodegradable polymers which can be used in the formulation of polypeptide, polynucleotide, and antibody compositions are poly(lactide-co-glycolides). Polymer properties such as molecular weight, hydrophobicity, and lactide/glycolide ratio may be modified to obtain the desired polypeptide, polynucleotide, or antibody release profile (See, e.g., Ravivarapu et al, Journal of Pharmaceutical Sciences 89:732- 741 (2000), which is hereby incorporated by reference in its entirety). It is also preferred that the solvent for the biodegradable polymer be non-toxic, water miscible, and otherwise biocompatible. Examples of such solvents include, but are not limited to, N-methyl-2-pyrrolidone, 2-pyrrolidone, C2 to C6 alkanols, CI to C15 alchohols, dils, triols, and tetraols such as ethanol, glycerine propylene glycol, butanol; C3 to C15 alkyl ketones such as acetone, diethyl ketone and methyl ethyl ketone; C3 to C15 esters such as methyl acetate, ethyl acetate, ethyl lactate; alkyl ketones such as methyl ethyl ketone, CI to C15 amides such as dimethylformamide, dimethylacetamide and caprolactam; C3 to C20 ethers such as tetrahydrofuran, or solketal; tweens, triacetin, propylene carbonate, decylmethylsulfoxide, dimethyl sulfoxide, oleic acid, l-dodecylazacycloheptan-2-one, Other preferred solvents are benzyl alchohol, benzyl benzoate, dipropylene glycol, tributyrin, ethyl oleate, glycerin, glycofural, isopropyl myristate, isopropyl palmitate, oleic acid, polyethylene glycol, propylene carbonate, and triethyl citrate. The most preferred solvents are N-methyl-2-pyrrolidone, 2-pyrrolidone, dimethyl sulfoxide, triacetin, and propylene carbonate because of the solvating ability and their compatibility.
Additionally, formulations comprising polypeptide, polynucleotide, and antibody compositions and a biodegradable polymer may also include release-rate modification agents and/or pore-forming agents. Examples of release-rate modification agents include, but are not limited to, fatty acids, triglycerides, other like hydrophobic compounds, organic solvents, plasticizing compounds and hydrophilic compounds. Suitable release rate modification agents include, for example, esters of mono-, di-, and tricarboxylic acids, such as 2-ethoxyethyl acetate, methyl acetate, ethyl acetate, diethyl phthalate, dimethyl phthalate, dibutyl phthalate, dimethyl adipate, dimethyl succinate, dimethyl oxalate, dimethyl citrate, triethyl citrate, acetyl tributyl citrate, acetyl triethyl citrate, glycerol triacetate, di(n-butyl) sebecate, and the like; polyhydroxy alcohols,' such as propylene glycol, polyethylene glycol, glycerin, sorbitol, and the like; fatty acids; triesters of glycerol, such as triglycerides, epoxidized soybean oil, and other epoxidized vegetable oils; sterols, such as cholesterol; alcohols, such as C.sub.6 -C.sub.12 alkanols, 2-ethoxyethanol The release rate modification agent may be used singly or in combination with other such agents. Suitable combinations of release rate modification agents include, but are not limited to, glycerin/propylene glycol, sorbitol/glycerine, ethylene oxide/propylene oxide, butylene glycol/adipic acid, and the like. Preferred release rate modification agents include, but are not limited to, dimethyl citrate, triethyl citrate, ethyl heptanoate, glycerin, and hexanediol Suitable pore-forming agents that may be used in the polymer composition include, but are not limited to, sugars such as sucrose and dextrose, salts such as sodium chloride and sodium carbonate, polymers such as hydroxylpropylcellulose, carboxymethylcellulose, polyethylene glycol, and polyvinylpyrrolidone. Solid crystals that will provide a defined pore size, such as salt or sugar, are preferred.
In specific preferred embodiments the polypeptide, polynucleotide, and antibody compositions of the invention are formulated using the BEMA™ BioErodible Mucoadhesive System, MCA™ MucoCutaneous Absorption System, SMP™ Solvent MicroParticle System, or BCP™ BioCompatible Polymer System of Atrix Laboratories, Inc. (Fort Collins, Colorado).
Sustained-release Therapeutics also include liposomally entrapped Therapeutics of the invention (see generally, Langer, Science 249:1527-1533 (1990); Treat et al, in Liposomes in the Tlierapy of Infectious Disease and Cancer, Lopez-Berestein and Fidler (eds.), Liss, New York, pp. 317 -327 and 353-365 (1989)). Liposomes containing the Therapeutic are prepared by methods known per se: DE 3,218,121; Epstein et al, Proc. Natl. Acad. Sci. (USA) 82:3688-3692 (1985); Hwang et al, Proc. Natl Acad. Sci.(USA) 77:4030-4034 (1980); EP 52,322; EP 36,676; EP 88,046; EP 143,949; EP 142,641; Japanese Pat. Appl 83-118008; U.S. Pat. Nos. 4,485,045 and 4,544,545; and EP 102,324. Ordinarily, the liposomes are of the small (about 200-800 Angstroms) unilamellar type in which the lipid content is greater than about 30 mol. percent cholesterol, the selected proportion being adjusted for the optimal Therapeutic.
In yet an additional embodiment, the Therapeutics of the invention are delivered by way of a pump (see Langer, supra; Sefton, CRC Crit. Ref. Biomed. Eng. 14:201 (1987); Buchwald et al, Surgery 88:507 (1980); Saudek et al, N. Engl. J. Med. 321:574 (1989)).
Other controlled release systems are discussed in the review by Langer (Science 249:1527-1533 (1990)). For parenteral administration, in one embodiment, the Therapeutic is formulated generally by mixing it at the desired degree of purity, in a unit dosage injectable form (solution, suspension, or emulsion), with a pharmaceuticaUy acceptable carrier, i.e., one that is non-toxic to recipients at the dosages and concentrations employed and is compatible with other ingredients of the formulation. For example, the formulation preferably does not include oxidizing agents and other compounds that are known to be deleterious to the Therapeutic.
Generally, the formulations are prepared by contacting the Therapeutic uniformly and intimately with liquid carriers or finely divided solid carriers or both. Then, if necessary, the product is shaped into the desired formulation. Preferably the carrier is a parenteral carrier, more preferably a solution that is isotonic with the blood of the recipient. Examples of such carrier vehicles include water, saline, Ringer's solution, and dextrose solution. Non-aqueous vehicles such as fixed oils and ethyl oleate are also useful herein, as well as Uposomes.
The carrier suitably contains minor amounts of additives such as substances that enhance isotonicity and chemical stability. Such materials are non-toxic to recipients at the dosages and concentrations employed, and include buffers such as phosphate, citrate, succinate, acetic acid, and other organic acids or their salts; antioxidants such as ascorbic acid; low molecular weight (less than about ten residues) polypeptides, e.g., polyarginine or tripeptides; proteins, such as serum albumin, gelatin, or immunoglobulins; hydrophiUc polymers such as polyvinylpyrrolidone; amino acids, such as glycine, glutamic acid, aspartic acid, or arginine; monosaccharides, disaccharides, and other carbohydrates including cellulose or its derivatives, glucose, manose, or dextrins; chelating agents such as EDTA; sugar alcohols such as mannitol or sorbitol; counterions such as sodium; and/or nonionic surfactants such as polysorbates, poloxamers, or PEG.
The Therapeutic is typically formulated in such vehicles at a concentration of about 0.1 mg ml to 100 mg/ml, preferably 1-10 mg/ml, at a pH of about 3 to 8. It will be understood that the use of certain of the foregoing excipients, carriers, or stabilizers will result in the formation of polypeptide salts.
Any pharmaceutical used for therapeutic administration can be sterile. Sterility is readily accomplished by filtration through sterile filtration membranes (e.g., 0.2 micron membranes). Therapeutics generally are placed into a container having a sterile access port, for example, an intravenous solution bag or vial having a stopper pierceable by a hypodermic injection needle.
Therapeutics ordinarily will be stored in unit or multi-dose containers, for example, sealed ampoules or vials, as an aqueous solution or as a lyophilized formulation for reconstitution. As an example of a lyophilized formulation, 10-ml vials are filled with 5 ml of sterile-filtered 1% (w/v) aqueous Therapeutic solution, and the resulting mixture is lyophilized. The infusion solution is prepared by reconstituting the lyophilized Therapeutic using bacteriostatic Water-for-hrjection.
The invention also provides a pharmaceutical pack or kit comprising one or more containers filled with one or more of the ingredients of the Therapeutics of the invention. Associated with such container(s) can be a notice in the form prescribed by a governmental agency regulating the manufacture, use or sale of pharmaceuticals or biological products, which notice reflects approval by the agency of manufacture, use or sale for human administration. In addition, the Therapeutics may be employed in conjunction with other therapeutic compounds. The Therapeutics of the invention may be administered alone or in combination with adjuvants. Adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, alum, alum plus deoxycholate (ImmunoAg), MTP-PE (Biocine Corp.), QS21 (Genentech, Inc.), BCG (e.g., THERACYS®), MPL and nonviable prepartions of Corynebacterium parvum. In a specific embodiment, Therapeutics of the invention are administered in combination with alum. In another specific embodiment, Therapeutics of the invention are administered in combination with QS-21. Further adjuvants that may be administered with the Therapeutics of the invention include, but are not limited to, Monophosphoryl lipid immunomodulator, AdjuVax 100a, QS-21, QS-18, CRL1005, Aluminum salts, MF-59, and Virosomal adjuvant technology. Vaccines that may be administered with the Therapeutics of the invention include, but are not limited to, vaccines directed toward protection against MMR (measles, mumps, rubella), polio, varicella, tetanus/diptheria, hepatitis A, hepatitis B, haemophilus influenzae B, whooping cough, pneumonia, influenza, Lyme's Disease, rotavirus, cholera, yellow fever, Japanese encephalitis, poliomyelitis, rabies, typhoid fever, and pertussis. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second. The Therapeutics of the invention may be administered alone or in combination with other therapeutic agents. Therapeutic agents that may be administered in combination with the Therapeutics of the invention, include but not limited to, chemotherapeutic agents, antibiotics, steroidal and non-steroidal anti-inflammatories, conventional immunotherapeutic agents, and/or therapeutic treatments described below. Combinations may be administered either concomitantly, e.g., as an admixture, separately but simultaneously or concurrently; or sequentially. This includes presentations in which the combined agents are administered together as a therapeutic mixture, and also procedures in which the combined agents are administered separately but simultaneously, e.g., as through separate intravenous lines into the same individual. Administration "in combination" further includes the separate administration of one of the compounds or agents given first, followed by the second.
In one embodiment, the Therapeutics of the invention are administered in combination with an anticoagulant. Anticoagulants that may be administered with the compositions of the invention include, but are not limited to, heparin, low molecular weight heparin, warfarin sodium (e.g., COUMADUSr®), dicumarol, 4-hydroxycoumarin, anisindione (e.g., MERADON™), acenocoumarol (e.g., nicoumalone, SINTHROME™), indan-1, 3-dione, phenprocoumon (e.g., MARCUMAR™), ethyl biscoumacetate (e.g., TROMEXAN™), and aspirin, hi a specific embodiment, compositions of the invention are administered in combination with heparin and/or warfarin. In another specific embodiment, compositions of the invention are administered in combination with warfarin. In another specific embodiment, compositions of the invention are administered in combination with warfarin and aspirin, hi another specific embodiment, compositions of the invention are administered in combination with heparin. In another specific embodiment, compositions of the invention are administered in combination with heparin and aspirin.
In another embodiment, the Therapeutics of the invention are administered in combination with thrombolytic drugs. Thrombolytic drugs that may be administered with the compositions of the invention include, but are not limited to, plasminogen, lys-plasminogen, alpha2-antiplasmin, streptokinae (e.g., KABIKINASE™), antiresplace (e.g., EMINASE™), tissue plasminogen activator (t-PA, altevase, ACTIVASE™), urokinase (e.g., ABBOKINASE™), sauruplase, (Prourokinase, single chain urokinase), and aminocaproic acid (e.g., AMICAR™). In a specific embodiment, compositions of the invention are administered in combination with tissue plasminogen activator and aspirin. In another embodiment, the Therapeutics of the invention are administered in combination with antiplatelet drugs. Antiplatelet drugs that may be administered with the compositions of the invention include, but are not limited to, aspirin, dipyridamole (e.g., PERSANTINE™), and ticlopidine (e.g., TICLID™). hi specific embodiments, the use of anti-coagulants, thrombolytic and/or antiplatelet drugs in combination with Therapeutics of the invention is contemplated for the detection, prevention, diagnosis, prognostication, treatment, and/or amelioration of thrombosis, arterial thrombosis, venous thrombosis, thromboembolism, pulmonary embolism, atherosclerosis, myocardial infarction, transient ischemic attack, unstable angina. In specific embodiments, the use of anticoagulants, thrombolytic drugs and/or antiplatelet drugs in combination with Therapeutics of the invention is contemplated for the prevention of occulsion of saphenous grafts, for reducing the risk of periprocedural thrombosis as might accompany angioplasty procedures, for reducing the risk of stroke in patients with atrial fibrillation including nonrheumatic atrial fibrillation, for reducing the risk of embolism associated with mechanical heart valves and or mitral valves disease. Other uses for the therapeutics of the invention, alone or in combination with antiplatelet, anticoagulant, and/or thrombolytic drags, include, but are not Umited to, the prevention of occlusions in extracorporeal devices (e.g., intravascular canulas, vascular access shunts in hemodialysis patients, hemodialysis machines, and cardiopulmonary bypass machines). In certain embodiments, Therapeutics of the invention are administered in combination with antiretroviral agents, nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs), non- nucleoside reverse transcriptase inhibitors (NNRTIs), and/or protease inhibitors (Pis). NRTIs that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, RETROVIR™ (zidovudine/AZT), VIDEX™ (didanosine/ddl), HIVED™ (zalcitabine/ddC), ZERIT™ (stavudine/d4T), EP1NIR™ (lamivudine/3TC), and COMBIVIR™ (zidovudine/lamivudine). ΝΝRTIs that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, VIRAMUΝE™ (nevirapine), RESCRIPTOR™ (delavirdine), and SUSTEVA™ (efavirenz). Protease inhibitors that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, CRIXIVAΝ™ (indinavir), ΝORVER™ (ritonavir), IΝVIRASE™ (saquinavir), and VERACEPT™ (nelfinavir). In a specific embodiment, antiretroviral agents, nucleoside reverse transcriptase inhibitors, non- nucleoside reverse transcriptase inhibitors, and/or protease inhibitors may be used in any combination with Therapeutics of the invention to treat AIDS and/or to prevent or treat HIV infection.
Additional ΝRTIs include LODEΝOSEME™ (F-ddA; an acid-stable adenosine ΝRTI; Triangle/Abbott; COVIRACIL™ (emtricitabine/FTC; structurally related to lamivudine (3TC) but with 3- to 10-fold greater activity in vitro; Triangle/Abbott); dOTC (BCH-10652, also structurally related to lamivudine but retains activity against a substantial proportion of lamivudine-resistant isolates; Biochem Pharma); Adefovir (refused approval for anti-HIV therapy by FDA; Gilead Sciences); PREVEOΝ® (Adefovir Dipivoxil, the active prodrug of adefovir; its active form is PMEA-pp); TEΝOFOVIR™ (bis-POC PMPA, a PMPA prodrug; Gilead); DAPD DXG (active metabolite of DAPD; Triangle/Abbott); D-D4FC (related to 3TC, with activity against AZT/3TC-resistant virus); GW420867X (Glaxo Wellcome); ZIAGEΝ™ (abacavir/159U89; Glaxo Wellcome Inc.); CS-87 (3'azido-2',3'-dideoxyuridine; WO 99/66936); and S-acyl-2-thioethyl (SATE)-bearing prodrug forms of β-L-FD4C and β-L-FddC (WO 98/17281).
Additional ΝΝRTIs include COACTIΝOΝ™ (Emivirine MKC-442, potent ΝΝRTI of the HEPT class; Triangle/Abbott); CAPRAVIRIΝE™ (AG-1549/S-1153, a next generation ΝΝRTI with activity against viruses containing the K103Ν mutation; Agouron); PNU-142721 (has 20- to 50-fold greater activity than its predecessor delavirdine and is active against K103N mutants; Pharmacia & Upjohn); DPC-961 and DPC-963 (second-generation derivatives of efavirenz, designed to be active against viruses with the K103N mutation; DuPont); GW-420867X (has 25- fold greater activity than HBY097 and is active against K103N mutants; Glaxo Wellcome); CALANOLIDE A (naturally occurring agent from the latex tree; active against viruses containing either or both the Y181C and K103N mutations); and Propolis (WO 99/49830). Additional protease inhibitors include LOPINAVIR™ (ABT378/r; Abbott Laboratories); BMS-232632 (an azapeptide; Bristol-Myres Squibb); TIPRANAVIR™ (PNU-140690, a non- peptic dihydropyrone; Pharmacia & Upjohn); PD- 178390 (a nonpeptidic dihydropyrone; Parke- Davis); BMS 232632 (an azapeptide; Bristol-Myers Squibb); L-756,423 (an indinavir analog; Merck); DMP-450 (a cyclic urea compound; Avid & DuPont); AG-1776 (a peptidomimetic with in vitro activity against protease inhibitor-resistant virusej; Agouron); VX-175/GW-433908 (phosphate prodrug of amprenavir; Vertex & Glaxo Welcome); CGP61755 (Ciba); and AGENERASE™ (amprenavir; Glaxo Wellcome Inc.).
Additional antiretroviral agents include fusion inhibitor s/gp41 binders. Fusion inhibitors/gp41 binders include T-20 (a peptide from residues 643-678 of the HTV gp41 transmembrane protein ectodomain which binds to gp41 in its resting state and prevents transformation to the fusogenic state; Trimeris) and T-1249 (a second-generation fusion inhibitor; Trimeris).
Additional antiretroviral agents include fusion inhibitors/chemokine receptor antagonists. Fusion inhibitors/chemokine receptor antagonists include CXCR4 antagonists such as AMD 3100 (a bicyclam), SDF-1 and its analogs, and ALX40-4C (a cationic peptide), T22 (an 18 amino acid peptide; Trimeris) and the T22 analogs T134 and T140; CCR5 antagonists such as RANTES (9- 68), AOP-RANTES, NNY-RANTES, and TAK-779; and CCR5/CXCR4 antagonists such as NSC 651016 (a distamycin analog). Also included are CCR2B, CCR3, and CCR6 antagonists. Chemokine recpetor agonists such as RANTES, SDF-1, MEP-lα, MEP-lβ, etc., may also inhibit fusion.
Additional antiretroviral agents include integrase inhibitors. Integrase inhibitors include dicaffeoylquinic (DFQA) acids; L-chicoric acid (a dicaffeoyltartaric (DCTA) acid); quinalizarin (QLC) and related anthraquinones; ZINTEVIR™ (AR 177, an oligonucleotide that probably acts at cell surface rather than being a true integrase inhibitor; Arondex); and naphthols such as those disclosed in WO 98/50347.
Additional antiretroviral agents include hydroxyurea-like compunds such as BCX-34 (a purine nucleoside phosphorylase inhibitor; Biocryst); ribonucleotide reductase inhibitors such as DIDOX™ (Molecules for Health); inosine monophosphate dehydrogenase (BV1PDH) inhibitors sucha as VX-497 (Vertex); and mycopholic acids such as CellCept (mycophenolate mofetil; Roche).
Additional antiretroviral agents include inhibitors of viral integrase, inhibitors of viral genome nuclear translocation such as arylene bis(methylketone) compounds; inhibitors of HTV entry such as AOP-RANTES, NNY-RANTES, RANTES-IgG fusion protein, soluble complexes of RANTES and glycosaminoglycans (GAG), and AMD-3100; nucleocapsid zinc finger inhibitors such as dithiane compounds; targets of HIV Tat and Rev; and pharmacoenhancers such as ABT- 378.
Other antiretroviral therapies and adjunct therapies include cytokines and lymphokines such as MlP-l , MlP-lβ, SDF-lα, IL-2, PROLEUKIN™ (aldesleukin/L2-7001; Chhon), EL-4, ILIO, IL-12, and EL-13; interferons such as EFN-α2a; antagonists of TNFs, NFKB, GM-CSF, M-CSF, and IL-10; agents that modulate immune activation such as cyclosporin and prednisone; vaccines such as Remune™ (HTV Immunogen), APL 400-003 (Apollon), recombinant gpl20 and fragments, bivalent (B/E) recombinant envelope glycoprotein, rgpl20CM235, MN rgpl20, SF-2 rgpl20, gpl20/soluble CD4 complex, Delta JR-FL protein, branched synthetic peptide derived from discontinuous gpl20 C3/C4 domain, fusion-competent immunogens, and Gag, Pol, Nef, and Tat vaccines; gene-based therapies such as genetic suppressor elements (GSEs; WO 98/54366), and intrakines (genetically modified CC chemokines targetted to the ER to block surface expression of newly synthesized CCR5 (Yang et al, PNAS 94:11561-12 (1997); Chen et al, Nat. Med. 3: 1110-16 (1997)); antibodies such as the anti-CXCR4 antibody 12G5, the anti-CCR5 antibodies 2D7, 5C7, PA8, PA9, PA10, PAH, PA12, and PA14, the anti-CD4 antibodies Q4120 and RPA-T4, the anti-CCR3 antibody 7B11, the anti-gpl20 antibodies 17b, 48d, 447-52D, 257-D, 268-D and 50.1, anti-Tat antibodies, anti-TNF-α antibodies, and monoclonal antibody 33A; aryl hydrocarbon (AH) receptor agonists and antagonists such as TCDD, 3,3', 4,4', 5- pentachlorobiphenyl, 3,3',4,4'-tetrachlorobiphenyl, and α-naphthoflavone (WO 98/30213); and antioxidants such as γ-L-glutamyl-L-cysteine ethyl ester (γ-GCE; WO 99/56764). In a further embodiment, the Therapeutics of the invention are administered in combination with an antiviral agent. Antiviral agents that may be administered with the Therapeutics of the invention include, but are not Umited to, acyclovir, ribavirin, amantadine, and remantidine. hi other embodiments, Therapeutics of the invention may be administered in combination with anti-opportunistic infection agents. Anti-opportunistic agents that may be administered in combination with the Therapeutics of the invention, include, but are not limited to, TRIMETHOPPJM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™,
ATONAQUONE™, ISONIAZID™, RIFAMPIN™, PYRAZMAMIDE™, ETHAMBUTOL™, RIFABUTIN™, CLARTTHROMYCIN™, AZITHROMYCIN™, GANCICLOVIR™, FOSCARNET™, CIDOFOVIR™, FLUCONAZOLE™, ITRACONAZOLE™,
KETOCONAZOLE™, ACYCLOVIR™, FAMCICOLVIR™, PYRIMETHAMINE™, LEUCOVORIN™, NEUPOGEN™ (filgrastim/G-CSF), and LEUKINE™ (sargramostim/GM- CSF). In a specific embodiment, Therapeutics of the invention are used in any combination with TRIMETHOPPJM-SULFAMETHOXAZOLE™, DAPSONE™, PENTAMIDINE™, and/or ATONAQUONE™ to prophylactically treat or prevent an opportunistic Pneumocystis carinii pneumonia infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ISONIAZID™, RIFAMPIN™, PYRAZINAMIDE™, and/or ETHAMBUTOL™ to prophylactically treat or prevent an opportunistic Mycobacterium avium complex infection. In another specific embodiment, Therapeutics of the invention are used in any combination with RIFABUTIN™, CLARITHROMYCIN™, and/or AZITHROMYCIN™ to prophylactically treat or prevent an opportunistic Mycobacterium tuberculosis infection. In another specific embodiment, Therapeutics of the invention are used in any combination with GANCICLOVIR™, FOSCARNET™, and/or CEDOFOVIR™ to prophylactically treat or prevent an opportunistic cytomegalovirus infection. In another specific embodiment, Therapeutics of the invention are used in any combination with FLUCONAZOLE™, LTRACONAZOLE™, and/or KETOCONAZOLE™ to prophylactically treat or prevent an opportunistic fungal infection. In another specific embodiment, Therapeutics of the invention are used in any combination with ACYCLOVE .™ and/or FAMCICOLVIR™ to prophylactically treat or prevent an opportunistic herpes simplex virus type I and/or type II infection, hi another specific embodiment, Therapeutics of the invention are used in any combination with PYRIMETHAMINE™ and/or LEUCOVORIN™ to prophylactically treat or prevent an opportunistic Toxoplasma gondii infection. In another specific embodiment, Therapeutics of the invention are used in any combination with LEUCOVORIN™ and/or NEUPOGEN™ to prophylactically treat or prevent an opportunistic bacterial infection.
In a further embodiment, the Therapeutics of the invention are administered in combination with an antibiotic agent. Antibiotic agents that may be administered with the Therapeutics of the invention include, but are not limited to, amoxicillin, beta-lactamases, aminoglycosides, beta-lactam (glycopeptide), beta-lactamases, Clindamycin, chloramphenicol, cephalosporins, ciprofloxacin, erythromycin, fluoroquinolones, macrolides, metronidazole, penicillins, quinolones, rapamycin, rifampin, streptomycin, sulfonamide, tetracycϋnes, trimethoprim, trimethoprim-sulfamethoxazole, and vancomycin.
In other embodiments, the Therapeutics of the invention are administered in combination with immunestimulants. Immunostimulants that may be administered in combination with the Therapeutics of the invention include, but are not limited to, levamisole (e.g., ERGAMISOL™), isoprinosine (e.g. INOSIPLEX™), interferons (e.g. interferon alpha), and interleukins (e.g., IL-2). In other embodiments, Therapeutics of the invention are administered in combination with immunosuppressive agents. Immunosuppressive agents that may be administered in combination with the Therapeutics of the invention include, but are not limited to, steroids, cyclosporine, cyclosporine analogs, cyclophosphamide methylprednisone, prednisone, azathioprine, FK-506, 15- deoxyspergualin, and other immunosuppressive agents that act by suppressing the function of responding T cells. Other immunosuppressive agents that may be administered in combination with the Therapeutics of the invention include, but are not limited to, prednisolone, methotrexate, thalidomide, methoxsalen, rapamycin, leflunomide, mizoribine (BREDININ™), brequinar, deoxyspergualin, and azaspirane (SKF 105685), ORTHOCLONE OKT® 3 (muromonab-CD3), SANDUVIMUNE™, NEORAL™, SANGDYA™ (cyclosporine), PROGRAF® (FK506, tacrolimus), CELLCEPT® (mycophenolate motefil, of which the active metabolite is mycophenolic acid), IMURAN™ (azathioprine), glucocorticosteroids, adrenocortical steroids such as DELTASONE™ (prednisone) and HYDELTRASOL™ (prednisolone), FOLEX™ and MEXATE™ (methotrxate), OXSORALEN-ULTRA™ (methoxsalen) and RAPAMUNE™ (sirolimus). hi a specific embodiment, immunosuppressants may be used to prevent rejection of organ or bone marrow transplantation. In an additional embodiment, Therapeutics of the invention are administered alone or in combination with one or more intravenous immune globulin preparations. Intravenous immune globulin preparations that may be administered with the Therapeutics of the invention include, but not limited to, GAMMAR™, TVEEGAM™, SANDOGLOBULIN™, GAMMAGARD S D™, ATGAM™ (antithymocyte glubulin), and GAM UNE™. In a specific embodiment, Therapeutics of the invention are administered in combination with intravenous immune globulin preparations in transplantation therapy (e.g., bone marrow transplant).
In certain embodiments, the Therapeutics of the invention are administered alone or in combination with an anti-inflammatory agent. Anti-inflammatory agents that may be administered with the Therapeutics of the invention include, but are not limited to, corticosteroids (e.g. betamethasone, budesonide, cortisone, dexamethasone, hydrocortisone, methylprednisolone, prednisolone, prednisone, and triamcinolone), nonsteroidal anti-inflammatory drugs (e.g., diclofenac, diflunisal, etodolac, fenoprofen, floctafenine, flurbiprofen, ibuprofen, indomethacin, ketoprofen, meclofenamate, mefenamic acid, meloxicam, nabumetone, naproxen, oxaprozin, phenylbutazone, piroxicam, sulindac, tenoxicam, tiaprofenic acid, and tolmetin.), as well as antihistamines, aminoarylcarboxylic acid derivatives, arylacetic acid derivatives, arylbutyric acid derivatives, arylcarboxylic acids, arylpropionic acid derivatives, pyrazoles, pyrazolones, salicylic acid derivatives, thiazinecarboxamides, e-acetamidocaproic acid, S-adenosylmethionine, 3-amino- 4-hydroxybutyric acid, amixetrine, bendazac, benzydamine, bucolome, difenpiramide, ditazol, emorfazone, guaiazulene, nabumetone, nimesulide, orgotein, oxaceprol, paranyline, perisoxal, pifoxime, proquazone, proxazole, and tenidap.
In an additional embodiment, the compositions of the invention are administered alone or in combination with an anti-angiogenic agent. Anti-angiogenic agents that may be administered with the compositions of the invention include, but are not limited to, Angiostatin (Entremed, Rockville, MD), Troponin-1 (Boston Life Sciences, Boston, MA), anti-Invasive Factor, retinoic acid and derivatives thereof, paclitaxel (Taxol), Suramin, Tissue Inhibitor of Metalloproteinase-1, Tissue Inhibitor of Metalloproteinase-2, VEGI, Plasminogen Activator Inhibitor-1, Plasminogen Activator hιhibitor-2, and various forms of the lighter "d group" transition metals.
Lighter "d group" transition metals include, for example, vanadium, molybdenum, tungsten, titanium, niobium, and tantalum species. Such transition metal species may form transition metal complexes. Suitable complexes of the above-mentioned transition metal species include oxo transition metal complexes.
Representative examples of vanadium complexes include oxo vanadium complexes such as vanadate and vanadyl complexes. Suitable vanadate complexes include metavanadate and orthovanadate complexes such as, for example, ammonium metavanadate, sodium metavanadate, and sodium orthovanadate. Suitable vanadyl complexes include, for example, vanadyl acetylacetonate and vanadyl sulfate including vanadyl sulfate hydrates such as vanadyl sulfate mono- and trihydrates.
Representative examples of tungsten and molybdenum complexes also include oxo complexes. Suitable oxo tungsten complexes include tungstate and tungsten oxide complexes. Suitable tungstate complexes include ammonium tungstate, calcium tungstate, sodium tungstate dihydrate, and tungstic acid. Suitable tungsten oxides include tungsten (IN) oxide and tungsten (NI) oxide. Suitable oxo molybdenum complexes include molybdate, molybdenum oxide, and molybdenyl complexes. Suitable molybdate complexes include ammonium molybdate and its hydrates, sodium molybdate and its hydrates, and potassium molybdate and its hydrates. Suitable molybdenum oxides include molybdenum (NI) oxide, molybdenum (VI) oxide, and molybdic acid. Suitable molybdenyl complexes include, for example, molybdenyl acetylacetonate. Other suitable tungsten and molybdenum complexes include hydroxo derivatives derived from, for example, glycerol, tartaric acid, and sugars.
