EP1372750A1 - Method for preparing a cartilaginous neo-tissue - Google Patents

Method for preparing a cartilaginous neo-tissue

Info

Publication number
EP1372750A1
EP1372750A1 EP02757749A EP02757749A EP1372750A1 EP 1372750 A1 EP1372750 A1 EP 1372750A1 EP 02757749 A EP02757749 A EP 02757749A EP 02757749 A EP02757749 A EP 02757749A EP 1372750 A1 EP1372750 A1 EP 1372750A1
Authority
EP
European Patent Office
Prior art keywords
cells
hydrogel
chitosan
tissue
chitosan hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02757749A
Other languages
German (de)
French (fr)
Inventor
Alain Domard
Marie-Thérèse M. CORVOL
François Guillot
Xavier L. Chevalier
Isabelle Morfin
Dominique J. Vacher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Institut National de la Sante et de la Recherche Medicale INSERM
Laboratoires Genevrier SAS
Original Assignee
Centre National de la Recherche Scientifique CNRS
Universite Claude Bernard Lyon 1 UCBL
Institut National de la Sante et de la Recherche Medicale INSERM
Laboratoires Genevrier SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Centre National de la Recherche Scientifique CNRS, Universite Claude Bernard Lyon 1 UCBL, Institut National de la Sante et de la Recherche Medicale INSERM, Laboratoires Genevrier SAS filed Critical Centre National de la Recherche Scientifique CNRS
Publication of EP1372750A1 publication Critical patent/EP1372750A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • A61L27/3817Cartilage-forming cells, e.g. pre-chondrocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3604Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the human or animal origin of the biological material, e.g. hair, fascia, fish scales, silk, shellac, pericardium, pleura, renal tissue, amniotic membrane, parenchymal tissue, fetal tissue, muscle tissue, fat tissue, enamel
    • A61L27/3633Extracellular matrix [ECM]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/3641Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix characterised by the site of application in the body
    • A61L27/3645Connective tissue
    • A61L27/3654Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3852Cartilage, e.g. meniscus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/0068General culture methods using substrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0655Chondrocytes; Cartilage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/06Materials or treatment for tissue regeneration for cartilage reconstruction, e.g. meniscus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2533/00Supports or coatings for cell culture, characterised by material
    • C12N2533/70Polysaccharides
    • C12N2533/72Chitin, chitosan

