EP1369836A1 - Smoke detector and method for its operation - Google Patents
Smoke detector and method for its operation Download PDFInfo
- Publication number
- EP1369836A1 EP1369836A1 EP02010414A EP02010414A EP1369836A1 EP 1369836 A1 EP1369836 A1 EP 1369836A1 EP 02010414 A EP02010414 A EP 02010414A EP 02010414 A EP02010414 A EP 02010414A EP 1369836 A1 EP1369836 A1 EP 1369836A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- control
- unit
- control loop
- transmitter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
- G08B17/103—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device
- G08B17/107—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means using a light emitting and receiving device for detecting light-scattering due to smoke
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B29/00—Checking or monitoring of signalling or alarm systems; Prevention or correction of operating errors, e.g. preventing unauthorised operation
- G08B29/18—Prevention or correction of operating errors
- G08B29/20—Calibration, including self-calibrating arrangements
- G08B29/24—Self-calibration, e.g. compensating for environmental drift or ageing of components
Definitions
- the invention relates to a hazard detector for the detection of Fire and smoke that works according to the scattered light principle.
- the invention also relates to a method of operation of such a fire alarm.
- Hazard detectors of the type mentioned above have a measuring volume on, usually through a measuring chamber against light from Is shielded on the outside. The extraneous light is through a labyrinth held that there is a medium surrounding the measuring chamber such as smoke nevertheless allows into the measuring chamber penetrate.
- There is one transmitter and one in each measuring chamber Radiation receivers are arranged so that they are not direct Have visual contact and no radiation emitted by the transmitter hits the recipient directly.
- the radiation emitted by the transmitter is not only on Scattered smoke that is in the measuring chamber, but also reflected on the measuring chamber walls.
- the Basic signal is desirable on the one hand to the function of the transmitter to check, on the other hand it limits the detection possibilities strong one.
- the signal delivered by the receiver must be strong be reinforced.
- With high gain, the work area, the evaluation circuit following the amplifier stage are already completely claimed by the basic signal, whereby signal increases can no longer be recognized, and smoke detection is no longer possible. Accordingly poses the basic signal made it difficult to detect less Smoke densities. Nevertheless, smoke detectors are highly sensitive required for applications where smoke, too if it is heavily diluted, it can still be recognized as it is e.g. is the case in ventilation ducts or smoke extraction systems.
- the invention is therefore based on the object of a fire detector as well as a method for operating a fire detector at the beginning to provide mentioned type, with the help of which also strong diluted aerosols can be reliably recognized.
- the fire detector according to the invention has a transmitter which emits radiation into a measurement volume within a measurement chamber. Radiation that is scattered on the measuring chamber walls or on particles located in the measuring volume strikes a receiving device that converts the received radiation into an electrical signal and emits it at its output.
- the output of the receiving device is connected to a control circuit, the signal emitted by the receiving device being overlaid with an artificially generated signal.
- the control loop itself consists of a control device, an actuator and connecting lines. At its output, the control device emits a manipulated variable that is used as a superimposed signal.
- the output of the control device is connected to a first input of the actuator. A second input of the actuator is connected to the output of the receiving device.
- the output of the actuator, at which the actual value of the control loop is located, is connected to an alarm evaluation device and the input of the control device, a fire being detected by comparing the actual value of the control loop with an alarm threshold.
- the control device is designed so that the manipulated variable is only carried out very slowly on the one hand and is only carried out on the other hand if there is either a very high probability that there is no smoke in the measuring chamber or the temperature has changed.
- the control device has at its input a resettable minimum value and maximum value memory as well as a device for determining an average value, which is referred to below as average value images.
- the output of the mean value generator is connected to a first comparison point, at which the control deviation is determined as the difference between the target value and the mean value of the actual value.
- the output of the first comparison point is connected to a proportional element, in which the control deviation is multiplied by a factor k and a first correction value for the control is formed.
- the output of the proportional element is connected to a first input of a first comparator and to a first input of a first signal selection switch.
- the second inputs of the first comparator and the first signal selection switch are connected to a second maximum correction value.
- the output of the first comparator is connected to the control input of the first signal selection switch.
- the second maximum correction value is compared with the first correction value and, depending on the result of the comparison, the smaller of the two correction values is switched through from the first signal selection switch to its output.
- the output of the first signal selection switch is connected to the first input of an addition point.
- the old manipulated variable of the control loop is located at the second input of the addition point.
- the old control value and the correction value are summed in the addition point to form a new control value which is available at the output of the addition point.
- the output of the summer is connected to a first input of a second signal selection switch.
- the temperature-compensated old manipulated variable of the control circuit is located at the second input of the second signal selection switch.
- the new manipulated variable or the old, but temperature-compensated manipulated variable, of the control loop is switched through to the output.
- the output of the second signal selection switch is connected to a signal holding element which stores the value present at its input and outputs it again at its output.
- the output of the signal holding element is connected to the first input of the actuator, to the second input of the summer and to the input of the temperature compensation device.
- the output signal of the temperature compensation device is present at the second input of the second signal selection switch.
- the control input of the second signal selection switch is connected to the output of a second comparator, which compares the difference between the minimum and maximum actual value with a predetermined window value.
- a first input of the second comparator is connected to a memory for the window value and a second input to a second comparison point, the first input of which is connected to the output of the maximum value memory and the second input of which is connected to the output of the minimum value memory.
- the signal emitted by the receiving unit is superimposed before the final amplification with a superposition signal which is somewhat smaller in magnitude than the amount of the basic signal of the receiving unit and bears the opposite sign.
- the basic signal is the smoke-independent, quasi-static signal component of the receiving unit.
- the DC component of the signal to be amplified drops, the signal can be amplified to a higher level without fully controlling the subsequent stages with the DC component - this makes it easier to assess dynamic signal components and to detect signal increases caused by smoke.
- the basic signal fluctuates greatly due to component and manufacturing tolerances and changes over the course of life, a self-adapting overlay signal is necessary. Therefore, according to the invention, the beat signal is generated as a function of the basic signal emitted by the receiving unit.