A wide variety of other anti-angiogenic factors may also be utilized within the context of the present invention. Representative examples include, but are not limited to, platelet factor 4; protamine sulphate; sulphated chitin derivatives (prepared from queen crab shells), (Murata et al, Cancer Res. 51:22-26, (1991)); Sulphated Polysaccharide Peptidoglycan Complex (SP- PG) (the function of this compound may be enhanced by the presence of steroids such as estrogen, and tamoxifen citrate); Staurosporine; modulators of matrix metabolism, including for example, proline analogs, cishydroxyproline, d,L-3,4-dehydroproline, Thiaproline, alpha,alpha-dipyridyl, aminopropionitrile fumarate; 4-propyl-5-(4-pyridinyl)-2(3H)-oxazolone; Methotrexate; Mitoxantrone; Heparin; Interferons; 2 Macroglobulin-serum; ChIMP-3 (Pavloff et al., J. Bio. Chem. 267:17321-17326, (1992)); Chymostatin (Tomkinson et al, Biochem J. 286:475-480, (1992)); Cyclodextrin Tetradecasulfate; Eponemycin; Camptothecin; Fumagillin (higher et al, Nature 348:555-557, (1990)); Gold Sodium Thiomalate ("GST"; Matsubara and Ziff, J. Clin. Invest. 79:1440-1446, (1987)); anticoUagenase-serum; alpha2-antiρlasmin (Holmes et al, J. Biol. Chem. 262(4): 1659-1664, (1987)); Bisantrene (National Cancer Institute); Lobenzarit disodium (N-(2)-carboxyphenyl-4- chloroanthronilic acid disodium or "CCA"; (Takeuchi et al, Agents Actions 36:312-316, (1992)); and metalloproteinase inhibitors such as BB94.
Additional anti-angiogenic factors that may also be utilized within the context of the present invention include Thalidomide, (Celgene, Warren, NJ); Angiostatic steroid; AGM-1470 (H. Brem and J. Folkman J Pediatr. Surg. 28:445-51 (1993)); an integrin alpha v beta 3 antagonist (C. Storgard et al, J Clin. Invest. 103:47-54 (1999)); carboxynaminolmidazole; Carboxyamidotriazole (CAI) (National Cancer Institute, Bethesda, MD); Conbretastatin A-4 (CA4P) (OXiGENE, Boston, MA); Squalamine (Magainin Pharmaceuticals, Plymouth Meeting, PA); TNP-470, (Tap Pharmaceuticals, Deerfield, IL); ZD-0101 AstraZeneca (London, UK); APRA (CT2584); Benefin, Byrostatin-1 (SC339555); CGP-41251 (PKC 412); CM101; Dexrazoxane (ICRF187); DMXAA; Endostatin; Flavopridiol; Genestein; GTE; ImmTher; Iressa (ZD1839); Octreotide (Somatostatin); Panretin; Penacillamine; Photopoint; PI-88; Prinomastat (AG-3340) Purlytin; Suradista (FCE26644); Tamoxifen (Nolvadex); Tazarotene; Tetrathiomolybdate; Xeloda (Capecitabine); and 5-Fluorouracil
Anti-angiogenic agents that may be administed in combination with the compounds of the invention may work through a variety of mechanisms including, but not limited to, inhibiting proteolysis of the extracellular matrix, blocking the function of endothelial cell-extracellular matrix adhesion molecules, by antagonizing the function of angiogenesis inducers such as growth factors, and inhibiting integrin receptors expressed on proliferating endothelial cells. Examples of anti-angiogenic inhibitors that interfere with extracellular matrix proteolysis and which may be administered in combination with the compositons of the invention include, but are not lmited to, AG-3340 (Agouron, La Jolla, CA), BAY-12-9566 (Bayer, West Haven, CT), BMS-275291 (Bristol Myers Squibb, Princeton, NJ), CGS-27032A (Novartis, East Hanover, NJ), Marimastat (British Biotech, Oxford, UK), and Metastat (Aeterna, St-Foy, Quebec). Examples of anti- angiogenic inhibitors that act by blocking the function of endothelial cell-extracellular matrix adhesion molecules and which may be administered in combination with the compositons of the invention include, but are not lmited to, EMD-121974 (Merck KcgaA Darmstadt, Germany) and Vitaxin (Ixsys, La Jolla, CA Medimmune, Gaithersburg, MD). Examples of anti-angiogenic agents that act by directly antagonizing or inhibiting angiogenesis inducers and which may be administered in combination with the compositons of the invention include, but are not lmited to, Angiozyme (Ribozyme, Boulder, CO), Anti-VEGF antibody (Genentech, S. San Francisco, CA), PTK-787/ZK-225846 (Novartis, Basel, Switzerland), SU-101 (Sugen, S. San Francisco, CA), SU- 5416 (Sugen/ Pharmacia Upjohn, Bridgewater, NJ), and SU-6668 (Sugen). Other anti-angiogenic agents act to indirectly inhibit angiogenesis. Examples of indirect inhibitors of angiogenesis which may be administered in combination with the compositons of the invention include, but are not limited to, IM-862 (Cytran, Kirkland, WA), Interferon-alpha, IL-12 (Roche, Nutley, NJ), and Pentosan polysulfate (Georgetown University, Washington, DC).
In particular embodiments, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of an autoimmune disease, such as for example, an autoimmune disease described herein.
In a particular embodiment, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of arthritis. In a more particular embodiment, the use of compositions of the invention in combination with anti-angiogenic agents is contemplated for the treatment, prevention, and/or amelioration of rheumatoid arthritis.
In another embodiment, the polynucleotides encoding a polypeptide of the present invention are administered in combination with an angiogenic protein, or polynucleotides encoding an angiogenic protein. Examples of angiogenic proteins that may be administered with the compositions of the invention include, but are not limited to, acidic and basic fibroblast growth factors, VEGF-1, VEGF-2, VEGF-3, epidermal growth factor alpha and beta, platelet-derived endothelial cell growth factor, platelet-derived growth factor, tumor necrosis factor alpha, hepatocyte growth factor, insulin-like growth factor, colony stimulating factor, macrophage colony stimulating factor, granulocyte/macrophage colony stimulating factor, and nitric oxide synthase.
In additional embodiments, compositions of the invention are administered in combination with a chemotherapeutic agent. Chemotherapeutic agents that may be administered with the Therapeutics of the invention include, but are not limited to alkylating agents such as nitrogen mustards (for example, Mechlorethamine, cyclophosphamide, Cyclophosphamide Ifosfamide, Melphalan (L-sarcolysin), and Chlorambucil), ethylenimines and methylmelamines (for example, Hexamethylmelamine and Thiotepa), alkyl sulfonates (for example, Busulfan), nitrosoureas (for example, Carmustine (BCNU), Lomustine (CCNU), Semustine (methyl-CCNU), and Streptozocin (streptozotocin)), triazenes (for example, Dacarbazine (DTIC; dimethyltriazenoimidazolecarboxamide)), folic acid analogs (for example, Methotrexate (amethopterin)), pyrimidine analogs (for example, Fluorouacil (5-fluorouracil; 5-FU), Floxuridine (fluorodeoxyuridine; FudR), and Cytarabine (cytosine arabinoside)), purine analogs and related inhibitors (for example, Mercaptopurine (6-mercaptopurine; 6-MP), Thioguanine (6-thioguanine; TG), and Pentostatin (2'-deoxycoformycin)), vinca alkaloids (for example, Vinblastine (VLB, vinblastine sulfate)) and Vincristine (vincristine sulfate)), epipodophyllotoxins (for example, Etoposide and Teniposide), antibiotics (for example, Dactinomycin (actinomycin D), Daunorubicin (daunomycin; rubidomycin), Doxorubicin, Bleomycin, Plicamycin (mithramycin), and Mitomycin (mitomycin C), enzymes (for example, L-Asparaginase), biological response modifiers (for example, friterferon-alpha and interferon-alpha-2b), platinum coordination compounds (for example, Cisplatin (cis-DDP) and Carboplatin), anthracenedione (Mitoxantrone), substituted ureas (for example, Hydroxyurea), methylhydrazine derivatives (for example, Procarbazine (N-methylhydrazine; MIH), adrenocorticosteroids (for example, Prednisone), progestins (for example, Hydroxyprogesterone caproate, Medroxyprogesterone, Medroxyprogesterone acetate, and Megestrol acetate), estrogens (for example, Diethylstilbestrol (DES), Diethylstilbestrol diphosphate, Estradiol, and Ethinyl estradiol), antiestrogens (for example, Tamoxifen), androgens (Testosterone proprionate, and Fluoxymesterone), antiandrogens (for example, Flutamide), gonadotropin-releasing horomone analogs (for example, Leuprolide), other hormones and hormone analogs (for example, methyltestosterone, estramustine, estramustine phosphate sodium, chlorotrianisene, and testolactone), and others (for example, dicarbazine, glutamic acid, and mitotane).
In one embodiment, the compositions of the invention are administered in combination with one or more of the following drugs: infliximab (also known as Remicade™ Centocor, Inc.), Trocade (Roche, RO-32-3555), Leflunomide (also known as Arava™ from Hoechst Marion Roussel), Kineret™ (an IL-1 Receptor antagonist also known as Anakinra from Amgen, Inc.)
In a specific embodiment, compositions of the invention are administered in combination with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) or combination of one or more of the components of CHOP. In one embodiment, the compositions of the invention are administered in combination with anti-CD20 antibodies, human monoclonal anti-CD20 antibodies. In another embodiment, the compositions of the invention are administered in combination with anti-CD20 antibodies and CHOP, or anti-CD20 antibodies and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. In a specific embodiment, compositions of the invention are administered in combination with Rituximab. In a further embodiment, compositions of the invention are administered with Rituximab and CHOP, or Rituximab and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. In a specific embodiment, compositions of the invention are administered in combination with tositumomab. In a further embodiment, compositions of the invention are administered with tositumomab and CHOP, or tositumomab and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. The anti-CD20 antibodies may optionally be associated with radioisotopes, toxins or cytotoxic prodrugs. i another specific embodiment, the compositions of the invention are administered in combination Zevalin™. In a further embodiment, compositions of the invention are administered with Zevalin™ and CHOP, or Zevalin™ and any combination of one or more of the components of CHOP, particularly cyclophosphamide and/or prednisone. Zevalin™ may be associated with one or more radisotopes. Particularly preferred isotopes are 90Y and mIn.
In an additional embodiment, the Therapeutics of the invention are administered in combination with cytokines. Cytokines that may be administered with the Therapeutics of the invention include, but are not limited to, E 2, IL3, EL4, EL5, E 6, EL7, IL10, IL12, IL13, EL15, anti- CD40, CD40L, EFN-gamma and TNF-alpha. In another embodiment, Therapeutics of the invention may be administered with any interleukin, including, but not limited to, IL-1 alpha, EL- lbeta, IL-2, IL-3, IL-4, EL-5, EL-6, IL-7, IL-8, EL-9, EL-10, IL-11, IL-12, IL-13, IL-14, E -15, IL- 16, IL-17, EL-18, EL-19, EL-20, and IL-21.
In one embodiment, the Therapeutics of the invention are administered in combination with members of the TNF family. TNF, TNF-related or TNF-like molecules that may be administered with the Therapeutics of the invention include, but are not limited to, soluble forms of TNF-alpha, lymphotoxin-alpha (LT-alpha, also known as TNF-beta), LT-beta (found in complex heterotrimer LT-alpha2-beta), OPGL, FasL, CD27L, CD30L, CD40L, 4-1BBL, DcR3, OX40L, TNF-gamma (International Publication No. WO 96/14328), A DVI-I (International Publication No. WO 97/33899), endokine-alpha (International Publication No. WO 98/07880), OPG, and neutrokine-alpha (International Publication No. WO 98/18921, OX40, and nerve growth factor (NGF), and soluble forms of Fas, CD30, CD27, CD40 and 4-EBB, TR2 (International Publication No. WO 96/34095), DR3 (International Publication No. WO 97/33904), DR4 (hitemational Publication No. WO 98/32856), TR5 (International Publication No. WO 98/30693), TRANK, TR9 (International Publication No. WO 98/56892),TR10 (International Publication No. WO 98/54202), 312C2 (Intemational Publication No. WO 98/06842), and TR12, and soluble forms CD154, CD70, and CD153.
In an additional embodiment, the Therapeutics of the invention are administered in combination with angiogenic proteins. Angiogenic proteins that may be administered with the Therapeutics of the invention include, but are not limited to, Glioma Derived Growth Factor (GDGF), as disclosed in European Patent Number EP-399816; Platelet Derived Growth Factor-A (PDGF-A), as disclosed in European Patent Number EP-682110; Platelet Derived Growth Factor- B (PDGF-B), as disclosed in European Patent Number EP-282317; Placental Growth Factor (P1GF), as disclosed in International Publication Number WO 92/06194; Placental Growth Factor- 2 (PlGF-2), as disclosed in Hauser et al, Growth Factors, 4:259-268 (1993); Vascular Endothelial Growth Factor (VEGF), as disclosed in Intemational Publication Number WO 90/13649; Vascular Endothelial Growth Factor-A (VEGF-A), as disclosed in European Patent Number EP-506477; Vascular Endothelial Growth Factor-2 (VEGF-2), as disclosed in International Publication Number WO 96/39515; Vascular Endothelial Growth Factor B (VEGF-3); Vascular Endothelial Growth Factor B-186 (VEGF-B186), as disclosed in International Publication Number WO 96/26736; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in International Publication Number WO 98/02543; Vascular Endothelial Growth Factor-D (VEGF-D), as disclosed in hitemational Publication Number WO 98/07832; and Vascular Endothelial Growth Factor-E (VEGF-E), as disclosed in German Patent Number DE19639601. The above mentioned references are herein incorporated by reference in their entireties.
In an additional embodiment, the Therapeutics of the invention are administered in combination with Fibroblast Growth Factors. Fibroblast Growth Factors that may be administered with the Therapeutics of the invention include, but are not limited to, FGF-1, FGF-2, FGF-3, FGF- 4, FGF-5, FGF-6, FGF-7, FGF-8, FGF-9, FGF-10, FGF-11, FGF-12, FGF-13, FGF-14, and FGF- 15.
In an additional embodiment, the Therapeutics of the invention are administered in combination with hematopoietic growth factors. Hematopoietic growth factors that may be administered with the Therapeutics of the invention include, but are not limited to, granulocyte macrophage colony stimulating factor (GM-CSF) (sargramostim, LEUKINE™, PROKINE™), granulocyte colony stimulating factor (G-CSF) (filgrastim, NEUPOGEN™), macrophage colony stimulating factor (M-CSF, CSF-1) erythropoietin (epoetin alfa, EPOGEN™, PROCRIT™), stem cell factor (SCF, c-kit ligand, steel factor), megakaryocyte colony stimulating factor, PIXY321 (a GMCSF/EL-3 fusion protein), interleukins, especially any one or more of EL-1 through IL-12, interferon-gamma, or thrombopoietin.
In certain embodiments, Therapeutics of the present invention are administered in combination with adrenergic blockers, such as, for example, acebutolol, atenolol, betaxolol, bisoprolol, carteolol, labetalol, metoprolol, nadolol, oxprenolol, penbutolol, pindolol, propranolol, sotalol, and timolol
In another embodiment, the Therapeutics of the invention are administered in combination with an antiarrhythmic drug (e.g., adenosine, amidoarone, bretylium, digitalis, digoxin, digitoxin, diliazem, disopyramide, esmolol, flecainide, lidocaine, mexiletine, moricizine, phenytoin, procainamide, N-acetyl procainamide, propafenone, propranolol, quinidine, sotalol, tocainide, and verapamil).
In another embodiment, the Therapeutics of the invention are administered in combination with diuretic agents, such as carbonic anhydrase-inhibiting agents (e.g., acetazolamide, dichlorphenamide, and methazolamide), osmotic diuretics (e.g., glycerin, isosorbide, mannitol, and urea), diuretics that inhibit Na+-K+-2C1 symport (e.g., furosemide, bumetanide, azosemide, piretanide, tripamide, ethacrynic acid, muzolimine, and torsemide), thiazide and thiazide-like diuretics (e.g., bendroflumethiazide, benzthiazide, chlorothiazide, hydrochlorothiazide, hydroflumethiazide, methyclothiazide, polythiazide, trichormethiazide, chlorthalidone, indapamide, metolazone, and quinethazone), potassium sparing diuretics (e.g., amiloride and triamterene), and mineralcorticoid receptor antagonists (e.g., spironolactone, canrenone, and potassium canrenoate).
In one embodiment, the Therapeutics of the invention are administered in combination with treatments for endocrine and/or hormone imbalance disorders. Treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, 127I, radioactive isotopes of iodine such as 131I and 123I; recombinant growth hormone, such as HUMATROPE™ (recombinant somatropin); growth hormone analogs such as PROTROPIN™ (somatrem); dopamine agonists such as PARLODEL™ (bromocriptine); somatostatin analogs such as SANDOSTATIN™ (octreotide); gonadotropin preparations such as PREGNYL™, A.P.L.™ and PROFASI™ (chorionic gonadotropin (CG)), PERGONAL™ (menotropins), and METRODIN™ (urofollitropin (uFSH)); synthetic human gonadotropin releasing hormone preparations such as FACTREL™ and LUTREPULSE™ (gonadorelin hydrochloride); synthetic gonadotropin agonists such as LUPRON™ (leuprolide acetate), SUPPRELIN™ (histrelin acetate), SYNAREL™ (nafarelin acetate), and ZOLADEX™ (goserelin acetate); synthetic preparations of thyrotropin-releasing hormone such as RELEFACT TRH™ and THYPINONE™ (protirelin); recombinant human TSH such as THYROGEN™; synthetic preparations of the sodium salts of the natural isomers of thyroid hormones such as L-T4™, SYNTHROED™ and LEVOTHROID™ (levothyroxine sodium), L-T3™, CYTOMEL™ and TRIOSTAT™ (liothyroine sodium), and THYROLAR™ (liotrix); antithyroid compounds such as 6-n-propylthiouracil (propylthiouracil), l-methyl-2- mercaptoimidazole and TAPAZOLE™ (methimazole), NEO-MERCAZOLE™ (carbimazole); beta-adrenergic receptor antagonists such as propranolol and esmolol; Ca2+ channel blockers; dexamethasone and iodinated radiological contrast agents such as TELEPAQUE™ (iopanoic acid) and ORAGRAFIN™ (sodium ipodate).
Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, estrogens or congugated estrogens such as ESTRACE™ (estradiol), ESTINYL™ (ethinyl estradiol), PREMARIN™, ESTRATAB™, ORTHO-EST™, OGEN™ and estropipate (estrone), ESTROVIS™ (quinestrol), ESTRADERM™ (estradiol), DELESTROGEN™ and VALERGEN™ (estradiol valerate), DEPO-ESTRADIOL CYPIONATE™ and ESTROJECT LA™ (estradiol cypionate); antiestrogens such as NOLVADEX™ (tamoxifen), SEROPHENE™ and CLOMID™ (clomiphene); progestins such as DURALUTIN™ (hydroxyprogesterone caproate), MPA™ and DEPO-PROVERA™ (medroxyprogesterone acetate), PROVERA™ and CYCRIN™ (MPA), MEGACE™ (megestrol acetate), NORLUTIN™ (norethindrone), and NORLUTATE™ and AYGESTEN™ (norethindrone acetate); progesterone implants such as NORPLANT SYSTEM™ (subdermal implants of norgestrel); antiprogestins such as RU 486™ (mifepristone); hormonal contraceptives such as ENOVID™ (norethynodrel plus mestranol), PROGESTASERT™ (intrauterine device that releases progesterone), LOESTRIN™, BREVICON™, MODICON™, GENORA™, NELONA™, NORINYL™, OVACON-35™ and OVACON-50™ (ethinyl estradiol/norethindrone), LENLEN™, NORDETTE™, TRI-LEVLEN™ and TREPHASIL-21™ (ethinyl estradiol levonorgestrel) LO/OVRAL™ and OVRAL™ (ethinyl estradiol/norgestrel), DEMULEN™ (ethinyl estradioyethynodiol diacetate), NORINYL™, ORTHO-NOVUM™, NORETHIN™, GENORA™, and NELOVA™ (norethindrone/mestranol), DESOGEN™ and ORTHO-CEPT™ (ethinyl estradiol/desogestrel), ORTHO-CYCLEN™ and ORTHO- TRICYCLEN™ (ethinyl estradiol/norgestimate), MICRONOR™ and NOR-QD™ (norethindrone), and OVRETTE™ (norgestrel).
Additional treatments for endocrine and/or hormone imbalance disorders include, but are not limited to, testosterone esters such as methenolone acetate and testosterone undecanoate; parenteral and oral androgens such as TESTOJECT-50™ (testosterone), TESTEX™ (testosterone propionate), DELATESTRYL™ (testosterone enanthate), DEPO-TESTOSTERONE™ (testosterone cypionate), DANOCRINE™ (danazol), HALOTESTIN™ (fluoxymesterone), ORETON METHYL™, TESTRED™ and VIRE ON™ (methyltestosterone), and OXANDRIN™ (oxandrolone); testosterone transdermal systems such as TESTODERM™; androgen receptor antagonist and 5-alpha-reductase inhibitors such as ANDROCUR™ (cyproterone acetate), EULEXESf™ (flutamide), and PROSCAR™ (finasteride); ' adrenocorticotropic hormone preparations such as CORTROSYN™ (cosyntropin); adrenocortical steroids and their synthetic analogs such as ACLOVATE™ (alclometasone dipropionate), CYCLOCORT™ (amcinonide), BECLOVENT™ and VANCERIL™ (beclomethasone dipropionate), CELESTONE™ (betamethasone), BENISONE™ and UTICORT™ (betamethasone benzoate), DIPROSONE™ (betamethasone dipropionate), CELESTONE PHOSPHATE™ (betamethasone sodium phosphate), CELESTONE SOLUSPAN™ (betamethasone sodium phosphate and acetate), BETA-VAL™ and VALISONE™ (betamethasone valerate), TEMOVATE™ (clobetasol propionate), CLODERM™ (clocortolone pivalate), CORTEF™ and HYDROCORTONE™ (cortisol (hydrocortisone)), HYDROCORTONE ACETATE™ (cortisol (hydrocortisone) acetate), LOCOED™ (cortisol (hydrocortisone) butyrate), HYDROCORTONE PHOSPHATE™ (cortisol (hydrocortisone) sodium phosphate), A-HYDROCORT™ and SOLU CORTEF™ (cortisol (hydrocortisone) sodium succinate), WESTCORT™ (cortisol (hydrocortisone) valerate), CORTISONE ACETATE™ (cortisone acetate), DESOWEN™ and TRIDESILON™ (desonide), TOPICORT™ (desoximetasone), DECADRON™ (dexamethasone), DECADRON LA™ (dexamethasone acetate), DECADRON PHOSPHATE™ and HEXADROL PHOSPHATE™ (dexamethasone sodium phosphate), FLORONE™ and MAXIFLOR™ (diflorasone diacetate), FLORINEF ACETATE™ (fludrocortisone acetate), AEROBID™ and NASALEDE™ (flunisolide), FLUONID™ and SYNALAR™ (fluocinolone acetonide), LIDEX™ (fluocinonide), FLUOR-OP™ and FML™ (fluorometholone), CORDRAN™ (flurandrenolide), HALOG™ (halcinonide), HMS LIZUIFILM™ (medrysone), MEDROL™ (methylprednisolone), DEPO-MEDROL™ and MEDROL ACETATE™ (methylprednisone acetate), A-METHAPRED™ and SOLUMEDROL™ (methylprednisolone sodium succinate), ELOCON™ (mometasone furoate), HALDRONE™ (paramethasone acetate), DELTA-CORTEF™ (prednisolone), ECONOPRED™ (prednisolone acetate), HYDELTRASOL™ (prednisolone sodium phosphate), HYDELTRA-T.B.A™ (prednisolone tebutate), DELTASONE™ (prednisone), ARISTOCORT™ and KENACORT™ (triamcinolone), KENALOG™ (triamcinolone acetonide), ARISTOCORT™ and KENACORT DIACETATE™ (triamcinolone diacetate), and ARISTOSPAN™ (triamcinolone hexacetonide); inhibitors of biosynthesis and action of adrenocortical steroids such as CYTADREN™ (aminoglutethimide), NIZORAL™ (ketoconazole), MODRASTANE™ (trilostane), and METOPIRONE™ (metyrapone); bovine, porcine or human insulin or mixtures thereof; insulin analogs; recombinant human insulin such as HUMULIN™ and NOVOLIN™; oral hypoglycemic agents such as ORAMIDE™ and ORENASE™ (tolbutamide), DIABINESE™ (chlorpropamide), TOLAMDDE™ and TOLINASE™ (tolazamide), DYMELOR™ (acetohexamide), glibenclamide, MICRONASE™, DIBETA™ and GLYNASE™ (glyburide), GLUCOTROL™ (glipizide), and DIAMICRON™ (gliclazide), GLUCOPHAGE™ (metformin), ciglitazone, pioglitazone, and alpha-glucosidase inhibitors; bovine or porcine glucagon; somatostatins such as SANDOSTATIN™ (octreotide); and diazoxides such as PROGLYCEM™ (diazoxide). In an additional embodiment, the Therapeutics of the invention are administered in combination with drugs effective in treating iron deficiency and hypochromic anemias, including but not limited to, ferrous sulfate (iron sulfate, FEOSOL™), ferrous fumarate (e.g., EEOSTAT™), ferrous gluconate (e.g., FERGON™), polysaccharide-iron complex (e.g., NEFEREX™), iron dextran injection (e.g., INFED™), cupric sulfate, pyroxidine, riboflavin, Vitamin BJ2, cyancobalamin injection (e.g., REDISOL™, RUBRAMIN PC™), hydroxocobalamin, folic acid (e.g., FOLV TE™), leucovorin (folinic acid, 5-CHOH4PteGlu, citrovorum factor) or WELLCOVORIN (Calcium salt of leucovorin), transferrin or ferritin.
In another embodiment, Therapeutics of the invention are administered in combination with vasodilating agents and/or calcium channel blocking agents. Vasodilating agents that may be administered with the Therapeutics of the invention include, but are not limited to, Angiotensin Converting Enzyme (ACE) inhibitors (e.g., papaverine, isoxsuprine, benazepril, captopril, cilazapril, enalapril, enalaprilat, fosinopril, lisinopril, moexipril, perindopril, quinapril, ramipril, spirapril, trandolapril, and nylidrin), and nitrates (e.g., isosorbide dinitrate, isosorbide mononitrate, and nitroglycerin). Examples of calcium channel blocking agents that may be administered in combination with the Therapeutics of the invention include, but are not limited to amlodipine, bepridil, diltiazem, felodipine, flunarizine, isradipine, nicardipine, nifedipine, nimodipine, and verapamil
In certain embodiments, the Therapeutics of the invention are administered in combination with treatments for gastrointestinal disorders. Treatments for gastrointestinal disorders that may be administered with the Therapeutic of the invention include, but are not limited to, H2 histamine receptor antagonists (e.g., TAGAMET™ (cimetidine), ZANTAC™ (ranitidine), PEPCID™ (famotidine), and AXED™ (nizatidine)); inhibitors of It, K+ ATPase (e.g., PREVACED™ (lansoprazole) and PRELOSEC™ (omeprazole)); Bismuth compounds (e.g., PEPTO-BISMOL™ (bismuth subsalicylate) and DE-NOL™ (bismuth subcitrate)); various antacids; sucralfate; prostaglandin analogs (e.g. CYTOTEC™ (misoprostol)); muscarinic cholinergic antagonists; laxatives (e.g., surfactant laxatives, stimulant laxatives, saline and osmotic laxatives); antidiarrheal agents (e.g., LOMOTIL™ (diphenoxylate), MOTOFEN™ (diphenoxin), and MODIUM™ (loperamide hydrochloride)), synthetic analogs of somatostatin such as SANDOSTATIN™ (octreotide), antiemetic agents (e.g., ZOFRAN™ (ondansetron), KYTRIL™ (granisetron hydrochloride), tropisetron, dolasetron, metoclopramide, chlorpromazine, perphenazine, prochlorperazine, promethazine, thiethylperazine, triflupromazine, domperidone, haloperidol, droperidol, trimethobenzamide, dexamethasone, methylprednisolone, dronabinol, and nabilone); D2 antagonists (e.g., metoclopramide, trimethobenzamide and chlorpromazine); bile salts; chenodeoxycholic acid; ursodeoxycholic acid; and pancreatic enzyme preparations such as pancreatin and pancrelipase. hi additional embodiments, the Therapeutics of the invention are administered in combination with other therapeutic or prophylactic regimens, such as, for example, radiation therapy.
Example 14: Method of Treating Decreased Levels of the Polypeptide The present invention relates to a method for treating an individual in need of an increased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of polypeptides (including agonists thereto), and/or antibodies of the invention. Moreover, it wiU be appreciated that conditions caused by a decrease in the standard or normal expression level of a polypeptide of the present invention in an individual may be treated by administering agonists of said polypeptide. Thus, the invention also provides a method of treatment of an individual in need of an increased level of the polypeptide comprising administering to such an individual a Therapeutic comprising an amount of the agonist (including polypeptides and antibodies of the present invention) to increase the activity level of the polypeptide in such an individual. For example, a patient with decreased levels of a polypeptide receives a daily dose 0.1-100 ug/kg of the agonist for six consecutive days. The exact details of the dosing scheme, based on administration and formulation, are provided in Example 13.
Example 15: Method of Treating Increased Levels of the Polypeptide The present invention also relates to a method of treating an individual in need of a decreased level of a polypeptide of the invention in the body comprising administering to such an individual a composition comprising a therapeutically effective amount of an antagonist of the invention (including polypeptides and antibodies of the invention).
In one example, antisense technology is used to inhibit production of a polypeptide of the present invention. This technology is one example of a method of decreasing levels of a polypeptide, due to a variety of etiologies, such as cancer.
For example, a patient diagnosed with abnormally increased levels of a polypeptide is administered intravenously antisense polynucleotides at 0.5, 1.0, 1.5, 2.0 and 3.0 mg/kg day for 21 days. This treatment is repeated after a 7-day rest period if the treatment was well tolerated. The antisense polynucleotides of the present invention can be formulated using techniques and formulations described herein (e.g. see Example 13), or otherwise known in the art.
Example 16: Method of Treatment Using Gene Therapy-Ex Vivo
One method of gene therapy transplants fibroblasts, which are capable of expressing a polypeptide, onto a patient. Generally, fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in tissue-culture medium and separated into small pieces. Small chunks of the tissue are placed on a wet surface of a tissue culture flask, approximately ten pieces are placed in each flask. The flask is turned upside down, closed tight and left at room temperature over night. After 24 hours at room temperature, the flask is inverted and the chunks of tissue remain fixed to the bottom of the flask and fresh media (e.g., Ham's F12 media, with 10% FBS, penicillin and streptomycin) is added. The flasks are then incubated at 37 degree C for approximately one week.
At this time, fresh media is added and subsequently changed every several days. After an additional two weeks in culture, a monolayer of fibroblasts emerge. The monolayer is trypsinized and scaled into larger flasks. pMV-7 (Kirschmeier, P.T. et al., DNA, 7:219-25 (1988)), flanked by the long terminal repeats of the Moloney murine sarcoma virus, is digested with EcoRI and HindDI and subsequently treated with calf intestinal phosphatase. The linear vector is fractionated on agarose gel and purified, using glass beads.
The cDNA encoding a polypeptide of the present invention can be amplified using PCR primers which correspond to the 5' and 3' end sequences respectively as set forth in Example 1 using primers and having appropriate restriction sites and initiation/stop codons, if necessary. Preferably, the 5' primer contains an EcoRI site and the 3' primer includes a Hindlll site. Equal quantities of the Moloney murine sarcoma virus linear backbone and the amplified EcoRI and Hindlll fragment are added together, in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The ligation mixture is then used to transform bacteria HB101, which are then plated onto agar containing kanamycin for the purpose of confirming that the vector has the gene of interest properly inserted.
The amphotropic pA317 or GP+aml2 packaging cells are grown in tissue culture to confluent density in Dulbecco's Modified Eagles Medium (DMEM) with 10% calf serum (CS), penicillin and streptomycin. The MSV vector containing the gene is then added to the media and the packaging cells transduced with the vector. The packaging cells now produce infectious viral particles containing the gene (the packaging cells are now referred to as producer cells). Fresh media is added to the transduced producer cells, and subsequently, the media is harvested from a 10 cm plate of confluent producer cells. The spent media, containing the infectious viral particles, is filtered through a millipore filter to remove detached producer cells and this media is then used to infect fibroblast cells. Media is removed from a sub-confluent plate of fibroblasts and quickly replaced with the media from the producer cells. This media is removed and replaced with fresh media. If the titer of virus is high, then virtually all fibroblasts will be infected and no selection is required. If the titer is very low, then it is necessary to use a retroviral vector that has a selectable marker, such as neo or his. Once the fibroblasts have been efficiently infected, the fibroblasts are analyzed to determine whether protein is produced.
