EP1367221A1 - Système à double injecteurs fond de chambre pour le refroidissement du flasque amont d'une turbine à haute pression - Google Patents

Système à double injecteurs fond de chambre pour le refroidissement du flasque amont d'une turbine à haute pression Download PDF

Info

Publication number
EP1367221A1
EP1367221A1 EP03291258A EP03291258A EP1367221A1 EP 1367221 A1 EP1367221 A1 EP 1367221A1 EP 03291258 A EP03291258 A EP 03291258A EP 03291258 A EP03291258 A EP 03291258A EP 1367221 A1 EP1367221 A1 EP 1367221A1
Authority
EP
European Patent Office
Prior art keywords
flange
labyrinth
upstream
air flow
injectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03291258A
Other languages
German (de)
English (en)
Other versions
EP1367221B1 (fr
Inventor
Gérard Adam
Sylvie Coulon
Gérard Jacques Stangalini
Jean-Claude Taillant
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
SNECMA Moteurs SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SNECMA Moteurs SA filed Critical SNECMA Moteurs SA
Publication of EP1367221A1 publication Critical patent/EP1367221A1/fr
Application granted granted Critical
Publication of EP1367221B1 publication Critical patent/EP1367221B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/02Blade-carrying members, e.g. rotors
    • F01D5/08Heating, heat-insulating or cooling means
    • F01D5/081Cooling fluid being directed on the side of the rotor disc or at the roots of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/02Preventing or minimising internal leakage of working-fluid, e.g. between stages by non-contact sealings, e.g. of labyrinth type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/30Fixing blades to rotors; Blade roots ; Blade spacers
    • F01D5/3007Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type
    • F01D5/3015Fixing blades to rotors; Blade roots ; Blade spacers of axial insertion type with side plates