- the signal delivered by the receiving unit is, for example in the control element of a control loop with the manipulated variable of Control circuit superimposed so that the manipulated variable from the received signal is subtracted.
- the difference between the two signals becomes so strong reinforces that signal fluctuations can be easily recognized.
- the signal formed in this way represents the actual value on the one hand of the control loop, on the other hand it becomes an alarm evaluation used by it with a predetermined alarm threshold is compared. Because the actual value in a control loop but is usually kept largely constant, the The actual value normally never reaches the alarm threshold.
- the control device To at If smoke occurs, the actual value increases up to the alarm threshold the control device nevertheless enables make sure that the manipulated variable (superimposed signal) is only updated will, if there is a very high probability that no Smoke is in the measuring chamber and that the tracking of the Manipulated value is slower than it is for the regulation of a due to the occurrence of smoke the expected signal increase is necessary would.
- the tracking of the Manipulated value limited to a maximum tracking value, whereby the tracking only took place after one over several measurements Averaging of the actual value is carried out.
- the difference between the largest and smallest actual value becomes one Measurement series compared with a window value. If the difference exceeds the window value, the control value is updated interrupted. If the updating of the actual value is interrupted is, but can still be an adjustment of the manipulated variable change in temperature.
- the invention is based on the knowledge that for one is the radiation reflected on the walls of the measuring chamber an essentially constant, only over long periods of time delivers very slowly changing basic signal and in short Intervals carried out only due to signal noise deliver different values. These measurements have a certain characteristic spread.
- the smoke to be recognized consists of small, constantly particles in motion. Scattered on these particles and causes radiation incident on a receiver a signal that has values that are significantly broader, as the basic signal for a smoke-free measuring chamber.
- a first Evidence of the existence of smoke can be obtained.
- the signal processing unit (10) is shown in FIG.
- the Receiver unit (1) receives on measuring chamber walls and smoke or other aerosols scattered radiation and converts this into electrical signal at the output of the receiving unit (1) is tapped.
- the output of the receiving unit (1) is with the second input of the actuator (2) of the control circuit (5) connected.
- the first input of the actuator (2) is with the output connected to the control device (4) on which the manipulated variable provided.
- the manipulated variable and the signal from the receiving unit (2) is superimposed on one another.
- the difference between the two signals is amplified and thus at the output of the Actuator (2) delivered as the actual value of the control loop (5).
- the output of the actuator (2) is with the input of the alarm evaluation device (3) and the entrance of the control device (4) connected.
- the alarm evaluation device (3) works just as it does from conventional flare light detectors is known, e.g. by simply comparing the on her Input pending signal with an alarm threshold while the control device largely changes only the basic signal balances.
- the control device (4) contains one at its input Minimum value memory (6), a maximum value memory (7) and an average value image (8).
- the reference junction (9) which, from the measured values of a measuring cycle of, for example 8 measurements formed mean, with the setpoint (11) of the control loop (5) compared, and the control deviation determined.
- the control deviation is shown in the proportional element (12) with a Factor multiplied and thus a first tracking value for the manipulated variable is determined.
- This tracking value becomes the first Input of the signal selection circuit (13) and the comparator (14) fed.
- the comparator (14) the first tracking value and the maximum tracking value (15) compared.
- the comparator (14) then controls the signal selection switch (13) so that the smaller of the two tracking values to the addition point (16) is switched through.
- the old manipulated variable with the smaller tracking value becomes new manipulated variable is added and to the first input of the signal selection switch (17) created.
- the new manipulated variable is from Signal selection switch (17) only to the signal holding element (18) and thus switched to the actuator (2) when the comparison in the comparator (19) has shown that in the reference junction (20) difference formed from that in the maximum value memory (7) stored maximum value and in the minimum value memory (6) stored minimum value of a measuring cycle, is smaller than the window value (21). If the difference is out Maximum and minimum value of the measuring cycle larger than the window value (21) is not the new manipulated variable, but the in the temperature compensation device (22) temperature-compensated, old manipulated variable to the signal holding element (18) and thus switched through to the actuator (2). This is the regulation almost frozen.
- FIG. 2 A preferred exemplary embodiment can be seen in FIG compared to Figure 2, a further comparator (23) in the control device (4) is inserted, which is the actual value with half Compares alarm threshold, and its output signal with the Output signal of the comparator (19) orodized in the OR element (24) becomes.
- the output of the OR element (24) now controls the signal selection switch (17), so that in addition, even if the Actual value is a predefined threshold, in the example half the alarm threshold reached, the control is frozen.
- a control unit (5) in a fire detector according to the invention can be implemented in an ASIC, for example, or also in the form of suitable software in a microprocessor be implemented, whereby the alarm evaluation unit (3) can be implemented in the same microprocessor or ASIC.
- To the Inputs and outputs of the control unit (4) are in use analogue-digital converters corresponding to a processor or digital ASICs or digital-to-analog converter.
- the invention is a fire detector according to Steulichtkar and a method for its operation, in which another signal is superimposed on the received signal by a to enable high signal amplification.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Fire-Detection Mechanisms (AREA)
- Fire Alarms (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Die Erfindung betrifft einen Gefahrenmelder zur Erkennung von Feuer und Rauch, der nach dem Streulichtprinzip arbeitet. Die Erfindung befasst sich auch mit einem Verfahren zum Betrieb eines derartigen Brandmelders.The invention relates to a hazard detector for the detection of Fire and smoke that works according to the scattered light principle. The The invention also relates to a method of operation of such a fire alarm.
Gefahrenmelder der oben genannten Art weisen ein Messvolumen auf, das in der Regel durch eine Messkammer gegen Licht von Außen abgeschirmt ist. Dabei wird das Fremdlicht durch ein Labyrinth abgehalten, das es einem die Messkammer umgebenden Medium wie zum Beispiel Rauch dennoch ermöglicht, in die Messkammer einzudringen. In dieser Messkammer sind je ein Sender und Empfänger für Strahlung so angeordnet, dass sie keinen direkten Sichtkontakt haben und keine vom Sender ausgesandte Strahlung direkt auf den Empfänger trifft.Hazard detectors of the type mentioned above have a measuring volume on, usually through a measuring chamber against light from Is shielded on the outside. The extraneous light is through a labyrinth held that there is a medium surrounding the measuring chamber such as smoke nevertheless allows into the measuring chamber penetrate. There is one transmitter and one in each measuring chamber Radiation receivers are arranged so that they are not direct Have visual contact and no radiation emitted by the transmitter hits the recipient directly.