Definitions

  • the present invention relates to the field of repairing cartilage lesions by the implementation of a graft. It relates more particularly to a process for the preparation of a graftable cartilage tissue.
  • Cartilage is a tissue of mesenchymal origin consisting of a small percentage of chondrocytes distributed within an extracellular matrix which they ensure renewal.
  • This matrix is composed of a network of collagen fibers, in particular type 11, and glycosaminoglycans associated with structural proteins to form proteoglycans. The whole by its amphiphilic nature and its ionic sites forms a physical gel ensuring the viscoelastic properties of the cartilaginous tissue.
  • cartilage tissue disappears in adulthood except at the level of the joints, where its role is to ensure the movement of the articular surfaces and to support significant compressive loads. Joint cartilage is however not able to regenerate spontaneously. This is why in case of cartilage lesions recourse is had to transplant techniques, such as mosaic grafting or grafting of autologous cells.
  • Mosaic grafting involves taking samples of bone covered with cartilage in non-bearing regions and grafting them at the level of the lesion.
  • Autologous cell transplantation consists of taking a sample of healthy cartilage, subjecting it to an enzymatic digestion in order to free the chondrocytes from the extra cellular matrix, making the chondrocytes multiply ex-vivo until a sufficient number is obtained. chondrocytes, which are then reimplanted in the cartilage lesion. Chondrocytes in the form of a cell suspension in aqueous medium (dispersion in a liquid medium), first cover the previously unbridled lesion with a membrane made of periosteum sutured tightly at the edge of the cartilage and then inject the suspension (dispersion containing the culture) into the cavity thus created chondrocytes. After a certain time, these cells produce an extra-cellular matrix which does not however have the tissue organization of normal articular cartilage.
  • the mode of multiplication of the chondrocytes to be implanted must be determined so as to avoid a dedifferentiation of the cells.
  • chondrocytes are made to proliferate on a support (synthetic polymer) like that of the bottom of the cell culture dishes, the chondrocytes become differentiated into fibroblastic cells. They are then spindle-shaped instead of being polygonal like chondrocytes and synthesize collagen I instead of collagen II.
  • the polysaccharides are chosen in particular from the following compounds: dextran, cellulose, arabinogalactan, pullulan and amylose.
  • the crosslinking agent is for example glutamic acid, lysine, albumin or gelatin.
  • the chondrocytes multiply while keeping their shape and their phenotype, and synthesize very particularly collagen II.
  • the chondrocytes are recovered by digesting the polysaccharide beads using specific enzymes, for example dextranase, which do not damage the chondrocytic cells. Said cells are then detached to be included in a chitosan matrix. To do this, chondrocytes are added to an acidic solution of chitosan, then the mixture is stirred until the formation of a three-dimensional structure which is placed in a 1N sodium hydroxide solution so as to obtain the precipitation of the chitosan. in a few minutes. The sodium hydroxide is then quickly eliminated and the conglomerate of chitosan and cells is cultured at 37 ° C., 5% CO 2 for a determined period.
  • specific enzymes for example dextranase
  • the chondrocytes mixed with the chitosan are incorporated, included in the three-dimensional structure of the precipitated chitosan, which structure would have a firm consistency resembling the texture of cartilage.
  • chondrocytes may still be viable after having been successively subjected to an acid medium and then to a strongly basic medium, as taught in document WO.00 / 56251 for the precipitation of chitosan around said cells.
  • Chitosan is obtained by deacetylation of chitin, the most widespread biopolymer in nature after cellulose. Chitin can be extracted from the exoskeleton of certain crustaceans such as lobster, crab or the squid endoskeleton, for example.
  • the chitin and chitosan consist of the same two monomer units, N-acetylD glucosamine and D-glucosamine.
  • N-acetylD glucosamine N-acetylD glucosamine
  • D-glucosamine D-glucosamine.
  • chitin When the polymer is strongly acetylated, that is to say when it comprises more than 60% of N-acetyl-D-glucosamine, it is called chitin. Both are biodegradable, bioresorbable and compatible with living tissue.
  • Chitosan is known to have a biostimulatory activity on the reconstitution of tissues. It is however generally used in combination with other elements. For example in document W0.96 / O2259, the chitosan is combined with another polysaccharide to form an agent for stimulating the regeneration of hard tissue at an integration site of an implant, for example made of titanium.
  • the chitosan is crosslinked with a glycosaminoglycan to constitute a biochemical environment close to the cartilaginous tissue, stimulating cell growth.
  • the process of the present invention is similar to document WO.OO / 56251 in that it uses chitosan which is not associated with any other constituent. However, it is distinguished by the fact that it does not require three successive operations.
  • the process of the present invention relates to the preparation of a graftable cartilage neo-tissue. It consists of: a) culturing chondrogenic cells, which are either autologous chondrocytes or chondrocyte precursor cells prepared in vitro from pluripotent stem cells, b) bringing said chondrogenic cells into contact with the outer surface of a hydrogel made exclusively of chitosan whose amphiphilic properties and degree acetylation are such that said cells adhere naturally to said outer surface, c) to cover the hydrogel / cells thus obtained with a culture medium and, d) to allow the development of a cartilage neo-tissue in contact with the surface of chitosan hydrogel, and without penetration of the cells for a minimum period of two weeks, by frequently renewing the culture medium.
  • chondrogenic cells which are either autologous chondrocytes or chondrocyte precursor cells prepared in vitro from pluripotent stem cells
  • the natural adhesion of the cells to the external surface of the chitosan hydrogel makes it possible to obtain a very good distribution of said cells and avoids the loss of cells during the operation, for example when the latter is carried out in wells. culture.
  • the chitosan hydrogel plays an inducing role on the phenotype of chondrogenic cells, which proliferate without being indifferentiated, while retaining their chondrocyte phenotype and their cell maturation potential.
  • chondrogenic cells do not penetrate directly inside the hydrogel, the latter having a pore size (at the surface and in the mass) insufficient with regard to the size of said cells.
  • Chitosan hydrogel is gradually metabolized and / or replaced and / or invaded by matrix proteins of cartilage type, which are neo-synthesized by chondrocytes.
  • the whole - consisting of the chondrocytes and the extra-cellular matrix - produces a cartilaginous neo-tissue which can be grafted as it is, the chitosan hydrogel which temporarily serves as a support for this cartilaginous neo-tissue being partially or wholly biodegraded, and not participating in the graft, contrary to what is provided in documents WO.OO / 56251 and WO.99 / 47186 in which it is the three-dimensional structure in which the chondrocytes are included which acts as a graft.
  • the degree of acetylation of chitosan, used for the preparation of the hydrogel is between 30 and 70%; preferably this is between 40 and 60%.
  • the chondrogenic cells are brought into contact with the outer surface of the chitosan hydrogel which is in the form of small particles of a few millimeters.
  • the chondrogenic cells are spread in the form of at least one layer between at least two layers of chitosan hydrogel, each layer being of the order of a few millimeters thick. This particular arrangement makes it very easy to obtain a large cartilage neo-tissue, after complete disappearance of the chitosan hydrogel.
  • the neo-cartilage tissue formed by the process of the invention is characterized in that it consists of more or less parallel rows of cells, having a cell maturation gradient oriented from a determined zone towards its periphery, the determined zone. corresponding to the junction area of the cells with the chitosan hydrogel.
  • this neo-tissue is analyzed in histology, its morphological appearance is close to a normal cartilage tissue.
  • the present invention will be better understood on reading the description which will be given of several examples of preparation. of a cartilaginous neo-tissue using as an amplification support a chitosan hydrogel whose degree of acetylation is between 40 and 60%.
  • CHITOSANF The reference chitosan used is obtained from endoskeletons of squid. It has an acetylation degree of 5.2%. It is first of all purified in order to remove the insoluble particles, by implementing the following stages: dissolution, filtration, precipitation, washing and lyophilization. For its dissolution, a solution of low viscosity is prepared, with a concentration of the order of 0.5% by weight of chitosan in an acid solution. More specifically, acetic acid is put in a stoichiometric amount relative to the amino groups of chitosan. The polymer solution is filtered by successive passages on membranes of decreasing porosity (1.2; 0.8 and 0.45 ⁇ m) under a maximum pressure of 3 bars.
  • the polymer is precipitated by raising the pH of the solution by adding a concentrated ammonia solution, with stirring. Several washing operations are then necessary to lower the pH of the suspension by eliminating the excess ammonia. After each washing, the suspension is centrifuged and the pellet recovered. Washing takes place until the pH of the washing water stabilizes at a value which is a function of the degree of acetylation. Lyophilization makes it possible to obtain the chitosan in solid form.
