EP1367221B1 - Doppeldüsenanordnung zur Kühlung der Seitenplatte einer Hochdruckturbine - Google Patents

Doppeldüsenanordnung zur Kühlung der Seitenplatte einer Hochdruckturbine Download PDF

Info

Publication number
EP1367221B1
EP1367221B1 EP03291258A EP03291258A EP1367221B1 EP 1367221 B1 EP1367221 B1 EP 1367221B1 EP 03291258 A EP03291258 A EP 03291258A EP 03291258 A EP03291258 A EP 03291258A EP 1367221 B1 EP1367221 B1 EP 1367221B1
Authority
EP
European Patent Office
Prior art keywords
air
end plate
flange
upstream
downstream
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03291258A
Other languages
English (en)
French (fr)
Other versions
EP1367221A1 (de
Inventor
Gérard Adam
Sylvie Coulon
Gérard Jacques Stangalini
Jean-Claude Taillant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA SAS filed Critical SNECMA SAS
Publication of EP1367221A1 publication Critical patent/EP1367221A1/de
Application granted granted Critical
Publication of EP1367221B1 publication Critical patent/EP1367221B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • F01D5/3015Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates

Definitions

  • the invention relates to the field of ventilation of high-pressure turbine rotors of turbojets.
  • a device for ventilating a high-pressure turbine rotor of a turbomachine this turbine being disposed downstream of the combustion chamber and comprising, on the one hand, a turbine disk having an internal bore and an upstream flange for fixing it to the downstream cone of a compressor, at high pressure, and, secondly, a flange disposed upstream of said disk and separated from the latter by a cavity, said flange comprising a massive radially inner part.
  • said device comprising a first circuit for cooling the blades fed by a first flow of air sampled at the bottom of the chamber and delivering this first air flow into said cavity via main injectors arranged upstream of said flange and ventilation holes formed in said flange, and a second circuit for cooling the flange, fed by a second air flow through a labyrinth of discharge located downstream of the high-pressure compressor, at least a portion of said second air flow serving to ventilate the upstream upper face of said flange through a second labyrinth located under the injectors.
  • FIG. 1 shows such a high-pressure turbine rotor 1, disposed downstream of a combustion chamber 2, and which comprises a turbine disc 3 equipped with vanes 4, and a flange 5 disposed upstream of the disc 3.
  • the disc 3 and the flange 5 each comprise an upstream flange referenced 3a for the disc 3 and 5a for the flange 5, for their attachment to the downstream end 6 of the downstream cone 7 of the high-pressure compressor driven by the rotor 1.
  • the disc 3 has an internal bore 8 through which the shaft 9 of a low-pressure turbine passes, and the flange 5 has an internal bore 10 surrounding the flange 3a of the disc 3, and ventilation holes 11 through which a first flow C1 cooling air taken from the bottom of the chamber is delivered into the cavity 12 separating the downstream face of the flange 5 of the upstream face of the disk 3.
  • This cooling air flow C1 circulates radially outwards and enters the 4a cells containing the feet of the blades 4 to cool them.
  • This air flow is taken from the chamber bottom, circulates in a conduit 13 disposed in the chamber 14 separating the flange 5 from the chamber bottom and is rotated by injectors 15 in order to lower the temperature of the chamber. air delivered into the cavity 12.
  • a second cooling air flow C2 taken from the chamber bottom flows downstream into the chamber 16 separating the downstream cone 7 of the high-pressure compressor from the inner casing 17 of the combustion chamber 12.
  • This air flow rate C2 flows through a discharge labyrinth 18 and enters the chamber 14 from which a portion C2a flows through orifices 19 formed in the upstream flange 5a of the flange 5, passes through the bore 10 of the flange 5 in order to cool the radially inner portion of the latter and rejoins the cooling air flow C1 of the blades 4.
  • Another part C2b of the second air flow C2 cools the upstream face of the flange 5, bypasses the injectors 15 and is discharged into the upstream bleed cavity 20 of the turbine rotor 1.
  • the second air flow C2 serves to cool the downstream cone 7, the connecting rod of the high pressure compressor to the high pressure turbine, and the flange 5.
  • C2c air flow for cooling the flange downstream of the second labyrinth 22 located under the injectors 15, is not controllable because it undergoes changes in the games labyrinth discharge 18, the second labyrinth 22 and the third labyrinth 24 located above the injectors 15, during operation and during the life of the engine.
  • the temperature of the upstream face of the flange downstream of the second labyrinth is therefore quite high and poorly controlled. This requires the use of special materials for the production of the flange and appropriate sizing.
