EP1370325A1 - Steckverbindungsadapter für herzleitungen - Google Patents

Steckverbindungsadapter für herzleitungen

Info

Publication number
EP1370325A1
EP1370325A1 EP02707951A EP02707951A EP1370325A1 EP 1370325 A1 EP1370325 A1 EP 1370325A1 EP 02707951 A EP02707951 A EP 02707951A EP 02707951 A EP02707951 A EP 02707951A EP 1370325 A1 EP1370325 A1 EP 1370325A1
Authority
EP
European Patent Office
Prior art keywords
connector
lead
coupling
sleeve
medical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02707951A
Other languages
English (en)
French (fr)
Inventor
John L. Sommer
Douglas S. Hine
Vicki L BJORKLUND
Elisabeth L. Belden
William J. Clemens
Andrew J. Ries
Jordan D. Honeck
Harry Schroeder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Medtronic Inc
Original Assignee
Medtronic Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/040,143 external-priority patent/US6854994B2/en
Application filed by Medtronic Inc filed Critical Medtronic Inc
Publication of EP1370325A1 publication Critical patent/EP1370325A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/372Arrangements in connection with the implantation of stimulators
    • A61N1/375Constructional arrangements, e.g. casings
    • A61N1/3752Details of casing-lead connections

Definitions

  • the present invention relates generally to mechanisms for interconnecting electrical leads and electrical medical devices; and more particularly, to systems and methods of interconnecting implantable electrical leads and implantable medical electrical devices such as pacemakers, nerve stimulators, implantable defibrillators, implantable monitors, and so forth.
  • implantable electrical devices have increased in their complexity, there has been an increasing variety of electrical lead systems developed for use in conjunction with these devices. Nowhere is this more apparent than in the context of implantable cardioverter/defibrillators, which may include three, four, five, or more electrodes located on various numbers of implantable electrical leads.
  • the leads themselves may carry one, two, three, or more electrodes, and may employ a variety of different electrical connector configurations and types.
  • manufacturers of implantable cardioverter/defibrillators have had to produce their products with a variety of connector block configurations, capable of use with different lead systems. For example, Medtronic, Inc. presently manufactures implantable cardioverter/defibrillators with four basic ,.
  • the "B” configuration includes three 6.5 mm connector bores for receiving high voltage electrical lead connectors of the type used to couple to cardioversion/defibrillation electrodes and one 3.2 mm in-line electrical connector bore compatible with the IS-1 connector standard for receiving an IS-1 electrical lead connector of the type generally used to couple to cardiac pacing and sensing electrodes.
  • TTie "C” configuration includes a single 3.2 mm connector bore conforming to the DF-1 standard for receiving high voltage electrical lead connectors used to couple to cardioversion/defibrillation electrodes. This configuration also includes a single IS-1 connector bore.
  • the "D” configuration includes three DF-1 connector bores and one IS-1 connector bore.
  • the "E" configuration includes two 6.5 mm connector bores and two 5 mm connector bores for receiving electrical lead connectors used to couple to individual cardiac pacing and sensing electrodes.
  • multiple connectors block types are necessitated both by the use of multiple connector standards, and also because of the desire to connect a varying number of lead systems to a given device.
  • the situation is complicated even further by the use of non-standard connector systems. For example, it has been increasingly common to utilize small-diameter guide catheters to deliver leads having a diameter of 7 French or less to a desired implant site. After lead placement is completed, the catheter must be withdrawn from the body.
  • the catheter has a small inner diameter, the inner lumen of the catheter cannot accommodate a standard-size lead connector such as one conforming to the IS-1 standard. In this situation, the catheter must be split or slit into two portions. Such slittable or splittable catheters are more expensive to manufacture, and require the additional slitting step to remove.
  • the lead may instead include a small-diameter, non-standard connector that easily fits within the catheter lumen, allowing the catheter to be readily withdrawn from the body. This non-standard connector has the drawback of necessitating the use of an even larger number of connector block configurations .
  • adapters that adapt one lead connector type to a different connector type on the device.
  • These adapters may take the form of a relatively short lead which at one end has a connector assembly which may be inserted into one or more bores on the connector block on the implantable device and at the other end has one or more connector bores capable of receiving the connector assembly or assemblies on the electrical leads to be used with the device.