  • ACFTYI ATION ni l CHITOSANF The chitosan is then re-acetylated to obtain the desired degree of acetylation.
  • This reacetylation is carried out by reaction of the amino function with acetic anhydride in a hydro-alcoholic medium. The ratio between the number of amino functions and the number of anhydride molecules present in solution determines the degree of acetylation of the chitosan produced.
  • a hydroalcoholic solution which comprises, in addition to chitosan, water, 1,2-propanadiol and the necessary quantity of acetic acid to have a quantity stoichiometric with respect to the amino functions of chitosan.
  • the hydro-alcoholic solution included 3 g of chitosan, 323 g of water and 272 g of 1,2-propanadiol.
  • the acetylating mixture comprises acetic anhydride and propanediol.
  • the mixture included 1.26 ml of acetic anhydride to obtain a degree of acetylation of chitosan of 50% and 1.62 ml of acetic anhydride to obtain a degree of acetylation of 60% .
  • FORMATION DF the HY ⁇ ROGFI PHYSIQUF RF CHITOSANF
  • This passage corresponds to an anterior situation (liquid state) where the hydrophilic interactions dominate to a posterior situation (hydrogel state) where the hydrophobic interactions become strong enough so that there is no more dissolution without however being strong enough to cause complete precipitation of the polymer.
  • the preferred preparation method starts with an initial solution of chitosan. If necessary, depending on the degree of acetylation, it will be an acid solution, the c hitosane being dissolved in hydrochloric acid in stoichiometric amount with the amino groups of chitosan.
  • a certain volume of 1.2 propanediol is added dropwise to the solution which is then degassed under vacuum for a period of approximately one hour.
  • the solution is then poured into a container allowing a large free surface to volume ratio and is placed in an oven at 45 ° C. for the time necessary for it to gel.
  • the formation of the chitosan hydrogel is obtained by a physicochemical process. It is not a precipitate but a real physical hydrogel, which is a viscoelastic material containing only chitosan and more than 90% water. Unlike a precipitate, such a hydrogel does not break up by stirring or dilution.
  • hydrogel which is not soluble in water at pHs of the order of 6 or 7
  • neutralization of the hydrogel thus obtained is carried out for approximately one hour in basic medium, for example sodium hydroxide. O, 1 molar.
  • the gel setting corresponds to a determined aqueous solution / 1-2 propanediol ratio, a ratio which depends on the degree of acetylation of the chitosan.
  • the gelation being accompanied by a loss of water, it is important that the operating conditions favor this evaporation of the water.
  • containers can be used during gelation, whether they are petri dishes, multi-well dishes or inserts specially designed to be housed in the wells of multi-well dishes.
  • a 24-well plate equipped with inserts is used, each insert consisting of a plastic cone, the bottom of which is formed by a membrane permeable to nutrition liquid and which is arranged to be deposited in each well without touching the bottom thereof.
  • the chondrogenic cells can be autologous chondrocytes or chondrocyte precursor cells prepared, in vitro, from pluripotent stem cells.
  • the hydrogel obtained is in the form of a visco-elastic and translucent block, the capacity and resistance of which depend in particular on the concentration of chitosan in the initial solution. .
  • this concentration is 0.5 to 4%.
  • the block of chitosan hydrogel is cut into small fragments whose external dimensions are of the order of a few millimeters. These fragments are placed in the wells of a multi-well plate or possibly in the inserts fitted to such a plate.
  • the chondrogenic cells are introduced in the form of a suspension and mixed delicately with the hydrogel fragments. The whole is covered with an appropriate culture medium. It is found that the chondrogenic cells spontaneously adhere to the outer surface of the hydrogel fragments and do not fall into the bottom of the wells.
  • the cultivation is carried out by placing the plates thus garnished in an atmosphere of 10% CO 2 at 37 ° C.
  • the nutrition medium is renewed twice a week.
  • the cultivation continues for a variable time which can range from 2 to 6 weeks depending on the size desired for the cartilage neo-tissue which forms on contact with the chitosan hydrogel.
  • the degree of acetylation between 30 and 70%, but preferably between 40 and 60% induces optimal amphiphilic conditions favorable to the establishment of an environment conducive to the synthesis of the cartilage neo-tissue. Indeed, by increasing the degree of acetylation, one contributes to reinforcing the hydrophobic interactions due to the N-acetamide functions. Simultaneously, the cationicity of the residual ane sites is also increased, thereby strengthening their hydrophilic nature and their ability to create electrostatic interactions. All these conditions are favorable for the establishment of interactions with the proteoglycans of the extracellular matrix neo-formed by the chondrogenic cells.
  • the pH conditions are favorable to the action of enzymes, for example the lysosyme, secreted by the chondrocytes and allowing the degradation by hydrolysis of glycosuric bonds constituting the chitosan chain.
  • the chondrocytes multiply and simultaneously synthesize an important matrix which accumulates around the cells and gradually replaces or covers the chitosan hydrogel. It is also possible to follow the formation of this cartilage neo-tissue depending on the culture time.
  • the chondrogenic cells adhere to the hydrogel without ever penetrating it, they secrete matrix proteins of the collagen type and proteo- glycans which accumulate around the cells and form a denser layer along the hydrogel, between the cells and the hydrogel which retains its original appearance.
  • the chondrogenic cells multiply from the cells bordering the hydrogel and the matrix proteins continue to accumulate.
  • the structure of the hydrogel changes gradually taking on colors which are specific for collagen proteins and proteoglycans.
  • a block of neoformed tissue is obtained at the end of the culture, consisting of several colonies of cells organized in more or less parallel rows and having a cell maturation gradient which is oriented from the junction zone of the cells with the hydrogel towards its periphery. .
  • the messenger RNAs of collagen II, agrecane, biglycan and decorin are expressed when those of collagen I are not detectable.
  • the proteoglycans were extracted from the neo-tissue with guanidine chloride 4M, purified and analyzed by chromatography on a column of sepharose 2B. The elution profiles obtained show that the cells have synthesized and secreted proteoglycans which have gathered in the matrix in the form of high molecular weight aggregates, with a profile similar to those synthesized and secreted in vivo.
  • the chondrogenic cells have been spread, in the form of a sheet, between layers of hydrogel, each layer having a thickness of the order of a few millimeters.
  • four layers of cells have been spread in combination with three layers of hydrogel, namely two layers respectively on the outer faces of the first and third layers of hydrogel and two layers sandwiched between the first and the second respectively.
  • second layer and the second and third hydrogel layer are two layers respectively on the outer faces of the first and third layers of hydrogel and two layers sandwiched between the first and the second respectively.
  • the cells were cultured under the same conditions as above and the same observations were made as regards the formation of a cartilage neo-tissue.
  • the cell colonies which have formed either from the cells in contact with the outer face of the first and third layers of hydrogel or from the cells spread between two layers of hydrogel all have a morphological gradient similar to that which has been described above.
  • the hydrogel layers, inserted between the layers of cells, have disappeared and are replaced by a very alkyanophilic fibrillar structure whose thickness corresponds approximately to the superposition of two to three layers of cells. It is understood that this last variant using a superposition of layers of chitosan hydrogel and chondrogenic cells makes it possible very easily to obtain a larger cartilage neo-tissue.
  • the cartilaginous neo-tissue which is obtained according to the method of the invention is capable of being grafted as it is for the repair of cartilaginous, meniscal or intervertebral disc lesions, notably lesions of size important.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Public Health (AREA)
  • Dermatology (AREA)
  • Veterinary Medicine (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Cell Biology (AREA)
  • Botany (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Rheumatology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Dispersion Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention concerns the preparation of a cartilaginous neo-tissue capable of being grafted. The method consists in: a) culturing chondrogenic cells, which are either autologous chondrocytes or cells precursors of chondrocytes prepared in vitro from pluripotent stem cells; b) contacting said chondrogenic cells with a chitosan hydrogel, having preferably a degree of acetylation ranging between 40 and 60 %, whereof the amphiphilic properties and the degree of acetylation is such that said cells adhere naturally to the outer surface of said hydrogel; c) covering the hydrogel/cell assembly thus obtained with a culture medium; and d) allowing a cartilaginous neo-tissue to develop in contact with the chitosan hydrogel during a minimum period of two weeks, frequently renewing the culture medium.