  • the object of the invention is to lower the temperature of the upstream face of the flange to facilitate its dimensioning in overspeed, to increase its life and to use an economical material.
  • This third flow of air pre-driven and injected downstream of the labyrinth under main injectors thus reduces the total relative temperature of the air from cooling the upstream face of the flange downstream of the second labyrinth.
  • This third air flow mixes with the leakage flow of the labyrinth under injectors and is discharged downstream of the main turbine injectors, in the supply circuit of the high pressure turbine wheels.
  • the air injected into the supply circuit of the turbine wheel is thus colder than that of the air injected according to the state of the art.
  • the additional injectors are made in the form of bores tilted tangentially in the direction of rotation of the rotor.
  • said bores remove air from the main injectors and deliver it immediately downstream of the second labyrinth.
  • FIG. 2 shows a turbine rotor 1 which differs from that shown in FIG. 1 in that the enclosure 23 situated downstream of the second labyrinth 22 is supplied with air, on the one hand, by an air leak C2c coming from the enclosure 14 via the second labyrinth 22 and, secondly, by an air flow C1a delivered by a bypass arranged between the duct 13 delivering the first air flow C1 and the enclosure 23.
  • the derivation consists of a plurality of holes 30 opening, on the one hand, to the inlet of the main injectors 15 and, on the other hand, in the chamber 23 immediately downstream of the second labyrinth 22.
  • the holes 30 are cylindrical and inclined tangentially in the direction of rotation of the turbine rotor 1.
  • the radially inner portion 31 of the flange 5 has a massive shape, and extends axially towards the front of the motor until it reaches the radial flange 5a which serves to fix it at the end. downstream 6 of the downstream cone 7 of the compressor.
  • the labyrinth 22, located under the injectors 15 is disposed at the periphery of the radial flange 5a.
  • the bores 30 are substantially radial and directed towards the upper face 32 of the radially inner part of the flange 5.
  • the air flow C1a delivered by the bores 30 is at a reduced relative total temperature with respect to the cooling air of the same regions in the region. state of the art.
  • the temperature gain can be estimated at 30 ° C.
  • the air flow C1a mixes with the C2c leakage rate of the labyrinth under injectors 22 and is discharged downstream of the main injectors 15 in the turbine wheel supply circuit.
  • the radial flange 5a does not have orifices for supplying the annular chamber 33 located between the radially inner portion 31 of the flange 5 and the downstream flange 3a of the turbine disk 3, since the third air flow C1a is sufficient to ensure by itself the cooling of the entire flange 5.
  • the air injected into the pre-entrained turbine wheel feed circuit for cooling the blades is colder than the cooling air of the vanes in conventional ventilation.
  • the temperature gain can be estimated at 15 °, which equates to a specific consumption gain of about 0.06%.
  • the cold air flow C1a delivered by the holes 30 is not influenced by the variations of the games of the surrounding labyrinths, because this flow is calibrated by the holes 30.
  • FIG. 3 shows in dotted line the evolution of the temperature of the bore 31 of the flange 5 in a conventional turbine rotor ventilation, and in full lines, the evolution of the temperature in the same place with the ventilation device according to FIG. according to the clearance of the labyrinth discharge 18 expressed in mm.
  • FIG. 4 shows the evolution of the temperature of the bore 31 of the flange 5 as a function of the clearance of the second labyrinth 22 located beneath the main injectors 15, with a conventional ventilation (dashed curve) and with a ventilation device according to FIG. 'invention.
  • the temperature in this zone with the device according to the invention is substantially constant and lower than that obtained with conventional ventilation.
  • FIG. 5 shows the evolution of the temperature at the same place of the flange, as a function of the play of the third labyrinth 24, for a conventional ventilation (dashed curve) and for ventilation with the device according to the invention.
  • the temperature in this region is substantially constant with a ventilation device according to the invention.
  • the temperature of the flange 5 in the vicinity of the third labyrinth 24 is substantially constant with the ventilation device according to the invention, and lower than that obtained with conventional ventilation, the flange 5 is less stressed by thermal stresses, and it can be made in a less expensive material and easier to work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Claims (6)