Wenn Rauch in die Messkammer eintritt, wird vom Sender abgegebene Strahlung an den Rauchteilchen gestreut und trifft auf den Empfänger. Das am Empfänger entstehende Signal wird anschließend verstärkt und einer Beurteilung, ob ein Brand vorliegt, unterzogen.If smoke enters the measuring chamber, it is emitted by the transmitter Radiation is scattered on the smoke particles and strikes the Receiver. The signal generated at the receiver is then reinforced and an assessment of whether there is a fire, subjected.
Die vom Sender abgegebene Strahlung wird aber nicht nur an Rauch gestreut, der sich in der Messkammer befindet, sondern auch an den Messkammerwänden reflektiert. Dadurch entsteht ein Grundsignal, das auch bei völlig reiner Luft zu messen ist. Das Grundsignal ist einerseits erwünscht, um die Funktion des Senders zu prüfen, andererseits schränkt es die Detektionsmöglichkeiten stark ein. Um bereits geringe Rauchkonzentrationen zu detektieren, muss das vom Empfänger gelieferte Signal stark verstärkt werden. Bei hoher Verstärkung kann der Arbeitsbereich, der auf die Verstärkerstufe folgenden Bewertungsschaltung bereits durch das Grundsignal vollständig beansprucht werden, wodurch Signalerhöhungen nicht mehr erkannt werden können, und eine Raucherkennung nicht mehr möglich ist. Demnach stellt das Grundsignal eine Erschwernis für die Erkennung geringer Rauchdichten dar. Dennoch sind Rauchmelder mit hoher Empfindlichkeit für Einsatzgebiete erforderlich, in denen Rauch, auch wenn er stark verdünnt ist, noch erkannt werden kann, wie es z.B. in Lüftungskanälen oder Rauchansaugsystemen der Fall ist.The radiation emitted by the transmitter is not only on Scattered smoke that is in the measuring chamber, but also reflected on the measuring chamber walls. This creates a Basic signal that can also be measured in completely clean air. The Basic signal is desirable on the one hand to the function of the transmitter to check, on the other hand it limits the detection possibilities strong one. To prevent even low smoke concentrations detect, the signal delivered by the receiver must be strong be reinforced. With high gain, the work area, the evaluation circuit following the amplifier stage are already completely claimed by the basic signal, whereby signal increases can no longer be recognized, and smoke detection is no longer possible. Accordingly poses the basic signal made it difficult to detect less Smoke densities. Nevertheless, smoke detectors are highly sensitive required for applications where smoke, too if it is heavily diluted, it can still be recognized as it is e.g. is the case in ventilation ducts or smoke extraction systems.
Der Erfindung liegt daher die Aufgabe zugrunde, einen Brandmelder sowie ein Verfahren zum Betrieb eines Brandmelders der eingangs genannten Art bereitzustellen, mit deren Hilfe auch stark verdünnte Aerosole zuverlässig erkannt werden können.The invention is therefore based on the object of a fire detector as well as a method for operating a fire detector at the beginning to provide mentioned type, with the help of which also strong diluted aerosols can be reliably recognized.
Bei dem Brandmelder der eingangs erwähnten Art besteht die erfindungsgemäße
Lösung dieser Aufgabe in den Merkmalen des geltenden
Patentanspruchs 1. Weitere vorteilhafte Ausgestaltungen
sind in den Unteransprüchen 2 bis 4 beschrieben. In the fire detector of the type mentioned, there is the inventive
Solving this task in the characteristics of the
Bei dem Verfahren der eingangs erwähnten Art besteht die erfindungsgemäße
Lösung dieser Aufgabe in den Merkmalen der unabhängigen
Patentansprüche 5 und 8. Weitere vorteilhafte Verfahrensschritte
sind in den Unteransprüchen 6, 7 und 9 bis 11 beschrieben.The method according to the invention exists in the method of the type mentioned at the outset
Solving this task in the characteristics of the
Der erfindungsgemäße Brandmelder weist einen Sender auf, der
Strahlung in ein Messvolumen innerhalb einer Messkammer abgibt.
Strahlung, die an den Messkammerwänden oder an, sich im Messvolumen
befindenden Partikeln gestreut wird, trifft auf eine
Empfangseinrichtung, die die empfangene Strahlung in ein elektrisches
Signal umwandelt und an seinem Ausgang abgibt. Der Ausgang
der Empfangseinrichtung ist mit einem Regelkreises verbunden,
wobei das von der Empfangseinrichtung abgegebene Signal
mit einem künstlich erzeugten Signal überlagert wird. Der Regelkreis
selbst besteht aus einer Regeleinrichtung, einem
Stellglied und Verbindungsleitungen.
An ihrem Ausgang gibt die Regeleinrichtung, eine Stellgröße,
die als Überlagerungssignal verwendet wird, ab. Der Ausgang der
Regeleinrichtung ist mit einem ersten Eingang des Stellgliedes
verbunden. Ein zweiter Eingang des Stellgliedes ist mit dem
Ausgang der Empfangseinrichtung verbunden. Der Ausgang des
Stellgliedes, an dem der Istwert des Regelkreises liegt, ist
mit einer Alarmauswerteeinrichtung und dem Eingang der Regeleinrichtung
verbunden, wobei ein Brand erkannt wird, indem
der Istwert des Regelkreises mit einer Alarmschwelle verglichen
wird. Um das Erkennen eines Brandes am Istwert des Regelkreises
zu ermöglichen, die ist Regeleinrichtung so ausgeführt, dass
ein Nachführen der Stellgröße zum einen nur sehr langsam durchgeführt
wird und zum anderen nur dann durchgeführt wird, wenn
sich entweder mit sehr hoher Wahrscheinlichkeit kein Rauch in
der Messkammer befindet, oder sich die Temperatur geändert hat. The fire detector according to the invention has a transmitter which emits radiation into a measurement volume within a measurement chamber. Radiation that is scattered on the measuring chamber walls or on particles located in the measuring volume strikes a receiving device that converts the received radiation into an electrical signal and emits it at its output. The output of the receiving device is connected to a control circuit, the signal emitted by the receiving device being overlaid with an artificially generated signal. The control loop itself consists of a control device, an actuator and connecting lines.