Description

PROCEDE DE PREPARATION D'UN NEO-TISSU CARTILAGINEUX PROCESS FOR THE PREPARATION OF A CARTILAGINOUS NEO-TISSUE
La présente invention concerne le domaine de la réparation des lésions cartilagineuses par mise en œuvre d'un greffon. Elle concerne plus particulièrement un procédé de préparation d'un néo-tissu cartilagineux greffable.The present invention relates to the field of repairing cartilage lesions by the implementation of a graft. It relates more particularly to a process for the preparation of a graftable cartilage tissue.
Le cartilage est un tissu d'origine mésenchymateuse constitué d'un faible pourcentage de chondrocytes réparties au sein d'une matrice extra-cellulaire dont elles assurent le renouvellement. Cette matrice est composée d'un réseau de fibres de collagène notamment de type 11 et de glycosaminoglycanes associés à des protéines de structure pour former des protéoglycanes. L'ensemble par sa nature amphiphile et ses sites ioniques forme un gel physique assurant les propriétés viscoélastiques du tissu cartilagineux.Cartilage is a tissue of mesenchymal origin consisting of a small percentage of chondrocytes distributed within an extracellular matrix which they ensure renewal. This matrix is composed of a network of collagen fibers, in particular type 11, and glycosaminoglycans associated with structural proteins to form proteoglycans. The whole by its amphiphilic nature and its ionic sites forms a physical gel ensuring the viscoelastic properties of the cartilaginous tissue.
Le tissu cartilagineux disparaît à l'âge adulte sauf au niveau des articulations , où son rôle est d'assurer le mouvement des surfaces articulaires et de supporter des charges compressives importantes. Le cartilage articulaire n'est cependant pas capable de se régénérer spontanément. C'est pourquoi en cas de lésions cartilagineuses on a recours aux techniques de greffe, telles que la greffe en mosaïque ou la greffe de cellules autologues.The cartilage tissue disappears in adulthood except at the level of the joints, where its role is to ensure the movement of the articular surfaces and to support significant compressive loads. Joint cartilage is however not able to regenerate spontaneously. This is why in case of cartilage lesions recourse is had to transplant techniques, such as mosaic grafting or grafting of autologous cells.
La greffe en mosaïque consiste à effectuer des prélèvements d'os recouverts de cartilage dans des régions non portantes et à les greffer au niveau de la lésion.Mosaic grafting involves taking samples of bone covered with cartilage in non-bearing regions and grafting them at the level of the lesion.
La greffe de cellules autologues consiste à effectuer un prélèvement de cartilage sain, à le soumettre à une digestion enzymatique afin de libérer les chondrocytes de la matrice extra cellulaire, à faire se multiplier les chondrocytes ex-vivo jusqu'à obtention d'un nombre suffisant de chondrocytes , lesquels sont ensuite réimplantés au niveau de la lésion cartilagineuse. Les chondrocytes se présentant sous forme d'une suspension cellulaire en milieu aqueux (dispersion dans un milieu liquide), il faut d'abord recouvrir la lésion préalablement débridée par une membrane faite de périoste suturé de façon étanche au bord du cartilage puis injecter dans la cavité ainsi créée la suspension (dispersion contenant la culture) de chondrocytes. Après un certain temps , ces cellules produisent une matrice extra-cellulaire qui n'a toutefois pas l'organisation tissulaire du cartilage articulaire normal.Autologous cell transplantation consists of taking a sample of healthy cartilage, subjecting it to an enzymatic digestion in order to free the chondrocytes from the extra cellular matrix, making the chondrocytes multiply ex-vivo until a sufficient number is obtained. chondrocytes, which are then reimplanted in the cartilage lesion. Chondrocytes in the form of a cell suspension in aqueous medium (dispersion in a liquid medium), first cover the previously unbridled lesion with a membrane made of periosteum sutured tightly at the edge of the cartilage and then inject the suspension (dispersion containing the culture) into the cavity thus created chondrocytes. After a certain time, these cells produce an extra-cellular matrix which does not however have the tissue organization of normal articular cartilage.
Il est à noter que le mode de multiplication des chondrocytes à implanter doit être déterminé en sorte d'éviter une dédifférenciation des cellules . En particulier si l'on fait proliférer des chondrocytes sur un support (polymère synthétique) comme celui du fond des boîtes de cultures cellulaires, les chondrocytes se dédifférencient en cellules fibroblastiques. Elles sont alors fusiformes au lieu d'être polygonales comme des chondrocytes et synthétisent du collagène I au lieu du collagène II.It should be noted that the mode of multiplication of the chondrocytes to be implanted must be determined so as to avoid a dedifferentiation of the cells. In particular if chondrocytes are made to proliferate on a support (synthetic polymer) like that of the bottom of the cell culture dishes, the chondrocytes become differentiated into fibroblastic cells. They are then spindle-shaped instead of being polygonal like chondrocytes and synthesize collagen I instead of collagen II.
On a déjà proposé, dans le document WO.00/56251 de faire se multiplier des cellules , parmi lesquelles des chondrocytes humains , sur des billes de polysaccharides biodégradables et réticulées par des polyamines . Les polysaccharides sont choisis notamment parmi les composés suivants : dextrane, cellulose, arabinogalactane, pullulane et amylose. L'agent de réticulation est par exemple l'acide glutamique, la lysine , l'albumine ou la gélatine.It has already been proposed in document WO.00 / 56251 to make cells, including human chondrocytes, multiply on biodegradable polysaccharide beads crosslinked with polyamines. The polysaccharides are chosen in particular from the following compounds: dextran, cellulose, arabinogalactan, pullulan and amylose. The crosslinking agent is for example glutamic acid, lysine, albumin or gelatin.
Selon ce document , après avoir été mis en contact avec lesdites billes de polymère sous agitation mécanique, les chondrocytes se multiplient en gardant leur forme et leur phénotype , et synthétisent tout particulièrement du collagène II.According to this document, after being brought into contact with said polymer beads under mechanical agitation, the chondrocytes multiply while keeping their shape and their phenotype, and synthesize very particularly collagen II.
Après cette multiplication, les chondrocytes sont récupérés en digérant les billes de polysaccharides à l'aide d'enzymes spécifiques, par exemple la dextranase , qui n'altèrent pas les cellules chondrocytaires. Lesdites cellules sont ensuite détachées pour être incluses dans une matrice de chitosane. Pour ce faire des chondrocytes sont ajoutés à une solution acide de chitosane , puis le mélange est agité jusqu'à la formation d'une structure tridimensionnelle que l'on place dans une solution de soude 1 N en sorte d'obtenir la précipitation du chitosane en quelques minutes. La soude est ensuite rapidement éliminée puis le conglomérat de chitosane et de cellules est mis en culture à 37°C, 5% de C02 pendant une durée déterminée.After this multiplication, the chondrocytes are recovered by digesting the polysaccharide beads using specific enzymes, for example dextranase, which do not damage the chondrocytic cells. Said cells are then detached to be included in a chitosan matrix. To do this, chondrocytes are added to an acidic solution of chitosan, then the mixture is stirred until the formation of a three-dimensional structure which is placed in a 1N sodium hydroxide solution so as to obtain the precipitation of the chitosan. in a few minutes. The sodium hydroxide is then quickly eliminated and the conglomerate of chitosan and cells is cultured at 37 ° C., 5% CO 2 for a determined period.
Ainsi selon ce document WO.OO/56251, les chondrocytes mélangés avec le chitosane sont incorporés, inclus dans la structure tridimensionnelle du chitosane précipité, laquelle structure aurait une consistance ferme ressemblant à la texture du cartilage.Thus according to this document WO.OO / 56251, the chondrocytes mixed with the chitosan are incorporated, included in the three-dimensional structure of the precipitated chitosan, which structure would have a firm consistency resembling the texture of cartilage.
Dans le document WO.OO/56251 est prévue une autre variante possible au niveau de la première étape de multiplication des chondrocytes à savoir de faire multiplier lesdites cellules sur un film de chitosane. Les deux autres étapes restent identiques , la seconde consistant à extraire les chondrocytes ainsi multipliés par digestion enzymatique par la collagénase ou par la trypsine et la troisième étape consistant à incorporer, à inclure lesdites chondrocytes dans une matrice tri-dimensionnelle de chitosane, dans les mêmes conditions que ci-dessus.In document WO.OO / 56251, another possible variant is provided for at the level of the first step of multiplying chondrocytes, namely making the said cells multiply on a film of chitosan. The other two stages remain identical, the second consisting in extracting the chondrocytes thus multiplied by enzymatic digestion with collagenase or with trypsin and the third stage consisting in incorporating, including said chondrocytes in a three-dimensional matrix of chitosan, in the same conditions as above.
Le demandeur émet des doutes que les chondrocytes puissent encore être viables après avoir été soumis successivement à un milieu acide puis à un milieu fortement basique , comme cela est enseigné dans le document WO.00/56251 pour la précipitation du chitosane autour desdites cellulesThe applicant expresses doubts that the chondrocytes may still be viable after having been successively subjected to an acid medium and then to a strongly basic medium, as taught in document WO.00 / 56251 for the precipitation of chitosan around said cells.
Le chitosane est obtenu par désacétylation de la chitine, biopolymère le plus répandu dans la nature après la cellulose. La chitine peut être extraite de l'exosquelette de certains crustacés tels que le homard, le crabe ou de l'endosquelette de calamar, par exemple. La chitine et le chitosane sont constitués des deux mêmes unités monomères , le N-acétylD glucosamine et le D-glucosamine. Lorsque le polymère est fortement acétylé , c'est-à-dire lorsqu'il comprend plus de 60% de N-acétyl-D-glucosamine, il est appelé chitine. Tous deux sont biodégradables, biorésorbables et compatibles avec les tissus vivants.Chitosan is obtained by deacetylation of chitin, the most widespread biopolymer in nature after cellulose. Chitin can be extracted from the exoskeleton of certain crustaceans such as lobster, crab or the squid endoskeleton, for example. The chitin and chitosan consist of the same two monomer units, N-acetylD glucosamine and D-glucosamine. When the polymer is strongly acetylated, that is to say when it comprises more than 60% of N-acetyl-D-glucosamine, it is called chitin. Both are biodegradable, bioresorbable and compatible with living tissue.