Definitions

  • the invention relates to the field of ventilation of rotors of high-pressure turbine of turbojets.
  • a ventilation device of a high-pressure turbine rotor of a turbomachine this turbine being disposed downstream of the combustion chamber and comprising, on the one hand, a turbine disk having an inner bore and an upstream flange for fixing it on the downstream cone of a compressor, at high pressure, and on the other hand, a flange disposed upstream of said disc and separated from it last by a cavity, said flange having a portion radially massive interior also having an inner bore, through which extends the upstream flange of said disk, and an upstream flange for its attachment on said downstream cone, said device comprising a first circuit for the blade cooling fed by a first flow of air taken from chamber bottom and delivering this first air flow into said cavity via main injectors arranged upstream of said flange and the holes of provided in said flange, and a second circuit for the cooling of the flange, fed by a second air flow at through a labyrinth of discharge located downstream of the high-pressure compressor pressure, at
  • FIG. 1 shows such a high-pressure turbine rotor 1, disposed downstream of a combustion chamber 2, and which comprises a turbine disc 3 equipped with blades 4, and a flange 5 disposed upstream 3.
  • the disc 3 and the flange 5 each comprise a flange upstream, referenced 3a for the disc 3 and 5a for the flange 5, for their fixing at the downstream end 6 of the downstream cone 7 of the high-pressure compressor pressure driven by the rotor 1.
  • the disc 3 has an inner bore 8 traversed by the shaft 9 of a low pressure turbine, and the flange 5 has a bore 10 surrounding the flange 3a of the disk 3, and ventilation holes 11 by which a first cooling air flow C1 taken from chamber bottom is delivered into the cavity 12 separating the downstream face of the flange 5 of the upstream face of the disc 3.
  • This air flow C1 of cooling circulates radially outwards and enters the 4a cells containing the feet of the blades 4 to cool them.
  • This air flow is taken from the chamber floor, circulates in a duct 13 disposed in the chamber 14 separating the flange 5 from the chamber bottom and is rotated by injectors 15 in order to lower the temperature of the air delivered into the cavity 12.
  • a second cooling air flow C2 taken from the bottom of chamber circulates downstream in the chamber 16 separating the downstream cone 7 of the high pressure compressor of the inner casing 17 of the chamber of 12.
  • This C2 airflow flows through a labyrinth of discharge 18 and enters the enclosure 14 from which a C2a part flows to through orifices 19 formed in the upstream flange 5a of the flange 5, passes through the bore 10 of the flange 5 to cool the part radially inner of the latter and rejoins the cooling air flow C1 4.
  • Another part C2b of the second air flow C2 cools the upstream face of the flange 5, bypasses the injectors 15 and is discharged into the upstream bleed cavity 20 of the turbine rotor 1.
  • a third part C2c of the third airflow C2 serves to ventilate the upstream upper face 21 of the flange 5 through a second labyrinth 22 located under the injectors 15.
  • This third part C2c enters the enclosure 23 located downstream of the second labyrinth 22, between the flange 5 and the injectors 15, and is evacuated into the cavity of upstream purge 20 of the turbine rotor 1 through a third labyrinth 24 located above the injectors 15, or mixes with the first flow C1.
  • the second air flow C2 serves to cool the downstream cone 7, the barrel connecting the high pressure compressor to the high pressure turbine, and the flange 5.
  • the temperature of the upstream face of the flange downstream of second labyrinth is therefore quite high and poorly controlled. This requires to use special materials for the realization of the flange and a appropriate sizing.
  • the object of the invention is to lower the temperature of the face upstream of the flange to facilitate its dimensioning in overspeed, to increase its life and to be able to use a material economic.
  • said device further comprises a shunt between the first circuit and the enclosure located downstream of the second labyrinth, said bypass delivering a third air flow for the cooling of the upper face upstream of the radially inner portion of said flange, this third flow of air being pre-rotated by means of additional injectors.
  • This third flow of air pre-driven and injected downstream of the labyrinth under main injectors thus reduces the relative total temperature of the air coming to cool the upstream face of the flask downstream of the second labyrinth.
  • This third airflow is mixture at the leakage rate of the labyrinth under injectors and is evacuated downstream of the main turbine injectors, into the feed circuit of the high pressure turbine wheels.
  • Air injected into the turbine wheel supply circuit is thus colder than that of the air injected according to the state of the art.
  • the additional injectors are made under boring tangentially in the direction of rotation of the rotor.
  • said bores remove air from the main injectors, and deliver it immediately downstream of the second labyrinth.
  • FIG. 2 shows a turbine rotor 1 which differs from that shown in FIG. 1 by the fact that the enclosure 23 situated downstream of second labyrinth 22 is supplied with air, on the one hand, by an air leak C2c coming from the enclosure 14 via the second labyrinth 22 and, on the other hand, on the other hand, by an air flow C1a delivered by a bypass arranged between the conduit 13 delivering the first air flow C1 and the enclosure 23.
  • the bypass consists of a plurality of holes 30 opening, on the one hand, to the inlet of the main injectors 15 and, on the other hand, in the enclosure 23 immediately downstream of the second labyrinth 22.
  • the holes 30 are cylindrical and inclined tangentially in the direction of rotation of the rotor turbine 1.
  • the part radially inner 31 of the flange 5 has a massive shape, and extends axially towards the front of the engine to the radial flange 5a which serves to fix it to the downstream end 6 of the downstream cone 7 of the compressor.
  • the labyrinth 22, located under the injectors 15 is disposed at the periphery of the radial flange 5a.
  • the holes 30 are substantially radial and directed towards the face upper 32 of the radially inner portion of the flange 5.
  • the air flow C1a delivered by the bores 30 is at a reduced relative total temperature relative to the air of cooling of the same regions in the state of the art.
  • Air flow C1a is mixed with the C2c leakage rate of the labyrinth under injectors 22 and is discharged downstream of the main injectors 15, in the circuit feeding the turbine wheel.
  • the radial flange 5a has no holes to feed the annular chamber 33 located between the radially inner portion 31 of the flange 5 and the downstream flange 3a of the turbine disc 3, because the third air flow C1a is sufficient to ensure by itself the cooling of the entire flange 5.
  • Air injected into the turbine wheel supply circuit for the cooling of the blades thus pre-driven is colder, than air cooling blades in a conventional ventilation.
  • Gain temperature can be estimated at 15 °, which equates to a gain of specific consumption of about 0.06%.
  • the cold air flow C1a delivered by the holes 30 is not influenced by variations of labyrinth games surrounding, because this flow is calibrated by the holes 30.
  • Figure 3 shows in dotted line the evolution of the temperature of the bore 31 of the flange 5 in a conventional ventilation rotor of turbine, and in full lines, the evolution of the temperature at the same place with the ventilation device according to the invention according to the game of labyrinth discharge 18 expressed in mm.
  • Figure 4 shows the evolution of the temperature of the bore 31 flange 5 depending on the game of the second labyrinth 22 located under the main injectors 15, with conventional ventilation (curve in dotted) and with a ventilation device according to the invention.
  • the temperature in this zone with the device according to the invention is substantially constant and less than that obtained with a classical ventilation.
  • Figure 5 shows the evolution of temperature at the same place of the flange, depending on the game of the third labyrinth 24, for conventional ventilation (dashed curve) and for ventilation with the device according to the invention.
  • the temperature in this region is substantially constant with a ventilation device according to the invention.
  • the temperature of the flange 5 in the vicinity of third labyrinth 24 is substantially constant with the device of according to the invention, and less than that obtained with a conventional ventilation, the flange 5 is less stressed by constraints thermals, and it can be made of a less expensive material and more easy to work.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