  • These adapters are bulky and add substantially to the size of the pocket in which the device is to be implanted. In addition, they tend to require a number of additional steps to be performed by the physician in order to couple the leads to the implanted device, and are thus seen as undesirable generally.
  • Such adapters are disclosed in U.S. Pat. No. 5,000,177, issued to
  • the up-sizing adapter may be connected to allow the lead to be coupled to a device.
  • the present invention is an improved connection system for coupling a device such as a pacemaker, cardioverter, defibrillator, nerve stimulator, muscle stimulator, implantable monitor or other device of the sort to a medical lead and which addresses the lead/device incompatibility issues discussed above while avoiding at least some of the drawbacks associated with conventional adapters or converters.
  • the current invention provides an up-sizing mechanism that may be used to size the proximal end of a lead to a predetermined convention such as the IS-1 standard.
  • the system includes a coupling member designed to couple to the proximal end of the lead.
  • This coupling member which includes an inner lumen sized to form a press fit around the proximal end of the lead body, may be of a generally tubular construction.
  • This coupling member includes connector means to enable a connector pin at the proximal end of the lead to mechanically and electrically couple to a medical device.
  • This coupling means may include a positioning lip that positions the sleeve around the proximal end of the lead in a manner that allows the lead connector pin to form a stable mechanical connection with the medical device.
  • the connector means includes means for coupling both mechanically and electrically to a ring connector on the proximal end of a bi-polar lead.
  • This coupling mechanism may include teeth for engaging the ring connector of the lead.
  • the mechanism may include a multi-beam connector. Many other types of mechanical and electrical coupling mechanisms may be adapted for this purpose.
  • the coupling member of the up-sizing system includes a reinforcing structure such as a coil. This reinforcing structure prevents the lead from flexing in a manner that results in lead failures.
  • the coupling member may further include sealing rings on the exterior surface to provide a fluid-tight seal with the medical device, and/or sealing rings within the inner lumen to provide a fluid-tight seal with the lead body.
  • one embodiment of the system includes an insertion member to allow the lead to be more easily inserted within the inner lumen of the coupling member.
  • the insertion member is a pull-wire adapted to be inserted through the inner lumen of the coupling member and coupled to a connector pin of the lead. Force applied to the pull wire pulls the lead body into the inner lumen.
  • the insertion member is a split tube that is inserted into the inner lumen. The lead body is inserted into the split tube, which is then removed from around the lead body and extracted from the inner lumen.
  • the coupling member of the up-sizing system is a bifurcated member designed to adapt the proximal end of a lead to more than one standard connector size.
  • the bifurcated member may include both a DF-1 and IS-1 connector.
  • the up-sizing system of the current invention provides a mechanism for up-sizing a lead having a non-standard lead body size and a standard connector pin size.
  • the invention is particularly suited for small-diameter leads having an in-line coimector pin.
  • the coupling member of the current invention allows the connector pin of the lead to be coupled directly to a medical device, while providing a means to up-size the proximal end of the lead body.
  • Figure IA is a side cutaway view of an exemplary unipolar lead connector of the type that may be employed with the current inventive system.
  • Figure IB is a side cutaway view of an exemplary bipolar lead coimector of the type that may be employed with the current inventive system.
  • Figure IC is a side cutaway view of yet another exemplary bipolar lead connector of the type that may be employed with the current inventive system.
  • Figure 2A is a plan view of one embodiment of an upsizing sleeve according to the current invention.
  • Figure 2B is a perspective view illustrating the manner in which the inventive up- .5 sizing sleeve may be used to couple a lead to a medical device.
  • Figure 3 is a plan view illustrating proximal end of the lead of Figure IC inserted within upsizing sleeve.
  • Figure 4 A is a side cutaway view of one embodiment of the upsizing sleeve of the current invention that may be formed using an over-molding process.
  • Figure 4B is a cross-sectional view of upsizing sleeve at line 4B-4B of Figure 4A.
  • Figure 5 is a cutaway side view of another embodiment of the upsizing sleeve of the current invention.
  • Figure 6 is a cutaway side view of a two-piece sleeve member that may be assembled over the lead at the time of use. »5