Le chitosane est connu pour avoir une activité biostimulante sur la reconstitution des tissus. Il est cependant généralement utilisé en association avec d'autres éléments. Par exemple dans le document W0.96/O2259 , le chitosane est combiné avec un autre polysaccharide pour former un agent de stimulation de la régénération des tissus durs au niveau d'un site d'intégration d'un implant, par exemple en titane.Chitosan is known to have a biostimulatory activity on the reconstitution of tissues. It is however generally used in combination with other elements. For example in document W0.96 / O2259, the chitosan is combined with another polysaccharide to form an agent for stimulating the regeneration of hard tissue at an integration site of an implant, for example made of titanium.
Par exemple dans le document WO.99/47186, le chitosane est réticulé avec un glycosaminoglycane pour constituer un environnement biochimique proche du tissu cartilagineux , stimulant la croissance cellulaire.For example in document WO.99 / 47186, the chitosan is crosslinked with a glycosaminoglycan to constitute a biochemical environment close to the cartilaginous tissue, stimulating cell growth.
Le procédé de la présente invention s'apparente au document WO.OO/56251 en ce qu'il met en œuvre du chitosane qui n'est associé à aucun autre constituant . Cependant il s'en distingue par le fait qu'il ne nécessite pas trois opérations successives.The process of the present invention is similar to document WO.OO / 56251 in that it uses chitosan which is not associated with any other constituent. However, it is distinguished by the fact that it does not require three successive operations.
Le procédé de la présente invention concerne la préparation d'un néo-tissu cartilagineux greffable. Il consiste : a) à mettre en culture des cellules chondrogéniques , qui sont soit des chondrocytes autologues soit des cellules précurseurs de chondrocytes préparés in vitro à partir de cellules souches pluripotentes, b) à mettre lesdites cellules chondrogéniques en contact avec la surface extérieure d'un hydrogel fait exclusivement de chitosane dont les propriétés d'amphiphilie et le degré d'acétylation sont tels que lesdites cellules adhèrent naturellement à ladite surface extérieure, c) à recouvrir l'ensemble hydrogel/cellules ainsi obtenu par un milieu de culture et, d) à laisser se développer un néo-tissu cartilagineux au contact de la surface de l'hydrogel de chitosane, et sans pénétration des cellules pendant une durée minimale de deux semaines, en renouvelant fréquemment le milieu de culture. Ainsi, au contraire de ce qui est proposé dans le document WO.00/56251, le processus d'amplification des cellules chondrogéniques se fait soit de façon spontanée au contact de la surface extérieure de l'hydrogel de chitosane, soit après amplification préalable dans les conditions classiques de culture à haute densité. De plus la formation de la matrice extra-cellulaire se fait de façon simultanée, en présence de l'hydrogel de chitosane.The process of the present invention relates to the preparation of a graftable cartilage neo-tissue. It consists of: a) culturing chondrogenic cells, which are either autologous chondrocytes or chondrocyte precursor cells prepared in vitro from pluripotent stem cells, b) bringing said chondrogenic cells into contact with the outer surface of a hydrogel made exclusively of chitosan whose amphiphilic properties and degree acetylation are such that said cells adhere naturally to said outer surface, c) to cover the hydrogel / cells thus obtained with a culture medium and, d) to allow the development of a cartilage neo-tissue in contact with the surface of chitosan hydrogel, and without penetration of the cells for a minimum period of two weeks, by frequently renewing the culture medium. Thus, contrary to what is proposed in document WO.00 / 56251, the process of amplification of chondrogenic cells takes place either spontaneously in contact with the external surface of the chitosan hydrogel, or after prior amplification in conventional high-density growing conditions. In addition, the formation of the extracellular matrix takes place simultaneously, in the presence of the chitosan hydrogel.
L'adhésion naturelle des cellules à la surface extérieure de l'hydrogel de chitosane permet d'obtenir une très bonne répartition desdites cellules et évite la perte de cellules lors de l'opération, par exemple lorsque celle-ci est réalisée dans des puits de culture. L'hydrogel de chitosane joue un rôle d'inducteur sur le phénotype des cellules chondrogéniques, lesquelles prolifèrent sans se dédifférencier, tout en conservant leur phénotype chondrocytaire et leur potentiel de maturation cellulaire.The natural adhesion of the cells to the external surface of the chitosan hydrogel makes it possible to obtain a very good distribution of said cells and avoids the loss of cells during the operation, for example when the latter is carried out in wells. culture. The chitosan hydrogel plays an inducing role on the phenotype of chondrogenic cells, which proliferate without being indifferentiated, while retaining their chondrocyte phenotype and their cell maturation potential.
Il est à noter que les cellules chondrogéniques ne pénètrent pas directement à l'intérieur de l'hydrogel, celui-ci ayant une taille de pores (en surface et dans la masse) insuffisante au regard de la taille desdites cellules. L'hydrogel de chitosane est progressivement métabolisé et/ou remplacé et/ou envahi par les protéines matricielles de type cartilage, qui sont néo-synthétisées par les chondrocytes. Après au moins deux semaines de culture , l'ensemble - constitué par les chondrocytes et la matrice extra-cellulaire - réalise un néo-tissu cartilagineux qui peut être greffé en l'état, l'hydrogel de chitosane qui sert transitoirement de support à ce néo-tissu cartilagineux étant en partie ou en totalité biodégradé, et ne participant pas à la greffe, contrairement à ce qui est prévu dans les documents WO.OO/56251 et WO.99/47186 dans lesquels c'est la structure tridimensionnelle dans laquelle sont incluses les chondrocytes qui fait office de greffe.It should be noted that the chondrogenic cells do not penetrate directly inside the hydrogel, the latter having a pore size (at the surface and in the mass) insufficient with regard to the size of said cells. Chitosan hydrogel is gradually metabolized and / or replaced and / or invaded by matrix proteins of cartilage type, which are neo-synthesized by chondrocytes. After at least two weeks of culture, the whole - consisting of the chondrocytes and the extra-cellular matrix - produces a cartilaginous neo-tissue which can be grafted as it is, the chitosan hydrogel which temporarily serves as a support for this cartilaginous neo-tissue being partially or wholly biodegraded, and not participating in the graft, contrary to what is provided in documents WO.OO / 56251 and WO.99 / 47186 in which it is the three-dimensional structure in which the chondrocytes are included which acts as a graft.
Le degré d'acétylation du chitosane , mis en œuvre pour la préparation de l'hydrogel , est compris entre 30 et 70% ; de préférence celui-ci est compris entre 40 et 60%.The degree of acetylation of chitosan, used for the preparation of the hydrogel, is between 30 and 70%; preferably this is between 40 and 60%.
Selon une première variante de réalisation, les cellules chondrogéniques sont mises en contact avec la surface extérieure de l'hydrogel de chitosane qui se présente sous la forme de petites particules de quelques millimètres. Selon une seconde variante de réalisation , les cellules chondrogéniques sont étalées sous forme d'au moins une nappe entre au moins deux couches d'hydrogel de chitosane, chaque couche faisant de l'ordre de quelques millimètres d'épaisseur. Cette disposition particulière permet d'obtenir très facilement un néo-tissu cartilagineux de grande dimension, après totale disparition de l'hydrogel de chitosane.According to a first alternative embodiment, the chondrogenic cells are brought into contact with the outer surface of the chitosan hydrogel which is in the form of small particles of a few millimeters. According to a second alternative embodiment, the chondrogenic cells are spread in the form of at least one layer between at least two layers of chitosan hydrogel, each layer being of the order of a few millimeters thick. This particular arrangement makes it very easy to obtain a large cartilage neo-tissue, after complete disappearance of the chitosan hydrogel.
Le néo-tissu de cartilage formé grâce au procédé de l'invention se caractérise en ce qu'il est constitué de rangées de cellules plus ou moins parallèles, présentant un gradient de maturation cellulaire orienté depuis une zone déterminée vers sa périphérie, la zone déterminée correspondant à la zone de jonction des cellules avec l'hydrogel de chitosane. Lorsque ce néo-tissu est analysé en histologie, son aspect morphologique est proche d'un tissu cartilagineux normal . La présente invention sera mieux comprise à la lecture de la description qui va être faite de plusieurs exemples de préparation d'un néo-tissu cartilagineux mettant en œuvre comme support d'amplification un hydrogel de chitosane dont le degré d'acétylation est compris entre 40 et 60%.The neo-cartilage tissue formed by the process of the invention is characterized in that it consists of more or less parallel rows of cells, having a cell maturation gradient oriented from a determined zone towards its periphery, the determined zone. corresponding to the junction area of the cells with the chitosan hydrogel. When this neo-tissue is analyzed in histology, its morphological appearance is close to a normal cartilage tissue. The present invention will be better understood on reading the description which will be given of several examples of preparation. of a cartilaginous neo-tissue using as an amplification support a chitosan hydrogel whose degree of acetylation is between 40 and 60%.
PURIFICATION ni,) CHITOSANF Le chitosane de référence utilisé est obtenu à partir d'endo- squelettes de calamars. Il a un degré d'acétylation de 5,2%. Il est tout d'abord purifié afin d'éliminer les particules non solubles , en mettant en œuvre les étapes suivantes : mise en solution, filtration, précipitation, lavage et lyophilisation. Pour sa mise en solution, on prépare une solution de faible viscosité , avec une concentration de l'ordre de O,5% en poids de chitosane dans une solution acide. Plus précisément l'acide acétique est mis en quantité stoechiométrique par rapport aux groupements aminé du chitosane. La solution de polymère est filtrée par passages successifs sur des membranes de porosités décroissantes (1,2 ; 0,8 et 0,45 μm) sous une pression maximale de 3 bars.PURIFICATION ni,) CHITOSANF The reference chitosan used is obtained from endoskeletons of squid. It has an acetylation degree of 5.2%. It is first of all purified in order to remove the insoluble particles, by implementing the following stages: dissolution, filtration, precipitation, washing and lyophilization. For its dissolution, a solution of low viscosity is prepared, with a concentration of the order of 0.5% by weight of chitosan in an acid solution. More specifically, acetic acid is put in a stoichiometric amount relative to the amino groups of chitosan. The polymer solution is filtered by successive passages on membranes of decreasing porosity (1.2; 0.8 and 0.45 μm) under a maximum pressure of 3 bars.