L'invention concerne un dispositif de ventilation d'un rotor de turbine à haute pression qui comporte un disque de turbine (3) et un flasque amont (5). Un premier circuit de refroidissement des aubes délivre un premier débit d'air (C1), via des injecteurs principaux (15) et des trous (11) ménagés dans le flasque (5). Un deuxième circuit de refroidissement délivre un deuxième débit d'air (C2) à travers un labyrinthe de décharge (18) situé en aval du compresseur, une partie de ce deuxième débit servant au refroidissement de la face supérieure amont du flasque au travers d'un deuxième labyrinthe (22) situé sous les injecteurs principaux (15). Une dérivation est prévue entre le premier circuit et l'enceinte (23) située en aval du deuxième labyrinthe (22) et délivre un troisième débit (C1a) mis en pré-rotation au moyen d'injecteurs additionnels (30) réalisés sous forme de perçages inclinés. <IMAGE>

Description

L'invention concerne le domaine de la ventilation des rotors de turbine à haute pression des turboréacteurs.
Elle concerne plus précisément un dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine, cette turbine étant disposée en aval de la chambre de combustion et comportant, d'une part, un disque de turbine présentant un alésage intérieur et une bride amont pour sa fixation sur le cône aval d'un compresseur, à haute pression, et, d'autre part, un flasque disposé en amont dudit disque et séparé de ce dernier par une cavité, ledit flasque comportant une partie radialement intérieure massive ayant également un alésage intérieur, à travers lequel s'étend la bride amont dudit disque, et une bride amont pour sa fixation sur ledit cône aval, ledit dispositif comportant un premier circuit pour le refroidissement des aubes alimenté par un premier débit d'air prélevé en fond de chambre et délivrant ce premier débit d'air dans ladite cavité via des injecteurs principaux disposés en amont dudit flasque et des trous de ventilation ménagés dans ledit flasque, et un deuxième circuit pour le refroidissement du flasque, alimenté par un deuxième débit d'air au travers d'un labyrinthe de décharge situé en aval du compresseur à haute pression, une partie au moins dudit deuxième débit d'air servant à ventiler la face supérieure amont dudit flasque au travers d'un deuxième labyrinthe situé sous les injecteurs.
La figure 1 montre un tel rotor de turbine 1 à haute pression, disposé en aval d'une chambre de combustion 2, et qui comporte un disque de turbine 3 équipé d'aubes 4, et un flasque 5 disposé en amont du disque 3. Le disque 3 et le flasque 5 comportent chacun une bride amont, référencée 3a pour le disque 3 et 5a pour le flasque 5, pour leur fixation à l'extrémité aval 6 du cône aval 7 du compresseur à haute pression entraíné par le rotor 1.
Le disque 3 comporte un alésage intérieur 8 traversé par l'arbre 9 d'une turbine à basse pression, et le flasque 5 présente un alésage intérieur 10 entourant la bride 3a du disque 3, et des trous de ventilation 11 par lesquels un premier débit d'air C1 de refroidissement prélevé en fond de chambre est délivré dans la cavité 12 séparant la face aval du flasque 5 de la face amont du disque 3. Ce débit d'air C1 de refroidissement circule radialement vers l'extérieur et pénètre dans les alvéoles 4a contenant les pieds des aubes 4 afin de refroidir ces dernières. Ce débit d'air est prélevé dans le fond de chambre, circule dans un conduit 13 disposé dans l'enceinte 14 séparant le flasque 5 du fond de chambre et est mis en rotation par des injecteurs 15 afin d'abaisser la température de l'air délivré dans la cavité 12.
Un deuxième débit d'air C2 de refroidissement prélevé en fond de chambre circule vers l'aval dans l'enceinte 16 séparant le cône aval 7 du compresseur à haute pression du carter intérieur 17 de la chambre de combustion 12. Ce débit d'air C2 s'écoule à travers un labyrinthe de décharge 18 et pénètre dans l'enceinte 14 d'où une partie C2a s'écoule à travers des orifices 19 ménagés dans la bride amont 5a du flasque 5, passe à travers l'alésage 10 du flasque 5 afin de refroidir la partie radialement intérieure de ce dernier et rejoint le débit d'air C1 de refroidissement des aubes 4. Une autre partie C2b du deuxième débit d'air C2 refroidit la face amont du flasque 5, contourne les injecteurs 15 et est évacuée dans la cavité de purge amont 20 du rotor de turbine 1.