At its output, the control device emits a manipulated variable that is used as a superimposed signal. The output of the control device is connected to a first input of the actuator. A second input of the actuator is connected to the output of the receiving device. The output of the actuator, at which the actual value of the control loop is located, is connected to an alarm evaluation device and the input of the control device, a fire being detected by comparing the actual value of the control loop with an alarm threshold. In order to enable a fire to be recognized by the actual value of the control loop, the control device is designed so that the manipulated variable is only carried out very slowly on the one hand and is only carried out on the other hand if there is either a very high probability that there is no smoke in the measuring chamber or the temperature has changed.
Zu diesem Zweck weist die Regeleinrichtung an Ihrem Eingang je
einen rücksetzbaren Minimalwert- und Maximalwertspeicher sowie
eine Einrichtung zum Ermitteln eines Mittelwertes auf, die im
folgenden Mittelwertbilder genannt wird. Der Ausgang des Mittelwertbilders
ist mit einer ersten Vergleichsstelle verbunden,
an der die Regelabweichung als Differenz zwischen Soll- und
Mittelwert des Istwertes ermittelt wird. Der Ausgang der ersten
Vergleichsstelle ist mit einem Proportionalglied verbunden, in
dem die Regelabweichung mit einem Faktor k multipliziert wird
und so ein erster Korrekturwert für die Regelung gebildet wird.
Der Ausgang des Proportionalgliedes ist mit einem ersten Eingang
eines ersten Komparators und mit einem ersten Eingang
eines ersten Signalwahlschalters verbunden. Die zweiten Eingänge
des ersten Komparators und des ersten Signalwahlschalters
sind mit einem zweiten maximalen Korrekturwert verbunden. Der
Ausgang des ersten Komparators ist mit dem Steuereingang des
ersten Signalwahlschalters verbunden. Im ersten Komparator wird
der zweite maximale Korrekturwert mit dem ersten Korrekturwert
verglichen und je nach Ergebnis des Vergleichs der kleinere der
beiden Korrekturwerte vom ersten Signalwahlschalter zu seinem
Ausgang durchgeschaltet. Der Ausgang des ersten Signalwahlschalters
ist mit dem ersten Eingang einer Additionsstelle verbunden.
Am zweiten Eingang der Additionsstelle liegt der alte
Stellwert des Regelkreises. Der alte Stellwert und der Korrekturwert,
werden in der Additionsstelle zu einem neuen Stellwert
summiert, der am Ausgang der Additionsstelle bereit steht. Der
Ausgang des Summierers ist mit einem ersten Eingang eines zweiten
Signalauswahlschalters verbunden. Am zweiten Eingang des
zweiten Signalauswahlschalters liegt der temperaturkompensierte
alte Stellwert des Regelkreises. In Abhängigkeit des Signals am
Steuereingang des zweiten Signalauswahlschalters wird der neue
Stellwert oder der alte, aber temperaturkompensierte Stellwert,
des Regelkreises zum Ausgang durchgeschaltet. Der Ausgang des
zweiten Signalauswahlschalters ist mit einem Signalhalteglied
verbunden, das den an seinem Eingang anliegenden Wert speichert,
und an seinem Ausgang wieder abgibt. Der Ausgang des
Signalhaltegliedes ist mit dem ersten Eingang des Stellgliedes,
mit dem zweiten Eingang des Summierers und dem Eingang der Temperaturkompensationseinrichtung
verbunden. Das Ausgangssignal
der Temperaturkompensationseinrichtung liegt, wie bereits erwähnt,
am zweiten Eingang des zweiten Signalauswahlschalters
an. Der Steuereingang des zweiten Signalauswahlschalters ist
mit dem Ausgang eines zweiten Komparators verbunden, der die
Differenz des minimalen und maximalen Istwertes mit einem vorgegebenen
Fensterwert vergleicht. Dazu ist ein erster Eingang
des zweiten Komparators mit einem Speicher für den Fensterwert
und ein zweiter Eingang mit einer zweiten Vergleichsstelle verbunden,
deren erster Eingang mit dem Ausgang des Maximalwertspeichers
und deren zweiter Eingang mit dem Ausgang des Minimalwertspeichers
verbunden ist.