Le polymère est précipité en remontant le pH de la solution par ajout d'une solution d'ammoniaque concentrée , sous agitation. Plusieurs opérations de lavage sont ensuite nécessaires pour diminuer le pH de la suspension en éliminant l'ammoniaque en excès. Après chaque lavage la suspension est centrifugée et le culot récupéré. Le lavage intervient jusqu'à stabilisation du pH de l'eau de lavage à une valeur qui est fonction du degré d'acétylation. La lyophilisation permet d'obtenir le chitosane sous forme solide.The polymer is precipitated by raising the pH of the solution by adding a concentrated ammonia solution, with stirring. Several washing operations are then necessary to lower the pH of the suspension by eliminating the excess ammonia. After each washing, the suspension is centrifuged and the pellet recovered. Washing takes place until the pH of the washing water stabilizes at a value which is a function of the degree of acetylation. Lyophilization makes it possible to obtain the chitosan in solid form.
ACFTYI ATION ni l CHITOSANF Le chitosane est ensuite réacétylé pour obtenir le degré d'acétylation désiré. Cette réacétylation est réalisée par réaction de la fonction aminé avec l'anhydride acétique en milieu hydro-alcoolique. Le rapport entre le nombre des fonctions aminés et le nombre de molécules d'anhydride présent en solution détermine le degré d'acétylation du chitosane produit. Pour un chitosane ayant un degré d'acétylation donné , on met en œuvre une solution hydro-alcoolique qui comprend , outre le chitosane , de I' eau , du 1,2-propanadiol et la quantité nécessaire d'acide acétique pour avoir une quantité stoechiométrique par rapport aux fonctions aminés du chitosane. Dans un exemple précis de réalisation, la solution hydro-alcoolique comprenait 3g de chitosane , 323 g d'eau et de 272 g de 1,2- propanadiol. Le mélange acétylant comprend l'anhydride acétique et du propanediol. Par exemple pour 62,38 g de propanediol, le mélange comprenait 1 ,26ml d'anhydride acétique pour obtenir un degré d'acétylation du chitosane de 50% et 1,62ml d'anhydride acétique pour obtenir un degré d'acétylation de 6O%.ACFTYI ATION ni l CHITOSANF The chitosan is then re-acetylated to obtain the desired degree of acetylation. This reacetylation is carried out by reaction of the amino function with acetic anhydride in a hydro-alcoholic medium. The ratio between the number of amino functions and the number of anhydride molecules present in solution determines the degree of acetylation of the chitosan produced. For a chitosan having a given degree of acetylation, a hydroalcoholic solution is used which comprises, in addition to chitosan, water, 1,2-propanadiol and the necessary quantity of acetic acid to have a quantity stoichiometric with respect to the amino functions of chitosan. In a specific embodiment, the hydro-alcoholic solution included 3 g of chitosan, 323 g of water and 272 g of 1,2-propanadiol. The acetylating mixture comprises acetic anhydride and propanediol. For example, for 62.38 g of propanediol, the mixture included 1.26 ml of acetic anhydride to obtain a degree of acetylation of chitosan of 50% and 1.62 ml of acetic anhydride to obtain a degree of acetylation of 60% .
FORMATION DF l 'HYπROGFI PHYSIQUF RF CHITOSANF Cette formation nécessite le passage d'un état liquide à un état de gel. Ce passage correspond à une situation antérieure (état liquide) où les interactions hydrophiles dominent à une situation postérieure (état d'hydrogel) où les interactions hydrophobes deviennent suffisamment fortes pour qu'il n'y ait plus dissolution sans toutefois être assez fortes pour provoquer la complète précipitation du polymère. Le mode de préparation préféré , selon l'invention , part d'une solution initiale de chitosane. Si nécessaire, selon le degré d'acétylation, il s'agira d'une solution acide, le c hitosane étant mis en solution dans de l'acide chlorhydrique en quantité stoechiométrique avec les groupements aminés du chitosane. Après dissolution complète du chitosane, un certain volume de 1,2 propanediol est ajouté goutte à goutte à la solution qui est ensuite dégazée sous vide pendant une durée d'environ une heure. La solution est ensuite versée dans un récipient permettant d'avoir un grand rapport surface libre sur volume et est mise en étuve à 45°C pendant le temps nécessaire à sa prise en gel. Ainsi la formation de l'hydrogel de chitosane est obtenue par un processus physico-chimique. Il ne s'agit pas d'un précipité mais d'un véritable hydrogel physique , qui est un matériau viscoélastique ne contenant que du chitosane et plus de 90% d'eau. Contrairement à un précipité , un tel hydrogel ne se disloque pas par agitation ou dilution.FORMATION DF the HYπROGFI PHYSIQUF RF CHITOSANF This formation requires the passage from a liquid state to a state of gel. This passage corresponds to an anterior situation (liquid state) where the hydrophilic interactions dominate to a posterior situation (hydrogel state) where the hydrophobic interactions become strong enough so that there is no more dissolution without however being strong enough to cause complete precipitation of the polymer. The preferred preparation method, according to the invention, starts with an initial solution of chitosan. If necessary, depending on the degree of acetylation, it will be an acid solution, the c hitosane being dissolved in hydrochloric acid in stoichiometric amount with the amino groups of chitosan. After complete dissolution of the chitosan, a certain volume of 1.2 propanediol is added dropwise to the solution which is then degassed under vacuum for a period of approximately one hour. The solution is then poured into a container allowing a large free surface to volume ratio and is placed in an oven at 45 ° C. for the time necessary for it to gel. Thus the formation of the chitosan hydrogel is obtained by a physicochemical process. It is not a precipitate but a real physical hydrogel, which is a viscoelastic material containing only chitosan and more than 90% water. Unlike a precipitate, such a hydrogel does not break up by stirring or dilution.
Pour obtenir un hydrogel qui ne soit pas soluble dans l'eau à des pH de l'ordre de 6 ou 7, on réalise une neutralisation de l'hydrogel ainsi obtenu par passage pendant environ une heure en milieu basique , par exemple de la soude O,1 molaire.To obtain a hydrogel which is not soluble in water at pHs of the order of 6 or 7, neutralization of the hydrogel thus obtained is carried out for approximately one hour in basic medium, for example sodium hydroxide. O, 1 molar.
La diminution du nombre de charges positives dues à l'augmentation du pH favorise les interactions hydrophobes et la formation de liaisons hydrogène,et donc la stabilité du gel. On procède ensuite à un lavage de l'hydrogel pour éliminer l'alcool et obtenir un pH d'environ 7. C'est cet hydrogel de chitosane ,lavé,qui sera mis en œuvre pour la mise en culture des cellules chondrogéniques. || est à noter que la prise en gel correspond à un rapport solution aqueuse / 1-2 propanediol déterminé , rapport qui dépend du degré d'acétylation du chitosane. De plus , la gélification s'accompagnant d'une perte en eau , il importe que les conditions opératoires favorisent cette évaporation de l'eau. Plusieurs types de récipients peuvent être utilisés lors de la gélification, que ce soit des boîtes de pétri , des boîtes multi-puits ou encore des inserts spécialement conçus pour être logés dans les puits de boîtes multi-puits. Par exemple on met en œuvre une plaque de 24 puits équipés d'inserts, chaque insert étant constitué d'un cône en plastique dont le fond est formé d'une membrane perméable au liquide de nutrition et qui est agencé pour être déposé dans chaque puits sans en toucher le fond.The decrease in the number of positive charges due to the increase in pH promotes hydrophobic interactions and the formation of hydrogen bonds, and therefore the stability of the gel. The hydrogel is then washed to remove the alcohol and obtain a pH of approximately 7. It is this chitosan hydrogel, washed, which will be used for the cultivation of the chondrogenic cells. || it should be noted that the gel setting corresponds to a determined aqueous solution / 1-2 propanediol ratio, a ratio which depends on the degree of acetylation of the chitosan. In addition, the gelation being accompanied by a loss of water, it is important that the operating conditions favor this evaporation of the water. Several types of containers can be used during gelation, whether they are petri dishes, multi-well dishes or inserts specially designed to be housed in the wells of multi-well dishes. For example, a 24-well plate equipped with inserts is used, each insert consisting of a plastic cone, the bottom of which is formed by a membrane permeable to nutrition liquid and which is arranged to be deposited in each well without touching the bottom thereof.
MISF FN ΓUI TNRFMISF FN ΓUI TNRF
Les cellules chondrogéniques peuvent être des chondrocytes autologues ou des cellules précurseurs de chondrocytes préparées , in vitro , à partir de cellules souches pluripotentes.The chondrogenic cells can be autologous chondrocytes or chondrocyte precursor cells prepared, in vitro, from pluripotent stem cells.
Quel que soit le récipient utilisé pour la formation de l'hydrogel, l'hydrogel obtenu se présente sous la forme d'un bloc visco-élastique et translucide, dont la capacité et la résistance dépendent notamment de la concentration en chitosane de la solution initiale. De préférence , cette concentration est de O,5 à 4%. Pour la mise en culture des cellules chondrogéniques , il est tout d'abord nécessaire d'augmenter la surface de mise en contact entre l'hydrogel de chitosane et lesdites cellules. Pour cela selon une première variante , le bloc d'hydrogel de chitosane est découpé en petits fragments dont les dimensions extérieures sont de l'ordre de quelques millimètres. Ces fragments sont disposés dans les puits d'une plaque multi-puits ou éventuellement dans les inserts équipant une telle plaque. Les cellules chondrogéniques sont introduites sous forme de suspension et mélangées délicatement aux fragments d'hydrogel . L'ensemble est recouvert d'un milieu de culture approprié. On constate que les cellules chondrogéniques adhèrent spontanément à la surface extérieure des fragments d'hydrogel et ne tombent pas dans le fond des puits. La mise en culture est effectuée en mettant les plaques ainsi garnies dans une atmosphère de 10% de C02 à 37°C. Le milieu de nutrition est renouvelé deux fois par semaine. La culture se poursuit pendant un temps variable qui peut aller de 2 à 6 semaines selon la taille souhaitée pour le néo-tissu cartilagineux qui se forme au contact de l'hydrogel de chitosane. II faut choisir une proportion ou ratio : « nombre de cellules/fragment de l'hydrogel de chitosane » de façon à éviter le plus possible que certaines cellules ne tombent au fond du puits. Dans un exemple précis de réalisation, on a placé 5.105 cellules chondrogéniques pour une trentaine de fragments d'hydrogel de chitosane par insert ou 1 à 3.106 cellules chondrogéniques pour une centaine de fragments d'hydrogel de chitosane par puits, non équipé d'insert.Whatever the container used for the formation of the hydrogel, the hydrogel obtained is in the form of a visco-elastic and translucent block, the capacity and resistance of which depend in particular on the concentration of chitosan in the initial solution. . Preferably, this concentration is 0.5 to 4%. For the cultivation of chondrogenic cells, it is first of all necessary to increase the surface of contact between the chitosan hydrogel and said cells. For this, according to a first variant, the block of chitosan hydrogel is cut into small fragments whose external dimensions are of the order of a few millimeters. These fragments are placed in the wells of a multi-well plate or possibly in the inserts fitted to such a plate. The chondrogenic cells are introduced in the form of a suspension and mixed delicately with the hydrogel fragments. The whole is covered with an appropriate culture medium. It is found that the chondrogenic cells spontaneously adhere to the outer surface of the hydrogel fragments and do not fall into the bottom of the wells. The cultivation is carried out by placing the plates thus garnished in an atmosphere of 10% CO 2 at 37 ° C. The nutrition medium is renewed twice a week. The cultivation continues for a variable time which can range from 2 to 6 weeks depending on the size desired for the cartilage neo-tissue which forms on contact with the chitosan hydrogel. You have to choose a proportion or ratio: "number of cells / chitosan hydrogel fragment "to minimize the risk of some cells falling to the bottom of the well. In a specific embodiment, 5.10 5 chondrogenic cells were placed for about thirty chitosan hydrogel fragments per insert or 1 to 3.10 6 chondrogenic cells for a hundred chitosan hydrogel fragments per well, not equipped with insert.