  • Figure 7 is a cross-sectional view of the sleeve of Figure 6 at line 7-7.
  • Figure 8 is a cutaway side view of a bifurcated sleeve that includes two different connector standards.
  • Figure 9 is a side cutaway view of another embodiment of the current invention that incorporates both support structures and sealing grommets.
  • Figure 10A is a side cutaway view showing an embodiment of the up-sizing sleeve that includes a spring coil to form the electrical connection between a lead ring connector and a conductive ring member of the upsizing sleeve.
  • Figure 1 OB is a side cutaway view of the embodiment of Figure 10A illustrating
  • Figure IA is a side cutaway view of an exemplary unipolar lead connector of the type that may be employed with the current inventive system.
  • the lead includes a
  • connector pin 10 at the proximal end of the lead.
  • the connector pin has substantially the same diameter as the lead body 12, although this is not necessary.
  • Connector pin has an opening 14 that extends to inner lumen 16. A portion 18 of inner lumen 16 may be threaded.
  • Coimector pin 10 couples to conductive member 19 that extends into lumen 16 and
  • conductor 20 is electrically and mechanically coupled to at least one conductor 20.
  • conductor 20 is a conductive coil that extends the length of the lead body 12 to a tip electrode 24 at the lead body distal tip 26.
  • conductor 20 may take the form of a single-filar or multi-filar stranded conductor.
  • Lead body further includes an insulative jacket 28 that may be formed of a
  • Figure 1 A is merely exemplary, and many other leads may be employed with the current invention.
  • a lead without an inner lumen extending within lead body 12 may be utilized.
  • having multiple inner lumens may likewise be utilized.
  • Figure IB is a side cutaway view of an exemplary bipolar lead connector of the
  • the lead of Figure IB includes a connector pin 10 that couples to conductive member 19.
  • Conductive member 19 is electrically and mechanically coupled to an insulated coiled conductor 50. This conductor 50 extends the length of lead body 12 and is coupled at the distal tip 26 to
  • a second insulated coiled conductor 52 is also provided to couple ring electrode 54 at the lead distal end to ring connector 56.
  • the conductors may be single or multi-filar stranded conductors.
  • Figure IC is a side cutaway view of yet another exemplary bipolar lead connector of the type that may be employed with the current inventive system.
  • a connector pin 70 is shown having an opening 72 that includes an inner, threaded surface
  • the connector pin which may have dimensions conforming to an IS-1 or another standard, extends within an inner lumen 76 of the lead body 73.
  • This inner lumen houses a stranded conductor 80 such as shown in commonly-assigned U.S. Patent Number 5,760,341 that is electrically coupled to tip electrode 82.
  • the conductor 80 may be a single or multi-filar stranded conductor, or in a different embodiment, may be a coiled conductor.
  • a second, coiled conductor 84 electrically couples ring electrode 86 to a connector ring 88. It may be noted that although the coimector pin 70 of this design may be of a dimension that corresponds to a standard such as an IS-1 connector pin standard, the overall lead dimensions of the proximal end 90 of the lead do not necessarily conform to any standard.
  • the lead configurations shown in Figures 1 A, IB, and IC have small connector profiles. Therefore, a guide catheter used to place the leads during an implant procedure may be readily withdrawn over the connector pin without having to split or slit the catheter body.
  • the connector pin 10 and the proximal end 11 of the lead body do not conform to a connector standard such as IS-1, making connection to a standard device connector block difficult.
  • the upsizing sleeve of the current invention is provided as a means for facilitating this connection so that a specialized device connector block is not needed.
  • FIG 2 A is a plan view of one embodiment of an upsizing sleeve 100 according to the current invention.
  • This upsizing sleeve is a generally tubular member having an inner lumen (not shown in Figure 2) that is adapted to receive the proximal end of a lead such as the lead shown in Figure IC.
  • the inner lumen of the upsizing sleeve is slightly larger than the outer diameter of proximal end 90 of the lead.
  • the proximal end 90 of the lead of Figure IC may be adapted to fit within the inner lumen as indicated by dashed line 102 such that the lead body forms a press fit with the surface defined by the lumen.
  • the upsizing sleeve is adapted to conform to a standard configuration such as an IS-1 standard.
  • Upsizing sleeve is shown to include two sets of exterior sealing rings 104 and 106 adapted to sealingly engage with the connector port of a device such as pacemaker or defibrillator.