  1. Luftkühlungsvorrichtung für einen Hochdruckturbinenrotor eines Turbotriebwerks, wobei diese Turbine hinter der Brennkammer angeordnet ist und einerseits eine Turbinenscheibe (3) mit einer Innenbohrung und einem vorderen Flansch (3a) zu ihrer Befestigung an dem hinteren Konus (7) eines Hochdruckverdichters sowie andererseits eine vor dieser Scheibe angeordnete Platte (5), die von dieser durch einen Hohlraum (12) getrennt ist, aufweist, wobei diese Platte einen radial inneren, massiven Teil (31) umfasst, der ebenfalls eine Innenbohrung aufweist, durch die sich der vordere Flansch (3a) dieser Scheibe erstreckt, und einen vorderen Flansch (5a) zu ihrer Befestigung an diesem hinteren Konus aufweist, wobei diese Vorrichtung einen ersten Kreis für die Kühlung der Schaufeln enthält, der mit einer ersten, am Kammerboden entnommenen Luftmenge (C1) gespeist wird und diese erste Luftmenge über Haupteinspritzdüsen (15), die vor der genannten Platte angeordnet sind, und Lüftungslöcher (11), die in dieser Platte ausgeführt sind, in den Hohlraum (12) abgibt, sowie einen zweiten Kreis für die Kühlung der Platte enthält, der durch ein Ablasslabyrinth (18), das sich hinter dem Hochdruckverdichter befindet, mit einer zweiten Luftmenge (C2) gespeist wird, wobei mindestens ein Teil dieser zweiten Luftmenge dazu dient, die vordere, obere Seite dieser Platte durch ein zweites Labyrinth (22) hindurch zu belüften, welches sich unter den Einspritzdüsen (15) befindet
    dadurch gekennzeichnet,
    dass diese Vorrichtung ferner eine Umleitung zwischen dem ersten Kreis (13) und dem hinter dem zweiten Labyrinth (22) befindlichen, inneren abgeschlossenen Raum (23) aufweist, wobei diese Umleitung eine dritte Luftmenge (C1a) zur Kühlung der vorderen, oberen Seite (32) des radial inneren Teils (31) dieser Platte (5) abgibt, wobei diese dritte Luftmenge (C1a) mittels zusätzlicher Einspritzdüsen (30) vorab in Umlauf versetzt wird.
  2. Vorrichtung nach Anspruch 1,
    dadurch gekennzeichnet,
    dass die zusätzlichen Einspritzdüsen als Durchbohrungen (30) ausgeführt sind, die tangential in der Drehrichtung des Rotors geneigt sind.
  3. Vorrichtung nach Anspruch 2,
    dadurch gekennzeichnet,
    dass durch diese Durchbohrungen (30) am Einlass der Haupteinspritzdüsen (15) Luft entnommen wird.
  4. Vorrichtung nach Anspruch 3,
    dadurch gekennzeichnet,
    dass diese Durchbohrungen (30) unmittelbar hinter dem zweiten Labyrinth Luft abgeben.
  5. Vorrichtung nach einem der Ansprüche 2 bis 4,
    dadurch gekennzeichnet,
    dass das zweite Labyrinth (22) zwischen den Haupteinspritzdüsen (15) und dem vorderen Flansch (5a) der Platte (5) angeordnet ist.
  6. Vorrichtung nach Anspruch 5,
    dadurch gekennzeichnet,
    dass der vordere Flansch (5a) der Platte (5) radial verläuft.
EP03291258A 2002-05-30 2003-05-27 Doppeldüsenanordnung zur Kühlung der Seitenplatte einer Hochdruckturbine Expired - Lifetime EP1367221B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0206600A FR2840351B1 (fr) 2002-05-30 2002-05-30 Refroidissement du flasque amont d'une turbine a haute pression par un systeme a double injecteur fond de chambre
FR0206600 2002-05-31

Publications (2)

Publication Number Publication Date
EP1367221A1 EP1367221A1 (de) 2003-12-03
EP1367221B1 true EP1367221B1 (de) 2006-07-26

Family

ID=29415148

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03291258A Expired - Lifetime EP1367221B1 (de) 2002-05-30 2003-05-27 Doppeldüsenanordnung zur Kühlung der Seitenplatte einer Hochdruckturbine

Country Status (7)