Dem erfindungsgemäßen Verfahren nach wird das von der Empfangseinheit
abgegebene Signal noch vor der endgültigen Verstärkung
mit einem Überlagerungssignal überlagert, das dem Betrag nach
etwas kleiner als der Betrag des Grundsignals der Empfangseinheit
ist und das entgegengesetzte Vorzeichen trägt. Das Grundsignal
ist der Rauch-unabhängige, quasi statische Signalanteil
der Empfangseinheit. Durch diese Maßnahme, sinkt der Gleichanteil
des zu verstärkenden Signals, das Signal kann höher verstärkt
werden, ohne die nachfolgenden Stufen bereits durch den
Gleichanteil voll auszusteuern, - dadurch können dynamische
Signalanteile leichter beurteilt und durch Rauch bedingte Signalanstiege
leichter erkannt werden. Da das Grundsignal aber
aufgrund von Bauteil- und Fertigungstoleranzen stark schwankt
und sich im Laufe der Lebenszeit ändert, ist ein sich selbst
anpassendes Überlagerungssignal nötig. Daher wird erfindungsgemäß
das Überlagerungssignal in Abhängigkeit von dem von der
Empfangseinheit abgegebenen Grundsignal erzeugt.For this purpose, the control device has at its input a resettable minimum value and maximum value memory as well as a device for determining an average value, which is referred to below as average value images. The output of the mean value generator is connected to a first comparison point, at which the control deviation is determined as the difference between the target value and the mean value of the actual value. The output of the first comparison point is connected to a proportional element, in which the control deviation is multiplied by a factor k and a first correction value for the control is formed. The output of the proportional element is connected to a first input of a first comparator and to a first input of a first signal selection switch. The second inputs of the first comparator and the first signal selection switch are connected to a second maximum correction value. The output of the first comparator is connected to the control input of the first signal selection switch. In the first comparator, the second maximum correction value is compared with the first correction value and, depending on the result of the comparison, the smaller of the two correction values is switched through from the first signal selection switch to its output. The output of the first signal selection switch is connected to the first input of an addition point. The old manipulated variable of the control loop is located at the second input of the addition point. The old control value and the correction value are summed in the addition point to form a new control value which is available at the output of the addition point. The output of the summer is connected to a first input of a second signal selection switch. The temperature-compensated old manipulated variable of the control circuit is located at the second input of the second signal selection switch. Depending on the signal at the control input of the second signal selection switch, the new manipulated variable or the old, but temperature-compensated manipulated variable, of the control loop is switched through to the output. The output of the second signal selection switch is connected to a signal holding element which stores the value present at its input and outputs it again at its output. The output of the signal holding element is connected to the first input of the actuator, to the second input of the summer and to the input of the temperature compensation device. As already mentioned, the output signal of the temperature compensation device is present at the second input of the second signal selection switch. The control input of the second signal selection switch is connected to the output of a second comparator, which compares the difference between the minimum and maximum actual value with a predetermined window value. For this purpose, a first input of the second comparator is connected to a memory for the window value and a second input to a second comparison point, the first input of which is connected to the output of the maximum value memory and the second input of which is connected to the output of the minimum value memory.
According to the method according to the invention, the signal emitted by the receiving unit is superimposed before the final amplification with a superposition signal which is somewhat smaller in magnitude than the amount of the basic signal of the receiving unit and bears the opposite sign. The basic signal is the smoke-independent, quasi-static signal component of the receiving unit. With this measure, the DC component of the signal to be amplified drops, the signal can be amplified to a higher level without fully controlling the subsequent stages with the DC component - this makes it easier to assess dynamic signal components and to detect signal increases caused by smoke. However, since the basic signal fluctuates greatly due to component and manufacturing tolerances and changes over the course of life, a self-adapting overlay signal is necessary. Therefore, according to the invention, the beat signal is generated as a function of the basic signal emitted by the receiving unit.
Das von der Empfangseinheit gelieferte Signal wird beispielsweise im Stellglied eines Regelkreises mit dem Stellwert des Regelkreises so überlagert, dass der Stellwert vom Empfangssignal abgezogen wird. Die Differenz beider Signale wird so stark verstärkt, daß Signalschwankungen leicht erkannt werden können. Das auf diese Weise gebildete Signal stellt einerseits den Istwert des Regelkreises dar, andererseits wird es zur Alarmauswertung herangezogen, indem es mit einer vorgegebenen Alarmschwelle verglichen wird. Da der Istwert in einem Regelkreis aber normalerweise weitgehend konstant gehalten wird, kann der Istwert normalerweise die Alarmschwelle nie erreichen. Um beim Auftreten von Rauch ein Anwachsen des Istwertes bis zur Alarmschwelle dennoch zu ermöglichen, stellt die Regeleinrichtung sicher, daß der Stellwert (Überlagerungssignal) nur dann nachgeführt wird, wenn sich mit sehr hoher Wahrscheinlichkeit kein Rauch in der Messkammer befindet und, dass das Nachführen des Stellwertes langsamer erfolgt, als es für das Ausregeln eines durch das Auftreten von Rauch zu erwartenden Signalanstiegs nötig wäre. In der Regeleinrichtung wird daher das Nachführen des Stellwertes auf einen maximalen Nachführwert begrenzt, wobei die Nachführung erst nach einer über mehrere Messungen erfolgten Mittelwertbildung des Istwertes durchgeführt wird. Außerdem wird die Differenz aus dem größten und kleinsten Istwert einer Messreihe mit einem Fensterwert verglichen. Wenn die Differenz den Fensterwert überschreitet, wird die Nachführung des Stellwertes unterbrochen. Wenn die Nachführung des Istwertes unterbrochen ist, kann aber weiterhin eine Anpassung des Stellwertes an eine Temperaturänderung erfolgen. The signal delivered by the receiving unit is, for example in the control element of a control loop with the manipulated variable of Control circuit superimposed so that the manipulated variable from the received signal is subtracted. The difference between the two signals becomes so strong reinforces that signal fluctuations can be easily recognized. The signal formed in this way represents the actual value on the one hand of the control loop, on the other hand it becomes an alarm evaluation used by it with a predetermined alarm threshold is compared. Because the actual value in a control loop but is usually kept largely constant, the The actual value normally never reaches the alarm threshold. To at If smoke occurs, the actual value increases up to the alarm threshold the control device nevertheless enables make sure that the manipulated variable (superimposed signal) is only updated will, if there is a very high probability that no Smoke is in the measuring chamber and that the tracking of the Manipulated value is slower than it is for the regulation of a due to the occurrence of smoke the expected signal increase is necessary would. In the control device, the tracking of the Manipulated value limited to a maximum tracking value, whereby the tracking only took place after one over several measurements Averaging of the actual value is carried out. Moreover the difference between the largest and smallest actual value becomes one Measurement series compared with a window value. If the difference exceeds the window value, the control value is updated interrupted. If the updating of the actual value is interrupted is, but can still be an adjustment of the manipulated variable change in temperature.