  • Upsizing sleeve further includes a conductive ring member 109 adapted to electrically couple to coimector ring 73 of the lead, as shown by dashed lines 108 in a manner to be discussed further below.
  • Conductive ring member 109 is further adapted to mechanically and electrically couple to a set screw within the device connector to thereby couple ring connector 73 to a medical device in a manner dictated by the IS-1 coimector standard.
  • Sealing rings and the portions of upsizing sleeves surrounding conductive ring member 109 may be formed of one or more polymer structures such as polyurethane or silicone in a manner to be discussed further below.
  • a pull-wire device 110 may be provided to aid in the insertion process.
  • One embodiment of the pull-wire device 110 includes a rigid pull-wire 112 and a handle 113.
  • the rigid pull-wire 112 may include a threaded distal end 114, which is inserted through the inner lumen of upsizing sleeve 100, as shown by dashed line 116.
  • the threads of threaded distal end 114 are then positioned to engage threaded surface 74 ( Figure IC) of the connector pin 70, as shown by dashed line 118. This allows the pull- wire 112 to rigidly engage the proximal end 90 of the lead so that the lead may be pulled through the imier lumen of the upsizing sleeve 100.
  • Figure 2 A shows pull-wire 112 including threaded distal end 114 to engage a lead
  • other coupling means could be provided to coupled to the lead, including a spring-loaded clip, or a plug to form a press-fit with opening 72.
  • FIG 2B is a perspective view illustrating the manner in which the inventive up-sizing sleeve may be used to couple a lead to a medical device.
  • the proximal end 90 of a lead such as shown in Figure IC includes a connector pin 70 and connector ring 73.
  • This lead may be inserted into the inner lumen 120 of sleeve 100 so that connector ring 73 forms a press fit with conductive ring member 109, with coimector pin 70 extending through the proximal end 122 of the sleeve.
  • Connector pin is adapted to be received by port 124 of the medical device 126, which is further maintained by set-screw 128.
  • a second set-screw 130 and washer 132 is provided to form a connection with conductive ring member 109.
  • Figure 3 is a plan view illustrating proximal end 90 of the lead of Figure IC inserted within upsizing sleeve 100.
  • Connector pin 70 extends through the proximal end of the upsizing sleeve, whereas the lead body of proximal end extends out the distal end of the upsizing sleeve.
  • Figure 4A is a side cutaway view of one embodiment of upsizing sleeve 100.
  • a conductive ring member 150 is provided to couple to a connector ring such as connector ring 73 ( Figure IC) of a lead in the manner discussed above.
  • This ring member may be formed of any conductive material such as a stainless steal, for example.
  • the remainder of the upsizing sleeve is an integral structure 152 that includes sealing rings 154 and 156.
  • This structure may be formed of a biocompatible polymer such as silicone using a silicone over-molding process as is known in the art.
  • the upsizing sleeve may be reinforced at the distal end with a reinforcing member 158 that may be formed of an insulative coil such as a PTFE coil, a conductor coil that may or may not be insulated, or any other material having strength properties that make it suitable for this purpose.
  • This reinforcing member provides added support to prevent the lead proximal end 90 ( Figure 3) from flexing in a manner that may cause lead failures over time.
  • a reinforcing, tubular sleeve member may be inserted within the distal end of the upsizing sleeve to provide this type of support.
  • Upsizing sleeve may further include interior sealing rings within the inner lumen 170.
  • upsizing sleeve of Figure 4A includes sealing rings 160, 162 and 164 to provide a fluid-tight seal with a lead inserted within inner lumen 170.
  • upsizing sleeve is also show to have a lip 172 at the proximal end which may be provided to engage a corresponding structure on the lead. In this manner, upsizing sleeve is positioned over the lead so that connector pin 70 extends beyond the proximal end of upsizing sleeve 100 a predetermined distance that conforms to a given connector standard.
  • lip 172 may be adapted to engage the ridge formed by insulative sleeve 175 where the insulative sleeve meets the connector 70 (Figure IC).
  • Figure 4B is a cross-sectional view of upsizing sleeve at line 4B-4B of Figure 4A.
  • FIG. 4B shows conductive teeth members 180 coupled to, or integrally formed, in conductive ring member 150. These conductive teeth members are adapted to engage a conductive ring of a lead such as connector ring 73 to from a more robust electrical connection between the connector ring and conductive ring member 150.
  • This view further illustrates sealing rings 156.
  • teeth members 180 are shown in Figure 4B to couple conductive ring member to a comiector ring of a lead, many other mechanisms may be used in the alternative.
  • a keyed mechanism such as a woodruff or spline key may be used to lock a lead ring connector to the conductive ring member.