The engineered fibroblasts are then transplanted onto the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads.
Example 17: Gene Therapy Using Endogenous Genes Corresponding To Polynucleotides of the
Invention
Another method of gene therapy according to the present invention involves operably associating the endogenous polynucleotide sequence of the invention with a promoter via homologous recombination as described, for example, in U.S. Patent NO: 5,641,670, issued June 24, 1997; International Publication NO: WO 96/29411, published September 26, 1996; International Publication NO: WO 94/12650, published August 4, 1994; KoUer et al, Proc. Natl. Acad. Sci. USA, 86:8932-8935 (1989); and Zijlstra et al, Nature, 342:435-438 (1989). This method involves the activation of a gene which is present in the target cells, but which is not expressed in the cells, or is expressed at a lower level than desired.
Polynucleotide constructs are made which contain a promoter and targeting sequences, which are homologous to the 5' non-coding sequence of endogenous polynucleotide sequence, flanking the promoter. The targeting sequence will be sufficiently near the 5' end of the polynucleotide sequence so the promoter will be operably linked to the endogenous sequence upon homologous recombination. The promoter and the targeting sequences can be amplified using PCR. Preferably, the amplified promoter contains distinct restriction enzyme sites on the 5' and 3' ends. Preferably, the 3' end of the first targeting sequence contains the same restriction enzyme site as the 5' end of the amplified promoter and the 5' end of the second targeting sequence contains the same restriction site as the 3' end of the amplified promoter.
The amplified promoter and the amplified targeting sequences are digested with the appropriate restriction enzymes and subsequently treated with calf intestinal phosphatase. The digested promoter and digested targeting sequences are added together in the presence of T4 DNA ligase. The resulting mixture is maintained under conditions appropriate for ligation of the two fragments. The construct is size fractionated on an agarose gel, then purified by phenol extraction and ethanol precipitation. In this Example, the polynucleotide constructs are administered as naked polynucleotides via electroporation. However, the polynucleotide constructs may also be administered with transfection-facilitating agents, such as liposomes, viral sequences, viral particles, precipitating agents, etc. Such methods of delivery are known in the art.
Once the cells are transfected, homologous recombination will take place which results in the promoter being operably linked to the endogenous polynucleotide sequence. This results in the expression of polynucleotide corresponding to the polynucleotide in the cell. Expression may be detected by immunological staining, or any other method known in the art.
Fibroblasts are obtained from a subject by skin biopsy. The resulting tissue is placed in DMEM + 10% fetal calf serum. Exponentially growing or early stationary phase fibroblasts are trypsinized and rinsed from the plastic surface with nutrient medium. An aliquot of the cell suspension is removed for counting, and the remaining cells are subjected to centrifugation. The supernatant is aspirated and the pellet is resuspended in 5 ml of electroporation buffer (20 mM HEPES pH 7.3, 137 mM NaCl, 5 mM KC1, 0.7 mM Na2 HP04, 6 mM dextrose). The cells are recentrifuged, the supernatant aspirated, and the cells resuspended in electroporation buffer containing 1 mg/ml acetylated bovine serum albumin. The final cell suspension contains approximately 3X106 cells/ml. Electroporation should be performed immediately following resuspension.
Plasmid DNA is prepared according to standard techniques. For example, to construct a plasmid for targeting to the locus corresponding to the polynucleotide of the invention, plasmid pUC18 (MBI Fermentas, Amherst, NY) is digested with Hindlll. The CMV promoter is amplified by PCR with an Xbal site on the 5' end and a BamHI site on the 3' end. Two non-coding sequences are amplified via PCR: one non-coding sequence (fragment 1) is amplified with a Hindlll site at the 5' end and an Xba site at the 3'end; the other non-coding sequence (fragment 2) is amplified with a BamHI site at the 5'end and a Hindlll site at the 3'end. The CMV promoter and the fragments (1 and 2) are digested with the appropriate enzymes (CMV promoter - Xbal and BamHI; fragment 1 - Xbal; fragment 2 - BamHI) and ligated together. The resulting ligation product is digested with Hindlll, and ligated with the HindlH-digested pUC18 plasmid.
Plasmid DNA is added to a sterile cuvette with a 0.4 cm electrode gap (Bio-Rad). The final DNA concentration is generally at least 120 μg/ml. 0.5 ml of the cell suspension (containing approximately 1.5.X106 cells) is then added to the cuvette, and the cell suspension and DNA solutions are gently mixed. Electroporation is performed with a Gene-Pulser apparatus (Bio-Rad). Capacitance and voltage are set at 960 μF and 250-300 V, respectively. As voltage increases, cell survival decreases, but the percentage of surviving cells that stably incorporate the introduced DNA into their genome increases dramatically. Given these parameters, a pulse time of approximately 14-20 mSec should be observed. Electroporated cells are maintained at room temperature for approximately 5 min, and the contents of the cuvette are then gently removed with a sterile transfer pipette. The cells are added directly to 10 ml of prewarmed nutrient media (DMEM with 15% calf serum) in a 10 cm dish and incubated at 37 degree C. The following day, the media is aspirated and replaced with 10 ml of fresh media and incubated for a further 16-24 hours.
The engineered fibroblasts are then injected into the host, either alone or after having been grown to confluence on cytodex 3 microcarrier beads. The fibroblasts now produce the protein product. The fibroblasts can then be introduced into a patient as described above.
Example 18: Method of Treatment Using Gene Therapy - In Vivo
Another aspect of the present invention is using in vivo gene therapy methods to prevent, treat, and/or ameliorate aUergic and or asthmatic diseases and disorders. The gene therapy method relates to the introduction of naked nucleic acid (DNA, RNA, and antisense DNA or RNA) sequences into an animal to increase or decrease the expression of the polypeptide. The polynucleotide of the present invention may be operatively linked to (i.e., associated with) a promoter or any other genetic elements necessary for the expression of the polypeptide by the target tissue. Such gene therapy and delivery techniques and methods are known in the art, see, for example, WO90/11092, W098/11779; U.S. Patent NO. 5693622, 5705151, 5580859; Tabata et al, Cardiovasc. Res. 35(3):470-479 (1997); Chao et al, Pharmacol. Res. 35(6):517-522 (1997); Wolff, Neuromuscul Disord. 7(5):314-318 (1997); Schwartz et al, Gene Ther. 3(5):405-411 (1996); Tsurumi et al, Circulation 94(12):3281-3290 (1996) (incorporated herein by reference). The polynucleotide constructs may be delivered by any method that delivers injectable materials to the cells of an animal, such as, injection into the interstitial space of tissues (heart, muscle, skin, lung, liver, intestine and the like). The polynucleotide constructs can be delivered in a pharmaceutically acceptable liquid or aqueous carrier.
The term "naked" polynucleotide, DNA or RNA, refers to sequences that are free from any delivery vehicle that acts to assist, promote, or facilitate entry into the cell, including viral sequences, viral particles, liposome formulations, lipofectin or precipitating agents and the like. However, the polynucleotides of the present invention may also be delivered in liposome formulations (such as those taught in Feigner P.L. et al. (1995) Ann. NY Acad. Sci. 772:126-139 and AbdaUah B. et al. (1995) Biol. Cell 85(1): 1-7) which can be prepared by methods well known to those skilled in the art.
The polynucleotide vector constructs used in the gene therapy method are preferably constructs that will not integrate into the host genome nor will they contain sequences that allow for replication. Any strong promoter known to those skilled in the art can be used for driving the expression of DNA. Unlike other gene therapy techniques, one major advantage of introducing naked nucleic acid sequences into target cells is the transitory nature of the polynucleotide synthesis in the cells. Studies have shown that non-replicating DNA sequences can be introduced into cells to provide production of the desired polypeptide for periods of up to six months.
The polynucleotide construct can be delivered to the interstitial space of tissues within an animal, including muscle, skin, brain, lung, liver, spleen, bone marrow, thymus, heart, lymph, blood, bone, cartilage, pancreas, kidney, gall bladder, stomach, intestine, testis, ovary, uterus, rectum, nervous system, eye, gland, and connective tissue. Interstitial space of the tissues comprises the intercellular fluid, mucopolysaccharide matrix among the reticular fibers of organ tissues, elastic fibers in the walls of vessels or chambers, collagen fibers of fibrous tissues, or that same matrix within connective tissue ensheathing muscle cells or in the lacunae of bone. It is similarly the space occupied by the plasma of the circulation and the lymph fluid of the lymphatic channels. Delivery to the interstitial space of muscle tissue is preferred for the reasons discussed below. They may be conveniently delivered by injection into the tissues comprising these cells. They are preferably delivered to and expressed in persistent, non-dividing cells which are differentiated, although delivery and expression may be achieved in non-differentiated or less completely differentiated cells, such as, for example, stem cells of blood or skin fibroblasts. In vivo muscle cells are particularly competent in their ability to take up and express polynucleotides. For the naked polynucleotide injection, an effective dosage amount of DNA or RNA will be in the range of from about 0.05 g/kg body weight to about 50 mg/kg body weight. Preferably the dosage will be from about 0.005 mg/kg to about 20 mg/kg and more preferably from about 0.05 mg/kg to about 5 mg/kg. Of course, as the artisan of ordinary skill will appreciate, this dosage will vary according to the tissue site of injection. The appropriate and effective dosage of nucleic acid sequence can readily be determined by those of ordinary skill in the art and may depend on the condition being treated and the route of administration. The preferred route of administration is by the parenteral route of injection into the interstitial space of tissues. However, other parenteral routes may also be used, such as, inhalation of an aerosol formulation particularly for delivery to lungs or bronchial tissues, throat or mucous membranes of the nose. I addition, naked polynucleotide constructs can be delivered to arteries during angioplasty by the catheter used in the procedure.
The dose response effects of injected polynucleotide in muscle in vivo is determined as follows. Suitable template DNA for production of mRNA coding for polypeptide of the present invention is prepared in accordance with a standard recombinant DNA methodology. The template DNA, which may be either circular or linear, is either used as naked DNA or complexed with liposomes. The quadriceps muscles of mice are then injected with various amounts of the template DNA. Five to six week old female and male Balb/C mice are anesthetized by intraperitoneal injection with 0.3 ml of 2.5% Avertin. A 1.5 cm incision is made on the anterior thigh, and the quadriceps muscle is directly visualized. The template DNA is injected in 0.1 ml of carrier in a 1 cc syringe through a 27 gauge needle over one minute, approximately 0.5 cm from the distal insertion site of the muscle into the knee and about 0.2 cm deep. A suture is placed over the injection site for future localization, and the skin is closed with stainless steel clips.
After an appropriate incubation time (e.g., 7 days) muscle extracts are prepared by excising the entire quadriceps. Every fifth 15 um cross-section of the individual quadriceps muscles is histochemically stained for protein expression. A time course for protein expression may be done in a similar fashion except that quadriceps from different mice are harvested at different times. Persistence of DNA in muscle following injection may be determined by Southern blot analysis after preparing total cellular DNA and HIRT supematants from injected and control mice. The results of the above experimentation in mice can be used to extrapolate proper dosages and other treatment parameters in humans and other animals using naked DNA.
Example 19: Transgenic Animals The polypeptides of the invention can also be expressed in transgenic animals. Animals of any species, including, but not limited to, mice, rats, rabbits, hamsters, guinea pigs, pigs, micro- pigs, goats, sheep, cows and non-human primates, e.g., baboons, monkeys, and chimpanzees may be used to generate transgenic animals. In a specific embodiment, techniques described herein or otherwise known in the art, are used to express polypeptides of the invention in humans, as part of a gene therapy protocol.
Any technique known in the art may be used to introduce the transgene (i.e., polynucleotides of the invention) into animals to produce the founder lines of transgenic animals. Such techniques include, but are not limited to, pronuclear microinjection (Paterson et al, Appl Microbiol Biotechnol. 40:691-698 (1994); Carver et al, Biotechnology (NY) 11:1263-1270 (1993); Wright et al, Biotechnology (NY) 9:830-834 (1991); and Hoppe et al, U.S. Pat. No. 4,873,191 (1989)); retrovirus mediated gene transfer into germ lines (Van der Putten et al, Proc. Natl. Acad. Sci., USA 82:6148-6152 (1985)), blastocysts or embryos; gene targeting in embryonic stem cells (Thompson et al., Cell 56:313-321 (1989)); electroporation of cells or embryos (Lo, 1983, Mol Cell. Biol. 3:1803-1814 (1983)); introduction of the polynucleotides of the invention using a gene gun (see, e.g., Ulmer et al, Science 259:1745 (1993); introducing nucleic acid constructs into embryonic pleuripotent stem cells and transferring the stem cells back into the blastocyst; and sperm-mediated gene transfer (Lavitrano et al, Cell 57:717-723 (1989); etc. For a review of such techniques, see Gordon, "Transgenic Animals," Intl. Rev. Cytol 115:171-229 (1989), which is incorporated by reference herein in its entirety.
Any technique known in the art may be used to produce transgenic clones containing polynucleotides of the invention, for example, nuclear transfer into enucleated oocytes of nuclei from cultured embryonic, fetal, or adult cells induced to quiescence (Campell et al., Nature 380:64-66 (1996); Wilmut et al, Nature 385:810-813 (1997)).
The present invention provides for transgenic animals that carry the transgene in all then cells, as well as animals which carry the transgene in some, but not all their cells, i.e., mosaic animals or chimeric. The transgene may be integrated as a single transgene or as multiple copies such as in concatamers, e.g., head-to-head tandems or head-to-tail tandems. The transgene may also be selectively introduced into and activated in a particular cell type by following, for example, the teaching of Lasko et al. (Lasko et al, Proc. Natl. Acad. Sci. USA 89:6232-6236 (1992)). The regulatory sequences required for such a cell-type specific activation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art. When it is desired that the polynucleotide transgene be integrated into the chromosomal site of the endogenous gene, gene targeting is preferred. Briefly, when such a technique is to be utilized, vectors containing some nucleotide sequences homologous to the endogenous gene are designed for the purpose of integrating, via homologous recombination with chromosomal sequences, into and disrupting the function of the nucleotide sequence of the endogenous gene. The transgene may also be selectively introduced into a particular cell type, thus inactivating the endogenous gene in only that cell type, by following, for example, the teaching of Gu et al. (Gu et al, Science 265:103-106 (1994)). The regulatory sequences required for such a cell-type specific inactivation will depend upon the particular cell type of interest, and will be apparent to those of skill in the art.
Once transgenic animals have been generated, the expression of the recombinant gene may be assayed utilizing standard techniques. Initial screening may be accomplished by Southern blot analysis or PCR techniques to analyze animal tissues to verify that integration of the transgene has taken place. The level of mRNA expression of the transgene in the tissues of the transgenic animals may also be assessed using techniques which include, but are not limited to, Northern blot analysis of tissue samples obtained from the animal, in situ hybridization analysis, and reverse transcriptase-PCR (rt-PCR). Samples of transgenic gene-expressing tissue may also be evaluated immunocytochemically or immunohistochemically using antibodies specific for the transgene product. Once the founder animals are produced, they may be bred, inbred, outbred, or crossbred to produce colonies of the particular animal. Examples of such breeding strategies include, but are not limited to: outbreeding of founder animals with more than one integration site in order to establish separate lines; inbreeding of separate lines in order to produce compound transgenics that express the transgene at higher levels because of the effects of additive expression of each transgene; crossing of heterozygous transgenic animals to produce animals homozygous for a given integration site in order to both augment expression and eliminate the need for screening of animals by DNA analysis; crossing of separate homozygous lines to produce compound heterozygous or homozygous lines; and breeding to place the transgene on a distinct background that is appropriate for an experimental model of interest.
Transgenic animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.
Example 20: Knock-Out Animals
Endogenous gene expression can also be reduced by inactivating or "knocking out" the gene and/or its promoter using targeted homologous recombination, (e.g., see Smithies et al, Nature 317:230-234 (1985); Thomas & Capecchi, Cell 51:503-512 (1987); Thompson et al, CeU 5:313-321 (1989); each of which is incorporated by reference herein in its entirety). For example, a mutant, non-functional polynucleotide of the invention (or a completely unrelated DNA sequence) flanked by DNA homologous to the endogenous polynucleotide sequence (either the coding regions or regulatory regions of the gene) can be used, with or without a selectable marker and/or a negative selectable marker, to transfect cells that express polypeptides of the invention in vivo. In another embodiment, techniques known in the art are used to generate knockouts in cells that contain, but do not express the gene of interest. Insertion of the DNA construct, via targeted homologous recombination, results in inactivation of the targeted gene. Such approaches are particularly suited in research and agricultural fields where modifications to embryonic stem cells can be used to generate animal offspring with an inactive targeted gene (e.g., see Thomas & Capecchi 1987 and Thompson 1989, supra). However this approach can be routinely adapted for use in humans provided the recombinant DNA constructs are directly administered or targeted to the required site in vivo using appropriate viral vectors that will be apparent to those of skill in the art.
In further embodiments of the invention, cells that are genetically engineered to express the polypeptides of the invention, or alternatively, that are genetically engineered not to express the polypeptides of the invention (e.g., knockouts) are administered to a patient in vivo. Such cells may be obtained from the patient (i.e., animal, including human) or an MHC compatible donor and can include, but are not limited to fibroblasts, bone marrow cells, blood cells (e.g., lymphocytes), adipocytes, muscle cells, endothelial cells etc. The cells are genetically engineered in vitro using recombinant DNA techniques to introduce the coding sequence of polypeptides of the invention into the cells, or alternatively, to disrupt the coding sequence and/or endogenous regulatory sequence associated with the polypeptides of the invention, e.g., by transduction (using viral vectors, and preferably vectors that integrate the transgene into the cell genome) or transfection procedures, including, but not limited to, the use of plasmids, cosmids, YACs, naked DNA, electroporation, Uposomes, etc. The coding sequence of the polypeptides of the invention can be placed under the control of a strong constitutive or inducible promoter or promoter/enhancer to achieve expression, and preferably secretion, of the polypeptides of the invention. The engineered cells which express and preferably secrete the polypeptides of the invention can be introduced into the patient systemically, e.g., in the circulation, or intraperitoneally. Alternatively, the cells can be incorporated into a matrix and implanted in the body, e.g., genetically engineered fibroblasts can be implanted as part of a skin graft; genetically engineered endothelial cells can be implanted as part of a lymphatic or vascular graft. (See, for example, Anderson et al. U.S. Patent No. 5,399,349; and Mulligan & Wilson, U.S. Patent No. 5,460,959 each of which is incorporated by reference herein in its entirety). When the cells to be administered are non-autologous or non-MHC compatible cells, they can be administered using well known techniques which prevent the development of a host immune response against the introduced cells. For example, the cells may be introduced in an encapsulated form which, while allowing for an exchange of components with the immediate extracellular environment, does not allow the introduced cells to be recognized by the host immune system.
Transgenic and "knock-out" animals of the invention have uses which include, but are not limited to, animal model systems useful in elaborating the biological function of polypeptides of the present invention, studying conditions and/or disorders associated with aberrant expression, and in screening for compounds effective in ameliorating such conditions and/or disorders.
Example 21: Assays Detecting Stimulation or Inhibition ofB cell Proliferation and
Differentiation Generation of functional humoral immune responses requires both soluble and cognate signaling between B-lineage cells and their microenvironment. Signals may impart a positive stimulus that allows a B-lineage cell to continue its programmed development, or a negative stimulus that instructs the cell to arrest its current developmental pathway. To date, numerous stimulatory and inhibitory signals have been found to influence B cell responsiveness including IL-2, IL-4, EL-5, EL-6, IL-7, ILIO, IL-13, EL-14 and IL-15. Interestingly, these signals are by themselves weak effectors but can, in combination with various co-stimulatory proteins, induce activation, proliferation, differentiation, homing, tolerance and death among B cell populations.
One of the best studied classes of B-cell co-stimulatory proteins is the TNF-superfamily. Within this family CD40, CD27, and CD30 along with their respective ligands CD154, CD70, and CD153 have been found to regulate a variety of immune responses. Assays which allow for the detection and/or observation of the proliferation and differentiation of these B-cell populations and their precursors are valuable tools in determining the effects various proteins may have on these B- cell populations in terms of proliferation and differentiation. Listed below are two assays designed to allow for the detection of the differentiation, proliferation, or inhibition of B-cell populations and then precursors.
In Vitro Assay- Agonists or antagonists of the invention can be assessed for its ability to induce activation, proliferation, differentiation or inhibition and/or death in B-cell populations and their precursors. The activity of the agonists or antagonists of the invention on purified human tonsillar B cells, measured qualitatively over the dose range from 0.1 to 10,000 ng/mL, is assessed in a standard B-lymphocyte co-stimulation assay in which purified tonsillar B cells are cultured in the presence of either formalin-fixed Staphylococcus aureus Cowan I (SAC) or immobilized anti- human IgM antibody as the priming agent. Second signals such as IL-2 and IL-15 synergize with SAC and IgM crosslinking to elicit B cell proliferation as measured by tritiated-thymidine incorporation. Novel synergizing agents can be readily identified using this assay. The assay involves isolating human tonsillar B cells by magnetic bead (MACS) depletion of CD3-positive cells. The resulting cell population is greater than 95% B cells as assessed by expression of CD45R(B220).
Various dilutions of each sample are placed into individual wells of a 96-well plate to which are added 105 B-cells suspended in culture medium (RPMI 1640 containing 10% FBS, 5 X
10"5M 2ME, lOOU/ l penicillin, lOug/ml streptomycin, and 10"5 dilution of SAC) in a total volume of 150ul Proliferation or inhibition is quantitated by a 20h pulse (luCi well) with 3H-
' thymidine (6.7 Ci/mM) beginning 72h post factor addition. The positive and negative controls are
IL2 and medium respectively. In vivo Assay- BALB/c mice are injected (i.p.) twice per day with buffer only, or 2 mg/Kg of agonists or antagonists of the invention, or truncated forms thereof. Mice receive this treatment for 4 consecutive days, at which time they are sacrificed and various tissues and serum collected for analyses. Comparison of H&E sections from normal spleens and spleens treated with agonists or antagonists of the invention identify the results of the activity of the agonists or antagonists on spleen cells, such as the diffusion of peri-arterial lymphatic sheaths, and or significant increases in the nucleated cellularity of the red pulp regions, which may indicate the activation of the differentiation and proliferation of B-cell populations. Immunohistochemical studies using a B cell marker, anti-CD45R(B220), are used to determine whether any physiological changes to splenic cells, such as splenic disorganization, are due to increased B-cell representation within loosely defined B-cell zones that infiltrate established T-cell regions.
Flow cytometric analyses of the spleens from mice treated with agonist or antagonist is used to indicate whether the agonists or antagonists specifically increases the proportion of ThB+, CD45R(B220)dull B cells over that which is observed in control mice.
Likewise, a predicted consequence of increased mature B-cell representation in vivo is a relative increase in serum Ig titers. Accordingly, serum IgM and IgA levels are compared between buffer and agonists or antagonists-treated mice.
The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).
Example 22: T Cell Proliferation Assay A CD3-induced proliferation assay is performed on PBMCs and is measured by the uptake of 3H-thymidine. The assay is performed as follows. Ninety-six well plates are coated with 100 μl/well of mAb to CD3 (HIT3a, Pharmingen) or isotype-matched control mAb (B33.1) overnight at 4 degrees C (1 μg/ml in .05M bicarbonate buffer, pH 9.5), then washed three times with PBS. PBMC are isolated by F H gradient centrifugation from human peripheral blood and added to quadruplicate wells (5 x 104/well) of mAb coated plates in RPMI containing 10% FCS and P/S in the presence of varying concentrations of agonists or antagonists of the invention (total volume 200 ul). Relevant protein buffer and medium alone are controls. After 48 hr. culture at 37 degrees C, plates are spun for 2 min. at 1000 rpm and 100 μl of supernatant is removed and stored -20 degrees C for measurement of EL-2 (or other cytokines) if effect on proliferation is observed. Wells are supplemented with 100 ul of medium containing 0.5 uCi of 3H-thymidine and cultured at 37 degrees C for 18-24 hr. Wells are harvested and incorporation of 3H-thymidine used as a measure of proliferation. Anti-CD3 alone is the positive control for proliferation. EL-2 (100 U/ml) is also used as a control which enhances proliferation. Control antibody which does not induce proliferation of T cells is used as the negative control for the effects of agonists or antagonists of the invention.
The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).
Example 23: Effect of Agonists or Antagonists of the Invention on the Expression of MHC Class II, Costimulatory and Adhesion Molecules and Cell Differentiation of Monocytes and
Monocyte-Derived Human Dendritic Cells
Dendritic cells are generated by the expansion of proliferating precursors found in the peripheral blood: adherent PBMC or elutriated monocytic fractions are cultured for 7-10 days with GM-CSF (50 ng/ml) and EL-4 (20 ng/ml). These dendritic cells have the characteristic phenotype of immature cells (expression of CDl, CD80, CD86, CD40 and MHC class π antigens). Treatment with activating factors, such as TNF- , causes a rapid change- in surface phenotype (increased expression of MHC class I and El, costimulatory and adhesion molecules, downregulation of FCγRII, upregulation of CD83). These changes correlate with increased antigen-presenting capacity and with functional maturation of the dendritic cells. FACS analysis of surface antigens is performed as follows. Cells are treated 1-3 days with increasing concentrations of agonist or antagonist of the invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1:20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).
Effect on the production of cytokines. Cytokines generated by dendritic cells, in particular IL-12, are important in the initiation of T-cell dependent immune responses. IL-12 strongly influences the development of Thl helper T-cell immune response, and induces cytotoxic T and NK cell function. An ELISA is used to measure the IL-12 release as follows. Dendritic cells (106/ml) are treated with increasing concentrations of agonists or antagonists of the invention for 24 hours. LPS (100 ng/ml) is added to the cell culture as positive control Supematants from the cell cultures are then collected and analyzed for EL-12 content using commercial ELISA kit (e.g., R & D Systems (Minneapolis, MN)). The standard protocols provided with the kits are used. Effect on the expression of MHC Class II, costimulatory and adhesion molecules. Three major families of cell surface antigens can be identified on monocytes: adhesion molecules, molecules involved in antigen presentation, and Fc receptor. Modulation of tlie expression of MHC class II antigens and other costimulatory molecules, such as B7 and ICAM-1, may result in changes in the antigen presenting capacity of monocytes and ability to induce T cell activation. Increased expression of Fc receptors may correlate with improved monocyte cytotoxic activity, cytokine release and phagocytosis.