Enfin, une troisième partie C2c du troisième débit d'air C2 sert à ventiler la face supérieure amont 21 du flasque 5 au travers d'un deuxième labyrinthe 22 situé sous les injecteurs 15. Cette troisième partie C2c pénètre dans l'enceinte 23 située en aval du deuxième labyrinthe 22, entre le flasque 5 et les injecteurs 15, et est évacuée dans la cavité de purge amont 20 du rotor de turbine 1 à travers un troisième labyrinthe 24 situé au-dessus des injecteurs 15, ou vient se mélanger au premier débit d'air C1.
Le deuxième débit d'air C2 sert à refroidir le cône aval 7, le fût de liaison du compresseur à haute pression à la turbine à haute pression, et le flasque 5. Ce deuxième débit d'air circulant axialement dans un espace annulaire délimité par des parois fixes solidaires de la chambre et des parois mobiles en rotation solidaires du rotor, subit des échauffements liés aux puissances dissipées entre le rotor et le stator.
Pour abaisser la température du flasque amont suivant les spécifications de sa tenue mécanique, il est donc nécessaire d'augmenter le débit d'air C2 traversant le labyrinthe de décharge 18 situé en aval du compresseur à haute pression, et de le rejeter soit dans le circuit de refroidissement des aubes, soit dans la veine en amont de la roue de turbine à haute pression. Cette augmentation de débit génère une augmentation de la température de l'air de refroidissement des aubes du fait du rejet d'un air réchauffé dans le circuit de refroidissement des aubes, et une chute des performances de la turbine du fait du rejet dans la veine.
En outre le débit d'air C2c servant au refroidissement du flasque en aval du deuxième labyrinthe 22 situé sous les injecteurs 15, est peu maítrisable car il subit les évolutions des jeux du labyrinthe de décharge 18, du deuxième labyrinthe 22 et du troisième labyrinthe 24 situé au-dessus des injecteurs 15, au cours du fonctionnement et au cours de la vie du moteur.
La température de la face amont du flasque en aval du deuxième labyrinthe est donc assez élevée et mal maítrisée. Ceci nécessite d'utiliser des matériaux spéciaux pour la réalisation du flasque et un dimensionnement approprié.
Le but de l'invention est d'abaisser la température de la face amont du flasque afin de faciliter son dimensionnement en survitesse, d'augmenter sa durée de vie et de pouvoir utiliser un matériau économique.
Ce but est atteint selon l'invention par le fait que ledit dispositif comporte en outre une dérivation entre le premier circuit et l'enceinte interne située en aval du deuxième labyrinthe, ladite dérivation délivrant un troisième débit d'air pour le refroidissement de la face supérieure amont de la partie radialement intérieure dudit flasque, ce troisième débit d'air étant mis en pré-rotation au moyen d'injecteurs additionnels.
Ce troisième débit d'air pré-entraíné et injecté en aval du labyrinthe sous injecteurs principaux permet ainsi de réduire la température totale relative de l'air venant refroidir la face amont du flasque en aval du deuxième labyrinthe. Ce troisième débit d'air se mélange au débit de fuite du labyrinthe sous injecteurs et est évacué en aval des injecteurs principaux de turbine, dans le circuit d'alimentation des roues de turbine à haute pression.
L'air injecté dans le circuit d'alimentation de la roue de turbine est ainsi plus froid que celui de l'air injecté selon l'état de la technique.
Avantageusement, les injecteurs additionnels sont réalisés sous forme de perçages inclinés tangentiellement dans le sens de rotation du rotor.
De préférence, lesdits perçages prélèvent de l'air dans les injecteurs principaux, et le délivrent immédiatement en aval du deuxième labyrinthe.
D'autres avantages et caractéristiques de l'invention ressortiront à la lecture de la description suivante faite à titre d'exemple et en référence aux dessins annexés dans lesquels :
  • la figure 1 est une demi-coupe axiale d'un rotor de turbine à haute pression d'un turboréacteur, qui montre les circuits d'air de refroidissement selon l'art antérieur ;
  • la figure 2 est une demi-coupe axiale d'un rotor de turbine de turboréacteur qui comporte le dispositif de refroidissement selon l'invention ; et
  • les figures 3 à 5 montrent les évolutions de température de l'alésage du flasque amont respectivement en fonction du jeu du labyrinthe de décharge du compresseur, du labyrinthe sous injecteurs et du labyrinthe sur-injecteurs, avec un dispositif de ventilation classique et avec un dispositif de ventilation selon l'invention.
  • L'état de la technique montré sur la figure 1 a été discuté dans l'introduction et ne nécessite pas d'autres explications.