Le degré d'acétylation, compris entre 30 et 70% , mais de préférence entre 40 et 60% induit des conditions d'amphiphilie optimales favorables à l'établissement d'un environnement propice à la synthèse du néo-tissu cartilagineux . En effet , en augmentant le degré d 'acetylation , on contribue à renforcer les interactions hydrophobes dues aux fonctions N-acétamides. Simultanément , on accroît aussi la cationicité des sites a iné résiduels , renforçant par là- même leur caractère hydrophile et leur aptitude à créer des interactions électrostatiques. Toutes ces conditions sont favorables à l'établissement d'interactions avec les protéoglycanes de la matrice extracellulaire néo-formés par les cellules chondrogéniques.The degree of acetylation, between 30 and 70%, but preferably between 40 and 60% induces optimal amphiphilic conditions favorable to the establishment of an environment conducive to the synthesis of the cartilage neo-tissue. Indeed, by increasing the degree of acetylation, one contributes to reinforcing the hydrophobic interactions due to the N-acetamide functions. Simultaneously, the cationicity of the residual ane sites is also increased, thereby strengthening their hydrophilic nature and their ability to create electrostatic interactions. All these conditions are favorable for the establishment of interactions with the proteoglycans of the extracellular matrix neo-formed by the chondrogenic cells.
De plus les conditions de pH, de l'ordre de 7 sont favorables à l'action d'enzymes , par exemple le lysosyme, sécrété par les chondrocytes et permettant la dégradation par hydrolyse de liaisons glycosuriques constituant la chaîne du chitosane.In addition, the pH conditions, of the order of 7, are favorable to the action of enzymes, for example the lysosyme, secreted by the chondrocytes and allowing the degradation by hydrolysis of glycosuric bonds constituting the chitosan chain.
Dans les conditions indiquées ci-dessus, les chondrocytes se multiplient et synthétisent simultanément une matrice importante qui s'accumule autour des cellules et remplace ou recouvre progressivement l'hydrogel de chitosane. Il est d'ailleurs possible de suivre la formation de ce néo-tissu cartilagineux en fonction du temps de culture. Au stade précoce de la culture, les cellules chondrogéniques adhèrent à l'hydrogel sans jamais le pénétrer , elles sécrètent des protéines matricielles du type collagène et protéo- glycanes qui s 'accumulent autour des cellules et qui forment une couche plus dense le long de l'hydrogel, entre les cellules et l'hydrogel qui conserve son aspect initial. Lorsque la culture se poursuit , notamment pendant de quatre à six semaines , les cellules chondrogéniques se multiplient à partir des cellules bordant l'hydrogel et les protéines matricielles continuent à s'accumuler. La structure de I' hydrogel se modifie prenant progressivement des colorations qui sont spécifiques des protéines collagéniques et des protéo-glycanes. On obtient en fin de culture un bloc de tissu néo- formé constitué de plusieurs colonies de cellules organisées en rangées plus ou moins parallèles et présentant un gradient de maturation cellulaire qui est orienté depuis la zone de jonction des cellules avec l'hydrogel vers sa périphérie. En analysant ce bloc de néo-tissu en histologie , on constate que son aspect morphologique est proche d'un tissu cartilagineux normal. Une analyse moléculaire par RT-PCR a été réalisée après cinq semaines de culture, pour l'expression des collagènes I et II, agrécane, biglycane et décorine. Les ARN messagers de collagène II, d'agrécane, de biglycane et de décorine sont exprimés a\ors que ceux du collagène I ne sont pas détectables . Au niveau protéique, la synthèse de protéoglycane a été étudiée après incorporation du soufre 35. Les protéoglycanes ont été extraits du néo-tissu par le chlorure de guanidine 4M, purifiés et analysés par chromatographie sur colonne de sépharose 2B. Les profils d'élution obtenus montrent que les cellules ont synthétisé et sécrété des protéo-glycanes qui se sont regroupés dans la matrice sous formre d'agrégats de haut poids moléculaire, avec un profil similaire à ceux synthétisés et sécrétés in vivo.Under the conditions indicated above, the chondrocytes multiply and simultaneously synthesize an important matrix which accumulates around the cells and gradually replaces or covers the chitosan hydrogel. It is also possible to follow the formation of this cartilage neo-tissue depending on the culture time. At the early stage of culture, the chondrogenic cells adhere to the hydrogel without ever penetrating it, they secrete matrix proteins of the collagen type and proteo- glycans which accumulate around the cells and form a denser layer along the hydrogel, between the cells and the hydrogel which retains its original appearance. When the culture continues, especially for four to six weeks, the chondrogenic cells multiply from the cells bordering the hydrogel and the matrix proteins continue to accumulate. The structure of the hydrogel changes gradually taking on colors which are specific for collagen proteins and proteoglycans. A block of neoformed tissue is obtained at the end of the culture, consisting of several colonies of cells organized in more or less parallel rows and having a cell maturation gradient which is oriented from the junction zone of the cells with the hydrogel towards its periphery. . By analyzing this block of neo-tissue in histology, we note that its morphological aspect is close to a normal cartilaginous tissue. A molecular analysis by RT-PCR was carried out after five weeks of culture, for the expression of collagens I and II, agrecan, biglycan and decorin. The messenger RNAs of collagen II, agrecane, biglycan and decorin are expressed when those of collagen I are not detectable. At the protein level, the synthesis of proteoglycan was studied after incorporation of sulfur 35. The proteoglycans were extracted from the neo-tissue with guanidine chloride 4M, purified and analyzed by chromatography on a column of sepharose 2B. The elution profiles obtained show that the cells have synthesized and secreted proteoglycans which have gathered in the matrix in the form of high molecular weight aggregates, with a profile similar to those synthesized and secreted in vivo.
Selon une seconde variante de réalisation, les cellules chondrogéniques ont été étalées , sous forme de nappe, entre des couches d'hydrogel, chaque couche ayant une épaisseur de l'ordre de quelques millimètres. Par exemple quatre nappes de cellules ont été étalées en combinaison avec trois couches d'hydrogel , à savoir deux nappes respectivement sur les faces extérieures de la première et de la troisième couche d'hydrogel et deux nappes prises en sandwich entre respectivement la première et la seconde couche et la seconde et troisième couche d'hydrogel.According to a second alternative embodiment, the chondrogenic cells have been spread, in the form of a sheet, between layers of hydrogel, each layer having a thickness of the order of a few millimeters. For example, four layers of cells have been spread in combination with three layers of hydrogel, namely two layers respectively on the outer faces of the first and third layers of hydrogel and two layers sandwiched between the first and the second respectively. second layer and the second and third hydrogel layer.
La mise en culture des cellules a été réalisée dans les mêmes conditions que ci-dessus et on a procédé aux mêmes constatations en ce qui concerne la formation d'un néo-tissu cartilagineux. Les colonies cellulaires qui se sont formées soit à partir des cellules en contact avec la face extérieure de la première et de la troisième couche d'hydrogel soit à partir des cellules étalées entre deux couches d'hydrogel présentent toutes un gradient morphologique similaire à celui qui a été décrit ci-dessus. Les couches d'hydrogel , intercalées entre les nappes de cellules , ont disparu et sont remplacées par une structure fibrillaire très alcyanophile dont l'épaisseur correspond environ à la superposition de deux à trois couches de cellules. On comprend que cette dernière variante mettant en œuvre une superposition de couches d'hydrogel de chitosane et de cellules chondrogéniques permet d'obtenir très facilement un néo-tissu cartilagineux de plus grande dimension.The cells were cultured under the same conditions as above and the same observations were made as regards the formation of a cartilage neo-tissue. The cell colonies which have formed either from the cells in contact with the outer face of the first and third layers of hydrogel or from the cells spread between two layers of hydrogel all have a morphological gradient similar to that which has been described above. The hydrogel layers, inserted between the layers of cells, have disappeared and are replaced by a very alkyanophilic fibrillar structure whose thickness corresponds approximately to the superposition of two to three layers of cells. It is understood that this last variant using a superposition of layers of chitosan hydrogel and chondrogenic cells makes it possible very easily to obtain a larger cartilage neo-tissue.
Quelle que soit la variante mise en œuvre , le néo-tissu cartilagineux qui est obtenu selon le procédé de l'invention est apte à être greffé en l'état pour la réparation des lésions cartilagineuses, méniscales ou de disques intervertébraux notamment des lésions de tailles importantes. Whatever the variant used, the cartilaginous neo-tissue which is obtained according to the method of the invention is capable of being grafted as it is for the repair of cartilaginous, meniscal or intervertebral disc lesions, notably lesions of size important.