Der Erfindung liegt dabei die Erkenntnis zugrunde, dass zum einen die an den Wänden der Messkammer reflektierte Strahlung ein im Wesentlichen gleichbleibendes, sich nur über lange Zeiträume sehr langsam änderndes Grundsignal liefert und in kurzen Zeitabständen durchgeführte Messungen nur aufgrund von Signalrauschen unterschiedlich hohe Werte liefern. Diese Messwerte weisen eine bestimmte charakteristische Streuung auf. Zum anderen besteht der zu erkennende Rauch aus kleinen, sich ständig in Bewegung befindenden Partikeln. An diesen Partikeln gestreute und auf einen Empfänger auftreffende Strahlung bewirkt ein Signal, das wesentlich breiter streuende Werte aufweist, als das Grundsignal bei rauchfreier Messkammer. Somit kann anhand der Streuung einzelner Messwerte, oder der Differenz zwischen größtem und kleinstem Wert einer Messreihe ein erster Hinweis auf die Existenz von Rauch gewonnen werden.The invention is based on the knowledge that for one is the radiation reflected on the walls of the measuring chamber an essentially constant, only over long periods of time delivers very slowly changing basic signal and in short Intervals carried out only due to signal noise deliver different values. These measurements have a certain characteristic spread. On the other hand the smoke to be recognized consists of small, constantly particles in motion. Scattered on these particles and causes radiation incident on a receiver a signal that has values that are significantly broader, as the basic signal for a smoke-free measuring chamber. Thus, based on the scatter of individual measured values, or the difference between largest and smallest value of a series of measurements a first Evidence of the existence of smoke can be obtained.
Im Folgenden wird nun die Erfindung anhand der Zeichnungen noch näher erläutert.In the following, the invention will now be described with reference to the drawings explained in more detail.
Es zeigt:
- Fig. 1
- ein vereinfachtes Blockschaltbild der Signalverarbeitung eines erfindungsgemäßen Brandmelders,
- Fig. 2
- ein Blockschaltbild der Signalverarbeitung eines erfindungsgemäßen Brandmelders mit Darstellung der Regeleinrichtung, und
- Fig. 3
- eine bevorzugte Ausführungsform der Signalverarbeitung eines erfindungsgemäßen Brandmelders.
- Fig. 1
- a simplified block diagram of the signal processing of a fire detector according to the invention,
- Fig. 2
- a block diagram of the signal processing of a fire detector according to the invention with representation of the control device, and
- Fig. 3
- a preferred embodiment of the signal processing of a fire detector according to the invention.
In Figur 1 ist die Signalverarbeitungseinheit (10) gezeigt. Die Empfangseinheit (1) empfängt an Messkammerwänden und Rauch oder anderen Aerosolen gestreute Strahlung und wandelt diese in ein elektrisches Signal um, das am Ausgang der Empfangseinheit (1) abgreifbar ist. Der Ausgang der Empfangseinheit (1) ist mit dem zweiten Eingang des Stellgliedes (2) des Regelkreises (5) verbunden. Der erste Eingang des Stellgliedes (2) ist mit dem Ausgang der Regeleinrichtung (4) verbunden, an dem die Stellgröße bereitgestellt wird. Im Stellglied werden die Stellgröße und das Signal aus der Empfangseinheit (2) einander überlagert. Die Differenz beider Signale wird verstärkt und so am Ausgang des Stellgliedes (2) als Istwert des Regelkreises (5) abgegeben. Der Ausgang des Stellgliedes (2) ist mit dem Eingang der Alarmauswerteeinrichtung (3) und dem Eingang der Regelungseinrichtung (4) verbunden. Die Alarmauswerteeinrichtung (3) arbeitet dabei genauso, wie es aus herkömmlichen Streulichtbrandmeldern bekannt ist, z.B. durch den einfachen Vergleich des an ihrem Eingang anliegenden Signals mit einer Alarmschwelle, während die Regeleinrichtung weitgehend nur Grundsignal - Änderungen ausgleicht.The signal processing unit (10) is shown in FIG. The Receiver unit (1) receives on measuring chamber walls and smoke or other aerosols scattered radiation and converts this into electrical signal at the output of the receiving unit (1) is tapped. The output of the receiving unit (1) is with the second input of the actuator (2) of the control circuit (5) connected. The first input of the actuator (2) is with the output connected to the control device (4) on which the manipulated variable provided. The manipulated variable and the signal from the receiving unit (2) is superimposed on one another. The The difference between the two signals is amplified and thus at the output of the Actuator (2) delivered as the actual value of the control loop (5). The output of the actuator (2) is with the input of the alarm evaluation device (3) and the entrance of the control device (4) connected. The alarm evaluation device (3) works just as it does from conventional flare light detectors is known, e.g. by simply comparing the on her Input pending signal with an alarm threshold while the control device largely changes only the basic signal balances.
Hierfür enthält die Regeleinrichtung (4) an ihrem Eingang einen Minimalwertspeicher (6), einen Maximalwertspeicher (7) und einen Mittelwertbilder (8). In der Vergleichsstelle (9) wird der, aus den Messwerten eines Messzyklusses von beispielsweise 8 Messungen gebildete Mittelwert, mit dem Sollwert (11) des Regelkreises (5) verglichen, und die Regelabweichung bestimmt. Die Regelabweichung wird im Proportionalglied (12) mit einem Faktor multipliziert und dadurch ein erster Nachführwert für die Stellgröße ermittelt. Dieser Nachführwert wird dem ersten Eingang der Signalauswahlschaltung (13) und dem Komparator (14) zugeführt. Im Komparator (14) werden der erste Nachführwert und der maximale Nachführwert (15) miteinander verglichen. Der Komparator (14) steuert daraufhin den Signalauswahlschalter (13) so, dass der kleinere der beiden Nachführwerte zur Additionsstelle (16) durchgeschaltet wird. In der Additionsstelle (16) wird die alte Stellgröße mit dem kleineren Nachführwert zur neuen Stellgröße addiert und an den ersten Eingang des Signalauswahlschalters (17) angelegt. Die neue Stellgröße wird vom Signalauswahlschalter (17) nur dann zum Signalhalteglied (18) und somit zum Stellglied (2) durchgeschaltet, wenn der Vergleich im Komparator (19) ergeben hat, dass die in der Vergleichstelle (20) gebildete Differenz aus dem im Maximalwertspeicher (7) gespeicherten Maximalwert und im Minimalwertspeicher (6) gespeicherten Minimalwert eines Messzyklusses, kleiner als der Fensterwert (21) ist. Wenn die Differenz aus Maximal- und Minimalwert des Messzyklusses größer als der Fensterwert (21) ist, wird nicht die neue Stellgröße, sondern die in der Temperaturkompensationseinrichtung (22) temperaturkompensierte, alte Stellgröße zum Signalhalteglied (18) und somit zum Stellglied (2) durchgeschaltet. Dadurch wird die Regelung quasi eingefroren.For this purpose, the control device (4) contains one at its input Minimum value memory (6), a maximum value memory (7) and an average value image (8). In the reference junction (9) which, from the measured values of a measuring cycle of, for example 8 measurements formed mean, with the setpoint (11) of the control loop (5) compared, and the control deviation determined. The control deviation is shown in the proportional element (12) with a Factor multiplied and thus a first tracking value for the manipulated variable is determined. This tracking value becomes the first Input of the signal selection circuit (13) and the comparator (14) fed. In the comparator (14) the first tracking value and the maximum tracking value (15) compared. The comparator (14) then controls the signal selection switch (13) so that the smaller of the two tracking values to the addition point (16) is switched through. In the addition point (16) the old manipulated variable with the smaller tracking value becomes new manipulated variable is added and to the first input of the signal selection switch (17) created. The new manipulated variable is from Signal selection switch (17) only to the signal holding element (18) and thus switched to the actuator (2) when the comparison in the comparator (19) has shown that in the reference junction (20) difference formed from that in the maximum value memory (7) stored maximum value and in the minimum value memory (6) stored minimum value of a measuring cycle, is smaller than the window value (21). If the difference is out Maximum and minimum value of the measuring cycle larger than the window value (21) is not the new manipulated variable, but the in the temperature compensation device (22) temperature-compensated, old manipulated variable to the signal holding element (18) and thus switched through to the actuator (2). This is the regulation almost frozen.