FACS analysis is used to examine the surface antigens as follows. Monocytes are treated 1-5 days with increasing concentrations of agonists or antagonists of the invention or LPS (positive control), washed with PBS containing 1% BSA and 0.02 mM sodium azide, and then incubated with 1:20 dilution of appropriate FITC- or PE-labeled monoclonal antibodies for 30 minutes at 4 degrees C. After an additional wash, the labeled cells are analyzed by flow cytometry on a FACScan (Becton Dickinson).
Monocyte activation and/or increased survival Assays for molecules that activate (or alternatively, inactivate) monocytes and/or increase monocyte survival (or alternatively, decrease monocyte survival) are known in the art and may routinely be applied to determine whether a molecule of the invention functions as an inhibitor or activator of monocytes. Agonists or antagonists of the invention can be screened using the three assays described below. For each of these assays, Peripheral blood mononuclear cells (PBMC) are purified from single donor leukopacks (American Red Cross, Baltimore, MD) by centrifugation through a Histopaque gradient (Sigma). Monocytes are isolated from PBMC by counterflow centrifugal elutriation. Monocyte Survival Assay. Human peripheral blood monocytes progressively lose viability when cultured in absence of serum or other stimuli. Their death results from internally regulated processes (apoptosis). Addition to the culture of activating factors, such as TNF-alpha dramatically improves cell survival and prevents DNA fragmentation. Propidium iodide (PI) staining is used to measure apoptosis as follows. Monocytes are cultured for 48 hours in polypropylene tubes in serum-free medium (positive control), in the presence of 100 ng/ml TNFalpha (negative control), and in the presence of varying concentrations of the compound to be tested. Cells are suspended at a concentration of 2 x 106/ml in PBS containing PI at a final concentration of 5 μg ml, and then incubated at room temperature for 5 minutes before FACScan analysis. PI uptake has been demonstrated to correlate with DNA fragmentation in this experimental paradigm.
Effect on cytokine release. An important function of monocytes/macrophages is their regulatory activity on other cellular populations of the immune system through the release of cytokines after stimulation. An ELISA to measure cytokine release is performed as follows. Human monocytes are incubated at a density of 5xl05 cells/ml with increasing concentrations of agonists or antagonists of the invention and under the same conditions, but in the absence of agonists or antagonists. For EL-12 production, the cells are primed overnight with EFN (100 U/ml) in the presence of agonist or antagonist of the invention. LPS (10 ng/ml) is then added. Conditioned media are collected after 24h and kept frozen until use. Measurement of TNF-alpha, EL-10, MCP-1 and IL-8 is then performed using a commercially available ELISA kit (e.g., R & D Systems (Minneapolis, MN)) and applying the standard protocols provided with the kit.
Oxidative burst. Purified monocytes are plated in 96-w plate at 2-lxl05 cell/well Increasing concentrations of agonists or antagonists of the invention are added to the wells in a total volume of 0.2 ml culture medium (RPMI 1640 + 10% FCS, glutamine and antibiotics). After 3 days incubation, the plates are centrifuged and the medium is removed from the wells. To the macrophage monolayers, 0.2 ml per well of phenol red solution (140 mM NaCl, 10 mM potassium phosphate buffer pH 7.0, 5.5 mM dextrose, 0.56 mM phenol red and 19 U/ml of HRPO) is added, together with the stimulant (200 nM PMA). The plates are incubated at 37°C for 2 hours and the reaction is stopped by adding 20 μl IN NaOH per well. The absorbance is read at 610 nm. To calculate the amount of H202 produced by the macrophages, a standard curve of a H202 solution of known molarity is performed for each experiment.
The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy). Example 24: Suppression of TNF alpha-induced adhesion molecule expression by an Agonist or Antagonist of the Invention
The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs .
Tumor necrosis factor alpha (TNF-a), a potent proinflammatory cytokine, is a stimulator of all three CAMs on endothelial cells and may be involved in a wide variety of inflammatory responses, often resulting in a pathological outcome.
The potential of an agonist or antagonist of the invention to mediate a suppression of TNF-a induced CAM expression can be examined. A modified ELISA assay which uses ECs as a solid phase absorbent is employed to measure the amount of CAM expression on TNF-a treated ECs when co-stimulated with a member of the FGF family of proteins.
To perform the experiment, human umbilical vein endothelial cell (HUVEC) cultures are obtained from pooled cord harvests and maintained in growth medium (EGM-2; Clonetics, San Diego, CA) supplemented with 10% FCS and 1% penicillin/streptomycin in a 37 degree C humidified incubator containing 5% C02- HUVECs are seeded in 96-well plates at concentrations of 1 x lO^ cells/weU in EGM medium at 37 degree C for 18-24 hrs or until confluent. The monolayers are subsequently washed 3 times with a serum-free solution of RPMI-1640 supplemented with 100 U/ml penicillin and 100 mg/ml streptomycin, and treated with a given cytokine and/or growth factor(s) for 24 h at 37 degree C. Following incubation, the cells are then evaluated for CAM expression.
Human Umbilical Vein Endothelial cells (HUVECs) are grown in a standard 96 well plate to confluence. Growth medium is removed from the cells and replaced with 90 ul of 199 Medium (10% FBS). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 ul volumes). Plates are incubated at 37 degree C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 μl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min.
Fixative is then removed from the wells and wells are washed IX with PBS(+Ca,Mg)+0.5% BSA and drained. Do not allow the wells to dry. Add 10 μl of diluted primary antibody to the test and control wells. Anti-ICAM-1-Biotin, Anti-NCAM-1 -Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA.
Then add 20 μl of diluted ExtrAvidin-Alkaline Phosphotase (1:5,000 dilution) to each well and incubated at 37°C for 30 min. Wells are washed X3 with PBS(+Ca,Mg)+0.5% BSA. 1 tablet of p-Νitrophenol Phosphate pΝPP is dissolved in 5 ml of glycine buffer (pH 10.4). 100 μl of pΝPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10°) > 10" 05 > 10"1 > 10"1'5. 5 μl of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μl of pΝΝP reagent must then be added to each of the standard wells. The plate must be incubated at 37°C for 4h. A volume of 50 μl of 3M ΝaOH is added to all wells. The results are quantified on a plate reader at 405 nm. The background subtraction option is used on blank wells filled with glycine buffer only. The template is set up to indicate the concentration of AP-conjugate in each standard well [ 5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.
The studies described in this example tested activity of agonists or antagonists of the invention. However, one skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides or polypeptides of the invention (e.g., gene therapy).
Example 25: Production Of Polypeptide of the Invention For High-Throughput Screening
Assays
The following protocol produces a supernatant containing polypeptide of the present invention to be tested. This supernatant can then be used in the Screening Assays described in Examples 27-34. First, dilute Poly-D-Lysine (644 587 Boehringer-Mannheim) stock solution (lmg/ml in
PBS) 1:20 in PBS (w/o calcium or magnesium 17-516F Biowhittaker) for a working solution of 50ug/ml. Add 200 ul of this solution to each well (24 well plates) and incubate at RT for 20 minutes. Be sure to distribute the solution over each well (note: a 12-channel pipetter may be used with tips on every other channel). Aspirate off the Poly-D-Lysine solution and rinse with 1ml PBS (Phosphate Buffered Saline). The PBS should remain in the well until just prior to plating the cells and plates may be poly-lysine coated in advance for up to two weeks.
Plate 293T cells (do not carry cells past P+20) at 2 x 105 cells/well in .5ml DMEM(Dulbecco's Modified Eagle Medium)(with 4.5 G/L glucose and L-glutamine (12-604F Biowhittaker))/10% heat inactivated FBS(14-503F Biowhittaker)/lx Penstrep(17-602E Biowhittaker). Let the cells grow overnight.
The next day, mix together in a sterile solution basin: 300 ul Lipofectamine (18324-012 Gibco/BRL) and 5ml Optimem I (31985070 Gibco BRL)/96-well plate. With a small volume multi-channel pipetter, aliquot approximately 2ug of an expression vector containing a polynucleotide insert, produced by the methods described in Examples 8-10, into an appropriately labeled 96-well round bottom plate. With a multi-channel pipetter, add 50ul of the Lipofectamine/Optimem I mixture to each weU. Pipette up and down gently to mix. Incubate at RT 15-45 minutes. After about 20 minutes, use a multi-channel pipetter to add 150ul Optimem I to each well. As a control, one plate of vector DNA lacking an insert should be transfected with each set of transfections.
Preferably, the transfection should be performed by tag-teaming the following tasks. By tag-teaming, hands on time is cut in half, and the cells do not spend too much time on PBS. First, person A aspirates off the media from four 24-well plates of cells, and then person B rinses each well with .5-lml PBS. Person A then aspirates off PBS rinse, and person B, using al2-channel pipetter with tips on every other channel, adds the 200ul of DNA/Lipofectamine/Optimem I complex to the odd wells first, then to the even wells, to each row on the 24-well plates. Incubate at 37 degree C for 6 hours. While cells are incubating, prepare appropriate media, either 1%BSA in DMEM with lx penstrep, or HGS CHO-5 media (116.6 mg L of CaC12 (anhyd); 0.00130 mg L CuS04-5H20;
0.050 mg L of Fe(N03) -9H20; 0.417 mg L of FeS04-7H20; 311.80 mg/L of Kcl; 28.64 mg/L of MgCl2; 48.84 mg L of MgS04; 6995.50 mg/L of NaCl; 2400.0 mg/L of NaHC03; 62.50 mg/L of NaH2PO4-H20; 71.02 mg/L of Na2HP04; .4320 mg/L of ZnS04-7H20; .002 mg/L of Arachidonic Acid ; 1.022 mg/L of Cholesterol; .070 mg/L of DL-alpha-Tocopherol-Acetate; 0.0520 mg/L of Linoleic Acid; 0.010 mg/L of Linolenic Acid; 0.010 mg/L of Myristic Acid; 0.010 mg/L of Oleic Acid; 0.010 mg/L of Palmitric Acid; 0.010 mg/L of Palmitic Acid; 100 mg/L of Pluronic F-68; 0.010 mg/L of Stearic Acid; 2.20 mg/L of Tween 80; 4551 mg/L of D-Glucose; 130.85 mg/ml of L- Alanine; 147.50 mg/ml of L-Arginine-HCL; 7.50 mg/ml of L-Asparagine- H20; 6.65 mg/ml of L-Aspartic Acid; 29.56 mg/ml of L-Cystine-2HCL-H20; 31.29 mg/ml of L-
Cystine-2HCL; 7.35 mg/ml of L-Glutamic Acid; 365.0 mg/ml of L-Glutamine; 18.75 mg/ml of Glycine; 52.48 mg/ml of L-Histidine-HCL-H20; 106.97 mg/ml of L-Isoleucine; 111.45 mg/ml of
L-Leucine; 163.75 mg/ml of L-Lysine HCL; 32.34 mg/ml of L-Methionine; 68.48 mg ml of L-
Phenylalainine; 40.0 mg/ml of L-Proline; 26.25 mg/ml of L-Serine; 101.05 mg/ml of L-Threonine; 19.22 mg/ml of L-Tryptophan; 91.79 mg/ml of L-Tryrosine-2Na-2H20; and 99.65 mg/ml of L- Valine; 0.0035 mg L of Biotin; 3.24 mg/L of D-Ca Pantothenate; 11.78 mg L of Choline Chloride; 4.65 mg/L of Folic Acid; 15.60 mg/L of i-lhositol; 3.02 mg/L of Niacinamide; 3.00 mg/L of Pyridoxal HCL; 0.031 mg/L of Pyridoxine HCL; 0.319 mg L of Riboflavin; 3.17 mg/L of Thiamine HCL; 0.365 mg/L of Thymidine; 0.680 mg/L of Vitamin B12; 25 mM of HEPES Buffer; 2.39 mg/L of Na Hypoxanthine; 0.105 mg/L of Lipoic Acid; 0.081 mg/L of Sodium Putrescine-2HCL; 55.0 mg/L of Sodium Pyruvate; 0.0067 mg/L of Sodium Selenite; 20uM of Ethanolamine; 0.122 mg/L of Ferric Citrate; 41.70 mg/L of Methyl-B-Cyclodextrin complexed with Linoleic Acid; 33.33 mg/L of Methyl-B-Cyclodextrin complexed with Oleic Acid; 10 mg/L of Methyl-B-Cyclodextrin complexed with Retinal Acetate. Adjust osmolarity to 327 mOsm) with 2mm glutamine and lx penstrep. (BSA (81-068-3 Bayer) lOOgm dissolved in IL DMEM for a 10% BSA stock solution). Filter the media and collect 50 ul for endotoxin assay in 15ml polystyrene conical.
The transfection reaction is terminated, preferably by tag-teaming, at the end of the incubation period. Person A aspirates off the transfection media, while person B adds 1.5ml appropriate media to each well Incubate at 37 degree C for 45 or 72 hours depending on the media used: 1%BSA for 45 hours or CHO-5 for 72 hours.
On day four, using a 300ul multichannel pipetter, aliquot 600ul in one 1ml deep well plate and the remaining supernatant into a 2ml deep well. The supematants from each well can then be used in the assays described in Examples 27-33. It is specifically understood that when activity is obtained in any of the assays described below using a supernatant, the activity originates from either the polypeptide of the present invention directly (e.g., as a secreted protein) or by polypeptide of the present invention inducing expression of other proteins, which are then secreted into the supernatant. Thus, the invention further provides a method of identifying the protein in the supernatant characterized by an activity in a particular assay.
Example 26: Construction of GAS Reporter Construct
One signal transduction pathway involved in the differentiation and proliferation of cells is called the Jaks-STATs pathway. Activated proteins in the Jaks-STATs pathway bind to gamma activation site "GAS" elements or interferon-sensitive responsive element ("ISRE"), located in the promoter of many genes. The binding of a protein to these elements alter the expression of the associated gene.
GAS and ISRE elements are recognized by a class of transcription factors called Signal
Transducers and Activators of Transcription, or "STATs." There are six members of the STATs family. Statl and Stat3 are present in many cell types, as is Stat2 (as response to IFN-alpha is widespread). Stat4 is more restricted and is not in many cell types though it has been found in T helper class I, cells after treatment with IL-12. Stat5 was originally called mammary growth factor, but has been found at higher concentrations in other cells including myeloid cells. It can be activated in tissue culture cells by many cytokines.
The STATs are activated to translocate from the cytoplasm to the nucleus upon tyrosine phosphorylation by a set of kinases known as the Janus Kinase ("Jaks") family. Jaks represent a distinct family of soluble tyrosine kinases and include Tyk2, Jakl, Jak2, and Jak3. These kinases display significant sequence similarity and are generally catalytically inactive in resting cells.
The Jaks are activated by a wide range of receptors summarized in the Table below. (Adapted from review by Schidler and Darnell, Ann. Rev. Biochem. 64:621-51 (1995)). A cytokine receptor family, capable of activating Jaks, is divided into two groups: (a) Class 1 includes receptors for EL-2, EL-3, EL-4, EL-6, IL-7, EL-9, IL-11, IL-12, IL-15, Epo, PRL, GH, G- CSF, GM-CSF, LEF, CNTF, and thrombopoietin; and (b) Class 2 includes IFN-a, E N-g, and ILIO. The Class 1 receptors share a conserved cysteine motif (a set of four conserved cysteines and one tryptophan) and a WSXWS motif (a membrane proximal region encoding Trp-Ser-Xaa-Trp- Ser (SEQ ID NO: 2)).
Thus, on binding of a ligand to a receptor, Jaks are activated, which in turn activate STATs, which then translocate and bind to GAS elements. This entire process is encompassed in the Jaks-STATs signal transduction pathway. Therefore, activation of the Jaks-STATs pathway, reflected by the binding of the GAS or the ISRE element, can be used to indicate proteins involved in the proliferation and differentiation of cells. For example, growth factors and cytokines are known to activate the Jaks-STATs pathway (See Table below). Thus, by using GAS elements ' linked to reporter molecules, activators of the Jaks-STATs pathway can be identified.
JAKs STATS GASf elements) or ISRE
Ligand tyk2 Jakl Jak2 Jak3
IFN family
EFN-a/B + + - - 1,2,3 ISRE
IFN-g + + - 1 GAS (E Fl>Lys6>IFP) εpl30 family
EL-6 (Pleiotropic) + + + ? 1,3 GAS (IRFl>Lys6>IFP)
U-ll(Pleiotroρic) ? + ? ? 1,3
OnM(Pleiotropic) 9 + + ? 1,3
LIF(Pleiotropic) ? + + ? 1,3
CNTF(Pleiotropic) -/+ + + ? 1,3
G-CSF(Pleiotropic) 9 + 9 ? 1,3
EL-12(Pleiotropic) + - + + 1,3 g-C family
IL-2 (lymphocytes) - + - + 1,3,5 GAS
IL-4 (lymph/myeloid) - + - + 6 GAS (ERFl = EFT
»Ly6)(IgH)
EL-7 (lymphocytes) - + - + 5 GAS
EL-9 (lymphocytes) - + - + 5 GAS
EL-13 (lymphocyte) - + ? ? 6 GAS
IL-15 ? + ? + 5 GAS gpl40 family
EL-3 (myeloid) - - + - 5 GAS (IRFl>IFP»Ly6)
EL-5 (myeloid) - - + - 5 GAS
GM-CSF (myeloid) - - + - 5 GAS
Growth hormone family
GH ? - + - 5
PRL 9 +/- + - 1,3,5
EPO ? - + - 5 GAS(B-
CAS>IRFl=IFP»Ly6)
Receptor Tyrosine Kinases
EGF 9 + + - 1,3 GAS (IRFl)
PDGF 9 + + - 1,3
CSF-1 9 + + - 1,3 GAS (not ERFl)
To construct a synthetic GAS containing promoter element, which is used in the Biological Assays described in Examples 27-28, a PCR based strategy is employed to generate a GAS-SV40 promoter sequence. The 5' primer contains four tandem copies of the GAS binding site found in the ERFl promoter and previously demonstrated to bind STATs upon induction with a range of cytokines (Rothman et al, Immunity 1:457-468 (1994).), although other GAS or ISRE elements can be used instead. The 5' primer also contains 18bp of sequence complementary to the SV40 early promoter sequence and is flanked with an Xhol site. The sequence of the 5' primer is: 5':GCGCCTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAA ATGATTTCCCCGAAATATCTGCCATCTCAATTAG:3' (SEQ ID NO: 3) The downstream primer is complementary to the SV40 promoter and is flanked with a
Hind HI site: 5':GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO: 4)
PCR amplification is performed using the SV40 promoter template present in the B- galpromoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol/Hind III and subcloned into BLSK2-. (Stratagene.) Sequencing with forward and reverse primers confirms that the insert contains the following sequence:
5 ' :CTCGAGATTTCCCCGAAATCTAGATTTCCCCGAAATGATTTCCCCGAAATGA
TTTCCCCGAAATATCTGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCC
GCCCATCCCGCCCCTAACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAA
TTTTTTTTATTTATGCAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAG TGAGGAGGCTTTTTTGGAGGCCTAGGCTTTTGCAAAAAGCTT.-3' (SEQ ED NO: 5)
With this GAS promoter element linked to the SV40 promoter, a GAS:SEAP2 reporter construct is next engineered. Here, the reporter molecule is a secreted alkaline phosphatase, or "SEAP." Clearly, however, any reporter molecule can be instead of SEAP, in this or in any of the other Examples. Well known reporter molecules that can be used instead of SEAP include chloramphenicol acetylfransferase (CAT), luciferase, alkaline phosphatase, B-galactosidase, green fluorescent protein (GFP), or any protein detectable by an antibody.
The above sequence confirmed synthetic GAS-SV40 promoter element is subcloned into the pSEAP-Promoter vector obtained from Clontech using Hindlll and Xhol, effectively replacing the SV40 promoter with the amplified GAS.-SV40 promoter element, to create the GAS-SEAP vector. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.
Thus, in order to generate mammalian stable cell lines expressing the GAS-SEAP reporter, the GAS-SEAP cassette is removed from the GAS-SEAP vector using Sail and Notl, and inserted into a backbone vector containing the neomycin resistance gene, such as pGFP-1 (Clontech), using these restriction sites in the multiple cloning site, to create the GAS-SEAP/Neo vector. Once this vector is transfected into mammalian cells, this vector can then be used as a reporter molecule for GAS binding as described in Examples 27-28. Other constructs can be made using the above description and replacing GAS with a different promoter sequence. For example, construction of reporter molecules containing EGR and NF-KB promoter sequences are described in Example 29. However, many other promoters can be substituted using the protocols described in this Example. For instance, SRE, EL-2, NFAT, or Osteocalcin promoters can be substituted, alone or in combination (e.g., GAS/NF-KB/EGR, GAS/NF-KB, U-2/NFAT, or NF-KB/GAS). Similarly, other cell lines can be used to test reporter construct activity, such as HELA (epithelial), HUVEC (endothelial), Reh (B-cell), Saos-2 (osteoblast), HUNAC (aortic), or Cardiomyocyte.
Example 27: High-Throughput Screening Assay for T-cell Activity.
The following protocol is used to assess T-cell activity by identifying factors, and determining whether supernate containing a polypeptide of the invention proliferates and/or differentiates T-cells. T-cell activity is assessed using the GAS/SEAP/Νeo construct produced in
Example 26. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks- STATS signal transduction pathway. The T-cell used in this assay is Jurkat T-cells (ATCC
Accession No. ΗB-152), although Molt-3 cells (ATCC Accession No. CRL-1552) and Molt-4 cells (ATCC Accession No. CRL-1582) cells can also be used.
Jurkat T-cells are lymphoblastic CD4+ Thl helper cells. In order to generate stable cell lines, approximately 2 million Jurkat ceUs are transfected with the GAS-SEAP/neo vector using DMRIE-C (Life Technologies)(transfection procedure described below). The transfected cells are seeded to a density of approximately 20,000 cells per well and transfectants resistant to 1 mg/ml genticin selected. Resistant colonies are expanded and then tested for their response to increasing concentrations of interferon gamma. The dose response of a selected clone is demonstrated.
Specifically, the following protocol will yield sufficient cells for 75 wells containing 200 ul of cells. Thus, it is either scaled up, or performed in multiple to generate sufficient cells for multiple 96 well plates. Jurkat cells are maintained in RPMI + 10% serum with l%Pen-Strep.
Combine 2.5 mis of OPTI-MEM (Life Technologies) with 10 ug of plasmid DNA in a T25 flask.
Add 2.5 ml OPTI-MEM containing 50 ul of DMRIE-C and incubate at room temperature for 15-45 mins. During the incubation period, count cell concentration, spin down the required number of cells (IO7 per transfection), and resuspend in OPTI-MEM to a final concentration of IO7 cells/ml.
Then add lml of 1 x IO7 cells in OPTI-MEM to T25 flask and incubate at 37 degree C for 6 hrs.
After the incubation, add 10 ml of RPMI + 15% serum.
The Jurkat: GAS-SEAP stable reporter lines are maintained in RPMI + 10% serum, 1 mg/ml Genticin, and 1% Pen-Strep. These cells are treated with supematants containing polypeptide of the present invention or polypeptide of the present invention induced polypeptides as produced by the protocol described in Example 25. On the day of treatment with the supernatant, the cells should be washed and resuspended in fresh RPMI + 10% serum to a density of 500,000 cells per ml. The exact number of cells required will depend on the number of supematants being screened. For one 96 well plate, approximately 10 million cells (for 10 plates, 100 million cells) are required. Transfer the cells to a triangular reservoir boat, in order to dispense the cells into a 96 well dish, using a 12 channel pipette. Using a 12 channel pipette, transfer 200 ul of cells into each well (therefore adding 100, 000 cells per well).
After all the plates have been seeded, 50 ul of the supematants are transferred directly from the 96 well plate containing the supematants into each well using a 12 channel pipette. In addition, a dose of exogenous interferon gamma (0.1, 1.0, 10 ng) is added to wells H9, H10, and HI 1 to serve as additional positive controls for the assay.
The 96 well dishes containing Jurkat cells treated with supematants are placed in an incubator for 48 hrs (note: this time is variable between 48-72 hrs). 35 ul samples from each well are then transferred to an opaque 96 well plate using a 12 channel pipette. The opaque plates should be covered (using sellophene covers) and stored at -20 degree C until SEAP assays are performed according to Example 30. The plates containing the remaining treated cells are placed at 4 degree C and serve as a source of material for repeating the assay on a specific well if desired.
As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate Jurkat T cells. Over 30 fold induction is typically observed in the positive control wells. The above protocol may be used in the generation of both transient, as well as, stable transfected cells, which would be apparent to those of skill in the art.
Example 28: High-Throughput Screening Assay Identifying Myeloid Activity
The following protocol is used to assess myeloid activity of polypeptide of the present invention by determining whether polypeptide of the present invention proliferates and/or differentiates myeloid cells. Myeloid cell activity is assessed using the GAS/SEAP/Neo construct produced in Example 26. Thus, factors that increase SEAP activity indicate the ability to activate the Jaks-STATS signal transduction pathway. The myeloid cell used in this assay is U937, a pre- monocyte cell line, although TF-1, HL60, or KG1 can be used. To transiently transfect U937 cells with the GAS/SEAP/Neo construct produced in
Example 26, a DEAE-Dextran method (Kharbanda et. al, 1994, Cell Growth & Differentiation,
5:259-265) is used. First, harvest 2xl07 U937 cells and wash with PBS. The U937 cells are usuaUy grown in RPMI 1640 medium containing 10% heat-inactivated fetal bovine serum (FBS) supplemented with 100 units/ml penicillin and 100 mg/ml streptomycin. Next, suspend the cells in 1 ml of 20 mM Tris-HCl (pH 7.4) buffer containing 0.5 mg/ml
DEAE-Dextran, 8 ug GAS-SEAP2 plasmid DNA, 140 mM NaCl, 5 mM KC1, 375 uM Na2HPθ4JH20, 1 mM MgCl2, and 675 uM CaCl2. Incubate at 37 degrees C for 45 min.
Wash the cells with RPMI 1640 medium containing 10% FBS and then resuspend in 10 ml complete medium and incubate at 37 degree C for 36 hr.
The GAS-SEAP/U937 stable cells are obtained by growing the cells in 400 ug/ml G418. The G418-free medium is used for routine growth but every one to two months, the cells should be re-grown in 400 ug/ml G418 for couple of passages.
8
These cells are tested by harvesting 1x10 cells (this is enough for ten 96-well plates assay) and wash with PBS. Suspend the cells in 200 ml above described growth medium, with a final density of 5x10s cells/ml. Plate 200 ul cells per well in the 96-well plate (or lxlO5 cells/well).
Add 50 ul of the supernatant prepared by the protocol described in Example 25. Incubate at 37 degee C for 48 to 72 hr. As a positive control, 100 Unit/ml interferon gamma can be used which is known to activate U937 cells. Over 30 fold induction is typically observed in the positive control wells. SEAP assay the supernatant according to the protocol described in Example 30.
Example 29: High-Throughput Screening Assay for T-cell Activity NF-KB (Nuclear Factor KB) is a transcription factor activated by a wide variety of agents including the inflammatory cytokines IL-1 and TNF, CD30 and CD40, lymphotoxin-alpha and lymphotoxin-beta, by exposure to LPS or thrombin, and by expression of certain viral gene products. As a transcription factor, NF-KB regulates the expression of genes involved in immune cell activation, control of apoptosis (NF- KB appears to shield cells from apoptosis), B and T-cell development, anti-viral and antimicrobial responses, and multiple stress responses. hi non-stimulated conditions, NF- KB is retained in the cytoplasm with I-KB (Inhibitor KB). However, upon stimulation, I- KB is phosphorylated and degraded, causing NF- KB to shuttle to the nucleus, thereby activating transcription of target genes. Target genes activated by NF- KB include IL-2, IL-6, GM-CSF, ICAM-1 and class 1 MHC.
Due to its central role and ability to respond to a range of stimuli, reporter constructs utilizing the NF-KB promoter element are used to screen the supematants produced in Example 25. Activators or inhibitors of NF-KB would be useful in detecting, preventing, diagnosing, prognosticating, treating, and/or ameliorating diseases. For example, inhibitors of NF-KB could be used to treat those diseases related to the acute or chronic activation of NF-KB, such as rheumatoid arthritis.
To construct a vector containing the NF-KB promoter element, a PCR based strategy is employed. The upstream primer contains four tandem copies of the NF-KB binding site (GGGGACTTTCCC) (SEQ ID NO: 8), 18 bp of sequence complementary to the 5' end of the SV40 early promoter sequence, and is flanked with an Xhol site: 5':GCGGCCTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCGGGACTTT CCATCCTGCCATCTCAATTAG:3' (SEQ ID NO: 9)
The downstream primer is complementary to the 3' end of the SV40 promoter and is flanked with a Hind III site: 5' :GCGGCAAGCTTTTTGCAAAGCCTAGGC:3' (SEQ ID NO: 4)
PCR amplification is performed using the SV40 promoter template present in the pB- galpromoter plasmid obtained from Clontech. The resulting PCR fragment is digested with Xhol and Hind 111 and subcloned into BLSK2-. (Stratagene) Sequencing with the T7 and T3 primers confirms the insert contains the following sequence: 5' :CTCGAGGGGACTTTCCCGGGGACTTTCCGGGGACTTTCCGGGACTTTCCATC
TGCCATCTCAATTAGTCAGCAACCATAGTCCCGCCCCTAACTCCGCCCATCCCGCCCCT AACTCCGCCCAGTTCCGCCCATTCTCCGCCCCATGGCTGACTAATTTTTTTTATTTATG CAGAGGCCGAGGCCGCCTCGGCCTCTGAGCTATTCCAGAAGTAGTGAGGAGGCTTTTT TGGAGGCCTAGGCTTTTGCAAAAAGCTT:3' (SEQ ED NO: 10) Next, replace the SV40 minimal promoter element present in the pSEAP2-promoter plasmid (Clontech) with this NF-KB/SV40 fragment using Xhol and Hindlll. However, this vector does not contain a neomycin resistance gene, and therefore, is not preferred for mammalian expression systems.
In order to generate stable mammalian cell lines, the NF-KB/SV40/SEAP cassette is removed from the above NF-KB/SEAP vector using restriction enzymes Sail and Notl, and inserted into a vector containing neomycin resistance. Particularly, the NF-KB/SN40/SEAP cassette was inserted into pGFP-1 (Clontech), replacing the GFP gene, after restricting pGFP-1 with Sail and Νotl.
Once ΝF-KB/SN40/SEAP/Νeo vector is created, stable Jurkat T-cells are created and maintained according to the protocol described in Example 27. Similarly, the method for assaying supematants with these stable Jurkat T-cells is also described in Example 27. As a positive control, exogenous TNF alpha (0.1,1, 10 ng) is added to wells H9, H10, and Hll, with a 5-10 fold activation typically observed.
Example 30: Assay for SEAP Activity