  • a threaded aperture may be provided in the connective ring member so that a set-screw from a device connector block may be used to affix the sleeve to the lead via the threaded aperture.
  • small ports may be provided in the conductive ring member to receive conductive adhesive to enhance the electrical and mechanical contact between the conductive ring member and the lead ring connector.
  • a hole in the conductive ring member may be aligned with a corresponding hole or groove in the lead so that a pin or rivet can be inserted to form a mechanical and electrical coupling.
  • a thumb-actuated spring and ball-detent mechanism could be used to couple the sleeve to the lead.
  • Another embodiment may include a thumb-activated push-collar such as is provided on steerable stylet handles. Any other type of coupling mechanisms may be used to form a stable electrical and mechanical fit between the conductive ring member and the connector ring of a lead.
  • Figure 5 is a cutaway side view of another embodiment of the upsizing sleeve of the current invention.
  • a first generally tubular member 200 which may be formed of silicone is bonded to a support member 204 using a first layer 206 of medical-grade adhesive.
  • Support member which may be formed of a material that is more rigid than the silicone such as a higher durometer polyurethane, is also bonded via adhesive layer 210 to a second generally tubular member 208, which may also be silicone.
  • the support member 204 is adapted to provide additional structural rigidity that is not provided by a sleeve formed entirely of a lower-durometer material such as silicon. This rigidity is important to maintain precise sleeve dimensions so that the sleeve maintains a form that conforms to a predetermined standard even after undergoing the strain of forming a press fit with a lead.
  • a conductive ring member 212 surrounds the support member 204 and is adapted to engage a set-screw of a medical device as is provided on a standard IS-1 device connector block.
  • the conductive ring member 212 includes teeth 214 that extend through the support member to engage a connector ring of a bipolar lead. If a unipolar lead is to be employed, these teeth need not be included in the sleeve, since the ring connector of the lead need not make an electrical connection with a device connector block.
  • Each of tubular members 200 and 208 includes exterior sealing rings 220 and 222, respectively, to provide a fluid-tight seal with a device coimector block.
  • Each of the tubular members further includes interior sealing rings 224 and 226, respectively, to provide the fluid tight seal with a lead.
  • 200 and 208 are formed of a less rigid material such as silicone so that these sealing rings are more deformable and better able to provide a seal.
  • Figure 5 also illustrates an alternative mechanism that may be used to engage a lead with the sleeve.
  • a split tubular member composed of a material having a lubricious surface such as PTFE tubing 230 may be inserted in the distal end of the sleeve.
  • the lubricious outer surface of the tubing allows the tubing 230 to be readily inserted into inner lumen 231 of the sleeve.
  • a lead 232 may then be inserted within the inner lumen of the tubing 230 and the tubing removed.
  • the slit 234 in the tubing allows it to be removed from around the lead after the lead is attached to the up-sizing sleeve.
  • the use of this split tubular member thereby provides an alternative to the pull-wire tool (Figure 2) as an aid to forming the press fit between a lead and the sleeve.
  • sleeve may include one or more ports such as port 234 (shown dashed) to allow a medical-grade adhesive to be infused or injected between the sleeve and the lead after the lead is inserted into the sleeve to thereby secure the lead to the sleeve.
  • Figure 6 is a cutaway side view of a two-piece sleeve member that may be assembled over a lead such as lead 250 at the time of use.
  • a first portion of the sleeve includes a less rigid, generally tubular member 252 that may be formed of silicon, and which is bonded to a conductive ring 254 via a medical-grade adhesive.
  • Conductive ring 254 which is formed of a conductive material, is adapted to electrically and mechanically couple to a connector ring 255 of lead 250 via a second portion of the sleeve, as will be discussed further below. Conductive ring is further adapted to electrically couple to a connector block of a medical device, as may be accomplished using a set-screw.
  • the tubular member 252 includes one or more lips 256 to engage grooved members 258 in the lead connector pin 260. This allows the sleeve to be seated over the lead so that the dimensions of the assembly conform to a predetermined standard such as IS-1. Lips 256 further provides a fluid-tight seal with lead 250. One of the lips 256 is shown interfacing with a seal zone 257 of the inline connector. As discussed above, tubular member 252 may be formed of a less rigid material such as silicone to provide sealing rings that allow for a better fluid-tight seal.