An dieser Stelle sei noch erwähnt, dass als Kriterium zum Einfrieren der Regelung nicht nur der Unterschied zwischen Maximal- und Minimalwert einer Istwertmessreihe, sondern auch die Standardabweichung, Varianz oder andere statistische Größen verwendet werden können.At this point it should be mentioned that as a criterion for freezing regulation not only the difference between maximum and minimum value of an actual value measurement series, but also the Standard deviation, variance or other statistical values can be used.
In Figur 3 ist ein bevorzugtes Ausführungsbeispiel zu sehen, in dem gegenüber Figur 2 ein weiterer Komparator (23) in die Regeleinrichtung (4) eingefügt ist, der den Istwert mit der halben Alarmschwelle vergleicht, und dessen Ausgangssignal mit dem Ausgangssignal des Komparators (19) im Oderglied (24) verodert wird. Der Ausgang des Odergliedes (24) steuert nun den Signalauswahlschalter (17), so dass zusätzlich auch dann, wenn der Istwert eine vorgegebene Schwelle, im Beispiel die halbe Alarmschwelle erreicht, die Regelung eingefroren wird. Außerdem wird das Eingangssignal für die Alarmauswertungseinheit (3) hier am Ausgang des Mittelwertbilders (8) in der Regelungseinheit (5) abgegriffen.A preferred exemplary embodiment can be seen in FIG compared to Figure 2, a further comparator (23) in the control device (4) is inserted, which is the actual value with half Compares alarm threshold, and its output signal with the Output signal of the comparator (19) orodized in the OR element (24) becomes. The output of the OR element (24) now controls the signal selection switch (17), so that in addition, even if the Actual value is a predefined threshold, in the example half the alarm threshold reached, the control is frozen. Besides, will the input signal for the alarm evaluation unit (3) here on Output of the mean value generator (8) in the control unit (5) tapped.
Eine Regelungseinheit (5) in einem erfindungsgemäßen Brandmelder kann beispielsweise in einem ASIC realisiert sein, oder auch in Form einer geeigneten Software in einem Mikroprozessor implementiert werden, wobei auch die Alarmauswerteeinheit (3) im selben Mikroprozessor oder ASIC realisiert sein kann. An den Ein- und Ausgängen der Regelungseinheit (4) sind bei Verwendung eines Prozessors oder digitalen ASICs entsprechende Analog- Digitalwandler bzw. Digital- Analogwandler vorzusehen.A control unit (5) in a fire detector according to the invention can be implemented in an ASIC, for example, or also in the form of suitable software in a microprocessor be implemented, whereby the alarm evaluation unit (3) can be implemented in the same microprocessor or ASIC. To the Inputs and outputs of the control unit (4) are in use analogue-digital converters corresponding to a processor or digital ASICs or digital-to-analog converter.
Bei der Erfindung handelt es sich um einen Brandmelder nach dem Steulichtprinzip und ein Verfahren zu dessen Betrieb, bei dem dem Empfangssignal ein weiteres Signal überlagert wird, um eine hohe Signalverstärkung zu ermöglichen.The invention is a fire detector according to Steulichtprinzip and a method for its operation, in which another signal is superimposed on the received signal by a to enable high signal amplification.