As a reporter molecule for the assays described in Examples 27-29, SEAP activity is assayed using the Tropix Phospho-light Kit (Cat. BP-400) according to the following general procedure. The Tropix Phospho-light Kit supplies the Dilution, Assay, and Reaction Buffers used below. Prime a dispenser with the 2.5x Dilution Buffer and dispense 15 ul of 2.5x dilution buffer into Optiplates containing 35 ul of a supernatant. Seal the plates with a plastic sealer and incubate at 65 degree C for 30 min. Separate the Optiplates to avoid uneven heating. Cool the samples to room temperature for 15 minutes. Empty the dispenser and prime with the Assay Buffer. Add 50 ml Assay Buffer and incubate at room temperature 5 min. Empty the dispenser and prime with the Reaction Buffer (see the Table below). Add 50 ul Reaction Buffer and incubate at room temperature for 20 minutes. Since the intensity of the chemiluminescent signal is time dependent, and it takes about 10 minutes to read 5 plates on a luminometer, thus one should treat 5 plates at each time and start the second set 10 minutes later.
Read the relative light unit in the luminometer. Set H12 as blank, and print the results. An increase in chemiluminescence indicates reporter activity.
Reaction Buffer Formulation:
# of plates Rxn buffer diluent (ml) CSPD (ml)
10 60 3 11 65 3.25
12 70 3.5 13 75 3.75 14 80 4 15 85 4.25 16 90 4.5 17 95 4.75 18 100 5 19 105 5.25 20 110 5.5 21 115 5.75 22 120 6 23 125 6.25 24 130 6.5 25 135 6.75 26 140 7 27 145 7.25 28 150 7.5 29 155 7.75 30 160 31 165 8.25 32 170 8.5 33 175 8.75 34 180 9 35 185 9.25 36 190 9.5 37 195 9.75 38 200 10 39 205 10.25 40 210 10.5 41 215 10.75 42 220 11 43 225 11.25 44 230 11.5 45 235 11.75 46 240 12 47 245 12.25 48 250 12.5 49 255 12.75
50 260 13
Example 31: High-Throughput Screening Assay Identifying Changes in Small Molecule Concentration and Membrane Permeability Binding of a ligand to a receptor is known to alter intracellular levels of small molecules, such as calcium, potassium, sodium, and pH, as well as alter membrane potential. These alterations can be measured in an assay to identify supematants which bind to receptors of a particular cell. Although the following protocol describes an assay for calcium, this protocol can easily be modified to detect changes in potassium, sodium, pH, membrane potential, or any other small molecule which is detectable by a fluorescent probe.
The following assay uses Fluorometric Imaging Plate Reader ("FLIPR") to measure changes in fluorescent molecules (Molecular Probes) that bind small molecules. Clearly, any fluorescent molecule detecting a small molecule can be used instead of the calcium fluorescent molecule, fluo-4 (Molecular Probes, Inc.; catalog no. F-14202), used here. For adherent cells, seed the cells at 10,000 -20,000 cells/well in a Co-star black 96-well plate with clear bottom. The plate is incubated in a C02 incubator for 20 hours. The adherent cells are washed two times in Biotek washer with 200 ul of HBSS (Hank's Balanced Salt Solution) leaving 100 ul of buffer after the final wash.
A stock solution of 1 mg/ml fluo-4 is made in 10% pluronic acid DMSO. To load the cells with fluo-4, 50 ul of 12 ug/ml fluo-4 is added to each well. The plate is incubated at 37 degrees C in a C02 incubator for 60 min. The plate is washed four times in the Biotek washer with HBSS leaving 100 ul of buffer.
For non-adherent cells, the cells are spun down from culture media. Cells are resuspended to 2-5xl06 cells/ml with HBSS in a 50-ml conical tube. 4 ul of 1 mg/ml fluo-4 solution in 10% pluronic acid DMSO is added to each ml of cell suspension. The tube is then placed in a 37 degrees C water bath for 30-60 min. The cells are washed twice with HBSS, resuspended to lxlO6 cells/ml, and dispensed into a microplate, 100 ul well The plate is centrifuged at 1000 rpm for 5 min. The plate is then washed once in Denley Cell Wash with 200 ul, followed by an aspiration step to 100 ul final volume. For a non-cell based assay, each well contains a fluorescent molecule, such as fluo-4 . The supernatant is added to the well, and a change in fluorescence is detected.
To measure the fluorescence of intracellular calcium, the FLIPR is set for the following parameters: (1) System gain is 300-800 mW; (2) Exposure time is 0.4 second; (3) Camera F/stop is F/2; (4) Excitation is 488 nm; (5) Emission is 530 nm; and (6) Sample addition is 50 ul. Increased emission at 530 nm indicates an extracellular signaling event caused by the a molecule, either polypeptide of the present invention or a molecule induced by polypeptide of the present invention, which has resulted in an increase in the intracellular Ca++ concentration.
Example 32: High-Throughput Screening Assay Identifying Tyrosine Kinase Activity
The Protein Tyrosine Kinases (PTK) represent a diverse group of transmembrane and cytoplasmic kinases. Within the Receptor Protein Tyrosine Kinase RPTK) group are receptors for a range of mitogenic and metabolic growth factors including the PDGF, FGF, EGF, NGF, HGF and Insulin receptor subfamilies. In addition there are a large family of RPTKs for which the corresponding ligand is unknown. Ligands for RPTKs include mainly secreted small proteins, but also membrane-bound and extracellular matrix proteins. Activation of RPTK by ligands involves ligand-mediated receptor dimerization, resulting in transphosphorylation of the receptor subunits and activation of the cytoplasmic tyrosine kinases. The cytoplasmic tyrosine kinases include receptor associated tyrosine kinases of the src-family (e.g., src, yes, lck, lyn, fyn) and non-receptor linked and cytosolic protein tyrosine kinases, such as the Jak family, members of which mediate signal transduction triggered by the cytokine superfamily of receptors (e.g., the hiterleukins, Interferons, GM-CSF, and Leptin).
Because of the wide range of known factors capable of stimulating tyrosine kinase activity, identifying whether polypeptide of the present invention or a molecule induced by polypeptide of the present invention is capable of activating tyrosine kinase signal transduction pathways is of interest. Therefore, the following protocol is designed to identify such molecules capable of activating the tyrosine kinase signal transduction pathways.
Seed target cells (e.g., primary keratinocytes) at a density of approximately 25,000 cells per well in a 96 well Loprodyne Silent Screen Plates purchased from Nalge Nunc (Naperville, EL). The plates are sterilized with two 30 minute rinses with 100% ethanol, rinsed with water and dried overnight. Some plates are coated for 2 hr with 100 ml of cell culture grade type I collagen (50 mg/ml), gelatin (2%) or polylysine (50 mg/ml), all of which can be purchased from Sigma Chemicals (St. Louis, MO) or 10% Matrigel purchased from Becton Dickinson (Bedford,MA), or calf serum, rinsed with PBS and stored at 4 degree C. Cell growth on these plates is assayed by seeding 5,000 cells/well in growth medium and indirect quantitation of cell number through use of alamarBlue as described by the manufacturer Alamar Biosciences, Inc. (Sacramento, CA) after 48 hr. Falcon plate covers #3071 from Becton Dickinson (Bedford,MA) are used to cover the Loprodyne Silent Screen Plates. Falcon Microtest III cell culture plates can also be used in some proliferation experiments.
To prepare extracts, A431 cells are seeded onto the nylon membranes of Loprodyne plates (20,000/200ml/well) and cultured overnight in complete medium. Cells are quiesced by incubation in serum-free basal medium for 24 hr. After 5-20 minutes treatment with EGF (60ng/ml) or 50 ul of the supernatant produced in Example 25, the medium was removed and 100 ml of extraction buffer ((20 mM HEPES pH 7.5, 0.15 M NaCl, 1% Triton X-100, 0.1% SDS, 2 M Na3V04, 2 mM Na4P207 and a cocktail of protease inhibitors (# 1836170) obtained from Boeheringer Mannheim (Indianapolis, IN)) is added to each well and the plate is shaken on a rotating shaker for 5 minutes at 4°C. The plate is then placed in a vacuum transfer manifold and the extract filtered through the 0.45 mm membrane bottoms of each well using house vacuum.
Extracts are collected in a 96-well catch/assay plate in the bottom of the vacuum manifold and immediately placed on ice. To obtain extracts clarified by centrifugation, the content of each well, after detergent solubilization for 5 minutes, is removed and centrifuged for 15 minutes at 4 degree
C at 16,000 x g. Test the filtered extracts for levels of tyrosine kinase activity. Although many methods of detecting tyrosine kinase activity are known, one method is described here.
Generally, the tyrosine kinase activity of a supernatant is evaluated by determining its ability to phosphorylate a tyrosine residue on a specific substrate (a biotinylated peptide).
Biotinylated peptides that can be used for this purpose include PSK1 (corresponding to amino acids 6-20 of the cell division kinase cdc2-p34) and PSK2 (corresponding to amino acids 1-17 of gastrin). Both peptides are substrates for a range of tyrosine kinases and are available from
Boehringer Mannheim.
The tyrosine kinase reaction is set up by adding the following components in order. First, add lOul of 5uM Biotinylated Peptide, then lOul ATP/Mg2+ (5mM ATP/50mM MgCl2), then lOul of 5x Assay Buffer (40mM imidazole hydrochloride, pH7.3, 40 mM beta-glycerophosphate, ImM EGTA, lOOmM MgCl2, 5 mM MnCl2, 0.5 mg/ml BSA), then 5ul of Sodium Vanadate(lmM), and then 5ul of water. Mix the components gently and preincubate the reaction mix at 30 degree C for 2 min. Initial the reaction by adding lOul of the control enzyme or the filtered supernatant. The tyrosine kinase assay reaction is then terminated by adding 10 ul of 120mm EDTA and place the reactions on ice.
Tyrosine kinase activity is determined by transferring 50 ul aliquot of reaction mixture to a microtiter plate (MTP) module and incubating at 37 degree C for 20 min. This allows the streptavidin coated 96 well plate to associate with the biotinylated peptide. Wash the MTP module with 300ul/well of PBS four times. Next add 75 ul of anti-phospotyrosine antibody conjugated to horse radish peroxidase(anti-P-Tyr-POD(0.5u/ml)) to each well and incubate at 37 degree C for one hour. Wash the well as above.
Next add lOOul of peroxidase substrate solution (Boehringer Mannheim) and incubate at room temperature for at least 5 mins (up to 30 min). Measure the absorbance of the sample at 405 nm by using ELISA reader. The level of bound peroxidase activity is quantitated using an ELISA reader and reflects the level of tyrosine kinase activity. Example 33: High-Throughput Screening Assay Identifying Phosphorylation Activity
As a potential alternative and/or complement to the assay of protein tyrosine kinase activity described in Example 32, an assay which detects activation (phosphorylation) of major intracellular signal transduction intermediates can also be used. For example, as described below one particular assay can detect tyrosine phosphorylation of the Erk-1 and Erk-2 kinases. However, phosphorylation of other molecules, such as Raf, JNK, ρ38 MAP, Map kinase kinase (MEK), MEK kinase, Src, Muscle specific kinase (MuSK), IRAK, Tec, and Janus, as well as any other phosphoserine, phosphotyrosine, or phosphothreonine molecule, can be detected by substituting these molecules for Erk-1 or Erk-2 in the following assay.
Specifically, assay plates are made by coating the wells of a 96-well ELISA plate with 0.1ml of protein G (lug/ml) for 2 hr at room temp, (RT). The plates are then rinsed with PBS and blocked with 3% BSA/PBS for 1 hr at RT. The protein G plates are then treated with 2 commercial monoclonal antibodies (lOOng/well) against Erk-1 and Erk-2 (1 hr at RT) (Santa Cruz Biotechnology). (To detect other molecules, this step can easily be modified by substituting a monoclonal antibody detecting any of the above described molecules.) After 3-5 rinses with PBS, the plates are stored at 4 degree C until use.
A431 cells are seeded at 20,000/well in a 96-well Loprodyne filterplate and cultured overnight in growth medium. The cells are then starved for 48 hr in basal medium (DMEM) and then treated with EGF (6ng/well) or 50 ul of the supematants obtained in Example 25 for 5-20 minutes. The cells are then solubilized and extracts filtered directly into the assay plate.
After incubation with the extract for 1 hr at RT, the wells are again rinsed. As a positive control, a commercial preparation of MAP kinase (lOng/well) is used in place of A431 extract. Plates are then treated with a commercial polyclonal (rabbit) antibody (lug/ml) which specifically recognizes the phosphorylated epitope of the Erk-1 and Erk-2 kinases (1 hr at RT). This antibody is biotinylated by standard procedures. The bound polyclonal antibody is then quantitated by successive incubations with Europium-streptavidin and Europium fluorescence enhancing reagent in the Wallac DELFIA instrument (time-resolved fluorescence). An increased fluorescent signal over background indicates a phosphorylation by polypeptide of the present invention or a molecule induced by polypeptide of the present invention.
Example 34: Assay for the Stimulation of Bone Marrow CD34+ Cell Proliferation
This assay is based on the abihty of human CD34+ to proliferate in the presence of hematopoietic growth factors and evaluates the ability of isolated polypeptides expressed in mammalian cells to stimulate proliferation of CD34+ cells.
It has been previously shown that most mature precursors will respond to only a single signal More immature precursors require at least two signals to respond. Therefore, to test the effect of polypeptides on hematopoietic activity of a wide range of progenitor cells, the assay contains a given polypeptide in the presence or absence of other hematopoietic growth factors. Isolated cells are cultured for 5 days in the presence of Stem Cell Factor (SCF) in combination with tested sample. SCF alone has a very limited effect on the proliferation of bone marrow (BM) cells, acting in such conditions only as a "survival" factor. However, combined with any factor exhibiting stimulatory effect on these cells (e.g., EL-3), SCF will cause a synergistic effect. Therefore, if the tested polypeptide has a stimulatory effect on hematopoietic progenitors, such activity can be easily detected. Since normal BM cells have a low level of cycling cells, it is likely that any inhibitory effect of a given polypeptide, or agonists or antagonists thereof, might not be detected. Accordingly, assays for an inhibitory effect on progenitors is preferably tested in cells that are first subjected to in vitro stimulation with SCF+EL+3, and then contacted with the compound that is being evaluated for inhibition of such induced proliferation.
Briefly, CD34+ cells are isolated using methods known in the art. The cells are thawed and resuspended in medium (QBSF 60 serum-free medium with 1% L-glutamine (500ml) Quality Biological, Inc., Gaithersburg, MD Cat# 160-204-101). After several gentle centrifugation steps at 200 x g, cells are allowed to rest for one hour. The cell count is adjusted to 2.5 x 105 cells/ml. During this time, 100 μl of sterile water is added to the peripheral wells of a 96-well plate. The cytokines that can be tested with a given polypeptide in this assay is rhSCF (R&D Systems, Minneapolis, MN, Cat# 255-SC) at 50 ng/ml alone and in combination with rhSCF and rhIL-3 (R&D Systems, Minneapolis, MN, Cat# 203-ML) at 30 ng/ml. After one hour, 10 μl of prepared cytokines, 50 μl of the supematants prepared in Example 25 (supematants at 1:2 dilution = 50 μl) and 20 μl of diluted cells are added to the media which is already present in the wells to allow for a final total volume of 100 μl. The plates are then placed in a 37°C/5% C02 incubator for five days.
Eighteen hours before the assay is harvested, 0.5 μCi/well of [3H] Thymidine is added in a 10 μl volume to each well to determine the proliferation rate. The experiment is terminated by harvesting the cells from each 96-well plate to a filtermat using the Tomtec Harvester 96. After harvesting, the filtermats are dried, trimmed and placed into OmniFilter assemblies consisting of one OmniFilter plate and one OmniFilter Tray. 60 μl Microscint is added to each well and" the plate sealed with TopSeal-A press-on sealing film A bar code 15 sticker is affixed to the first plate for counting. The sealed plates are then loaded and the level of radioactivity determined via the Packard Top Count and the printed data collected for analysis. The level of radioactivity reflects the amount of cell proliferation.
The studies described in this example test the activity of a given polypeptide to stimulate bone marrow CD34+ cell proliferation. One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof. As a nonUmiting example, potential antagonists tested in this assay would be expected to inhibit cell proliferation in the presence of cytokines and or to increase the inhibition of cell proliferation in the presence of cytokines and a given polypeptide. In contrast, potential agonists tested in this assay would be expected to enhance cell proliferation and/or to decrease the inhibition of cell proliferation in the presence of cytokines and a given polypeptide.
The abiUty of a gene to stimulate the proliferation of bone marrow CD34+ cells indicates that polynucleotides and polypeptides corresponding to the gene are useful for the detection, prevention, diagnosis, prognostication, treatment, and/or amelioration of disorders affecting the immune system and hematopoiesis. Representative uses are described in the "Immune Activity" and "Infectious Disease" sections above, and elsewhere herein.
Example 35: Cellular Adhesion Molecule (CAM) Expression on Endothelial Cells
The recruitment of lymphocytes to areas of inflammation and angiogenesis involves specific receptor-ligand interactions between cell surface adhesion molecules (CAMs) on lymphocytes and the vascular endothelium. The adhesion process, in both normal and pathological settings, follows a multi-step cascade that involves intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial leukocyte adhesion molecule-1 (E-selectin) expression on endothelial cells (EC). The expression of these molecules and others on the vascular endothelium determines the efficiency with which leukocytes may adhere to the local vasculature and extravasate into the local tissue during the development of an inflammatory response. The local concentration of cytokines and growth factor participate in the modulation of the expression of these CAMs.
Briefly, endothelial cells (e.g., Human Umbilical Vein Endothelial cells (HUVECs)) are grown in a standard 96 well plate to confluence, growth medium is removed from the cells and replaced with 100 μl of 199 Medium (10% fetal bovine serum (FBS)). Samples for testing and positive or negative controls are added to the plate in triplicate (in 10 μl volumes). Plates are then incubated at 37°C for either 5 h (selectin and integrin expression) or 24 h (integrin expression only). Plates are aspirated to remove medium and 100 μl of 0.1% paraformaldehyde-PBS(with Ca++ and Mg++) is added to each well. Plates are held at 4°C for 30 min. Fixative is removed from the wells and wells are washed IX with PBS(+Ca,Mg) + 0.5% BSA and drained. 10 μl of diluted primary antibody is added to the test and control wells. Anti-ICAM-1-Biotin, Anti- VCAM-1-Biotin and Anti-E-selectin-Biotin are used at a concentration of 10 μg/ml (1:10 dilution of 0.1 mg/ml stock antibody). Cells are incubated at 37°C for 30 min. in a humidified environment. Wells are washed three times with PBS(+Ca,Mg) + 0.5% BSA. 20 μl of diluted ExtrAvidin-Alkaline Phosphatase (1:5,000 dilution, referred to herein as the working dilution) are added to each well and incubated at 37°C for 30 min. Wells are washed three times with PBS(+Ca,Mg)+0.5% BSA. Dissolve 1 tablet of p-Nitrophenol Phosphate pNPP per 5 ml of glycine buffer (pH 10.4). 100 μl of pNPP substrate in glycine buffer is added to each test well. Standard wells in triplicate are prepared from the working dilution of the ExtrAvidin-Alkaline Phosphotase in glycine buffer: 1:5,000 (10°) > 10"0'5 > 10"1 > IO"1'5.5 μl of each dilution is added to triplicate wells and the resulting AP content in each well is 5.50 ng, 1.74 ng, 0.55 ng, 0.18 ng. 100 μl of pNNP reagent is then added to each of the standard wells. The plate is incubated at 37°C for 4h. A volume of 50 μl of 3M NaOH is added to all wells. The plate is read on a plate reader at 405 nm using the background subtraction option on blank wells filled with glycine buffer only. Additionally, the template is set up to indicate the concentration of AP-conjugate in each standard well [ 5.50 ng; 1.74 ng; 0.55 ng; 0.18 ng]. Results are indicated as amount of bound AP-conjugate in each sample.
Example 36: Alomar Blue Endothelial Cells Proliferation Assay
This assay may be used to quantitatively determine protein mediated inhibition of bFGF- induced proliferation of Bovine Lymphatic Endothelial Cells (LECs), Bovine Aortic Endothelial Cells (BAECs) or Human Microvascular Uterine Myometrial Cells (UTMECs). This assay incorporates a fluorometric growth indicator based on detection of metabolic activity. A standard Alamar Blue Proliferation Assay is prepared in EGM-2MV with 10 ng /ml of bFGF added as a source of endothelial cell stimulation. This assay may be used with a variety of endothelial cells with slight changes in growth medium and cell concentration. Dilutions of the protein batches to be tested are diluted as appropriate. Semm-free medium (GEBCO SFM) without bFGF is used as a non-stimulated control and Angiostatin or TSP-1 are included as a known inhibitory controls.
Briefly, LEC, BAECs or UTMECs are seeded in growth media at a density of 5000 to 2000 cells/well in a 96 well plate and placed at 37 degreesC overnight. After the overnight incubation of the cells, the growth media is removed and replaced with GIBCO EC-SFM. The ceUs are treated with the appropriate dilutions of the protein of interest or control protein sample(s) (prepared in SFM ) in triplicate wells with additional bFGF to a concentration of 10 ng/ ml. Once the cells have been treated with the samples, the plate(s) is/are placed back in the 37° C incubator for three days. After three days 10 ml of stock alamar blue (Biosource Cat# DAL1100) is added to each well and the plate(s) is/are placed back in the 37°C incubator for four hours. The plate(s) are then read at 530nm excitation and 590nm emission using the CytoHuor fluorescence reader. Direct output is recorded in relative fluorescence units.
Alamar blue is an oxidation-reduction indicator that both fluoresces and changes color in response to chemical reduction of growth medium resulting from cell growth. As cells grow in culture, innate metabolic activity results in a chemical reduction of the immediate surrounding environment. Reduction related to growth causes the indicator to change from oxidized (non- fluorescent blue) form to reduced (fluorescent red) form (i.e., stimulated proliferation will produce a stronger signal and inhibited proliferation wiU produce a weaker signal and the total signal is proportional to the total number of cells as well as their metabolic activity). The background level of activity is observed with the starvation medium alone. This is compared to the output observed from the positive control samples (bFGF in growth medium) and protein dilutions.
Example 37: Detection of Inhibition of a Mixed Lymphocyte Reaction
This assay can be used to detect and evaluate inhibition of a Mixed Lymphocyte Reaction (MLR) by gene products (e.g., isolated polypeptides). Inhibition of a MLR may be due to a direct effect on ceU proliferation and viability, modulation of costimulatory molecules on interacting cells, modulation of adhesiveness between lymphocytes and accessory cells, or modulation of cytokine production by accessory cells. Multiple cells may be targeted by these polypeptides since the peripheral blood mononuclear fraction used in this assay includes T, B and natural killer lymphocytes, as well as monocytes and dendritic cells.
Polypeptides of interest found to inhibit the MLR may find application in diseases associated with lymphocyte and monocyte activation or proliferation. These include, but are not limited to, diseases such as asthma, arthritis, diabetes, inflammatory skin conditions, psoriasis, eczema, systemic lupus erythematosus, multiple sclerosis, glomerulonephritis, inflammatory bowel disease, crohn's disease, ulcerative colitis, arteriosclerosis, cirrhosis, graft vs. host disease, host vs. graft disease, hepatitis, leukemia and lymphoma.
Briefly, PBMCs from human donors are purified by density gradient centrifugation using Lymphocyte Separation Medium (LSM®, density 1.0770 g/ml, Organon Teknika Corporation, West Chester, PA). PBMCs from two donors are adjusted to 2 x IO6 cells/ml in RPMI-1640 (Life Technologies, Grand Island, NY) supplemented with 10% FCS and 2 mM glutamine. PBMCs from a third donor is adjusted to 2 x 105 cells/ml. Fifty microliters of PBMCs from each donor is added to wells of a 96-well round bottom microtiter plate. Dilutions of test materials (50 μl) is added in triplicate to microtiter wells. Test samples (of the protein of interest) are added for final dilution of 1:4; rhuIL-2 (R&D Systems, Minneapolis, MN, catalog number 202-IL) is added to a final concentration of 1 μg/ml; anti-CD4 mAb (R&D Systems, clone 34930.11, catalog number MAB379) is added to a final concentration of 10 μg/ml. Cells are cultured for 7-8 days at 37°C in 5% C02, and 1 μC of [3H] thymidine is added to wells for the last 16 hrs of culture. Cells are harvested and thymidine incorporation determined using a Packard TopCount. Data is expressed as the mean and standard deviation of triplicate determinations.
Samples of the protein of interest are screened in separate experiments and compared to the negative control treatment, anti-CD4 mAb, which inhibits proliferation of lymphocytes and the positive control treatment, IL-2 (either as recombinant material or supernatant), which enhances proliferation of lymphocytes.
One skilled in the art could easily modify the exemplified studies to test the activity of polynucleotides (e.g., gene therapy), antibodies, agonists, and/or antagonists and fragments and variants thereof.
Example 38: Assays for Protease Activity The following assay may be used to assess protease activity of the polypeptides of the invention.
Gelatin and casein zymography are performed essentially as described (Heusen et al, Anal. Biochem., 102:196-202 (1980); Wilson et al, Journal of Urology, 149:653-658 (1993)). Samples are ran on 10% polyacryamide/0.1% SDS gels containing 1% gelain orcasein, soaked in 2.5% triton at room temperature for 1 hour, and in 0.1M glycine, pH 8.3 at 37°C 5 to 16 hours. After staining in amido black areas of proteolysis apear as clear areas agains the blue-black background. Trypsin (Sigma T8642) is used as a positive control.
Protease activity is also determined by monitoring the cleavage of n-a-benzoyl-L-arginine ethyl ester (BAEE) (Sigma B-4500. Reactions are set up in (25mMNaP04,lmM EDTA, and ImM BAEE), pH 7.5. Samples are added and the change in adsorbance at 260nm is monitored on the Beckman DU-6 spectrophotometer in the time-drive mode. Trypsin is used as a positive control.
Additional assays based upon the release of acid-soluble peptides from casein or hemoglobin measured as adsorbance at 280 nm or colorimetrically using the Folin method are performed as described in Bergmeyer, et al, Methods of Enzymatic Analysis, 5 (1984). Other assays involve the solubilization of chromogenic substrates (Ward, Applied Science, 251-317
(1983)).
Example 39: Identifying Serine Protease Substrate Specificity
Methods known in the art or described herein may be used to determine the substrate specificity of the polypeptides of the present invention having serine protease activity. A preferred method of determining substrate specificity is by the use of positional scanning synthetic combinatorial libraries as described in GB 2324 529 (incorporated herein in its entirety).
Example 40: Ligand Binding Assays The following assay may be used to assess ligand binding activity of the polypeptides of the invention.
Ligand binding assays provide a direct method for ascertaining receptor pharmacology and are adaptable to a high throughput format. The purified ligand for a polypeptide is radiolabeled to high specific activity (50-2000 Ci/mmol) for binding studies. A determination is then made that the process of radiolabeling does not diminish the activity of the ligand towards its polypeptide. Assay conditions for buffers, ions, pH and other modulators such as nucleotides are optimized to establish a workable signal to noise ratio for both membrane and whole cell polypeptide sources. For these assays, specific polypeptide binding is defined as total associated radioactivity minus the radioactivity measured in the presence of an excess of unlabeled competing ligand. Where possible, more than one competing ligand is used to define residual nonspecific binding.
Example 41: Functional Assay in Xenopus Oocytes
Capped RNA transcripts from linearized plasmid templates encoding the polypeptides of the invention are synthesized in vitro with RNA polymerases in accordance with standard procedures, hi vitro transcripts are suspended in water at a final concentration of 0.2 mg/mi. Ovarian lobes are removed from adult female toads, Stage V defolliculated oocytes are obtained, and RNA transcripts (10 ng/oocytc) are injected in a 50 nl bolus using a microinjection apparatus. Two electrode voltage clamps are used to measure the currents from individual Xenopus oocytes in response polypeptides and polypeptide agonist exposure. Recordings are made in Ca2+ free Barth's medium at room temperature. The Xenopus system can be used to screen known ligands and tissue/cell extracts for activating ligands.
Example 42: Microphysiometric Assays Activation of a wide variety of secondary messenger systems results in extrusion of small amounts of acid from a cell. The acid formed is largely as a result of the increased metabolic activity required to fuel the intracellular signaling process. The pH changes in the media surrounding the cell are very small but are detectable by the CYTOSENSOR microphysiometer (Molecular Devices Ltd., Menlo Park, Calif.). The CYTOSENSOR is thus capable of detecting the activation of polypeptide which is coupled to an energy utilizing intracellular signaling pathway.
Example 43: Extract/Cell Supernatant Screening A large number of mammalian receptors exist for which there remains, as yet, no cognate activating ligand (agonist). Thus, active ligands for these receptors may not be included within the ligands banks as identified to date. Accordingly, the polypeptides of the invention can also be functionally screened (using calcium, cAMP, microphysiometer, oocyte electrophysiology, etc., functional screens) against tissue extracts to identify its natural ligands. Extracts that produce positive functional responses can be sequentially subfractionated until an activating ligand is isolated and identified.
Example 44: Calcium and cAMP Functional Assays