    La figure 2 montre un rotor de turbine 1 qui se différencie de celui montré sur la figure 1 par le fait que l'enceinte 23 située en aval du deuxième labyrinthe 22 est alimentée en air, d'une part, par une fuite d'air C2c provenant de l'enceinte 14 via le deuxième labyrinthe 22 et, d'autre part, par un débit d'air C1a délivré par une dérivation ménagée entre le conduit 13 délivrant le premier débit d'air C1 et l'enceinte 23. La dérivation est constituée d'une pluralité de perçages 30 débouchant, d'une part, à l'entrée des injecteurs principaux 15 et, d'autre part, dans l'enceinte 23 immédiatement en aval du deuxième labyrinthe 22. Les perçages 30 sont cylindriques et inclinés tangentiellement dans le sens de rotation du rotor de turbine 1.
    Ainsi que cela est visible sur la figure 2, la partie radialement intérieure 31 du flasque 5 a une forme massive, et s'étend axialement vers l'avant du moteur jusqu'à la bride radiale 5a qui sert à sa fixation à l'extrémité aval 6 du cône aval 7 du compresseur. Le labyrinthe 22, situé sous les injecteurs 15 est disposé à la périphérie de la bride radiale 5a. Les perçages 30 sont sensiblement radiaux et dirigés vers la face supérieure 32 de la partie radialement intérieure du flasque 5.
    Du fait que les perçages 30 sont inclinés dans le sens de rotation du rotor de turbine 1, le débit d'air C1a délivré par les perçages 30 est à une température totale relative réduite par rapport à l'air de refroidissement des mêmes régions dans l'état de la technique.
    Le gain de température peut être estimé à 30°C. Le débit d'air C1a se mélange au débit de fuite C2c du labyrinthe sous injecteurs 22 et est évacué en aval des injecteurs principaux 15, dans le circuit d'alimentation de la roue de turbine.
    Ainsi que cela se voit sur la figure 2, la bride radiale 5a ne comporte pas d'orifices pour alimenter la chambre annulaire 33 située entre la partie radialement intérieure 31 du flasque 5 et la bride aval 3a du disque de turbine 3, du fait que le troisième débit d'air C1a, est suffisant pour assurer à lui seul le refroidissement de la totalité du flasque 5.
    L'air injecté dans le circuit d'alimentation de la roue de turbine pour le refroidissement des aubes ainsi pré-entraíné est plus froid, que l'air de refroidissement des aubes dans une ventilation classique. Le gain de température peut être estimé à 15°, ce qui équivaut à un gain de consommation spécifique de 0,06 % environ.
    En outre, le débit d'air froid C1a délivré par les perçages 30 n'est pas influencé par les variations des jeux des labyrinthes environnants, car ce débit est calibré par les perçages 30.
    La figure 3 montre en pointillé l'évolution de la température de l'alésage 31 du flasque 5 dans une ventilation classique de rotor de turbine, et en traits pleins, l'évolution de la température au même endroit avec le dispositif de ventilation selon l'invention en fonction du jeu du labyrinthe de décharge 18 exprimé en mm.
    On constate que l'évolution de cette température avec le dispositif selon l'invention est sensiblement constante et toujours inférieure à la température obtenue à cet endroit avec une ventilation classique.
    La figure 4 montre l'évolution de la température de l'alésage 31 du flasque 5 en fonction du jeu du deuxième labyrinthe 22 situé sous les injecteurs principaux 15, avec une ventilation classique (courbe en pointillé) et avec un dispositif de ventilation selon l'invention.
    On constate également que, toutes choses étant égales par ailleurs, la température dans cette zone avec le dispositif selon l'invention est sensiblement constante et inférieure à celle obtenue avec une ventilation classique.
    La figure 5 montre l'évolution de la température au même endroit du flasque, en fonction du jeu du troisième labyrinthe 24, pour une ventilation classique (courbe en pointillé) et pour une ventilation avec le dispositif selon l'invention. La température dans cette région est sensiblement constante avec un dispositif de ventilation selon l'invention.
    Du fait que la température du flasque 5 au voisinage du troisième labyrinthe 24 est sensiblement constante avec le dispositif de ventilation selon l'invention, et inférieure à celle obtenue avec une ventilation classique, le flasque 5 est moins sollicité par des contraintes thermiques, et il peut être réalisé dans un matériau moins coûteux et plus facile à travailler.