Country Link
US (1) US6787947B2 (de)
EP (1) EP1367221B1 (de)
JP (1) JP3940377B2 (de)
CA (1) CA2430143C (de)
DE (1) DE60306990T2 (de)
FR (1) FR2840351B1 (de)
RU (1) RU2318120C2 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2861129A1 (fr) * 2003-10-21 2005-04-22 Snecma Moteurs Dispositif de joint a labyrinthe pour moteur a turbine a gaz
GB0412476D0 (en) * 2004-06-04 2004-07-07 Rolls Royce Plc Seal system
GB2426289B (en) * 2005-04-01 2007-07-04 Rolls Royce Plc Cooling system for a gas turbine engine
DE102005025244A1 (de) * 2005-05-31 2006-12-07 Rolls-Royce Deutschland Ltd & Co Kg Luftführungssystem zwischen Verdichter und Turbine eines Gasturbinentriebwerks
GB0620430D0 (en) * 2006-10-14 2006-11-22 Rolls Royce Plc A flow cavity arrangement
FR2950656B1 (fr) * 2009-09-25 2011-09-23 Snecma Ventilation d'une roue de turbine dans une turbomachine
RU2443869C2 (ru) * 2010-02-19 2012-02-27 Вячеслав Евгеньевич Беляев Устройство для охлаждения ротора газовой турбины
US9091173B2 (en) 2012-05-31 2015-07-28 United Technologies Corporation Turbine coolant supply system
EP2901083B1 (de) * 2012-09-26 2020-02-19 United Technologies Corporation Gasturbinenbrennkammeranordnung und verfahren zur montage derselben
US9388698B2 (en) * 2013-11-13 2016-07-12 General Electric Company Rotor cooling
US10344678B2 (en) 2014-01-20 2019-07-09 United Technologies Corporation Additive manufactured non-round, septum tied, conformal high pressure tubing
US9945248B2 (en) 2014-04-01 2018-04-17 United Technologies Corporation Vented tangential on-board injector for a gas turbine engine
JP6174655B2 (ja) 2014-10-21 2017-08-02 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジン用のダクテッド熱交換器システム、およびガスタービンエンジン用の熱交換器の製造方法
US10450956B2 (en) 2014-10-21 2019-10-22 United Technologies Corporation Additive manufactured ducted heat exchanger system with additively manufactured fairing
JP6484430B2 (ja) * 2014-11-12 2019-03-13 三菱重工業株式会社 タービンの冷却構造及びガスタービン
EP3130750B1 (de) * 2015-08-14 2018-03-28 Ansaldo Energia Switzerland AG Gasturbinenkühlsystem
CN106523043B (zh) * 2016-12-21 2018-04-03 中国南方航空工业(集团)有限公司 燃气轮机用分气路装置及燃气轮机
US11021962B2 (en) * 2018-08-22 2021-06-01 Raytheon Technologies Corporation Turbulent air reducer for a gas turbine engine
CN111878178B (zh) * 2020-07-30 2022-10-25 中国航发湖南动力机械研究所 涡轮转盘及涡轮转子
CN112049688B (zh) * 2020-08-19 2021-08-10 西北工业大学 一种用于等半径预旋供气系统的过预旋叶型接受孔
CN112855283B (zh) * 2021-01-11 2022-05-20 中国科学院工程热物理研究所 一种可提高接收孔流量系数的发动机预旋系统
EP4450779A1 (de) * 2023-04-18 2024-10-23 RTX Corporation Zwischengekühlte brennkammerdüsenleitschaufel und sekundärluftkonfiguration

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3832090A (en) * 1972-12-01 1974-08-27 Avco Corp Air cooling of turbine blades
GB2108202B (en) * 1980-10-10 1984-05-10 Rolls Royce Air cooling systems for gas turbine engines
US4466239A (en) * 1983-02-22 1984-08-21 General Electric Company Gas turbine engine with improved air cooling circuit
US4807433A (en) * 1983-05-05 1989-02-28 General Electric Company Turbine cooling air modulation
US4822244A (en) * 1987-10-15 1989-04-18 United Technologies Corporation Tobi
US5143512A (en) * 1991-02-28 1992-09-01 General Electric Company Turbine rotor disk with integral blade cooling air slots and pumping vanes
US5310319A (en) * 1993-01-12 1994-05-10 United Technologies Corporation Free standing turbine disk sideplate assembly
FR2707698B1 (fr) * 1993-07-15 1995-08-25 Snecma Turbomachine munie d'un moyen de soufflage d'air sur un élément de rotor.
US5402636A (en) * 1993-12-06 1995-04-04 United Technologies Corporation Anti-contamination thrust balancing system for gas turbine engines
FR2744761B1 (fr) * 1996-02-08 1998-03-13 Snecma Disque labyrinthe avec raidisseur incorpore pour rotor de turbomachine