  • the two-piece sleeve of Figure 6 further includes a second portion that is formed of a second less-rigid tubular member 264 such as silicone.
  • Tubular member 264 is bonded to a connector member 266, which may be formed of a metal.
  • Connector member 266 has deformable fingers 268 that slide under edge 270 to engage conductive ring 254 in a snap-fit that provides both a mechanical and electrical coupling between connector member 266 and conductive ring 254.
  • Deformable fingers 268 also electrically couple to connector ring 255 of lead 250 so that an electrical connection is formed between the coimector ring 255 and conductive ring 254 of the two-piece sleeve. This allows the connector ring 255 of lead 250 to be coupled to a connector block of a device via conductive ring 254.
  • the lead 250 of Figure 6 may include grooves 272 to engage inner sealing rings 274, and may further having a shoulder 276 to engage conductive ring 254 in a manner that further allows the lead to seat in a position that conforms to a predetermined standard.
  • Figure 7 is a cross-sectional view of the sleeve of Figure 6 at line 7-7. This view shows the deformable fingers 268 electrically and mechanically engaging conductive ring
  • FIG. 8 is a cutaway side view of a bifurcated sleeve 300 designed to adapt a lead to conform to two different connector standards.
  • lead 301 is shown engaging a first bifurcation 302 of the bifurcated sleeve that conforms to the IS-1 standard. This portion of the sleeve may be of any of the embodiments discussed above.
  • a conductive ring member 306 is provided on bifurcation 302 to engage with a connector ring 307 of lead 301, and to further engage a connector block of a medical device in the manner discussed above.
  • the pin 308 of the lead extends through the sleeve as discussed above, and exterior sealing rings 310 provide a fluid-tight fit with the medical device.
  • Interior sealmg rings 312 and 313 provide a fluid-tight fit with lead 301.
  • Additional inner sealing rings are provided to engage the proximal end of the lead as discussed above.
  • pacing and sensing of a patient may be accomplished via ring connector 306 and pin 308 connectors, which coupled to tip and ring electrodes (not shown in Figure 8), respectively, at the lead tip.
  • the lead carries a high- voltage coil electrode that is electrically coupled to ring connector 306.
  • the additional bifurcation 320 may then be used to provide a connector for cardioversion/defibrillation purposes.
  • a high-voltage defibrillation coil 322 connects conductive ring member 306 with a connector pin 324 that may conform to a second standard such as a DF-1 standard.
  • This connector pin 324 may be utilized by a medical device to deliver a cardioversion/defibrillation shock that is then carried via coil 322 and conductive ring member 306 to conductor ring 307, and finally to the defibrillation coil electrode as the proximal end of the lead.
  • This embodiment of the sleeve thereby allows a bipolar lead having a pace/sense electrode pair and a single shock coil to be adapted to both IS-1 and DS-1 comiector blocks without the need to slit or split a catheter that is used during lead delivery. Additionally, the current inventive sleeve eliminates the pocket bulk associated with traditional longitudinal adaptors.
  • Sleeve 300 may be formed of one or more biocompatible polymers.
  • the hub portion 330 of the bifurcated sleeve could be formed of a more rigid material such as polyurethane that provides additional support to the structure and to the proximal end of the lead.
  • the remainder of the sleeve, including the portions of the bifurcations 302 and 320 that include the exterior sealing rings 310 and 326, could be formed of a less rigid material such as silicone.
  • the current inventive up-sizing sleeve is, in its preferred embodiment, designed to conform a lead to a predetermined connector standard. For this reason, it is important that the sleeve does not stretch or deform in any manner.
  • more rigid support structures formed of a material such as polyurethane may be incorporated into the sleeve.
  • additional sealing grommets may also be desirable to ensure both a fluid-tight seal, and the retention of predetermined sleeve dimensions.
  • Figure 9 is a side cutaway view of another embodiment of the current inventive up- sizing sleeve that incorporates both support structures and sealing grommets.
  • a first, less- rigid tubular sleeve member 350 is shown having exterior sealing rings 352 as discussed above.
  • Tubular member 350 which may be formed of a silicone, is bonded to a more rigid tubular support member 354, which may be formed of a polyurethane.
  • Support member 354 is, in turn, coupled at one end to an exterior conductive ring 355 formed of an electrically-conductive material that is adapted to make an electrical connection with a connector block of a medical device, as is provided by a standard IS-1 connector.