Seven transmembrane receptors which are expressed in HEK 293 cells have been shown to be coupled functionally to activation of PLC and calcium mobilization and/or cAMP stimulation or inhibition. Basal calcium levels in the HEK 293 cells in receptor-transfected or vector control cells were observed to be in the normal, 100 nM to 200 nM, range. HEK 293 cells expressing recombinant receptors are loaded with fura 2 and in a single day >150 selected ligands or tissue/cell extracts are evaluated for agonist induced calcium mobilization. Similarly, HEK 293 cells expressing recombinant receptors are evaluated for the stimulation or inhibition of cAMP production using standard cAMP quantitation assays. Agonists presenting a calcium transient or cAMP fluctuation are tested in vector control cells to determine if the response is unique to the transfected cells expressing receptor.
Example 45: ATP-binding assay
The following assay may be used to assess ATP-binding activity of polypeptides of the invention.
ATP-binding activity of the polypeptides of the invention may be detected using the ATP- binding assay described in U.S. Patent 5,858,719, which is herein incorporated by reference in its entirety. Briefly, ATP-binding to polypeptides of the invention is measured via photoaffinity labeling with 8-azido-ATP in a competition assay. Reaction mixtures containing 1 mg/ml of the ABC transport protein of the present invention are incubated with varying concentrations of ATP, or the non-hydrolyzable ATP analog adenyl-5'-imidodiphosphate for 10 minutes at 4°C. A mixture of 8-azido-ATP (Sigma Chem. Corp., St. Louis, MO.) plus 8-azido-ATP (32P-ATP) (5 mCi/μmol, ICN, Irvine CA.) is added to a final concentration of 100 μM and 0.5 ml aliquots are placed in the wells of a porcelain spot plate on ice. The plate is irradiated using a short wave 254 nm UV lamp at a distance of 2.5 cm from the plate for two one-minute intervals with a one-minute cooling interval in between. The reaction is stopped by addition of dithiothreitol to a final concentration of 2mM. The incubations are subjected to SDS-PAGE electrophoresis, dried, and autoradiographed. Protein bands corresponding to the particular polypeptides of the invention are excised, and the radioactivity quantified. A decrease in radioactivity with increasing ATP or adenly-5'- imidodiphosphate provides a measure of ATP affinity to the polypeptides.
Example 46: Small Molecule Screening
This invention is particularly useful for screening therapeutic compounds by using the polypeptides of the invention, or binding fragments thereof, in any of a variety of drug screening techniques. The polypeptide or fragment employed in such a test may be affixed to a solid support, expressed on a cell surface, free in solution, or located intracellularly. One method of drug screening utilizes eukaryotic or prokaryotic host cells which are stably transformed with recombinant nucleic acids expressing the polypeptide or fragment. Drags are screened against such transformed cells in competitive binding assays. One may measure, for example, the formulation of complexes between the agent being tested and polypeptide of the invention.
Thus, the present invention provides methods of screening for drugs or any other agents which affect activities mediated by the polypeptides of the invention. These methods comprise contacting such an agent with a polypeptide of the invention or fragment thereof and assaying for the presence of a complex between the agent and the polypeptide or fragment thereof, by methods well known in the art. In such a competitive binding assay, the agents to screen are typically labeled. Following incubation, free agent is separated from that present in bound form, and the amount of free or uncomplexed label is a measure of the ability of a particular agent to bind to the polypeptides of the invention.
Another technique for drug screening provides high throughput screening for compounds having suitable binding affinity to the polypeptides of the invention, and is described in great detail in European Patent Application 84/03564, published on September 13, 1984, which is herein incorporated by reference in its entirety. Briefly stated, large numbers of different small molecule test compounds are synthesized on a solid substrate, such as plastic pins or some other surface. The test compounds are reacted with polypeptides of the invention and washed. Bound polypeptides are then detected by methods well known in the art. Purified polypeptides are coated directly onto plates for use in the aforementioned drug screening techniques. In addition, non-neutralizing antibodies may be used to capture the peptide and immobilize it on the solid support.
This invention also contemplates the use of competitive drag screening assays in which neutralizing antibodies capable of binding polypeptides of the invention specifically compete with a test compound for binding to the polypeptides or fragments thereof. In this manner, the antibodies are used to detect the presence of any peptide which shares one or more antigenic epitopes with a polypeptide of the invention.
Example 47: Phosphorylation Assay
In order to assay for phosphorylation activity of the polypeptides of the invention, a phosphorylation assay as described in U.S. Patent 5,958,405 (which is herein incorporated by reference) is utilized. Briefly, phosphorylation activity may be measured by phosphorylation of a protein substrate using gamma-labeled 32P-ATP and quantitation of the incorporated radioactivity using a gamma radioisotope counter. The polypeptides of the invention are incubated with the protein substrate, 32P-ATP, and a kinase buffer. The 32P incorporated into the substrate is then separated from free 32P-ATP by electrophoresis, and the incorporated 32P is counted and compared to a negative control. Radioactivity counts above the negative control are indicative of phosphorylation activity of the polypeptides of the invention.
Example 48: Detection of Phosphorylation Activity (Activation) of the Polypeptides of the Invention in the Presence of Polypeptide Ligands
Methods known in the art or described herein may be used to determine the phosphorylation activity of the polypeptides of the invention. A preferred method of determining phosphorylation activity is by the use of the tyrosine phosphorylation assay as described in US 5,817,471 (incorporated herein by reference).
Example 49: Identification Of Signal Transduction Proteins That Interact With Polypeptides Of The Present Invention
The purified polypeptides of the invention are research tools for the identification, characterization and purification of additional signal transduction pathway proteins or receptor proteins. Briefly, labeled polypeptides of the invention are useful as reagents for the purification of molecules with which it interacts. In one embodiment of affinity purification, polypeptides of the invention are covalently coupled to a chromatography column. Cell-free extract derived from putative target cells, such as carcinoma tissues, is passed oVer the column, and molecules with appropriate affinity bind to the polypeptides of the invention. The protein complex is recovered from the column, dissociated, and the recovered molecule subjected to N-terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate cDNA library.
Example 50: IL-6 Bioassay
To test the proliferative effects of the polypeptides of the invention, the IL-6 Bioassay as described by Marz et al. is utilized (Proc. Natl. Acad. Sci., U.S.A., 95:3251-56 (1998), which is herein incorporated by reference). Briefly, IL-6 dependent B9 murine cells are washed three times in IL-6 free medium and plated at a concentration of 5,000 cells per well in 50 μl, and 50 μl of the EL-6-like polypeptide is added. After 68 hrs. at 37°C, the number of viable cells is measured by adding the tetrazolium salt thiazolyl blue (MTT) and incubating for a further 4 hrs. at 37°C. B9 cells are lysed by SDS and optical density is measured at 570 n. Controls containing IL-6 (positive) and no cytokine (negative) are utilized. Enhanced proliferation in the test sample(s) relative to the negative control is indicative of proliferative effects mediated by polypeptides of the invention.
Example 51: Assay for Phosphatase Activity The following assay may be used to assess serine/threonine phosphatase (PTPase) activity of the polypeptides of the invention.
In order to assay for serine/threonine phosphatase (PTPase) activity, assays can be utilized which are widely known to those skilled in the art. For example, the serine/threonine phosphatase (PSPase) activity is measured using a PSPase assay kit from New England Biolabs, Inc. Myelin basic protein (MyBP), a substrate for PSPase, is phosphorylated on serine and threonine residues with cAMP-dependent Protein Kinase in the presence of [32P]ATP. Protein serine/threonine phosphatase activity is then determined by measuring the release of inorganic phosphate from 32P- labeled MyBP.
Example 52: Interaction of SerinelThreonine Phosphatases with other Proteins
The polypeptides of the invention with serine/threonine phosphatase activity as determined in Example 51 are research tools for the identification, characterization and purification of additional interacting proteins or receptor proteins, or other signal transduction pathway proteins. Briefly, labeled polypeptide(s) of the invention is useful as a reagent for the purification of molecules with which it interacts. In one embodiment of affinity purification, polypeptide of the invention is covalently coupled to a chromatography column. Cell-free extract derived from putative target cells, such as neural or liver cells, is passed over the column, and molecules with appropriate affinity bind to the polypeptides of the invention. The polypeptides of the invention - complex is recovered from the column, dissociated, and the recovered molecule subjected to N- terminal protein sequencing. This amino acid sequence is then used to identify the captured molecule or to design degenerate oligonucleotide probes for cloning the relevant gene from an appropriate cDNA library.
Example 53: Assaying for Heparanase Activity
In order to assay for heparanase activity of the polypeptides of the invention, the heparanase assay described by Vlodavsky et al is utilized (Vlodavsky, 1, et al., Nat. Med., 5:793- 802 (1999)). Briefly, cell lysates, conditioned media or intact cells (1 x IO6 cells per 35-mm dish) are incubated for 18 hrs at 37°C, pH 6.2-6.6, with 35S-labeled ECM or soluble ECM derived peak I proteoglycans. The incubation medium is centrifuged and the supernatant is analyzed by gel filtration on a Sepharose CL-6B column (0.9 x 30 cm). Fractions are eluted with PBS and their radioactivity is measured. Degradation fragments of heparan sulfate side chains are eluted from Sepharose 6B at 0.5 < Kav < 0.8 (peak II). Each experiment is done at least three times. Degradation fragments corresponding to "peak II," as described by Vlodavsky et al, is indicative of the activity of the polypeptides of the invention in cleaving heparan sulfate.
Example 54: Immobilization ofbiomolecules This example provides a method for the stabilization of polypeptides of the invention in non-host cell lipid bilayer constucts (see, e.g., Bieri et al, Nature Biotech 17:1105-1108 (1999), hereby incorporated by reference in its entirety herein) which can be adapted for the study of polypeptides of the invention in the various functional assays described above. Briefly, carbohydrate-specific chemistry for biotinylation is used to confine a biotin tag to the extracellular domain of the polypeptides of the invention, thus allowing uniform orientation upon immobilization. A 50uM solution of polypeptides of the invention in washed membranes is incubated with 20 mM NaI04 and 1.5 mg/ml (4mM) BACH or 2 mg/ml (7.5mM) biotin- hydrazide for 1 hr at room temperature (reaction volume, 150ul). Then the sample is dialyzed (Pierce Slidealizer Cassett, 10 kDa cutoff; Pierce Chemical Co., Rockford EL) at 4C first for 5 h, exchanging the buffer after each hour, and finally for 12 h against 500 ml buffer R (0.15 M NaCl, 1 mM MgC12, 10 mM sodium phosphate, pH7). Just before addition into a cuvette, the sample is diluted 1 :5 in buffer ROG50 (Buffer R supplemented with 50 mM octylglucoside).
Example 55: TAQMAN
Quantitative PCR (QPCR). Total RNA from cells in culture are extracted by Trizol separation as recommended by the supplier (LifeTechnologies). (Total RNA is treated with DNase I (Life Technologies) to remove any contaminating genomic DNA before reverse transcription.) Total RNA (50 ng) is used in a one-step, 50ul, RT-QPCR, consisting of Taqman Buffer A (Perkin- Elmer; 50 mM KCl/10 mM Tris, pH 8.3), 5.5 mM MgCl2, 240 μM each dNTP, 0.4 units RNase inhibitor(Promega), 8%glycerol, 0.012% Tween-20, 0.05% gelatin, 0.3uM primers, O.luM probe, 0.025units Amplitaq Gold (Perkin-Elmer) and 2.5 units Superscript II reverse transcriptase (Life Technologies). As a control for genomic contamination, parallel reactions are setup without reverse transcriptase. The relative abundance of (unknown) and 18S RNAs are assessed by using the Applied Biosystems Prism 7700 Sequence Detection System (Livak, K. J., Flood, S. J., Marmaro, J., Giusti, W. & Deetz, K. (1995) PCR Methods Appl. 4, 357-362). Reactions are carried out at 48°C for 30 min, 95°C for 10 min, followed by 40 cycles of 95°C for 15s, 60°C for 1 min. Reactions are performed in triplicate.
Primers (f & r) and FRET probes sets are designed using Primer Express Software (Perkin-Elmer). Probes are labeled at the 5'-end with the reporter dye 6-FAM and on the 3'-end with the quencher dye TAMRA (Biosource International, Camarillo, CA or Perkin-Elmer).
Example 56: Assays for Metalloproteinase Activity
Metalloproteinases (EC 3.4.24.-) are peptide hydrolases which use metal ions, such as Zn2+, as the catalytic mechanism. Metalloproteinase activity of polypeptides of the present invention can be assayed according to the following methods.
Proteolysis of alpha-2-macroglobulin
To confirm protease activity, purified polypeptides of the invention are mixed with the substrate alpha-2-macroglobulin (0.2 unit/ml; Boehringer Mannheim, Germany) in lx assay buffer (50 mM HEPES, pH 7.5, 0.2 M NaCl, 10 mM CaCl2, 25 μM ZnCl2 and 0.05% Brij-35) and incubated at 37°C for 1-5 days. Trypsin is used as positive control. Negative controls contain only alpha-2-macroglobulin in assay buffer. The samples are collected and boiled in SDS-PAGE sample buffer containing 5% 2-mercaptoethanol for 5-min, then loaded onto 8% SDS- polyacrylamide gel. After electrophoresis the proteins are visualized by silver staining. Proteolysis is evident by the appearance of lower molecular weight bands as compared to the negative control.
Inhibition of alpha-2-macro globulin proteolysis by inhibitors of metalloproteinases Known metalloproteinase inhibitors (metal chelators (EDTA, EGTA, AND HgCl2), peptide metalloproteinase inhibitors (TIMP-1 and TEVlP-2), and commercial small molecule MMP inhibitors) are used to characterize the proteolytic activity of polypeptides of the invention. The three synthetic MMP inhibitors used are: MMP inhibitor I, [IC50 = 1.0 μM against MMP-1 and MMP-8; IC50 = 30 μM against MMP-9; IC50 = 150 μM against MMP-3]; MMP-3 (stromelysin-1) inhibitor I [IC50 = 5 μM against MMP-3], and MMP-3 inhibitor II [K; = 130 nM against MMP-3]; inhibitors available through Calbiochem, catalog # 444250, 444218, and 444225, respectively). Briefly, different concentrations of the small molecule MMP inhibitors are mixed with purified polypeptides of the invention (50μg/ml) in 22.9 μl of lx HEPES buffer (50 mM HEPES, pH 7.5, 0.2 M NaCl, 10 mM CaCl2, 25 μM ZnCl2 and 0.05%Brij-35) and incubated at room temperature (24 °C) for 2-hr, then 7.1 μl of substrate alpha-2-macroglobulin (0.2 unit/ml) is added and incubated at 37°C for 20-hr. The reactions are stopped by adding 4x sample buffer and boiled immediately for 5 minutes. After SDS-PAGE, the protein bands are visualized by silver stain.
Synthetic Fluorogenic Peptide Substrates Cleavage Assay The substrate specificity for polypeptides of the invention with demonstrated metalloproteinase activity can be determined using synthetic fluorogenic peptide substrates (purchased from BACHEM Bioscience hie). Test substrates include, M-1985, M-2225, M-2105, M-2110, and M-2255. The first four are MMP substrates and the last one is a substrate of tumor necrosis factor- (TNF-α) converting enzyme (TACE). AU the substrates are prepared in 1:1 dimethyl sulfoxide (DMSO) and water. The stock solutions are 50-500 μM. Fluorescent assays are performed by using a Perkin Elmer LS 50B luminescence spectrometer equipped with a constant temperature water bath. The excitation λ is 328 nm and the emission λ is 393 nm. Briefly, the assay is carried out by incubating 176 μl lx HEPES buffer (0.2 M NaCl, 10 mM CaCl2, 0.05% Brij-35 and 50 mM HEPES, pH 7.5) with 4 μl of substrate solution (50 μM) at 25 °C for 15 minutes, and then adding 20 μl of a purified polypeptide of the invention into the assay cuvett. The final concentration of substrate is 1 μM. Initial hydrolysis rates are monitored for 30-min.
Example 57: Characterization of the cDNA contained in a deposited plasmid
The size of the cDNA insert contained in a deposited plasmid may be routinely determined using techniques known in the art, such as PCR amplification using synthetic primers hybridizable to the 3' and 5' ends of the cDNA sequence. For example, two primers of 17-30 nucleotides derived from each end of the cDNA (i.e., hybridizable to the absolute 5' nucleotide or the 3' nucleotide end of the sequence of SEQ ID NO:X, respectively) are synthesized and used to amplify the cDNA using the deposited cDNA plasmid as a template. The polymerase chain reaction is carried out under routine conditions, for instance, in 25 ul of reaction mixture with 0.5 ug of the above cDNA template. A convenient reaction mixture is 1.5-5 mM MgCl2, 0.01% (w/v) gelatin, 20 uM each of dATP, dCTP, dGTP, dTTP, 25 pmol of each primer and 0.25 Unit of Taq polymerase. Thirty five cycles of PCR (denaturation at 94 degree C for 1 min; annealing at 55 degree C for 1 min; elongation at 72 degree C for 1 min) are performed with a Perkin-Elmer Cetus automated thermal cycler. The amplified product is analyzed by agarose gel electrophoresis. The PCR product is verified to be the selected sequence by subcloning and sequencing the DNA product. It will be clear that the invention may be practiced otherwise than as particularly described in the foregoing description and examples. Numerous modifications and variations of the present invention are possible in light of the above teachings and, therefore, are within the scope of the appended claims.
Incorporation by Reference
The entire disclosure of each document cited (including patents, patent applications, journal articles, abstracts, laboratory manuals, books, or other disclosures) in the Background of the Invention, Detailed Description, and Examples is hereby incorporated herein by reference. In addition, the sequence listing submitted herewith is incorporated herein by reference in its entirety. The specification and sequence listing of each of the following U.S. and PCT applications are herein incorporated by reference in their entirety: U.S. Appln. No. 60/040,162 filed on 07-Mar- 1997, U.S. Appln. No. 60/043,576 filed on ll-Apr-1997, U.S. Appln. No. 60/047,601 filed on 23- May-1997, U.S. Appln. No. 60/056,845 filed on 22-Aug-1997, U.S. Appln. No. 60/043,580 filed on ll-Apr-1997, U.S. Appln. No. 60/047,599 filed on 23-May-1997, U.S. Appln. No. 60/056,664 filed on 22-Aug-1997, U.S. Appln. No. 60/043,314 filed on ll-Apr-1997, U.S. Appln. No. 60/047,632 filed on 23-May-1997, U.S. Appln. No. 60/056,892 filed on 22-Aug-1997, U.S. Appln. No. 60/043,568 filed on ll-Apr-1997, U.S. Appln. No. 60/047,595 filed on 23-May-1997, U.S. Appln. No. 60/056,632 filed on 22-Aug-1997, U.S. Appln. No. 60/043,578 filed on ll-Apr-1997, U.S. Appln. No. 60/040,333 filed on 07-Mar-1997, U.S. Appln. No. 60/043,670 filed on ll-Apr- 1997, U.S. Appln. No. 60/047,596 filed on 23-May-1997, U.S. Appln. No. 60/056,864 filed on 22- Aug-1997, U.S. Appln. No. 60/043,674 filed on ll-Apr-1997, U.S. Appln. No. 60/047,612 filed on 23-May-1997, U.S. Appln. No. 60/056,631 filed on 22-Aug-1997, U.S. Appln. No. 60/043,569 filed on ll-Apr-1997, U.S. Appln. No. 60/047,588 filed on 23-May-1997, U.S. Appln. No. 60/056,876 filed on 22-Aug-1997, U.S. Appln. No. 60/043,671 filed on 1 l-Apr-1997, U.S. Appln. No. 60/043,311 filed on ll-Apr-1997, U.S. Appln. No. 60/038,621 filed on 07-Mar-1997, U.S. Appln. No. 60/043,672 filed on ll-Apr-1997, U.S. Appln. No. 60/047,613 filed on 23-May-1997, U.S. Appln. No. 60/056,636 filed on 22-Aug-1997, U.S. Appln. No. 60/043,669 filed on ll-Apr- 1997, U.S. Appln. No. 60/047,582 filed on 23-May-1997, U.S. Appln. No. 60/056,910 filed on 22- Aug-1997, U.S. Appln. No. 60/043,315 filed on ll-Apr-1997, U.S. Appln. No. 60/047,598 filed on 23-May-1997, U.S. Appln. No. 60/056,874 filed on 22-Aug-1997, U.S. Appln. No. 60/043,312 filed on ll-Apr-1997, U.S. Appln. No. 60/047,585 filed on 23-May-1997, U.S. Appln. No. 60/056,881 filed on 22-Aug-1997, U.S. Appln. No. 60/043,313 filed on ll-Apr-1997, U.S. Appln. No. 60/047,586 filed on 23-May-1997, U.S. Appln. No. 60/056,909 filed on 22-Aug-1997, U.S. Appln. No. 60/040,161 filed on 07-Mar-1997, U.S. Appln. No. 60/047,587 filed on 23-May-1997, U.S. Appln. No. 60/056,879 filed on 22-Aug-1997, U.S. Appln. No. 60/047,500 filed on 23-May- 1997, U.S. Appln. No. 60/056,880 filed on 22-Aug-1997, U.S. Appln. No. 60/047,584 filed on 23- May-1997, U.S. Appln. No. 60/056,894 filed on 22-Aug-1997, U.S. Appln. No. 60/047,492 filed on 23-May-1997, U.S. Appln. No. 60/056,911 filed on 22-Aug-1997, U.S. Appln. No. 60/040,626 filed on 07-Mar-1997, U.S. Appln. No. 60/047,503 filed on 23-May-1997, U.S. Appln. No. 60/056,903 filed on 22-Aug-1997, U.S. Appln. No. 60/047,501 filed on 23-May-1997, U.S. Appln. No. 60/056,637 filed on 22-Aug-1997, U.S. Appln. No. 60/047,590 filed on 23-May-1997, U.S. Appln. No. 60/056,875 filed on 22-Aug-1997, U.S. Appln. No. 60/047,581 filed on 23-May-1997, U.S. Appln. No. 60/056,882 filed on 22-Aug-1997, U.S. Appln. No. 60/047,592 filed on 23-May- 1997, U.S. Appln. No. 60/056,888 filed on 22-Aug-1997, U.S. Appln. No. 60/040,334 filed on 07- Mar-1997, U.S. Appln. No. 60/047,618 filed on 23-May-1997, U.S. Appln. No. 60/056,872 filed on 22-Aug-1997, U.S. Appln. No. 60/047,617 filed on 23-May-1997, U.S. Appln. No. 60/056,662 filed on 22-Aug-1997, U.S. Appln. No. 60/047,589 filed on 23-May-1997, U.S. Appln. No. 60/056,862 filed on 22-Aug-1997, U.S. Appln. No. 60/047,594 filed on 23-May-1997, U.S. Appln. No. 60/056,884 filed on 22-Aug-1997, U.S. Appln. No. 60/047,583 filed on 23-May-1997, U.S. Appln. No. 60/056,878 filed on 22-Aug-1997, U.S. Appln. No. 60/040,336 filed on 07-Mar-1997, U.S. Appln. No. 60/047,502 filed on 23-May-1997, U.S. Appln. No. 60/056,893 filed on 22-Aug- 1997, U.S. Appln. No. 60/047,633 filed on 23-May-1997, U.S. Appln. No. 60/056,630 filed on 22- Aug-1997, U.S. Appln. No. 60/047,593 filed on 23-May-1997, U.S. Appln. No. 60/056,887 filed on 22-Aug-1997, U.S. Appln. No. 60/040,163 filed on 07-Mar-1997, U.S. Appln. No. 60/047,597 filed on 23-May-1997, U.S. Appln. No. 60/056,889 filed on 22-Aug-1997, U.S. Appln. No. 60/047,615 filed on 23-May-1997, U.S. Appln. No. 60/056,877 filed on 22-Aug-1997, U.S. Appln. No. 60/047,600 filed on 23-May-1997, U.S. Appln. No. 60/056,886 filed on 22-Aug-1997, U.S. Appln. No. 60/047,614 filed on 23-May-1997, U.S. Appln. No. 60/056,908 filed on 22-Aug-1997, U.S. Appln. No. 60/040,710 filed on 14-Mar-1997, U.S. Appln. No. 60/050,934 filed on 30-May- 1997, U.S. Appln. No. 60/048,100 filed on 30-May-1997, U.S. Appln. No. 60/040,762 filed on 14- Mar-1997, U.S. Appln. No. 60/048,357 filed on 30-May-1997, U.S. Appln. No. 60/048,189 filed on 30-May-1997, U.S. Appln. No. 60/041,277 filed on 21-Mar-1997, U.S. Appln. No. 60/048,188 filed on 30-May-1997, U.S. Appln. No. 60/048,094 filed on 30-May-1997, U.S. Appln. No. 60/048,350 filed on 30-May-1997, U.S. Appln. No. 60/048,135 filed on 30-May-1997, U.S. Appln. No. 60/042,344 filed on 21-Mar-1997, U.S. Appln. No. 60/048,187 filed on 30-May-1997, U.S. Appln. No. 60/048,099 filed on 30-May-1997, U.S. Appln. No. 60/050,937 filed on 30-May- 1997, U.S. Appln. No. 60/048,352 filed on 30-May-1997, U.S. Appln. No. 60/041,276 filed on 21- Mar-1997, U.S. Appln. No. 60/048,069 filed on 30-May-1997, U.S. Appln. No. 60/048,131 filed on 30-May-1997, U.S. Appln. No. 60/048,186 filed on 30-May-1997, U.S. Appln. No. 60/048,095 filed on 30-May-1997, U.S. Appln. No. 60/041,281 filed on 21-Mar-1997, U.S. Appln. No. 60/048,355 filed on 30-May-1997, U.S. Appln. No. 60/048,096 filed on 30-May-1997, U.S. Appln. No. 60/048,351 filed on 30-May-1997, U.S. Appln. No. 60/048,154 filed on 30-May-1997, U.S. Appln. No. 60/048,160 filed on 30-May-1997, U.S. Appln. No. 60/042,825 filed on 08-Apr- 1997, U.S. Appln. No. 60/048,070 filed on 30-May-1997, U.S. Appln. No. 60 042,727 filed on 08- Apr-1997, U.S. Appln. No. 60/048,068 filed on 30-May-1997, U.S. Appln. No. 60/042,726 filed on 08-Apr-1997, U.S. Appln. No. 60/048,184 filed on 30-May-1997, U.S. Appln. No. 60/042,728 filed on 08-Apr-1997, U.S. Appln. No. 60/042,754 filed on 08-Apr-1997, U.S. Appln. No. 60/048,190 filed on 30-May-1997, U.S. Appln. No. 60/044,039 filed on 30-May-1997, U.S. Appln. No. 60/048,093 filed on 30-May-1997, U.S. Appln. No. 60/048,885 filed on 06-Jun-1997, U.S. Appln. No. 60/057,645 filed on 05-Sep-1997, U.S. Appln. No. 60/049,375 filed on 06-Jun- 1997, U.S. Appln. No. 60/057,642 filed on 05-Sep-1997, U.S. Appln. No. 60/048,881 filed on 06- Jun-1997, U.S. Appln. No. 60/057,668 filed on 05-Sep-1997, U.S. Appln. No. 60/048,880 filed on 06-Jun-1997, U.S. Appln. No. 60/057,635 filed on 05-Sep-1997, U.S. Appln. No. 60/048,896 filed on 06-Jun-1997, U.S. Appln. No. 60/057,627 filed on 05-Sep-1997, U.S. Appln. No. 60/049,020 filed on 06-Jun-1997, U.S. Appln. No. 60/057,667 filed on 05-Sep-1997, U.S. Appln. No. 60/048,876 filed on 06-Jun-1997, U.S. Appln. No. 60/057,666 filed on 05-Sep-1997, U.S. Appln. No. 60/048,895 filed on 06-Jun-1997, U.S. Appln. No. 60/057,764 filed on 05-Sep-1997, U.S. Appln. No. 60/048,884 filed on 06-Jun-1997, U.S. Appln. No. 60/057,643 filed on 05-Sep-1997, U.S. Appln. No. 60/048,894 filed on 06-Jun-1997, U.S. Appln. No. 60/057,769 filed on 05-Sep- 1997, U.S. Appln. No. 60/048,971 filed on 06-Jun-1997, U.S. Appln. No. 60/057,763 filed on 05- Sep-1997, U.S. Appln. No. 60/048,964 filed on 06-Jun-1997, U.S. Appln. No. 60/057,650 filed on 05-Sep-1997, U.S. Appln. No. 60/048,882 filed on 06-Jun-1997, U.S. Appln. No. 60/057,584 filed on 05-Sep-1997, U.S. Appln. No. 60/048,899 filed on 06-Jun-1997, U.S. Appln. No. 60/057,647 filed on 05-Sep-1997, U.S. Appln. No. 60/048,893 filed on 06-Jun-1997, U.S. Appln. No. 60/057,661 filed on 05-Sep-1997, U.S. Appln. No. 60/048,900 filed on 06-Jun-1997, U.S. Appln. No. 60/057,662 filed on 05-Sep-1997, U.S. Appln. No. 60/048,901 filed on 06-Jun-1997, U.S. Appln. No. 60/057,646 filed on 05-Sep-1997, U.S. Appln. No. 60/048,892 filed on 06-Jun-1997, U.S. Appln. No. 60/057,654 filed on 05-Sep-1997, U.S. Appln. No. 60/048,915 filed on 06-Jun- 1997, U.S. Appln. No. 60/057,651 filed on 05-Sep-1997, U.S. Appln. No. 60/049,019 filed on 06- Jun-1997, U.S. Appln. No. 60/057,644 filed on 05-Sep-1997, U.S. Appln. No. 60/048,970 filed on 06-Jun-1997, U.S. Appln. No. 60/057,765 filed on 05-Sep-1997, U.S. Appln. No. 60/048,972 filed on 06-Jun-1997, U.S. Appln. No. 60/057,762 filed on 05-Sep-1997, U.S. Appln. No. 60/048,916 filed on 06-Jun-1997, U.S. Appln. No. 60/057,775 filed on 05-Sep-1997, U.S. Appln. No. 60/049,373 filed on 06-Jun-1997, U.S. Appln. No. 60/057,648 filed on 05-Sep-1997, U.S. Appln. No. 60/048,875 filed on 06-Jun-1997, U.S. Appln. No. 60/057,774 filed on 05-Sep-1997, U.S. Appln. No. 60/049,374 filed on 06-Jun-1997, U.S. Appln. No. 60/057,649 filed on 05-Sep-1997, U.S. Appln. No. 60/048,917 filed on 06-Jun-1997, U.S. Appln. No. 60/057,770 filed on 05-Sep- 1997, U.S. Appln. No. 60/048,949 filed on 06-Jun-1997, U.S. Appln. No. 60/057,771 filed on 05- Sep-1997, U.S. Appln. No. 60/048,974 filed on 06-Jun-1997, U.S. Appln. No. 60/057,761 filed on 05-Sep-1997, U.S. Appln. No. 60/048,883 filed on 06-Jun-1997, U.S. Appln. No. 60/057,760 filed on 05-Sep-1997, U.S. Appln. No. 60/048,897 filed on 06-Jun-1997, U.S. Appln. No. 60/057,776 filed on 05-Sep-1997, U.S. Appln. No. 60/048,898 filed on 06-Jun-1997, U.S. Appln. No. 60/057,778 filed on 05-Sep-1997, U.S. Appln. No. 60/048,962 filed on 06-Jun-1997, U.S. Appln. No. 60/057,629 filed on 05-Sep-1997, U.S. Appln. No. 60/048,963 filed on 06-Jun-1997, U.S. Appln. No. 60/057,628 filed on 05-Sep-1997, U.S. Appln. No. 60/048,877 filed on 06-Jun-1997, U.S. Appln. No. 60/051,111 filed on 05-Sep-1997, U.S. Appln. No. 60/048,878 filed on 06-Jun- 1997, U.S. Appln. No. 60/057,634 filed on 05-Sep-1997, U.S. Appln. No. 60/049,608 filed on 13- Jun-1997, U.S. Appln. No. 60/058,669 filed on 12-Sep-1997, U.S. Appln. No. 60/049,566 filed on 13-Jun-1997, U.S. Appln. No. 60/058,668 filed on 12-Sep-1997, U.S. Appln. No. 60/052,989 filed on 13-Jun-1997, U.S. Appln. No. 60/058,750 filed on 12-Sep-1997, U.S. Appln. No. 60/049,607 filed on 13-Jun-1997, U.S. Appln. No. 60/058,665 filed on 12-Sep-1997, U.S. Appln. No. 60/049,611 filed on 13-Jun-1997, U.S. Appln. No. 60/058,971 filed on 12-Sep-1997, U.S. Appln. No. 60/050,901 filed on 13-Jun-1997, U.S. Appln. No. 60/058,972 filed on 12-Sep-1997, U.S. Appln. No. 60/049,609 filed on 13-Jun-1997, U.S. Appln. No. 60/058,975 filed on 12-Sep-1997, U.S. Appln. No. 60/048,356 filed on 30-May-1997, U.S. Appln. No. 60/056,296 filed on 29-Aug- 1997, U.S. Appln. No. 60/048,101 filed on 30-May-1997, U.S. Appln. No. 60/056,293 filed on 29- Aug-1997, U.S. Appln. No. 60/050,935 filed on 30-May-1997, U.S. Appln. No. 60/056,250 filed on 29-Aug-1997, U.S. Appln. No. 60/049,610 filed on 13-Jun-1997, U.S. Appln. No. 60/061,060 filed on 02-Oct-1997, U.S. Appln. No. 60/049,606 filed on 13-Jun-1997, U.S. Appln. No. 60/060,841 filed on 02-Oct-1997, U.S. Appln. No. 60/049,550 filed on 13-Jun-1997, U.S. Appln. No. 60/060,834 filed on 02-Oct-1997, U.S. Appln. No. 60/049,549 filed on 13-Jun-1997, U.S. Appln. No. 60/060,865 filed on 02-Oct-1997, U.S. Appln. No. 60/049,548 filed on 13-Jun-1997, U.S. Appln. No. 60/060,844 filed on 02-Oct-1997, U.S. Appln. No. 60/049,547 filed on 13-Jun- 1997, U.S. Appln. No. 60/061,059 filed on 02-Oct-1997, U.S. Appln. No. 60/051,381 filed on 01- Jul-1997, U.S. Appln. No. 60/058,598 filed on 12-Sep-1997, U.S. Appln. No. 60/051,480 filed on Ol-Jul-1997, U.S. Appln. No. 60/058,663 filed on 12-Sep-1997, U.S. Appln. No. 60/051,926 filed on 08-Jul-1997, U.S. Appln. No. 60/058,785 filed on 12-Sep-1997, U.S. Appln. No. 60/052,793 filed on 08-JuI-1997, U.S. Appln. No. 60/058,664 filed on 12-Sep-1997, U.S. Appln. No. 60/051,925 filed on 08-Jul-1997, U.S. Appln. No. 60/058,660 filed on 12-Sep-1997, U.S. Appln. No. 60/051,929 filed on 08-Jul-1997, U.S. Appln. No. 60/058,661 filed on 12-Sep-1997, U.S. Appln. No. 60/052,803 filed on 08-Jul-1997, U.S. Appln. No. 60/055,722 filed on 18-Aug-1997, U.S. Appln. No. 60/052,732 filed on 08-Jul-1997, U.S. Appln. No. 60/055,723 filed on 18-Aug- 1997, U.S. Appln. No. 60/051,932 filed on 08-Jul-1997, U.S. Appln. No. 60/055,948 filed on 18- Aug-1997, U.S. Appln. No. 60/051,931 filed on 08-Jul-1997, U.S. Appln. No. 60/055,949 filed on 18-Aug-1997, U.S. Appln. No. 