Also Published As

Publication number Publication date
RU2318120C2 (ru) 2008-02-27
US20030223893A1 (en) 2003-12-04
FR2840351A1 (fr) 2003-12-05
DE60306990T2 (de) 2007-03-08
JP3940377B2 (ja) 2007-07-04
FR2840351B1 (fr) 2005-12-16
DE60306990D1 (de) 2006-09-07
US6787947B2 (en) 2004-09-07
CA2430143C (fr) 2010-10-05
JP2004132352A (ja) 2004-04-30
CA2430143A1 (fr) 2003-11-30
RU2003116095A (ru) 2005-01-27
EP1367221A1 (de) 2003-12-03

Similar Documents

Publication Publication Date Title
EP1367221B1 (de) Doppeldüsenanordnung zur Kühlung der Seitenplatte einer Hochdruckturbine
EP2440746B1 (de) Turbinenmotor mit verbesserter vorrichtung zur einstellung der strömungsgeschwindigkeit eines am ausgang eines hochdruckverdichters abgezapften kühlluftstroms
EP2475847B1 (de) Abstandskontrolle an den blattspitzen einer turbomaschine
EP2337929B1 (de) Lüftung einer hochdruckturbine in einer turbomaschine
CA2758175C (fr) Moteur a turbine a gaz a double corps pourvu d ' un palier inter-arbres
EP1445421B1 (de) Vorrichtung für die Belüftung eines Rotor einer Hochdruckturbine
CA2564491C (fr) Dispositif de ventilation de disques de turbine dans un moteur a turbine a gaz
EP1552111A1 (de) Gasturbinenlüftungsschaltungsanordnung
EP1503061A1 (de) Verfahren zur Kühlung von heissen Turbinenbauteilen mittels eines teilweise in einem externen Wärmetauscher gekühlten Luftstromes und so gekühltes Turbinentriebwerk
FR2923263A1 (fr) Turbomoteur comportant des moyens pour chauffer l'air entrant dans la turbine libre
FR2464363A1 (fr) Rotor de turbine pour turbomachines avec systeme de transfert de l'agent de refroidissement
FR3108655A1 (fr) Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
FR3108359A1 (fr) Moteur à turbine avec compresseur centrifuge ayant un soutirage de plaque d’appui de rouet
EP4127405A1 (de) Turbomaschine mit einer vorrichtung zur kühlung und druckbeaufschlagung einer turbine
FR3106609A1 (fr) Dispositif amélioré de limitation de débit de fuite pour turbines d’aéronef
FR3108659A1 (fr) Rotor de turbine comprenant un dispositif de régulation du débit de fluide de refroidissement et turbomachine comprenant un tel rotor
FR3097907A1 (fr) Contrôle actif du débit de refroidissement du compresseur haute pression
FR2881472A1 (fr) Circuit de ventilation d'un rotor de turbine haute pression dans un moteur a turbine a gaz
FR3109186A1 (fr) Injecteur de carburant pour une turbomachine d’aeronef
FR3117529A1 (fr) Turbomachine avec canalisation d’air secondaire comportant un systeme de deshuilage
FR3106624A1 (fr) dispositif amélioré de détection d’anomalie de refroidissement pour turbomachine d’aéronef
FR3025835A1 (fr) Systeme de circulation d'air de refroidissement d'aubes de turbine de turbomachine
FR3053727A1 (fr) Dispositif de circulation d'air entre un compresseur et une turbine d'une turbomachine d'aeronef a double flux, permettant une aspiration par effet de venturi de l'air present dans un compartiment inter-veine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20040601

AKX Designation fees paid

Designated state(s): DE FR GB

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SNECMA

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60306990

Country of ref document: DE

Date of ref document: 20060907

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061018

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070427

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150422

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60306990

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161201

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: SAFRAN AIRCRAFT ENGINES

Effective date: 20170713

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220426

Year of fee payment: 20

Ref country code: FR

Payment date: 20220421

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230526