  • Conductive ring 355 houses, and is mechanically and electrically coupled to, a connector member 356 that is also formed of a conductive material.
  • Connector member 356 is adapted to make an electrical and mechanical connection with a connector ring of a lead in a manner similar to that discussed above.
  • Connector member 356 is shown in this embodiment to be a multi-beam connector having deformable fingers adapted to form a press-fit with a lead connector ring.
  • connector member 356 may take the form of any other type of coimector known in the art, including any of the types of connectors discussed above.
  • a sealing grommet 357 Housed within conductive ring 354 may be a sealing grommet 357 provided to form a superior fluid-tight seal with a lead. Sealing grommet 357 may be formed of a more deformable material such a silicone, for example.
  • Conductive ring 355 is further bonded or welded to a second rigid tubular support member 360, which may be formed of a polyurethane or a metal. This second tubular support member 360 is also mechanically coupled to a less rigid, tubular sleeve member 362 having sealing rings 364, and which may be formed of silicone.
  • Tubular support member 360 is bonded to a lip member 366 adapted to house a second sealing grommet 368.
  • Lip member 366 may be formed of a rigid polymer such as a polyurethane, whereas the sealing grommet may be formed of silicone.
  • the embodiment shown in figure 9 provides a more flexible design.
  • the length of the sealmg grommets may be adjusted to position the conductive ring 355 based on a selected connector standard.
  • the multi-beam connector shown as connector member 356 may be adjusted to couple to any lead size requirement. This design is adaptable for over-the-wire leads, and small coil-over-cable leads having an outer diameter of 5 French or less.
  • the multi-beam connector 356 of Figure 9 may be adapted to form an electrical connection with a connector ring of a multi-polar lead, this need not be the case.
  • the multi-beam connector 356 may be formed of a non-conductive material.
  • the connector 356 is adapted to form a mechanical connection with a unipolar lead so that the lead body is maintained in a stable position with respect to the up-sizing sleeve.
  • conductive ring 355 may be omitted if desired, or a similar structure may be provided that is formed of a non- conductive material.
  • Figure 10A is a side cutaway view showing yet another embodiment of the up- sizing sleeve that includes a spring coil to form the electrical connection between a lead ring connector and a conductive ring member of the upsizing sleeve 400.
  • Up-sizing sleeve 400 includes many of the components described above with respect to other ones of the embodiments of the invention.
  • the embodiment of Figure 10A includes flexible tubular members 401 and 403 which may be formed of a silicone, and which are coupled as with a medical-grade adhesive to an electrically-conductive ring member 402.
  • conductive ring member 402 is electrically and mechanically coupled at one end to a deformable spring coil 404.
  • Spring coil 404 which is formed of an electrically-conductive material, may be spot welded or otherwise coupled to a shoulder 406 of conductive ring member 402.
  • lead 410 includes a ring conductor 412 having a lip 414 to engage spring coil 404.
  • ring connector 412 is electrically coupled to the conductive ring member 402, which, in turn, may be coupled to the connector block of a medical device.
  • the upsizing sleeve may further include one or more grommets such as grommet 416, which is maintained in position by a polyurethane lip member 418 similar to that shown in the embodiment of Figure 9.
  • the upsizing sleeve may further include other aspects described with respect to the embodiments of Figures 1-9 as would be apparent to those skilled in the art.
  • Figure 1 OB is a side cutaway view of the embodiment of Figure 10A illustrating the manner in which the spring coil 404 compresses when the lead is fully inserted within the up-sizing sleeve 400.
  • inventive system and method of coupling a lead to a medical device as described and illustrated herein may be adapted for use with any size lead, any type of connector standard, and any type of medical device.
  • the up-sizing sleeve may be used with leads for drug delivery devices, devices adapted for neurological applications, or for any other type of physiological application requiring a lead coupled to an implantable or non-implantable device.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Electrotherapy Devices (AREA)
EP02707951A 2001-02-21 2002-02-21 Steckverbindungsadapter für herzleitungen Withdrawn EP1370325A1 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US27007401P 2001-02-21 2001-02-21
US270074P 2001-02-21
US40143 2002-01-03
US10/040,143 US6854994B2 (en) 2001-04-19 2002-01-03 Medical electrical lead connector arrangement including anti-rotation means
PCT/US2002/006459 WO2002068050A1 (en) 2001-02-21 2002-02-21 Lead up-sizing sleeve