    Claims (6)

    1. Dispositif de ventilation d'un rotor de turbine à haute pression d'une turbomachine, cette turbine étant disposée en aval de la chambre de combustion et comportant, d'une part, un disque de turbine présentant un alésage intérieur et une bride amont pour sa fixation sur le cône aval d'un compresseur, à haute pression, et, d'autre part, un flasque disposé en amont dudit disque et séparé de ce dernier par une cavité, ledit flasque comportant une partie radialement intérieure massive ayant également un alésage intérieur, à travers lequel s'étend la bride amont dudit disque, et une bride amont pour sa fixation sur ledit cône aval, ledit dispositif comportant un premier circuit pour le refroidissement des aubes alimenté par un premier débit d'air prélevé en fond de chambre et délivrant ce premier débit d'air dans ladite cavité via des injecteurs principaux disposés en amont dudit flasque et des trous de ventilation ménagés dans ledit flasque, et un deuxième circuit pour le refroidissement du flasque, alimenté par un deuxième débit d'air au travers d'un labyrinthe de décharge situé en aval du compresseur à haute pression, une partie au moins dudit deuxième débit d'air servant à ventiler la face supérieure amont dudit flasque au travers d'un deuxième labyrinthe situé sous les injecteurs,
         caractérisé par le fait que ledit dispositif comporte en outre une dérivation entre le premier circuit (13) et l'enceinte (23) située en aval du deuxième labyrinthe (22), ladite dérivation délivrant un troisième débit d'air (C1a) pour le refroidissement de la face supérieure amont (32) de la partie radialement intérieure (31) dudit flasque (5), ce troisième débit d'air (C1a) étant mis en pré-rotation au moyen d'injecteurs additionnels (30).
    2. Dispositif selon la revendication 1, caractérisé par le fait que les injecteurs additionnels sont réalisés sous forme de perçages (30) inclinés tangentiellement dans le sens de rotation du rotor.
    3. Dispositif selon la revendication 2, caractérisé par le fait que lesdits perçages (30) prélèvent de l'air dans les injecteurs principaux (15).
    4. Dispositif selon la revendication 3, caractérisé par le fait que lesdits perçages (30) délivrent de l'air immédiatement en aval du deuxième labyrinthe.
    5. Dispositif selon l'une quelconque des revendications 2 à 4, caractérisé par le fait que le deuxième labyrinthe (22) est disposé entre les injecteurs principaux (15) et la bride amont (5a) du flasque (5).
    6. Dispositif selon la revendication 5, caractérisé par le fait que la bride amont (5a) du flasque (5) est radiale.
    EP03291258A 2002-05-30 2003-05-27 Système à double injecteurs fond de chambre pour le refroidissement du flasque amont d'une turbine à haute pression Expired - Lifetime EP1367221B1 (fr)

    Applications Claiming Priority (2)

    Application Number Priority Date Filing Date Title
    FR0206600A FR2840351B1 (fr) 2002-05-30 2002-05-30 Refroidissement du flasque amont d'une turbine a haute pression par un systeme a double injecteur fond de chambre
    FR0206600 2002-05-30

    Publications (2)

    Publication Number Publication Date
    EP1367221A1 true EP1367221A1 (fr) 2003-12-03
    EP1367221B1 EP1367221B1 (fr) 2006-07-26

    Family

    ID=29415148

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP03291258A Expired - Lifetime EP1367221B1 (fr) 2002-05-30 2003-05-27 Système à double injecteurs fond de chambre pour le refroidissement du flasque amont d'une turbine à haute pression

    Country Status (7)

    Country Link
    US (1) US6787947B2 (fr)
    EP (1) EP1367221B1 (fr)
    JP (1) JP3940377B2 (fr)
    CA (1) CA2430143C (fr)
    DE (1) DE60306990T2 (fr)
    FR (1) FR2840351B1 (fr)
    RU (1) RU2318120C2 (fr)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1736635A2 (fr) * 2005-05-31 2006-12-27 Rolls-Royce Deutschland Ltd & Co KG Système de transfert d'air entre le compresseur et la turbine d'une turbine à gaz
    RU2443869C2 (ru) * 2010-02-19 2012-02-27 Вячеслав Евгеньевич Беляев Устройство для охлаждения ротора газовой турбины
    EP2942483A1 (fr) * 2014-04-01 2015-11-11 United Technologies Corporation Injecteur de bord tangentiel ventilé pour un moteur à turbine à gaz