Claims (11)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02010414A EP1369836B1 (en) | 2002-05-08 | 2002-05-08 | Smoke detector and method for its operation |
ES02010414T ES2254552T3 (en) | 2002-05-08 | 2002-05-08 | FIRE DETECTOR AND OPERATION PROCEDURE OF THE SAME. |
DK02010414T DK1369836T3 (en) | 2002-05-08 | 2002-05-08 | Fire alarm and method of operating a fire alarm |
DE50205343T DE50205343D1 (en) | 2002-05-08 | 2002-05-08 | Fire detector and method for operating a fire detector |
AT02010414T ATE313836T1 (en) | 2002-05-08 | 2002-05-08 | FIRE ALARM AND METHOD FOR OPERATING A FIRE ALARM |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP02010414A EP1369836B1 (en) | 2002-05-08 | 2002-05-08 | Smoke detector and method for its operation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1369836A1 true EP1369836A1 (en) | 2003-12-10 |
EP1369836B1 EP1369836B1 (en) | 2005-12-21 |
Family
ID=29433073
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02010414A Expired - Lifetime EP1369836B1 (en) | 2002-05-08 | 2002-05-08 | Smoke detector and method for its operation |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1369836B1 (en) |
AT (1) | ATE313836T1 (en) |
DE (1) | DE50205343D1 (en) |
DK (1) | DK1369836T3 (en) |
ES (1) | ES2254552T3 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019089450A1 (en) | 2017-10-30 | 2019-05-09 | Carrier Corporation | Compensator in a detector device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4225791A (en) * | 1979-03-01 | 1980-09-30 | Honeywell Inc. | Optical smoke detector circuit |
US4514720A (en) * | 1981-07-10 | 1985-04-30 | Siemens Aktiengesellschaft | Method and apparatus for increasing the response sensitivity and the interference resistance in an alarm system |
US5523743A (en) * | 1995-04-13 | 1996-06-04 | Digital Security Controls Ltd. | Self-diagnostic smoke detector |
EP1098284A2 (en) * | 1999-11-05 | 2001-05-09 | E.I. Technology Limited | A smoke alarm device |
-
2002
- 2002-05-08 ES ES02010414T patent/ES2254552T3/en not_active Expired - Lifetime
- 2002-05-08 DE DE50205343T patent/DE50205343D1/en not_active Expired - Lifetime
- 2002-05-08 AT AT02010414T patent/ATE313836T1/en active
- 2002-05-08 EP EP02010414A patent/EP1369836B1/en not_active Expired - Lifetime
- 2002-05-08 DK DK02010414T patent/DK1369836T3/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4225791A (en) * | 1979-03-01 | 1980-09-30 | Honeywell Inc. | Optical smoke detector circuit |
US4514720A (en) * | 1981-07-10 | 1985-04-30 | Siemens Aktiengesellschaft | Method and apparatus for increasing the response sensitivity and the interference resistance in an alarm system |
US5523743A (en) * | 1995-04-13 | 1996-06-04 | Digital Security Controls Ltd. | Self-diagnostic smoke detector |
EP1098284A2 (en) * | 1999-11-05 | 2001-05-09 | E.I. Technology Limited | A smoke alarm device |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019089450A1 (en) | 2017-10-30 | 2019-05-09 | Carrier Corporation | Compensator in a detector device |
CN111263958A (en) * | 2017-10-30 | 2020-06-09 | 开利公司 | Compensator in detector device |
US11568730B2 (en) | 2017-10-30 | 2023-01-31 | Carrier Corporation | Compensator in a detector device |
US11790751B2 (en) | 2017-10-30 | 2023-10-17 | Carrier Corporation | Compensator in a detector device |
Also Published As
Publication number | Publication date |
---|---|
ATE313836T1 (en) | 2006-01-15 |
EP1369836B1 (en) | 2005-12-21 |
ES2254552T3 (en) | 2006-06-16 |
DE50205343D1 (en) | 2006-01-26 |
DK1369836T3 (en) | 2006-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE19934171B4 (en) | Filter system and method | |
DE69624461T2 (en) | Fire alarm system with differentiation of smoke particles | |
EP2601644B1 (en) | Evaluation of scattered light signals in an optical alarm system and evaluating both a weighted smoke density signal and a weighted dust/steam density signal | |
DE69510252T2 (en) | Method and device for obtaining a moving object using background subtraction | |
EP0360126B1 (en) | Operation method for an optical smoke detector and smoke detector for carrying out the method | |
DE2032438B2 (en) | DEVICE FOR REGULATING THE PRELOAD CURRENT FOR A PHOTODETECTOR | |
EP1293727B1 (en) | Control apparatus for a burner and a method for adjustment | |
WO2005069242A1 (en) | Fire detector with several analysis volumes | |
EP0530723A1 (en) | Optical smoke detector with active monitoring | |
WO2006037804A1 (en) | Scattered light smoke detector | |
CH668658A5 (en) | PHOTOELECTRIC SMOKE SENSOR. | |
DE2822547A1 (en) | DEVICE FOR CHECKING THE PARTICULAR CONTENT OF THE ATMOSPHERE, IN PARTICULAR FOR USE AS A SMOKE DETECTOR | |
DE69205755T2 (en) | Linear compensation circuit. | |
CH669859A5 (en) | ||
EP1638062B1 (en) | Aspirating smoke detector and method of its operation | |
DE3905261C2 (en) | ||
EP1369836B1 (en) | Smoke detector and method for its operation | |
EP0750764A1 (en) | Process and arrangement for fuzzy control | |
DE69313739T2 (en) | Smoke detection device for fire alarm | |
DE4334625A1 (en) | Process for keeping the output of a water heater constant | |
CH686914A5 (en) | Fire detection system for early detection of fires. | |
DE102017217280A1 (en) | Measuring device for particle measurement | |
DE102008005064A1 (en) | Optoelectronics detection method for detecting e.g. body part of person, in monitoring region, involves evaluating background light and foreground interfering light for determining whether object is present in monitoring region | |
EP3492951B1 (en) | Optoelectronic device | |
EP1349381B1 (en) | Device and method for controlling an image sensor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030104 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
AKX | Designation fees paid |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051221 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REF | Corresponds to: |
Ref document number: 50205343 Country of ref document: DE Date of ref document: 20060126 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: HANS RUDOLF GACHNANG PATENTANWALT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060321 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20060405 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20060522 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2254552 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060922 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051221 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DK Payment date: 20090526 Year of fee payment: 8 Ref country code: ES Payment date: 20090522 Year of fee payment: 8 Ref country code: NL Payment date: 20090527 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20090525 Year of fee payment: 8 Ref country code: FR Payment date: 20090519 Year of fee payment: 8 Ref country code: IT Payment date: 20090526 Year of fee payment: 8 Ref country code: LU Payment date: 20090525 Year of fee payment: 8 Ref country code: SE Payment date: 20090525 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20090526 Year of fee payment: 8 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20090528 Year of fee payment: 8 |
|
BERE | Be: lapsed |
Owner name: *HEKATRON TECHNIK G.M.B.H. Effective date: 20100531 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20101201 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20100508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100508 |
|
EUG | Se: european patent has lapsed | ||
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100508 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20101201 Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100509 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100531 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20110714 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100508 Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110704 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20110525 Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20110520 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100509 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20110404 Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20100508 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 313836 Country of ref document: AT Kind code of ref document: T Effective date: 20120508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120508 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 50205343 Country of ref document: DE Effective date: 20121201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121201 |