Publications (1)

Publication Number Publication Date
EP1370325A1 true EP1370325A1 (de) 2003-12-17

Family

ID=26716771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02707951A Withdrawn EP1370325A1 (de) 2001-02-21 2002-02-21 Steckverbindungsadapter für herzleitungen

Country Status (4)

Country Link
EP (1) EP1370325A1 (de)
JP (1) JP2005512605A (de)
CA (1) CA2439282A1 (de)
WO (1) WO2002068050A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6854994B2 (en) 2001-04-19 2005-02-15 Medtronic, Inc. Medical electrical lead connector arrangement including anti-rotation means
US6755694B2 (en) * 2001-04-19 2004-06-29 Medtronic, Inc. Lead upsizing sleeve
US6921295B2 (en) 2001-04-19 2005-07-26 Medtronic, Inc. Medical lead extension and connection system
US20070178767A1 (en) * 2006-01-30 2007-08-02 Harshman E S Electrical connector
US7583999B2 (en) 2006-07-31 2009-09-01 Cranial Medical Systems, Inc. Multi-channel connector for brain stimulation system
US8301255B2 (en) 2008-08-12 2012-10-30 Boston Scientific Neuromodulation Corporation Retention assemblies for implantable electric stimulation systems and methods of making and using

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4583543A (en) 1983-05-04 1986-04-22 Cordis Corporation Upsizing adapter
US4628934A (en) * 1984-08-07 1986-12-16 Cordis Corporation Method and means of electrode selection for pacemaker with multielectrode leads
DE3906598A1 (de) 1989-03-02 1990-09-13 Osypka Peter Steckvorrichtung fuer eine herzschrittmacher-elektrodenzuleitung
DE8906745U1 (de) 1989-06-02 1989-09-21 VascoMed GmbH, 7858 Weil Adapter-Vorrichtung für Herzschrittmacher-Elektroden
US5007864A (en) 1989-11-27 1991-04-16 Siemens-Pacesetter, Inc. Device for adapting a pacemaker lead to a pacemaker
US5000177A (en) 1990-01-29 1991-03-19 Cardiac Pacemakers, Inc. Bipolar lead adapter with resilient housing and rigid retainers for plug seals
US5328442A (en) 1992-11-20 1994-07-12 Siemens Pacesetter, Inc. System and method for stimulating a heart having undergone cardiac myoplasty using a single-chamber pacemaker
US5439391A (en) * 1993-02-09 1995-08-08 Ventritex, Inc. Lead adapter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02068050A1 *

Also Published As

Publication number Publication date
CA2439282A1 (en) 2002-09-06
JP2005512605A (ja) 2005-05-12
WO2002068050A1 (en) 2002-09-06

Similar Documents

Publication Publication Date Title
US20080039900A1 (en) Lead up-sizing sleeve
US6755694B2 (en) Lead upsizing sleeve
US6705900B2 (en) Lead up-sizing sleeve
US6921295B2 (en) Medical lead extension and connection system
US8145315B2 (en) Lead adaptor having low resistance conductors and/or encapsulated housing
EP1663390B1 (de) Implantierbare hülsen für medizinischen leitungskonnektor
EP2519316B1 (de) Endverbinderanordnung für eine medizinische elektrode
US7974704B2 (en) Lead body constructions for implantable medical electrical leads
EP2424613B1 (de) Implantierbare elektrische leitung
JP2005501619A (ja) 医療リードコネクタ
US8321033B2 (en) Implantable medical lead having passive lock mechanical body terminations
US10084278B2 (en) Implantable lead assembly
CN104136069B (zh) 可植入医用导线
EP1370325A1 (de) Steckverbindungsadapter für herzleitungen
US11219773B2 (en) Electrical connector cap for an implantable lead, implantable lead for use with said electrical connector cap, and implantable lead assembly
WO2024157102A1 (en) External lead connector system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030922

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: BELDEN, ELISABETH, L.

Inventor name: HINE, DOUGLAS, S.

Inventor name: HONECK, JORDAN , D.

Inventor name: SCHROEDER, HARRY

Inventor name: SOMMER, JOHN, L.

Inventor name: RIES, ANDREW, J.

Inventor name: BJORKLUND, VICKI, L,

Inventor name: CLEMENS, WILLIAM, J.

17Q First examination report despatched

Effective date: 20070904

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SOMMER, JOHN, L.

Inventor name: BELDEN, ELISABETH, L.

Inventor name: CLEMENS, WILLIAM, J.

Inventor name: HONECK, JORDAN , D.

Inventor name: SCHROEDER, HARRY

Inventor name: RIES, ANDREW, J.

Inventor name: HINE, DOUGLAS, S.

Inventor name: BJORKLUND, VICKI, L,

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110714