    Families Citing this family (18)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2861129A1 (fr) * 2003-10-21 2005-04-22 Snecma Moteurs Dispositif de joint a labyrinthe pour moteur a turbine a gaz
    GB0412476D0 (en) * 2004-06-04 2004-07-07 Rolls Royce Plc Seal system
    GB2426289B (en) * 2005-04-01 2007-07-04 Rolls Royce Plc Cooling system for a gas turbine engine
    GB0620430D0 (en) * 2006-10-14 2006-11-22 Rolls Royce Plc A flow cavity arrangement
    FR2950656B1 (fr) * 2009-09-25 2011-09-23 Snecma Ventilation d'une roue de turbine dans une turbomachine
    US9091173B2 (en) 2012-05-31 2015-07-28 United Technologies Corporation Turbine coolant supply system
    US20150241067A1 (en) * 2012-09-26 2015-08-27 United Technologies Corporation Fastened joint for a tangential on board injector
    US9388698B2 (en) * 2013-11-13 2016-07-12 General Electric Company Rotor cooling
    WO2015160403A2 (fr) 2014-01-20 2015-10-22 United Technologies Corporation Tuyau d'ajout conforme haute pression non arrondi, fixé sur cloison
    JP6174655B2 (ja) 2014-10-21 2017-08-02 ユナイテッド テクノロジーズ コーポレイションUnited Technologies Corporation ガスタービンエンジン用のダクテッド熱交換器システム、およびガスタービンエンジン用の熱交換器の製造方法
    US10450956B2 (en) 2014-10-21 2019-10-22 United Technologies Corporation Additive manufactured ducted heat exchanger system with additively manufactured fairing
    JP6484430B2 (ja) * 2014-11-12 2019-03-13 三菱重工業株式会社 タービンの冷却構造及びガスタービン
    EP3130750B1 (fr) * 2015-08-14 2018-03-28 Ansaldo Energia Switzerland AG Système de refroidissement de turbines à gaz
    CN106523043B (zh) * 2016-12-21 2018-04-03 中国南方航空工业(集团)有限公司 燃气轮机用分气路装置及燃气轮机
    US11021962B2 (en) * 2018-08-22 2021-06-01 Raytheon Technologies Corporation Turbulent air reducer for a gas turbine engine
    CN111878178B (zh) * 2020-07-30 2022-10-25 中国航发湖南动力机械研究所 涡轮转盘及涡轮转子
    CN112049688B (zh) * 2020-08-19 2021-08-10 西北工业大学 一种用于等半径预旋供气系统的过预旋叶型接受孔
    CN112855283B (zh) * 2021-01-11 2022-05-20 中国科学院工程热物理研究所 一种可提高接收孔流量系数的发动机预旋系统

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2541371A1 (fr) * 1983-02-22 1984-08-24 Gen Electric Circuit de refroidissement pour moteur a turbine a gaz
    US4807433A (en) * 1983-05-05 1989-02-28 General Electric Company Turbine cooling air modulation
    US4822244A (en) * 1987-10-15 1989-04-18 United Technologies Corporation Tobi
    FR2707698A1 (fr) * 1993-07-15 1995-01-20 Snecma Turbomachine munie d'un moyen de soufflage d'air sur un élément de rotor.
    US5816776A (en) * 1996-02-08 1998-10-06 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Labyrinth disk with built-in stiffener for turbomachine rotor

    Family Cites Families (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3832090A (en) * 1972-12-01 1974-08-27 Avco Corp Air cooling of turbine blades
    GB2108202B (en) * 1980-10-10 1984-05-10 Rolls Royce Air cooling systems for gas turbine engines
    US5143512A (en) * 1991-02-28 1992-09-01 General Electric Company Turbine rotor disk with integral blade cooling air slots and pumping vanes
    US5310319A (en) * 1993-01-12 1994-05-10 United Technologies Corporation Free standing turbine disk sideplate assembly
    US5402636A (en) * 1993-12-06 1995-04-04 United Technologies Corporation Anti-contamination thrust balancing system for gas turbine engines

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    FR2541371A1 (fr) * 1983-02-22 1984-08-24 Gen Electric Circuit de refroidissement pour moteur a turbine a gaz
    US4807433A (en) * 1983-05-05 1989-02-28 General Electric Company Turbine cooling air modulation
    US4822244A (en) * 1987-10-15 1989-04-18 United Technologies Corporation Tobi
    FR2707698A1 (fr) * 1993-07-15 1995-01-20 Snecma Turbomachine munie d'un moyen de soufflage d'air sur un élément de rotor.
    US5816776A (en) * 1996-02-08 1998-10-06 Societe Nationale D'etude Et De Construction De Moteurs D'aviation "Snecma" Labyrinth disk with built-in stiffener for turbomachine rotor

    Cited By (6)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    EP1736635A2 (fr) * 2005-05-31 2006-12-27 Rolls-Royce Deutschland Ltd & Co KG Système de transfert d'air entre le compresseur et la turbine d'une turbine à gaz
    EP1736635A3 (fr) * 2005-05-31 2009-10-14 Rolls-Royce Deutschland Ltd & Co KG Système de transfert d'air entre le compresseur et la turbine d'une turbine à gaz
    RU2443869C2 (ru) * 2010-02-19 2012-02-27 Вячеслав Евгеньевич Беляев Устройство для охлаждения ротора газовой турбины
    EP2942483A1 (fr) * 2014-04-01 2015-11-11 United Technologies Corporation Injecteur de bord tangentiel ventilé pour un moteur à turbine à gaz
    US10697321B2 (en) 2014-04-01 2020-06-30 Raytheon Technologies Corporation Vented tangential on-board injector for a gas turbine engine
    US10920611B2 (en) 2014-04-01 2021-02-16 Raytheon Technologies Corporation Vented tangential on-board injector for a gas turbine engine