60/051,916 filed on 08-M-1997, U.S. Appln. No. 60/055,953 filed on 18-Aug-1997, U.S. Appln. No. 60/051,930 filed on 08-Jul-1997, U.S. Appln. No. 60/055,950 filed on 18-Aug-1997, U.S. Appln. No. 60/051,918 filed on 08-Jul-1997, U.S. Appln. No. 60/055,947 filed on 18-Aug-1997, U.S. Appln. No. 60/051,920 filed on 08-Jul-1997, U.S. Appln. No. 60/055,964 filed on 18-Aug-1997, U.S. Appln. No. 60/052,733 filed on 08-Jul-1997, U.S. Appln. No. 60/056,360 filed on 18-Aug-1997, U.S. Appln. No. 60/052,795 filed on 08-Jul-1997, U.S. Appln. No. 60/055,684 filed on 18-Aug-1997, U.S. Appln. No. 60/051,919 filed on 08-Jul- 1997, U.S. Appln. No. 60/055,984 filed on 18-Aug-1997, U.S. Appln. No. 60/051,928 filed on 08- Jul-1997, U.S. Appln. No. 60/055,954 filed on 18-Aug-1997, U.S. Appln. No. 60/052,870 filed on 16-Jul-1997, U.S. Appln. No. 60/055,952 filed on 18-Aug-1997, U.S. Appln. No. 60/052,871 filed on 16-M-1997, U.S. Appln. No. 60/055,725 filed on 18-Aug-1997, U.S. Appln. No. 60/052,872 filed on 16- -1997, U.S. Appln. No. 60/056,359 filed on 18-Aug-1997, U.S. Appln. No. 60/052,661 filed on 16- -1997, U.S. Appln. No. 60/055,985 filed on 18-Aug-1997, U.S. Appln. No. 60/052,874 filed on 16-Jul-1997, U.S. Appln. No. 60/055,724 filed on 18-Aug-1997, U.S. Appln. No. 60/052,873 filed on 16-Jul-1997, U.S. Appln. No. 60/055,726 filed on 18-Aug-1997, U.S. Appln. No. 60/052,875 filed on 16-Jul-1997, U.S. Appln. No. 60/056,361 filed on 18-Aug- 1997, U.S. Appln. No. 60/053,440 filed on 22-Jul-1997, U.S. Appln. No. 60/055,989 filed on 18- Aug-1997, U.S. Appln. No. 60/053,441 filed on 22-Jul-1997, U.S. Appln. No. 60/055,946 filed on 18-Aug-1997, U.S. Appln. No. 60/053,442 filed on 22-Jul-1997, U.S. Appln. No. 60/055,683 filed on 18-Aug-1997, U.S. Appln. No. 60/054,212 filed on 30-M-1997, U.S. Appln. No. 60/055,968 filed on 18-Aug-1997, U.S. Appln. No. 60/054,209 filed on 30-Jul-1997, U.S. Appln. No. 60/055,972 filed on 18-Aug-1997, U.S. Appln. No. 60/054,234 filed on 30-Jul-1997, U.S. Appln. No. 60/055,969 filed on 18-Aug-1997, U.S. Appln. No. 60/055,386 filed on 05-Aug-1997, U.S. Appln. No. 60/055,986 filed on 18-Aug-1997, U.S. Appln. No. 60/054,807 filed on 05-Aug-1997, U.S. Appln. No. 60/055,970 filed on 18-Aug-1997, U.S. Appln. No. 60/054,215 filed on 30-Jul- 1997, U.S. Appln. No. 60/056,543 filed on 19-Aug-1997, U.S. Appln. No. 60/054,218 filed on 30- Jul-1997, U.S. Appln. No. 60/056,561 filed on 19-Aug-1997, U.S. Appln. No. 60/054,214 filed on 30-Jul-1997, U.S. Appln. No. 60/056,534 filed on 19-Aug-1997, U.S. Appln. No. 60/054,236 filed on 30-Jul-1997, U.S. Appln. No. 601056,129 filed on 19-Aug-1997, U.S. Appln. No. 60/054,213 filed on 30-Jul-1997, U.S. Appln. No. 60/056,727 filed on 19-Aug-1997, U.S. Appln. No. 60/054,211 filed on 30-Jul-1997, U.S. Appln. No. 60/056,554 filed on 19-Aug-1997, U.S. Appln. No. 60/054,217 filed on 30-Jul-1997, U.S. Appln. No. 60/056,730 filed on 19-Aug-1997, U.S. Appln. No. 60/055,312 filed on 05-Aug-1997, U.S. Appln. No. 60/056,563 filed on 19-Aug-1997, U.S. Appln. No. 60/055,309 filed on 05-Aug-1997, U.S. Appln. No. 60/056,557 filed on 19-Aug- 1997, U.S. Appln. No. 60/055,310 filed on 05-Aug-1997, U.S. Appln. No. 60/056,371 filed on 19- Aug-1997, U.S. Appln. No. 60/054,798 filed on 05-Aug-1997, U.S. Appln. No. 60/056,732 filed on 19-Aug-1997, U.S. Appln. No. 60/056,369 filed on 19-Aug-1997, U.S. Applή. No. 60/056,535 filed on 19-Aug-1997, U.S. Appln. No. 60/056,556 filed on 19-Aug-1997, U.S. Appln. No. 60/056,555 filed on 19-Aug-1997, U.S. Appln. No. 60/054,806 filed on 05-Aug-1997, U.S. Appin. No. 60/056,366 filed on 19-Aug-1997, U.S. Appln. No. 60/054,809 filed on 05-Aug-1997, U.S. Appln. No. 60/056,364 filed on 19-Aug-1997, U.S. Appln. No. 60/054,804 filed on 05-Aug-1997, U.S. Appln. No. 60/056,370 filed on 19-Aug-1997, U.S. Appln. No. 60/054,803 filed on 05-Aug- 1997, U.S. Appln. No. 60/056,731 filed on 19-Aug-1997, U.S. Appln. No. 60/055,311 filed on 05- Aug-1997, U.S. Appln. No. 60/056,365 filed on 19-Aug-1997, U.S. Appln. No. 60/054,808 filed on 05-Aug-1997, U.S. Appln. No. 60/056,367 filed on 19-Aug-1997, U.S. Appln. No. 60/056,726 filed on 19-Aug-1997, U.S. Appln. No. 60/056,368 filed on 19-Aug-1997, U.S. Appln. No. 60/056,728 filed on 19-Aug-1997, U.S. Appln. No. 60/056,628 filed on 19-Aug-1997, U.S. Appln. No. 60/056,629 filed on 19-Aug-1997, U.S. Appln. No. 60/056,270 filed on 29-Aug-1997, U.S. Appln. No. 60/056,271 filed on 29-Aug-1997, U.S. Appln. No. 60/056,247 filed on 29-Aug-1997, U.S. Appln. No. 60/056,073 filed on 29-Aug-1997, U.S. Appln. No. 60/057,669 filed on 05-Sep- 1997, U.S. Appln. No. 60/057,663 filed on 05-Sep-1997, U.S. Appln. No. 60/057,626 filed on 05- Sep-1997, U.S. Appln. No. 60/058,666 filed on 12-Sep-1997, U.S. Appln. No. 60/058,973 filed on 12-Sep-1997, U.S. Appln. No. 60/058,974 filed on 12-Sep-1997, U.S. Appln. No. 60/058,667 filed on 12-Sep-1997, U.S. Appln. No. 60/060,837 filed on 02-Oct-1997, U.S. Appln. No. 60/060,862 filed on 02-Oct-1997, U.S. Appln. No. 60/060,839 filed on 02-Oct-1997, U.S. Appln. No. 60/060,866 filed on 02-Oct-1997, U.S. Appln. No. 60/060,843 filed on 02-Oct-1997, U.S. Appln. No. 60/060,836 filed on 02-Oct-1997, U.S. Appln. No. 60/060,838 filed on 02-Oct-1997, U.S. Appln. No. 60/060,874 filed on 02-Oct-1997, U.S. Appln. No. 60/060,833 filed on 02-Oct-1997, U.S. Appln. No. 60/060,884 filed on 02-Oct-1997, U.S. Appln. No. 60/060,880 filed on 02-Oct- 1997, U.S. Appln. No. 60/061,463 filed on 09-Oct-1997, U.S. Appln. No. 60/061,529 filed on 09- Oct-1997, U.S. Appln. No. 60/071,498 filed on 09-Oct-1997, U.S. Appln. No. 60/061,527 filed on 09-Oct-1997, U.S. Appln. No. 60/061,536 filed on 09-Oct-1997, U.S. Appln. No. 60/061,532 filed on 09-Oct-1997, U.S. Appln. No. 60/063,099 filed on 24-Oct-1997, U.S. Appln. No. 60/063,088 filed on 24-Oct-1997, U.S. Appln. No. 60/063,100 filed on 24-Oct-1997, U.S. Appln. No. 60/063,387 filed on 24-Oct-1997, U.S. Appln. No. 60/063,148 filed on 24-Oct-1997, U.S. Appln. No. 60/063,386 filed on 24-Oct-1997, U.S. Appln. No. 60/062,784 filed on 24-Oct-1997, U.S. Appln. No. 60/063,091 filed on 24-Oct-1997, U.S. Appln. No. 60/063,090 filed on 24-Oct-1997, U.S. Appln. No. 60/063,089 filed on 24-Oct-1997, U.S. Appln. No. 60/063,092 filed on 24-Oct- 1997, U.S. Appln. No. 60/063,111 filed on 24-Oct-1997, U.S. Appln. No. 60/063,101 filed on 24- Oct-1997, U.S. Appln. No. 60/063,109 filed on 24-Oct-1997, U.S. Appln. No. 60/063,110 filed on 24-Oct-1997, U.S. Appln. No. 60/063,098 filed on 24-Oct-1997, U.S. Appln. No. 60/063,097 filed on 24-Oct-1997, U.S. Appln. No. 60/064,911 filed on 07-Nov-1997, U.S. Appln. No. 60/064,912 filed on 07-Nov-1997, U.S. Appln. No. 60/064,983 filed on 07-Nov-1997, U.S. Appln. No. 60/064,900 filed on 07-Nov-1997, U.S. Appln. No. 60/064,988 filed on 07-Nov-1997, U.S. Appln. No. 60/064,987 filed on 07-Nov-1997, U.S. Appln. No. 60/064,908 filed on 07-Nov-1997, U.S. Appln. No. 60/064,984 filed on 07-Nov-1997, U.S. Appln. No. 60/064,985 filed on 07-Nov-1997, U.S. Appln. No. 60/066,094 filed on 17-Nov-1997, U.S. Appln. No. 60/066,100 filed on 17-Nov- 1997, U.S. Appln. No. 60/066,089 filed on 17-Nov-1997, U.S. Appln. No. 60/066,095 filed on 17- Nov-1997, U.S. Appln. No. 60/066,090 filed on 17-Nov-1997, U.S. Appln. No. 60/068,006 filed on 18-Dec-1997, U.S. Appln. No. 60/068,057 filed on 18-Dec-1997, U.S. Appln. No. 60/068,007 filed on 18-Dec-1997, U.S. Appln. No. 60/068,008 filed on 18-Dec-1997, U.S. Appln. No. 60/068,054 filed on 18-Dec-1997, U.S. Appln. No. 60/068,064 filed on 18-Dec-1997, U.S. Appln. No. 60/068,053 filed on 18-Dec-1997, U.S. Appln. No. 60/070,923 filed on 18-Dec-1997, U.S. Appln. No. 60/068,365 filed on 19-Dec-1997, U.S. Appln. No. 60/068,169 filed on 19-Dec-1997, U.S. Appln. No. 60/068,367 filed on 19-Dec-1997, U.S. Appln. No. 60/068,369 filed on 19-Dec-
1997, U.S. Appln. No. 60/068,368 filed on 19-Dec-1997, U.S. Appln. No. 60/070,657 filed on 07- Jan-1998, U.S. Appln. No. 60/070,692 filed on 07-Jan-1998, U.S. Appln. No. 60/070,704 filed on
07-Jan-1998, U.S. Appln. No. 60/070,658 filed on 07-Jan-1998, U.S. Appln. No. 60/073,160 filed on 30-Jan-1998, U.S. Appln. No. 60/073,159 filed on 30-Jan-1998, U.S. Appln. No. 60/073,165 filed on 30-Jan-1998, U.S. Appln. No. 60/073,164 filed on 30-Jan-1998, U.S. Appln. No. 60/073,167 filed on 30-Jan-1998, U.S. Appln. No. 60/073,162 filed on 30-Jan-1998, U.S. Appln. No. 60/073,161 filed on 30-Jan-1998, U.S. Appln. No. 60/073,170 filed on 30-Jan-1998, U.S. Appln. No. 60/074,141 filed on 09-Feb-1998, U.S. Appln. No. 60/074,341 filed on 09-Feb-1998, U.S. Appln. No. 60/074,037 filed on 09-Feb-1998, U.S. Appln. No. 60/074,157 filed on 09-Feb-
1998, U.S. Appln. No. 60/074,118 filed on 09-Feb-1998, U.S. Appln. No. 60/076,051 filed on 26- Feb-1998, U.S. Appln. No. 60/076,053 filed on 26-Feb-1998, U.S. Appln. No. 60/076,054 filed on 26-Feb-1998, U.S. Appln. No. 60/076,052 filed on 26-Feb-1998, U.S. Appln. No. 60/076,057 filed on 26-Feb-1998, U.S. Appln. No. 60/077,714 filed on 12-Mar-1998, U.S. Appln. No. 60/077,687 filed on 12-Mar-1998, U.S. Appln. No. 60/077,686 filed on 12-Mar-1998, U.S. Appln. No. 60/077,696 filed on 12-Mar-1998, U.S. Appln. No. 60/078,566 filed on 19-Mar-1998, U.S. Appln. No. 60/078,574 filed on 19-Mar-1998, U.S. Appln. No. 60/078,576 filed on 19-Mar-1998, U.S. Appln. No. 60/078,579 filed on 19-Mar-1998, U.S. Appln. No. 60/078,563 filed on 19-Mar-1998, U.S. Appln. No. 60/078,573 filed on 19-Mar-1998, U.S. Appln. No. 60/078,578 filed on 19-Mar- 1998, U.S. Appln. No. 60/078,581 filed on 19-Mar-1998, U.S. Appln. No. 60/078,577 filed on 19- Mar-1998, U.S. Appln. No. 60/080,314 filed on 01-Apr-1998, U.S. Appln. No. 60/080,312 filed on Ol-Apr-1998, U.S. Appln. No. 60/080,313 filed on 01-Apr-1998, U.S. Appln. No. 60/085,180 filed on 12-May-1998, U.S. Appln. No. 60/085,105 filed on 12-May-1998, U.S. Appln. No. 60/085,094 filed on 12-May-1998, U.S. Appln. No. 60/085,093 filed on 12-May-1998, U.S. Appln. No. 60/085,924 filed on 18-May-1998, U.S. Appln. No. 60/085,906 filed on 18-May-1998, U.S. Appln. No. 60/085,927 filed on 18-May-1998, U.S. Appln. No. 60/085,920 filed on 18-May-1998, U.S. Appln. No. 60/085,928 filed on 18-May-1998, U.S. Appln. No. 60/085,925 filed on 18-May- 1998, U.S. Appln. No. 60/085,921 filed on 18-May-1998, U.S. Appln. No. 60/085,923 filed on 18- May-1998, U.S. Appln. No. 60/085,922 filed on 18-May-1998, U.S. Appln. No. 60/090,112 filed on 22-Jun-1998, U.S. Appln. No. 60/089,508 filed on 16-Jun-1998, U.S. Appln. No. 60/089,507 filed on 16-Jun-1998, U.S. Appln. No. 60/089,510 filed on 16-Jun-1998, U.S. Appln. No. 60/089,509 filed on 16-Jun-1998, U.S. Appln. No. 60/090,113 filed on 22-Jun-1998, U.S. Appln. No. 60/092,956 filed on 15-Jul-1998, U.S. Appln. No. 60/092,921 filed on 15-Jul-1998, U.S. Appln. No. 60/092,922 filed on 15-Jul-1998, U.S. Appln. No. 60/094,657 filed on 30-Jul-1998, U.S. Appln. No. 60/095,486 filed on 05-Aug-1998, U.S. Appln. No. 60/096,319 filed on 12-Aug-
1998, U.S. Appln. No. 60/095,455 filed on 06-Aug-1998, U.S. Appln. No. 60/095,454 filed on 06- Aug-1998, U.S. Appln. No. 60/097,917 filed on 25-Aug-1998, U.S. Appln. No. 60/098,634 filed on 31-Aug-1998, U.S. Appln. No. 60/101,546 filed on 23-Sep-1998, U.S. Appln. No. 60/102,895 filed on 02-Oct-1998, U.S. Appln. No. 60/108,207 filed on 12-Nov-1998, U.S. Appln. No. 60/113,006 filed on 18-Dec-1998, U.S. Appln. No. 60/112,809 filed on 17-Dec-1998, U.S. Appln. No. 60/116,330 filed on 19-Jan-1999, U.S. Appln. No. 60/119,468 filed on 10-Feb-1999, U.S. Appln. No. 60/125,055 filed on 18-Mar-1999, U.S. Appln. No. 60/128,693 filed on 09-Apr-1999, U.S. Appln. No. 60/130,991 filed on 26-Apr-1999, U.S. Appln. No. 60/137,725 filed on 07-Jun-
1999, U.S. Appln. No. 60/145,220 filed on 23-Jul-1999, U.S. Appln. No. 60/149,182 filed on 17- Aug-1999, U.S. Appln. No. 60/152,317 filed on 03-Sep-1999, U.S. Appln. No. 60/152,315 filed on
03-Sep-1999, U.S. Appln. No. 60/155,709 filed on 24-Sep-1999, U.S. Appln. No. 60/163,085 filed on 02-Nov-1999, U.S. Appln. No. 60/172,411 filed on 17-Dec-1999, U.S. Appln. No. 60/162,239 filed on 29-Oct-1999, U.S. Appln. No. 60/215,139 filed on 30-Jun-2000, U.S. Appln. No. 60/162,211 filed on 29-Oct-1999, U.S. Appln. No. 60/215,138 filed on 30-Jun-2000, U.S. Appln. No. 60/162,240 filed on 29-Oct-1999, U.S. Appln. No. 60/215,131 filed on 30-Jun-2000, U.S. Appln. No. 60/162,237 filed on 29-Oct-1999, U.S. Appln. No. 60/219,666 filed on 21-Jul-2000, U.S. Appln. No. 60/162,238 filed on 29-Oct-1999, U.S. Appln. No. 60/215,134 filed on 30-Jun-
2000, U.S. Appln. No. 60/163,580 filed on 05-Nov-1999, U.S. Appln. No. 60/215,130 filed on 30- Jun-2000, U.S. Appln. No. 60/163,577 filed on 05-Nov-1999, U.S. Appln. No. 60/215,137 filed on 30-Jun-2000, U.S. Appln. No. 60/163,581 filed on 05-Nov-1999, U.S. Appln. No. 60/215, 133 filed on 30-Jun-2000, U.S. Appln. No. 60/163,576 filed on 05-Nov-1999, U.S. Appln. No. 60/221,366 filed on 27-Jul-2000, U.S. Appln. No. 60/164,344 filed on 09-Nov-1999, U.S. Appln. No. 60/195,296 filed on 07-Apr-2000, U.S. Appln. No. 60/221,367 filed on 27-JuI-2000, U.S. Appln. No. 60/164,835 filed on 12-Nov-1999, U.S. Appln. No. 60/221,142 filed on 27-Jul-2000, U.S. Appln. No. 60/164,744 filed on 12-Nov-1999, U.S. Appln. No. 60/215,140 filed on 30-Jun-2000, U.S. Appln. No. 60/164,735 filed on 12-Nov-1999, U.S. Appln. No. 60/221,193 filed on 27-Jul- 2000, U.S. Appln. No. 60/164,825 filed on 12-Nov-1999, U.S. Appln. No. 60/222,904 filed on 03- Aug-2000, U.S. Appln. No. 60/164,834 filed on 12-Nov-1999, U.S. Appln. No. 60/224,007 filed on 04-Aug-2000, U.S. Appln. No. 60/164,750 filed on 12-Nov-1999, U.S. Appln. No. 60/215,128 filed on 30-Jun-2000, U.S. Appln. No. 60/166,415 filed on 19-Nov-1999, U.S. Appln. No. 60/215,136 filed on 30-Jun-2000, U.S. Appln. No. 60/166,414 filed on 19-Nov-1999, U.S. Appln. No. 60/219,665 filed on 21-Jul-2000, U.S. Appln. No. 60/164,731 filed on 12-Nov-1999, U.S. Appln. No. 60/215,132 filed on 30-Jun-2000, U.S. Appln. No. 60/226,280 filed on 18-Aug-2000, U.S. Appln. No. 60/256,968 filed on 21-Dec-2000, U.S. Appln. No. 60/226,380 filed on 18-Aug-
2000, U.S. Appln. No. 60/259,803 filed on 05-Jan-2001, U.S. Appln. No. 60/228,084 filed on 28- Aug-2000, U,S. Appln. No. 09/915,582 filed on 27-Jul-2001, U.S. Appln. No. 60/231,968 filed on 12-Sep-2000, U.S. Appln. No. 60/236,326 filed on 29-Sep-2000, U.S. Appln. No. 60/234,211 filed on 20-Sep-2000, U.S. Appln. No. 60/226,282 filed on 18-Aug-2000, U.S. Appln. No. 60/232,104 filed on 12-Sep-2000, U.S. Appln. No. 60/234,210 filed on 20-Sep-2000, U.S. Appln. No. 60/226,278 filed on 18-Aug-2000, U.S. Appln. No. 60/259,805 filed on 05-Jan-2001, U.S. Appln. No. 60/226,279 filed on 18-Aug-2000, U.S. Appln. No. 60/259,678 filed on 05-Jan-2001, U.S. Appln. No. 60/226,281 filed on 18-Aug-2000, U.S. Appln. No. 60/231,969 filed on 12-Sep-2000, U.S. Appln. No. 60/228,086 filed on 28-Aug-2000, U.S. Appln. No. 60/259,516 filed on 04-Jan-
2001, U.S. Appln. No. 60/228,083 filed on 28-Aug-2000, U.S. Appln. No. 60/259,804 filed on 05- Jan-2001, U.S. Appln. No. 60/270,658 filed on 23-Feb-2001, U.S. Appln. No. 60/304,444 filed on 12-Jul-2001, U.S. Appln. No. 60/270,625 filed on 23-Feb-2001, U.S. Appln. No. 60/304,417 filed on 12-Jul-2001, U.S. Appln. No. 60/295,869 filed on 06-Jun-2001, U.S. Appln. No. 60/304,121 filed on ll-Jul-2001, U.S. Appln. No. 60/311,085 filed on 10-Aug-2001, U.S. Appln. No. 60/325,209 filed on 28-Sep-2001, U.S. Appln. No. 60/330,629 filed on 26-Oct-2001, U.S. Appln. No. 60/331,046 filed on 07-Nov-2001, U.S. Appln. No. 60/358,554 filed on 22-Feb-2002, U.S. Appln. No. 60/358,714 filed on 25-Feb-2002, U.S. Appln. No. 60/277,340 filed on 21-Mar-2001, U.S. Appln. No. 60/306,171 filed on 19-Jul-2001, U.S. Appln. No. 60/278,650 filed on 27-Mar- 2001, U.S. Appln. No. 60/331,287 filed on 13-Nov-2001, U.S. Appln. No. 09/950,082 filed on 12- Sep-2001, U.S. Appln. No. 09/950,083 filed on 12-Sep-2001, PCT Appln. No. US00/29363 filed on 25-Oct-2000, PCT Appln. No. US00/29360 filed on 25-Oct-2000, PCT Appln. No. US00/29362 filed on 25-Oct-2000, PCT Appln. No. US00/29365 filed on 25-Oct-2000, PCT Appln. No. US00/29364 filed on 25-Oct-2000, PCT Appln. No. US00/30040 filed on 01-Nov- 2000, PCT Appln. No. US00/30037 filed on Ol-Nov-2000, PCT Appln. No. US00/30045 filed on Ol-Nov-2000, PCT Appln. No. US00/30036 filed on Ol-Nov-2000, PCT Appln. No. US00/30039 filed on Ol-Nov-2000, PCT Appln. No. US00/30654 filed on 08-Nov-2000, PCT Appln. No. US00/30628 filed on 08-Nov-2000, PCT Appln. No. US00/30653 filed on 08-Nov-2000, PCT Appln. No. US00/30629 filed on 08-Nov-2000, PCT Appln. No. US00/30679 filed on 08-Nov-
2000, PCT Appln. No. US00/30674 filed on 08-Nov-2000, PCT Appln. No. US00/31162 filed on 15-Nov-2000, PCT Appln. No. US00/31282 filed on 15-Nov-2000, PCT Appln. No. US00/30657 filed on 08-Nov-2000, PCT Appln. No. US01/01396 filed on 17-Jan-2001, PCT Appln. No. US01/01387 filed on 17-Jan-2001, PCT Appln. No. US01/01567 filed on 17-Jan-2001, PCT Appln. No. US01/01431 filed on 17-Jan-2001, PCT Appln. No. US01/01432 filed on 17-Jan-2001, PCT Appln. No. US01/00544 filed on 09-Jan-2001, PCT Appln. No. US01/01435 filed on 17-Jan- 2001, PCT Appln. No. USOl/01386 filed on 17-Jan-2001, PCT Appln. No. USOl/01565 filed on 17-Jan-2001, PCT Appln. No. US01/01394 filed on 17-Jan-2001, PCT Appln. No. US01/01434 filed on 17-Jan-2001, PCT Appln. No. US01/01397 filed on 17-Jan-2001, PCT Appln. No. US01/01385 filed on 17-Jan-2001, PCT Appln. No. US01/01384 filed on 17-Jan-2001, PCT Appln. No. USOl/01383 filed on 17-Jan-2001, PCT Appln. No. (Atty. Dkt. No. PS735; unassigned) filed on 21-Feb-2002, PCT Appln. No. (Atty. Dkt. No. PS736; unassigned) filed on 21-Feb-2002, U.S. Appln. No. 09/148,545 filed on 04-Sep-1998, U.S. Appln. No. 09/621,011 filed on 20-Jul-2000, U.S. Appln. No. 09/981,876 filed on 19-Oct-2001, U.S. Appln. No. 09/149,476 filed on 08-Sep-1998, U.S. Appln. No. 09/809,391 filed on 16-Mar-2001, U.S. Appln. No. 09/882,171 filed on 18-Jun-2001, U.S. Appln. No. 60/190,068 filed on 17-Mar-2000, U.S. Appln. No. 09/152,060 filed on ll-Sep-1998, U.S. Appln. No. 09/852,797 filed on ll-May-2001, U.S. Appln. No. 09/853,161 filed on ll-May-2001, U.S. Appln. No. 09/852,659 filed on ll-May-2001, U.S. Appln. No. 10/058,993 filed on 30-Jan-2002, U.S. Appln. No. 60/265,583 filed on 02-Feb-
2001, U.S. Appln. No. 09/154,707 filed on 17-Sep-1998, U.S. Appln. No. 09/966,262 filed on 01- Oct-2001, U.S. Appln. No. 09/983,966 filed on 26-Oct-2001, U.S. Appln. No. 10/059,395 filed on 31-Jan-2002, U.S. Appln. No. 09/984,245 filed on 29-Oct-2001, U.S. Appln. No. 09/166,780 filed on 06-Oct-1998, U.S. Appln. No. 09/577,145 filed on 24-May-2000, U.S. Appln. No. 09/814,122 filed on 22-Mar-2001, U.S. Appln. No. 09/189,144 filed on 10-Nov-1998, U.S. Appln. No. 09/690,454 filed on 18-Oct-2000, U.S. Appln. No. (Atty. Dkt. No. PZ006G13A; unassigned) filed on 05-Feb-2002, U.S. Appln. No. 10/062,599 filed on 05-Feb-2002, U.S. Appln. No. 09/205,258 filed on 04-Dec-1998, U.S. Appln. No. 09/933,767 filed on 22-Aug-2001, U.S. Appln. No. 60/184,836 filed on 24-Feb-2000, U.S. Appln. No. 60/193,170 filed on 29-Mar-2000, U.S. Appln. No. 10/023,282 filed on 20-Dec-2001, U.S. Appln. No. 10/004,860 filed on 07-Dec-2001, U.S. Appln. No. 09/209,462 filed on ll-Dec-1998, U.S. Appln. No. 09/213,365 filed on 17-Dec-1998, U.S. Appln. No. 09/627,081 filed on 27-Jul-2000, U.S. Appln. No. 09/227,357 filed on 08-Jan- 1999, U.S. Appln. No. 09/983,802 filed on 25-Oct-2001, U.S. Appln. No. 09/973,278 filed on 10- Oct-2001, U.S. Appln. No. 60/239,899 filed on 13-Oct-2000, U.S. Appln. No. 09/984,490 filed on 30-Oct-2001, U.S. Appln. No. 09/776,724 filed on 06-Feb-2001, U.S. Appln. No. 09/229,982 filed on 14-Jan-1999, U.S. Appln. No. 09/669,688 filed on 26-Sep-2000, U.S. Appln. No. 60/180,909 filed on 08-Feb-2000, U.S. Appln. No. 09/236,557 filed on 26-Jan-1999, U.S. Appln. No. 09/666,984 filed on 21-Sep-2000, U.S. Appln. No. 09/820,649 filed on 30-Mar-2001, U.S. Appln. No. 60/295,558 filed on 05-Jun-2001, U.S. Appln. No. 09/244,112 filed on 04-Feb-1999, U.S. Appln. No. 09/774,639 filed on Ol-Feb-2001, U.S. Appln. No. 09/969,730 filed on 04-Oct-2001, U.S. Appln. No. 60/238,291 filed, on 06-Oct-2000, U.S. Appln. No. 09/251,329 filed on 17-Feb- 1999, U.S. Appln. No. 09/716,128 filed on 17-Nov-2000, U.S. Appln. No. 09/257,179 filed on 25- Feb-1999, U.S. Appln. No. 09/729,835 filed on 06-Dec-2000, U.S. Appln. No. 09/262,109 filed on 04-Mar-1999, U.S. Appln. No. 09/722,329 filed on 28-Nov-2000, U.S. Appln. No. (Atty. Dkt. No. PZ016P1C1; unassigned) filed on 17-Jan-2002, U.S. Appln. No. 60/262,066 filed on 18-Jan-2001, U.S. Appln. No. 09/281,976 filed on 31-Mar-1999, U.S. Appln. No. 09/288,143 filed on 08-Apr- 1999, U.S. Appln. No. 09/984,429 filed on 30-Oct-2001, U.S. Appln. No. 60/244,591 filed on Ol- Nov-2000, U.S. Appln. No. 09/296,622 filed on 23-Apr-1999, U.S. Appln. No. 09/305,736 filed on 05-May-1999, U.S. Appln. No. 09/818,683 filed on 28-Mar-2001, U.S. Appln. No. 09/974,879 filed on 12-Oct-2001, U.S. Appln. No. 60/239,893 filed on 13-Oct-2000, U.S. Appln. No. 09/334,595 filed on 17-Jun-1999, U.S. Appln. No. 09/348,457 filed on 07-Jul-1999, U.S. Appln. No. 09/739,907 filed on 20-Dec-2000, U.S. Appln. No. 09/938,671 filed on 27-Aug-2001, U.S. Appln. No. 09/363,044 filed on 29-Jul-1999, U.S. Appln. No. 09/813,153 filed on 21-Mar-2001, U.S. Appln. No. 09/949,925 filed on 12-Sep-2001, U.S. Appln. No. 60/232,150 filed on 12-Sep- 2000, U.S. Appln. No. 09/369,247 filed on 05-Aug-1999, U.S. Appln. No. 10/062,548 filed on 05- Feb-2002, U.S. Appln. No. 09/382,572 filed on 25-Aug-1999, U.S. Appln. No. 09/716,129 filed on 17-Nov-2000, U.S. Appln. No. 09/393,022 filed on 09-Sep-1999, U.S. Appln. No. 09/798,889 filed on 06-Mar-2001, U.S. Appln. No. 09/397,945 filed on 17-Sep-1999, U.S. Appln. No. 09/437,658 filed on 10-Nov-1999, U.S. Appln. No. 09/892,877 filed on 28-Jun-2001, U.S. Appln. No. 09/948,783 filed on 10-Sep-2001, U.S. Appln. No. 60/231,846 filed on ll-Sep-2000, U.S. Appln. No. 09/461,325 filed on 14-Dec-1999, U.S. Appln. No. 10/050,873 filed on 18-Jan-2002, U.S. Appln. No. 60/263,230 filed on 23-Jan-2001, U.S. Appln. No. 60/263,681 filed on 24-Jan- 2001, U.S. Appln. No. 10/012,542 filed on 12-Dec-2001, U.S. Appln. No. 09/482,273 filed on 13- Jan-2000, U.S. Appln. No. 60/234,925 filed on 25-Sep-2000, U.S. Appln. No. 09/984,276 filed on 29-Oct-2001, U.S. Appln. No. 09/984,271 filed on 29-Oct-2001, U.S. Appln. No. 09/489,847 filed on 24-Jan-2000, U.S. Appln. No. 60/350,898 filed on 25-Jan-2002, U.S. Appln. No. 09/511,554 filed on 23-Feb-2000, U.S. Appln. No. 09/739,254 filed on 19-Dec-2000, U.S. Appln. No. 09/904,615 filed on 16-Jul-2001, U.S. Appln. No. 10/054,988 filed on 25-Jan-2002, U.S. Appln. No. 09/531,119 filed on 20-Mar-2000, U.S. Appln. No. 09/820,893 filed on 30-Mar-2001, U.S. Appln. No. 09/565,391 filed on 05-May-2000, U.S. Appln. No. 09/948,820 filed on 10-Sep-2001, U.S. Appln. No. 09/591,316 filed on 09-Jun-2000, U.S. Appln. No. 09/895,298 filed on 02-Jul- 2001, U.S. Appln. No. 09/618,150 filed on 17-Jul-2000, U.S. Appln. No. 09/985,153 filed on 01- Nov-2001, U.S. Appln. No. 09/628,508 filed on 28-Jul-2000, U.S. Appln. No. 09/997,131 filed on 30-Nov-2001, U.S. Appln. No. 09/661,453 filed on 13-Sep-2000, U.S. Appln. No. 10/050,882 filed on 18-Jan-2002, U.S. Appln. No. 09/684,524 filed on 10-Oct-2000, U.S. Appln. No. 10/050,704 filed on 18-Jan-2002, U.S. Appln. No. 09/726,643 filed on Ol-Dec-2000, U.S. Appln. No. 10/042,141 filed on ll-Jan-2002, U.S. Appln. No. 09/756,168 filed on 09-Jan-2001, U.S. Appln. No. 09/781,417 filed on 13-Feb-2001, U.S. Appln. No. (Atty. Dkt. No. PZ042P1C1; unassigned) filed on Ol-Feb-2002, U.S. Appln. No. 09/789,561 filed on 22-Feb-2001, U.S. Appln. No. 09/800,729 filed on 08-Mar-2001, U.S. Appln. No. 09/832,129 filed on ll-Apr-2001, PCT Appln. No.US98/04482 filed on 06-Mar-1998, PCT Appln. No.US98/04493 filed on 06-Mar-1998, PCT Appln. No.US98/04858 filed on 12-Mar-1998, PCT Appln. No.US98/05311 filed on 19-Mar- 1998, PCT Appln. No.US98/06801 filed on 07-Apr-1998, PCT Appln. No.US98/10868 filed on 28-May-1998, PCT Appln. No.US98/11422 filed on 04-Jun-1998, PCT Appln. No.USO 1/05614 filed on 21-Feb-2001, PCT Appln. No.US98/12125 filed on ll-Jun-1998, PCT Appln. No.US98/13608 filed on 30-Jun-1998, PCT Appln. No.US98/13684 filed on 07-Jul-1998, PCT Appln. NO.US98/14613 filed on 15-Jul-1998, PCT Appln. No.US98/15949 filed on 29-Jul-1998, PCT Appln. No.US98/16235 filed on 04-Aug-1998, PCT Appln. No.US98/17044 filed on 18-Aug-
1998, PCT Appln. No.US98/17709 filed on 27-Aug-1998, PCT Appln. No.US98/18360 filed on 03-Sep-1998, PCT Appln. No.(Atty. Dkt. No. PZ016PCT2; unassigned) filed on 17-Jan-2002, PCT Appln. No.US98/20775 filed on 01-Oct-1998, PCT Appln. No.US98/21142 filed on 08-Oct- 1998, PCT Appln. No.US98/22376 filed on 23-Oct-1998, PCT Appln. No.US98/23435 filed on 04-Nov-1998, PCT Appln. No.US98/27059 filed on 17-Dec-1998, PCT Appln. No.US99/00108 filed on 06-Jan-1999, PCT Appln. No.US99/01621 filed on 27-Jan-1999, PCT Appln. No.US99/02293 filed on 04-Feb-1999, PCT Appln. No.US99/03939 filed on 24-Feb-1999, PCT Appln. No.US99/05721 filed on ll-Mar-1999, PCT Appln. No.US99/05804 filed on 18-Mar-1999, PCT Appln. No.US99/09847 filed on 06-May-1999, PCT Appln. No.US99/13418 filed on 15-Jun-
1999, PCT Appln. No.US99/15849 filed on 14-Jul-1999, PCT Appln. No.US01/00911 filed on 12- Jan-2001, PCT Appln. No.US01/29871 filed on 24-Sep-2001, PCT Appln. No.US99/17130 filed on 29-Jul-1999, PCT Appln. No.US99/19330 filed on 24-Aug-1999, PCT Appln. No.US99/22012 filed on 22-Sep-1999, PCT Appln. No.US99/26409 filed on 09-Nov-1999, PCT Appln. No.US99/29950 filed on 16-Dec-1999, PCT Appln. No.US00/00903 filed on 18-Jan-2000, PCT Appln. No.USOO/03062 filed on 08-Feb-2000, PCT Appln. No.US00/06783 filed on 16-Mar-2000, PCT Appln. No.USOO/08979 filed on 06-Apr-2000, PCT Appln. No.US00/15187 filed on 02-Jun-
2000, PCT Appln. No.US00/19735 filed on 20-Jul-2000, PCT Appln. No.US00/22325 filed on 16- Aug-2000, PCT Appln. No.US00/24008 filed on 31-Aug-2000, PCT Appln. No.US00/26013 filed on 22-Sep-2000, PCT Appln. No.US00/28664 filed on 17-Oct-2000, US Appln. No. 09/833,245 filed on 12-Apr-2001, and PCT Appln. No. US01/11988 filed on 12-Apr-2001. INDICATIONS RELATING TO DEPOSITED BIOLOGICAL MATERIAL
(PCT Rule I3bis)
A. The indications made below relate to the deposited biological material referred to in Table 1 A of the description.
B. IDENTIFICATION OF DEPOSIT: Further deposits are identified on an additional sheet: X Name of Depository: American Type Culture Collection Address of Depository: 10801 University Boulevard
Manassas, Virginia 20110-2209
United States of America
EUROPE
In respect of those designations in which a European Patent is sought a sample of the deposited microorganism will be made available until the publication of the mention of the grant of the European patent or until the date on which the application has been refused or withdrawn or is deemed to be withdrawn, only by the issue of such a sample to an expert nominated by the person requesting the sample (Rule 28(4) EPC).
CANADA
The applicant requests that, until either a Canadian patent has been issued on the basis of an application or the application has been refused, or is abandoned and no longer subject to reinstatement, or is withdrawn, the Commissioner of Patents only authorizes the furnishing of a sample of the deposited biological material referred to in the application to an independent expert nominated by the Commissioner, the applicant must, by a written statement, inform the International Bureau accordingly before completion of technical preparations for publication of the international application.
NORWAY
The applicant hereby requests that the application has been laid open to public inspection (by the Norwegian Patent Office), or has been finally decided upon by the Norwegian Patent Office without having been laid open inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Norwegian Patent Office not later than at the time when the application is made available to the public under Sections 22 and 33(3) of the Norwegian Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on the list of recognized experts drawn up by the Norwegian Patent Office or any person approved by the applicant in the individual case.
AUSTRALIA
The applicant hereby gives notice that the furnishing of a sample of a microorganism shall only be effected prior to the grant of a patent, or prior to the lapsing, refusal or withdrawal of the application, to a person who is a skilled addressee without an interest in the invention (Regulation 3.25(3) of the Australian Patents Regulations).
FINLAND
The applicant hereby requests that, until the application has been laid open to public inspection (by the National Board of Patents and Regulations), or has been finally decided upon by the National Board of Patents and Registration without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. UNITED KINGDOM
The applicant hereby requests that the furnishing of a sample of a microorganism shall only be made available to an expert. The request to this effect must be filed by the applicant with the hitemational Bureau before the completion of the technical preparations for the international publication of the application.
DENMARK
The applicant hereby requests that, until the application has been laid open to public inspection (by the Danish Patent Office), or has been finally decided upon by the Danish Patent office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the Danish Patent Office not later that at the time when the application is made available to the public under Sections 22 and 33(3) of the Danish Patents Act. If such a request has been filed by the applicant, any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Danish Patent Office or any person by the applicant in the individual case.
SWEDEN
The applicant hereby requests that, until the application has been laid open to public inspection (by the Swedish Patent Office), or has been finally decided upon by the Swedish Patent Office without having been laid open to public inspection, the furnishing of a sample shall only be effected to an expert in the art. The request to this effect shall be filed by the applicant with the International Bureau before the expiration of 16 months from the priority date (preferably on the Form PCT RO/134 reproduced in annex Z of Volume I of the PCT Applicant's Guide). If such a request has been filed by the applicant any request made by a third party for the furnishing of a sample shall indicate the expert to be used. That expert may be any person entered on a list of recognized experts drawn up by the Swedish Patent Office or any person approved by a applicant in the individual case.
NETHERLANDS
The applicant hereby requests that until the date of a grant of a Netherlands patent or until the date on which the application is refused or withdrawn or lapsed, the microorganism shall be made available as provided in the 31F(1) of the Patent Rules only by the issue of a sample to an expert. The request to this effect must be furnished by the applicant with the Netherlands Industrial Property Office before the date on which the application is made available to the public under Section 22C or Section 25 of the Patents Act of the Klingdom of the Netherlands, whichever of the two dates occurs earlier.