Claims

REVENDICATIONS
1. Procédé de préparation d'un néo-tissu cartilagineux greffable caractérisé en ce qu'il consiste : a) à mettre en culture des cellules chondrogéniques , qui sont soit des chondrocytes autologues soit des cellules précurseurs de chondrocytes préparées in vitro à partir de cellules souches pluripotentes, b) à mettre lesdites cellules chondrogéniques en contact avec la surface extérieure d'un hydrogel fait exclusivement de chitosane dont les propriétés d'amphiphilie et le degré d'acétylation sont tels que lesdites cellules adhèrent naturellement à la surface extérieure dudit hydrogel , c) à recouvrir l'ensemble hydrogel/cellules ainsi obtenu par un milieu de culture et , d) à laisser se développer un néo-tissu cartilagineux au contact de la surface de l'hydrogel de chitosane et sans pénétration des cellules à l'intérieur dudit hydrogel pendant une durée minimale de deux semaines , en renouvelant fréquemment le milieu de culture.1. Method for preparing a graftable cartilage tissue characterized in that it consists of: a) culturing chondrogenic cells, which are either autologous chondrocytes or chondrocyte precursor cells prepared in vitro from cells pluripotent strains, b) bringing said chondrogenic cells into contact with the outer surface of a hydrogel made exclusively of chitosan, the amphiphilic properties and the degree of acetylation are such that said cells adhere naturally to the outer surface of said hydrogel, c) covering the whole hydrogel / cells thus obtained with a culture medium and, d) allowing a cartilage neo-tissue to develop in contact with the surface of the chitosan hydrogel and without penetration of the cells inside said hydrogel for a minimum period of two weeks, frequently renewing the culture medium.
2. Procédé selon la revendication 1 caractérisé en ce que l'hydrogel de chitosane a un degré d'acétylation compris entre 30 et 70%, de préférence entre 4O et 60%. 2. Method according to claim 1 characterized in that the chitosan hydrogel has a degree of acetylation of between 30 and 70%, preferably between 40 and 60%.
3. Procédé selon l'une des revendications 1 et 2 caractérisé en ce que l'hydrogel de chitosane est préparé en mettant en œuvre les étapes suivantes :3. Method according to one of claims 1 and 2 characterized in that the chitosan hydrogel is prepared by implementing the following steps:
- on ajoute à une solution de chitosane une quantité déterminée de- adding to a chitosan solution a determined amount of
1,2 propanediol , quantité qui est fonction du degré d'acétylation du chitosane, - on dégaze sous vide,1.2 propanediol, an amount which depends on the degree of acetylation of chitosan, - degassing under vacuum,
- on verse la solution dégazée dans un récipient permettant d'avoir un grand rapport surface libre sur volume que l'on place en étuve à 45°C jusqu'à la prise en gel, - on neutralise et on lave l'hydrogel de chitosane obtenu.- the degassed solution is poured into a container making it possible to have a large free surface to volume ratio which is placed in an oven at 45 ° C. until setting in gel, - it is neutralized and the chitosan hydrogel is washed got.
4. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que la mise en contact des cellules chondrogéniques avec l'hydrogel de chitosane se fait en mélangeant lesdites cellules en suspension avec des fragments d'hydrogel de chitosane dont les dimensions font de l'ordre de quelques millimètres.4. Method according to one of claims 1 to 3 characterized in that the contacting of the chondrogenic cells with the chitosan hydrogel is done by mixing said suspended cells with chitosan hydrogel fragments whose dimensions make the order of a few millimeters.
5. Procédé selon la revendication 4 caractérisé en ce que la mise en contact des cellules chondrogéniques avec les fragments d'hydrogel de chitosane se faisant dans un puits, la proportion du nombre de cellules par rapport aux fragments d'hydrogel est déterminée de façon à éviter le plus possible que certaines cellules ne tombent au fond du puits.5. Method according to claim 4 characterized in that the contacting of the chondrogenic cells with the chitosan hydrogel fragments taking place in a well, the proportion of the number of cells relative to the hydrogel fragments is determined so as to Avoid as much as possible that some cells fall to the bottom of the well.
6. Procédé selon l'une des revendications 1 à 3 caractérisé en ce que la mise en contact des cellules chondrogéniques avec l'hydrogel de chitosane se fait en étalant les cellules sous forme de nappe sur l'hydrogel de chitosane se présentant sous la forme de couche de quelques millimètres d'épaisseur.6. Method according to one of claims 1 to 3 characterized in that the contacting of the chondrogenic cells with the chitosan hydrogel is done by spreading the cells in the form of a sheet on the chitosan hydrogel in the form layer a few millimeters thick.
7. Procédé selon la revendication 6 caractérisé en ce que les cellules chondrogéniques sont étalées sous forme de plusieurs nappes en contact avec plusieurs couches d'hydrogel de chitosane. 7. Method according to claim 6 characterized in that the chondrogenic cells are spread in the form of several layers in contact with several layers of chitosan hydrogel.
8. Néo-tissu cartilagineux greffable , obtenu par le procédé de l'une des revendications précédentes, caractérisé en ce qu'il est constitué de rangées de cellules plus ou moins parallèles , présentant un gradient de maturation cellulaire orienté depuis une zone déterminée vers sa périphérie, la zone déterminée correspondant notamment à la zone de jonction des cellules avec l'hydrogel de chitosane. 8. A graftable cartilage tissue, obtained by the method of one of the preceding claims, characterized in that it consists of more or less parallel rows of cells, having a cell maturation gradient oriented from a determined zone towards its periphery, the determined area corresponding in particular to the junction area of the cells with the chitosan hydrogel.
EP02757749A 2001-03-30 2002-03-29 Method for preparing a cartilaginous neo-tissue Withdrawn EP1372750A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0104405A FR2822842B1 (en) 2001-03-30 2001-03-30 PROCESS FOR THE PREPARATION OF A CARTILAGINOUS NEO-TISSUE
FR0104405 2001-03-30
PCT/FR2002/001121 WO2002078760A1 (en) 2001-03-30 2002-03-29 Method for preparing a cartilaginous neo-tissue

Publications (1)

Publication Number Publication Date
EP1372750A1 true EP1372750A1 (en) 2004-01-02

Family

ID=8861801

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02757749A Withdrawn EP1372750A1 (en) 2001-03-30 2002-03-29 Method for preparing a cartilaginous neo-tissue

Country Status (5)

Country Link
US (1) US20040171151A1 (en)
EP (1) EP1372750A1 (en)
CA (1) CA2442732A1 (en)
FR (1) FR2822842B1 (en)
WO (1) WO2002078760A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10317578A1 (en) * 2003-04-16 2004-10-28 Alvito Biotechnologie Gmbh Using material based on chitosan and an acid in orthopedics, particularly as replacement for periosteum, also as matrix for growing or encapsulating cells
JP5083967B2 (en) * 2004-03-22 2012-11-28 ラボラトラ メディドム エス.アー. Pseudo-thermoset neutralized chitosan composition to form a hydrogel and process for making the composition
MX2008007820A (en) * 2005-12-23 2008-09-11 Medidom Lab Thermosetting neutralized chitosan composition forming a hydrogel, lyophilizate, and processes for producing the same.
EP1894581A1 (en) 2006-08-31 2008-03-05 CellCoTec B.V. Repair of cartilage tissue using a matrix gel containing chondrocytes
FR3029116B1 (en) 2014-12-01 2018-03-30 Advanced Chitosan Solutions Biotech PROCESS FOR OBTAINING A CARTILAGE GEL FOR CARTILAGE REPAIR COMPRISING CHITOSAN AND CHONDROCYTES
CN112569405A (en) * 2020-12-07 2021-03-30 四川大学 Preparation method of chitosan quaternary ammonium salt type acellular dermal matrix material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5624679A (en) * 1993-12-01 1997-04-29 Marine Polymer Technologies, Inc. Methods and compositions for poly-β-1-4-N-acetylglucosamine biological barriers
AU3097999A (en) * 1998-03-18 1999-10-11 University Of Pittsburgh Chitosan-based composite materials containing glycosaminoglycan for cartilage repair
US6378527B1 (en) * 1998-04-08 2002-04-30 Chondros, Inc. Cell-culture and polymer constructs
US6886568B2 (en) * 1998-04-08 2005-05-03 The Johns Hopkins University Method for fabricating cell-containing implants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02078760A1 *

Also Published As

Publication number Publication date
FR2822842B1 (en) 2004-11-19
FR2822842A1 (en) 2002-10-04
CA2442732A1 (en) 2002-10-10
US20040171151A1 (en) 2004-09-02
WO2002078760A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
EP3226923B1 (en) Cartilage gel for cartilage repair, comprising chitosan and chondrocytes
RU2392287C2 (en) Matrix, cellular implant and methods of obtainment and application thereof
Kang et al. Novel porous matrix of hyaluronic acid for the three-dimensional culture of chondrocytes
EP3388091B1 (en) Repair of cartilage tissue
JP4713740B2 (en) Elements with fibrin layers, their production and use
WO2001091821A1 (en) Collagen-based supports for tissue engineering and preparation of biomaterials
EP1948721A1 (en) Biocompatible and biodegradable porous matrix in particular useful for tissue reconstruction
EP3651817B1 (en) Tissue scaffold
FR2657352A1 (en) New biological product for replacement of connective tissue, with a composite structure based on collagen, and process for its preparation
WO2005044326A1 (en) Use of a hydrogel for the culture of chondrocytes
WO2002078760A1 (en) Method for preparing a cartilaginous neo-tissue
JP2010524458A (en) Method for producing cell-derived extracellular matrix support
EP1960011B1 (en) Use of a polysaccharide which is excreted by the vibrio diabolicus species for the engineering of non-mineralised connective tissue
CA2250938A1 (en) Laminin 5 for growth of pancreatic islet cells
WO2002078761A1 (en) Cartilaginous neo-tissue capable of being grafted
FR2809313A1 (en) Composite artificial skin having a porous collagenic layer coated with a collagenic film prepared by drying a collagen gel or by compression of a collagenic sponge
FR2822843A1 (en) Graftable cartilage neo-tissue, e.g. useful for repairing intervertebral disc lesions, comprises parallel rows of cells with a cell maturity gradient oriented from a predetermined zone to the periphery
FR2927632A1 (en) CORNEA AND MUQUEUSE RECONSTRUCTED.
EP1784423A1 (en) Novel peptide and pharmaceutical composition containing said peptide
KR20110011199A (en) Dermal substite material of artificial skin for wound healing and method for production thereof
FR2967163A1 (en) IN VITRO OR EX VIVO METHOD FOR SURVIVAL MAINTENANCE AND GENERATION OR RECONSTRUCTION OF AN EPIDERM
FR3081712A1 (en) MATRIX FOR THE PREPARATION OF A CELL, TISSUE AND / OR BONE REGENERATION COMPOSITION
FR2809314A1 (en) Use of crosslinked collagen from teleostean fishes to prepare supports for artificial skin for in vitro testing of dermatological products
Martínez Ávila et al. ETH Library

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030910

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VACHER, DOMINIQUE J.

Inventor name: MORFIN, ISABELLE

Inventor name: CHEVALIER, XAVIER, L.

Inventor name: GUILLOT, FRANEOIS

Inventor name: CORVOL, MARIE-THERESE, M.

Inventor name: DOMARD, ALAIN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20051004