    Also Published As

    Publication number Publication date
    US6787947B2 (en) 2004-09-07
    DE60306990D1 (de) 2006-09-07
    FR2840351B1 (fr) 2005-12-16
    FR2840351A1 (fr) 2003-12-05
    CA2430143A1 (fr) 2003-11-30
    US20030223893A1 (en) 2003-12-04
    RU2318120C2 (ru) 2008-02-27
    JP3940377B2 (ja) 2007-07-04
    DE60306990T2 (de) 2007-03-08
    JP2004132352A (ja) 2004-04-30
    CA2430143C (fr) 2010-10-05
    EP1367221B1 (fr) 2006-07-26
    RU2003116095A (ru) 2005-01-27

    Similar Documents

    Publication Publication Date Title
    CA2430143C (fr) Refroidissement du flasque amont d&#39;une turbine a haute pression par un systeme a double injecteurs fond de chambre
    EP2440746B1 (fr) Turbomachine comprenant des moyens ameliores de reglage du debit d&#39;un flux d&#39;air de refroidissement preleve en sortie de compresseur haute pression
    EP1445421B1 (fr) Dispositif de ventilation d&#39;un rotor de turbine à haute pression d&#39;une turbomachine
    CA2758175C (fr) Moteur a turbine a gaz a double corps pourvu d &#39; un palier inter-arbres
    EP2337929B1 (fr) Ventilation d&#39;une turbine haute-pression dans une turbomachine
    CA2475404C (fr) Echangeur sur circuit de ventilation de turbine
    CA2564491C (fr) Dispositif de ventilation de disques de turbine dans un moteur a turbine a gaz
    EP2475847B1 (fr) Pilotage des jeux en sommet d&#39;aubes dans une turbomachine
    EP1552111A1 (fr) Circuits de ventilation de la turbine d une turbomachine
    WO2003040524A1 (fr) Stator pour turbomachine
    WO2015128563A1 (fr) Rotor de soufflante pour une turbomachine telle qu&#39;un turboréacteur multiflux entraîné par réducteur
    FR2872541A1 (fr) Aube fixe de turbine a refroidissement ameliore
    EP3698022B1 (fr) Turbomachine d&#39;aéronef et procédé de refroidissement d&#39;une turbine basse pression dans une turbomachine
    FR2923263A1 (fr) Turbomoteur comportant des moyens pour chauffer l&#39;air entrant dans la turbine libre
    FR2464363A1 (fr) Rotor de turbine pour turbomachines avec systeme de transfert de l&#39;agent de refroidissement
    FR3108655A1 (fr) Turbomachine à double flux comprenant un dispositif de régulation du débit de fluide de refroidissement
    FR3106609A1 (fr) Dispositif amélioré de limitation de débit de fuite pour turbines d’aéronef
    FR2881472A1 (fr) Circuit de ventilation d&#39;un rotor de turbine haute pression dans un moteur a turbine a gaz
    FR3097907A1 (fr) Contrôle actif du débit de refroidissement du compresseur haute pression
    FR3096071A1 (fr) Contrôle de jeu entre des aubes de rotor d’aéronef et un carter
    FR2960020A1 (fr) Dispositif et procede de refroidissement de disques de rotor d&#39;une turbomachine
    FR3106624A1 (fr) dispositif amélioré de détection d’anomalie de refroidissement pour turbomachine d’aéronef
    FR3025835A1 (fr) Systeme de circulation d&#39;air de refroidissement d&#39;aubes de turbine de turbomachine

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AX Request for extension of the european patent

    Extension state: AL LT LV MK

    17P Request for examination filed

    Effective date: 20040601

    AKX Designation fees paid

    Designated state(s): DE FR GB

    RAP1 Party data changed (applicant data changed or rights of an application transferred)

    Owner name: SNECMA

    GRAP Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOSNIGR1

    GRAS Grant fee paid

    Free format text: ORIGINAL CODE: EPIDOSNIGR3

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    REF Corresponds to:

    Ref document number: 60306990

    Country of ref document: DE

    Date of ref document: 20060907

    Kind code of ref document: P

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 20061018

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20070427

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20150422

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 14

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 60306990

    Country of ref document: DE

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 15

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20161201

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: CD

    Owner name: SAFRAN AIRCRAFT ENGINES

    Effective date: 20170713

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: PLFP

    Year of fee payment: 16

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20220426

    Year of fee payment: 20

    Ref country code: FR

    Payment date: 20220421

    Year of fee payment: 20

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: PE20

    Expiry date: 20230526

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

    Effective date: 20230526