Claims

What Is Claimed Is:
1. Use of a polypeptide for the preparation of a diagnostic or pharmaceutical composition for diagnosing or treating allergic or asthmatic disorders, wherein said polypeptide comprises an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ ID NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ID NO: Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
2. Use of the polypeptide of claim 1, wherein said wherein said polypeptide comprises a heterologous amino acid sequence.
3. Use of a polypeptide for the preparation of a diagnostic or pharmaceutical composition for diagnosing or treating allergic or asthmatic disorders, wherein said polypeptide comprises an amino acid sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ ID NO: Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA; (d) a polypeptide fragment of SEQ ID NO: Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ID NO: Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
4. Use of the polypeptide of claim 3, wherein said polypeptide comprises a heterologous amino acid sequence.
5. Use of an antibody or fragment thereof for the preparation of a diagnostic or pharmaceutical composition for diagnosing or treating allergic or asthmatic disorders, wherein said antibody or fragment thereof binds a polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ 3D NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table 1 A;
(c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ID NO: Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
6. Use of an antibody or fragment thereof for the preparation of a diagnostic or pharmaceutical composition for diagnosing or treating allergic or asthmatic disorders, wherein said antibody or fragment thereof binds a polypeptide selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA; (b) a predicted secreted form of SEQ ID NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO: Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ID NO:Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
7. Use of a nucleic acid molecule for the preparation of a diagnostic or pharmaceutical composition for diagnosing or treating allergic or asthmatic disorders, wherein said nucleic acid molecule comprises a polynucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a polynucleotide fragment of SEQ ID NO:X as referenced in Table IA;
(b) a polynucleotide encoding a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polynucleotide encoding a predicted secreted form of SEQ ID NO: Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(e) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(f) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(g) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y as referenced in Table 2; and
(h) a polynucleotide encoding a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
8. Use of the nucleic acid molecule of claim 7, wherein said nucleic acid molecule comprises a heterologous polynucleotide sequence.
9. Use of a nucleic acid molecule for the preparation of a diagnostic or pharmaceutical composition for diagnosing or treating allergic or asthmatic disorders, wherein said nucleic acid molecule comprises a polynucleotide sequence selected from the group consisting of:
(a) a polynucleotide fragment of SEQ ID NO:X as referenced in Table IA;
(b) a polynucleotide encoding a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polynucleotide encoding a predicted secreted form of SEQ ID NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(e) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(f) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(g) a polynucleotide encoding a polypeptide domain of SEQ ID NO:Y as referenced in Table 2; and
(h) a polynucleotide encoding a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
10. Use of the nucleic acid molecule of claim 9, wherein said nucleic acid molecule comprises a heterologous polynucleotide sequence.
11. Use of an agonist or antagonist for the preparation of a pharmaceutical composition for treating allergic or asthmatic disorders, wherein said agonist or antagonist binds a polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA; (b) a predicted secreted form of SEQ ID NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO: Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ID NO:Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
12. Use of an agonist or antagonist for the preparation of a pharmaceutical composition for treating allergic or asthmatic disorders, wherein said agonist or antagonist binds a polypeptide selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ ED NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ED NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ED NO: Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ED NO:Y as referenced in Table IB.
13. A polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA; (b) a predicted secreted form of SEQ ED NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ED NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO: Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ED NO:Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ED NO:Y as referenced in Table IB.
14. The polypeptide of claim 13, wherein said polypeptide comprises a heterologous amino acid sequence.
15. Use of the polypeptide of claim 13 for identifying a binding partner comprising:
(a) contacting the polypeptide of claim 13 with a binding partner; and
(b) determining whether the binding partner increases or decreases activity of the polypeptide.
16. A polypeptide comprising an amino acid sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ ID NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ED NO:Y or a polypeptide fragment encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ID NO:Y as referenced in Table 2; and (g) a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
17. The polypeptide of claim 16, wherein said polypeptide comprises a heterologous polypeptide sequence.
18. Use of the polypeptide of claim 16 for identifying a binding partner comprising:
(a) contacting the polypeptide of claim 16 with a binding partner; and
(b) determining whether the binding partner increases or decreases activity of the polypeptide.
19. An antibody or fragment thereof that binds a polypeptide comprising an amino acid sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a full length polypeptide of SEQ ED NO:Y or a full length polypeptide encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ ED NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polypeptide fragment of SEQ ED NO: Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ED NO: Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ID NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ED NO:Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ED NO:Y as referenced in Table IB.
20. An antibody or fragment thereof that binds a polypeptide selected from the group consisting of:
(a) a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA;
(b) a predicted secreted form of SEQ ID NO:Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA; (c) a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA;
(d) a polypeptide fragment of SEQ ID NO: Y or a polypeptide fragment encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(e) a polypeptide domain of SEQ ED NO:Y as referenced in Table IB;
(f) a polypeptide domain of SEQ ED NO:Y as referenced in Table 2; and
(g) a predicted epitope of SEQ ED NO:Y as referenced in Table IB.
21. A nucleic acid molecule comprising a polynucleotide sequence at least 95% identical to a sequence selected from the group consisting of:
(a) a polynucleotide fragment of SEQ ED NO:X as referenced in Table IA;
(b) a polynucleotide encoding a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(c) a polynucleotide encoding a predicted secreted form of SEQ ID NO: Y or a secreted form of the polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(e) a polynucleotide encoding a polypeptide fragment of SEQ ED NO:Y or a polypeptide fragment encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(f) a polynucleotide encoding a polypeptide domain of SEQ ID NO: Y as referenced in Table IB;
(g) a polynucleotide encoding a polypeptide domain of SEQ ED NO:Y as referenced in Table 2; and
(h) a polynucleotide encoding a predicted epitope of SEQ ID NO:Y as referenced in Table IB.
22. The nucleic acid molecule of claim 21, wherein said nucleic acid molecule comprises a heterologous polynucleotide sequence.
23. A recombinant vector comprising the nucleic acid molecule of claim 21.
24. A recombinant vector comprising the nucleic acid molecule of claim 22.
25. A recombinant host cell comprising the recombinant vector of claim 23.
26. A recombinant host cell comprising the recombinant vector of claim 24.
27. A nucleic acid molecule comprising a polynucleotide sequence selected from the group consisting of:
(a) a polynucleotide fragment of SEQ ID NO:X as referenced in Table IA;
(b) a polynucleotide encoding a full length polypeptide of SEQ ID NO:Y or a full length polypeptide encoded by the cDNA Clone ID in ATCC Deposit No:Z corresponding to SEQ ED NO:Y as referenced in Table IA;
(c) a polynucleotide encoding a predicted secreted form of SEQ ED NO: Y or a secreted form of the polypeptide encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(d) a polynucleotide encoding a polypeptide fragment of SEQ ED NO:Y or a polypeptide fragment encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA;
(e) a polynucleotide encoding a polypeptide fragment of SEQ ID NO:Y or a polypeptide fragment encoded by the cDNA Clone ED in ATCC Deposit No:Z corresponding to SEQ ID NO:Y as referenced in Table IA, wherein said fragment has biological activity;
(f) a polynucleotide encoding a polypeptide domain of SEQ ID NO: Y as referenced in Table IB;
(g) a polynucleotide encoding a polypeptide domain of SEQ ED NO:Y as referenced in Table 2; and
(h) a polynucleotide encoding a predicted epitope of SEQ ED NO:Y as referenced in Table IB.
28. The nucleic acid molecule of claim 27, wherein said nucleic acid molecule comprises a heterologous polynucleotide sequence.
29. A recombinant vector comprising the nucleic acid molecule of claim 27.
30. A recombinant vector comprising the nucleic acid molecule of claim 28.
31. A recombinant host cell comprising the recombinant vector of claim 29.
32. A recombinant host cell comprising the recombinant vector of claim 30.
EP02749512A 2001-03-21 2002-03-19 Human secreted proteins Withdrawn EP1381622A2 (en)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US27734001P 2001-03-21 2001-03-21
US277340P 2001-03-21
US30617101P 2001-07-19 2001-07-19
US306171P 2001-07-19
US33128701P 2001-11-13 2001-11-13
US331287P 2001-11-13
PCT/US2002/008279 WO2002090526A2 (en) 2001-03-21 2002-03-19 Human secreted proteins

Publications (1)

Publication Number Publication Date
EP1381622A2 true EP1381622A2 (en) 2004-01-21

Family

ID=27402891

Family Applications (7)

Application Number Title Priority Date Filing Date
EP02749512A Withdrawn EP1381622A2 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02760994A Withdrawn EP1379132A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02782476A Withdrawn EP1414845A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02799146A Withdrawn EP1390390A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02759068A Withdrawn EP1404702A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02780789A Withdrawn EP1423134A2 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02723499A Withdrawn EP1379264A4 (en) 2001-03-21 2002-03-19 Human secreted proteins

Family Applications After (6)

Application Number Title Priority Date Filing Date
EP02760994A Withdrawn EP1379132A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02782476A Withdrawn EP1414845A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02799146A Withdrawn EP1390390A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02759068A Withdrawn EP1404702A4 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02780789A Withdrawn EP1423134A2 (en) 2001-03-21 2002-03-19 Human secreted proteins
EP02723499A Withdrawn EP1379264A4 (en) 2001-03-21 2002-03-19 Human secreted proteins

Country Status (4)

Country Link
EP (7) EP1381622A2 (en)
AU (6) AU2002363296A1 (en)
CA (7) CA2441840A1 (en)
WO (7) WO2002090526A2 (en)

Families Citing this family (80)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7196164B2 (en) 1997-07-08 2007-03-27 Human Genome Sciences, Inc. Secreted protein HHTLF25
JP2002513295A (en) 1997-07-08 2002-05-08 ヒューマン・ジェノム・サイエンシズ・インコーポレイテッド 123 human secreted proteins
PT1086223E (en) 1998-06-01 2009-11-03 Agensys Inc Novel serpentine transmembrane antigens expressed in human cancers and uses thereof
US20030149531A1 (en) 2000-12-06 2003-08-07 Hubert Rene S. Serpentine transmembrane antigens expressed in human cancers and uses thereof
US20040141975A1 (en) 1998-06-01 2004-07-22 Raitano Arthur B. Nucleic acid and corresponding protein entitled 98P4B6 useful in treatment and detection of cancer
US6833438B1 (en) 1999-06-01 2004-12-21 Agensys, Inc. Serpentine transmembrane antigens expressed in human cancers and uses thereof
US20060052321A1 (en) 2002-04-05 2006-03-09 Raitano Arthur B Nucleic acid and corresponding protein entitled 98P4B6 useful in treatment and detection of cancer
EP1141027A1 (en) 1999-01-15 2001-10-10 Biogen, Inc. Antagonists of tweak and of tweak receptor and their use to treat immunological disorders
US7291719B2 (en) 2000-07-25 2007-11-06 Genentech, Inc. PRO4332 antibodies
EP1666490A3 (en) * 2000-07-25 2006-11-02 Genentech, Inc. Secreted and transmembrane polypeptides and nucleic acids encoding the same
EP1364021A2 (en) 2000-10-31 2003-11-26 Diadexus, Inc. Compositions and methods relating to colon specific genes and proteins
US20020111302A1 (en) * 2000-11-30 2002-08-15 Y. Tom Tang Novel nucleic acids and polypeptides
EP1573024A4 (en) * 2001-04-10 2007-08-29 Agensys Inc Nuleic acids and corresponding proteins useful in the detection and treatment of various cancers
US20030119112A1 (en) 2001-06-20 2003-06-26 Genentech, Inc. Compositions and methods for the diagnosis and treatment of disorders involving angiogenesis
EP1429793B1 (en) 2001-09-06 2015-02-25 Agensys, Inc. Nucleic acid and corresponding protein entitled steap-1 useful in treatment and detection of cancer
US7494646B2 (en) 2001-09-06 2009-02-24 Agensys, Inc. Antibodies and molecules derived therefrom that bind to STEAP-1 proteins
JPWO2003033727A1 (en) 2001-10-12 2005-02-03 山之内製薬株式会社 Cell death inhibitor screening method
SI1997512T1 (en) 2002-04-09 2014-03-31 Biogen Idec Ma Inc. Methods for treating TWEAK-related conditions
AU2003900747A0 (en) * 2003-02-18 2003-03-06 Garvan Institute Of Medical Research Diagnosis and treatment of pancreatic cancer
US7709610B2 (en) 2003-05-08 2010-05-04 Facet Biotech Corporation Therapeutic use of anti-CS1 antibodies
US20050025763A1 (en) 2003-05-08 2005-02-03 Protein Design Laboratories, Inc. Therapeutic use of anti-CS1 antibodies
WO2005019258A2 (en) * 2003-08-11 2005-03-03 Genentech, Inc. Compositions and methods for the treatment of immune related diseases
EP2380985B1 (en) 2003-09-23 2014-01-01 University of North Carolina at Chapel Hill Cells expressing vitamin K epoxide reductase and use thereof
EP2272951B1 (en) * 2003-10-14 2014-07-23 Baxter International Inc. Vitamin k epoxide recycling polypeptide vkorc1, a therapeutic target of coumarin and their derivatives
US20070269421A1 (en) * 2004-02-03 2007-11-22 Bayer Healthcare Ag Diagnostics and Therapeutics for Diseases Associated with Plasma Glutamate Carboxypeptidase (Pgcp)
US20050186577A1 (en) 2004-02-20 2005-08-25 Yixin Wang Breast cancer prognostics
US8008442B2 (en) 2004-04-22 2011-08-30 Agensys, Inc. Antibodies and molecules derived therefrom that bind to STEAP-1 proteins
ES2543207T3 (en) 2004-09-01 2015-08-17 Dynavax Technologies Corporation Methods and compositions for the inhibition of innate immune responses and autoimmunity
EP1799849A4 (en) * 2004-09-07 2008-07-09 Telethon Inst For Child Health Agents for treatment or prevention of an allergic disorder
WO2006026808A1 (en) * 2004-09-07 2006-03-16 Telethon Institute For Child Health Research Method of diagnosing and/or predicting the development of an allergic disorder
DK2332408T3 (en) 2005-02-17 2013-12-02 Biogen Idec Inc Treatment of neurological diseases
MX349285B (en) 2005-02-28 2017-07-20 Baxalta Inc Recombinant co-expression of vitamin k epoxide reductase subunit 1 to improve vitamin k dependent protein expression.
JP2008532544A (en) 2005-03-15 2008-08-21 ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル Methods and compositions for producing active vitamin K-dependent proteins
WO2006122187A2 (en) 2005-05-10 2006-11-16 Biogen Idec Ma Inc. Treating and evaluating inflammatory disorders
WO2006138219A2 (en) 2005-06-13 2006-12-28 Biogen Idec Ma Inc. Methods of diagnosis / prognosis of inflammatory conditions
GB2445882B (en) * 2005-09-01 2011-02-23 Florey Howard Inst Prophylactic and therapeutic agents and compositions and uses therefor and methods for determining the presence or severity of neuronal damage
GB0521488D0 (en) * 2005-10-21 2005-11-30 Ares Trading Sa Integral membrane protein
US7572618B2 (en) 2006-06-30 2009-08-11 Bristol-Myers Squibb Company Polynucleotides encoding novel PCSK9 variants
PL2845866T3 (en) 2006-10-27 2017-10-31 Genentech Inc Antibodies and immunoconjugates and uses therefor
CN101636179B (en) 2006-11-07 2012-10-10 默沙东公司 Antagonists of pcsk9
US8093222B2 (en) 2006-11-27 2012-01-10 Isis Pharmaceuticals, Inc. Methods for treating hypercholesterolemia
WO2008118386A2 (en) * 2007-03-27 2008-10-02 Merck & Co., Inc. Method for detecting autoprocessed, secreted pcsk9
JOP20080381B1 (en) 2007-08-23 2023-03-28 Amgen Inc Antigen Binding Proteins to Proprotein Convertase subtillisin Kexin type 9 (pcsk9)
WO2009055076A2 (en) 2007-10-26 2009-04-30 Dynavax Technologies Corporation Methods and compositions for inhibition of immune responses and autoimmunity
CN101932728B (en) * 2007-11-30 2013-06-19 西门子医疗保健诊断公司 Adiponectin receptor fragments and methods of use
AR070316A1 (en) 2008-02-07 2010-03-31 Merck & Co Inc PCSK9 ANTAGONISTS (SUBTILISINE-KEXINA TYPE 9 PROPROTEIN)
AR070315A1 (en) 2008-02-07 2010-03-31 Merck & Co Inc ANTIBODIES 1B20 ANTAGONISTS OF PCSK9
US8748115B2 (en) 2008-12-12 2014-06-10 Merck Sharp & Dohme Corp. PCSK9 immunoassay
US8877900B2 (en) 2009-10-30 2014-11-04 Merck Sharp & Dohme Corp. AX132 PCSK9 antagonists
CA2777698A1 (en) 2009-10-30 2011-05-05 Merck Sharp & Dohme Corp. Ax1 and ax189 pcsk9 antagonists and variants
AU2011268211B2 (en) 2010-06-16 2015-07-16 Dynavax Technologies Corporation Methods of treatment using TLR7 and/or TLR9 inhibitors
JP6012605B2 (en) 2010-09-22 2016-10-25 アリオス バイオファーマ インク. Substituted nucleotide analogs
US9631002B2 (en) 2010-12-21 2017-04-25 The University Of North Carolina At Chapel Hill Methods and compositions for producing active vitamin K-dependent proteins
US8980865B2 (en) 2011-12-22 2015-03-17 Alios Biopharma, Inc. Substituted nucleotide analogs
US8916538B2 (en) 2012-03-21 2014-12-23 Vertex Pharmaceuticals Incorporated Solid forms of a thiophosphoramidate nucleotide prodrug
EP2827876A4 (en) 2012-03-22 2015-10-28 Alios Biopharma Inc Pharmaceutical combinations comprising a thionucleotide analog
US9023359B1 (en) 2014-07-15 2015-05-05 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US8945560B1 (en) 2014-07-15 2015-02-03 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US8992927B1 (en) 2014-07-15 2015-03-31 Kymab Limited Targeting human NAV1.7 variants for treatment of pain
US9914769B2 (en) 2014-07-15 2018-03-13 Kymab Limited Precision medicine for cholesterol treatment
US9067998B1 (en) 2014-07-15 2015-06-30 Kymab Limited Targeting PD-1 variants for treatment of cancer
US9045545B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision medicine by targeting PD-L1 variants for treatment of cancer
US9017678B1 (en) 2014-07-15 2015-04-28 Kymab Limited Method of treating rheumatoid arthritis using antibody to IL6R
US9045548B1 (en) 2014-07-15 2015-06-02 Kymab Limited Precision Medicine by targeting rare human PCSK9 variants for cholesterol treatment
US8986691B1 (en) 2014-07-15 2015-03-24 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US9034332B1 (en) 2014-07-15 2015-05-19 Kymab Limited Precision medicine by targeting rare human PCSK9 variants for cholesterol treatment
US8986694B1 (en) 2014-07-15 2015-03-24 Kymab Limited Targeting human nav1.7 variants for treatment of pain
US8980273B1 (en) 2014-07-15 2015-03-17 Kymab Limited Method of treating atopic dermatitis or asthma using antibody to IL4RA
US9051378B1 (en) 2014-07-15 2015-06-09 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US8883157B1 (en) 2013-12-17 2014-11-11 Kymab Limited Targeting rare human PCSK9 variants for cholesterol treatment
US9682218B2 (en) 2013-12-23 2017-06-20 Carefusion 2200, Inc. Pleurodesis device and method
GB201403775D0 (en) 2014-03-04 2014-04-16 Kymab Ltd Antibodies, uses & methods
US9139648B1 (en) 2014-07-15 2015-09-22 Kymab Limited Precision medicine by targeting human NAV1.9 variants for treatment of pain
US9150660B1 (en) 2014-07-15 2015-10-06 Kymab Limited Precision Medicine by targeting human NAV1.8 variants for treatment of pain
EP3534947A1 (en) 2016-11-03 2019-09-11 Kymab Limited Antibodies, combinations comprising antibodies, biomarkers, uses & methods
CA3048479A1 (en) 2016-12-23 2018-06-28 President And Fellows Of Harvard College Gene editing of pcsk9
ES2955852T3 (en) 2017-04-03 2023-12-07 Hoffmann La Roche STEAP-1 binding antibodies
CN110709174A (en) 2017-06-22 2020-01-17 宝洁公司 Film comprising a water-soluble layer and a vapor-deposited organic coating
WO2018237213A1 (en) 2017-06-22 2018-12-27 The Procter & Gamble Company Films including a water-soluble layer and a vapor-deposited inorganic coating
GB2623891B (en) 2020-04-09 2024-10-23 Verve Therapeutics Inc Base editing of ANGPTL3 and methods of using same for treatment of disease

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100236393B1 (en) * 1996-02-02 1999-12-15 나까니시 히로유끼 A pharmaceutical preparation containing a human growth hormone
WO2002026931A2 (en) * 2000-09-25 2002-04-04 Human Genome Sciences, Inc. 71 human secreted proteins
US5858716A (en) * 1997-05-30 1999-01-12 Smithkline Beecham Corporation H2CAA71 polynucleotides
CA2333917A1 (en) * 1998-07-15 2000-01-27 Human Genome Sciences, Inc. 71 human secreted proteins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02090526A2 *

Also Published As

Publication number Publication date
WO2003038063A2 (en) 2003-05-08
WO2003038063A3 (en) 2003-12-11
EP1390390A2 (en) 2004-02-25
EP1379132A2 (en) 2004-01-14
CA2441397A1 (en) 2002-10-03
CA2441832A1 (en) 2002-12-27
AU2002320013A1 (en) 2002-11-18
AU2002324424A1 (en) 2002-12-03
WO2003004622A3 (en) 2004-02-19
WO2003004622A2 (en) 2003-01-16
WO2002102993A3 (en) 2004-03-25
WO2002095010A2 (en) 2002-11-28
EP1390390A4 (en) 2009-07-08
AU2002332391A1 (en) 2003-01-02
CA2441416A1 (en) 2003-01-16
AU2002363296A1 (en) 2003-05-12
EP1404702A2 (en) 2004-04-07
EP1404702A4 (en) 2009-07-08
CA2441840A1 (en) 2002-11-28
EP1379132A4 (en) 2009-07-01
AU2002354719A1 (en) 2003-01-21
CA2441417A1 (en) 2002-11-14
WO2002102994A3 (en) 2003-07-24
AU2002326293A1 (en) 2003-01-02
EP1423134A2 (en) 2004-06-02
EP1414845A4 (en) 2009-07-08
WO2002102993A2 (en) 2002-12-27
EP1414845A2 (en) 2004-05-06
WO2002090526A3 (en) 2003-10-30
WO2002095010A3 (en) 2004-02-12
EP1379264A4 (en) 2009-07-08
WO2002090526A2 (en) 2002-11-14
WO2002102994A2 (en) 2002-12-27
EP1379264A1 (en) 2004-01-14
WO2002076488A1 (en) 2002-10-03
CA2441755A1 (en) 2003-05-08
CA2441702A1 (en) 2002-12-27

Similar Documents

Publication Publication Date Title
EP1381622A2 (en) Human secreted proteins
US20030224461A1 (en) Nucleic acids, proteins, and antibodies
WO2001055318A2 (en) Nucleic acids, proteins, and antibodies
WO2002000677A1 (en) Nucleic acids, proteins, and antibodies
WO2001090304A2 (en) Nucleic acids, proteins, and antibodies
US20090253626A1 (en) 50 Human Secreted Proteins
WO2002077188A2 (en) Human serine/threonine kinase
US20050208602A1 (en) 89 human secreted proteins
WO2002068628A1 (en) 70 human secreted proteins
EP1259526A2 (en) Nucleic acids, proteins, and antibodies
WO2002057420A2 (en) 50 human secreted proteins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20031021

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060303