EP1365473B1 - Reflector antenna - Google Patents
Reflector antenna Download PDFInfo
- Publication number
- EP1365473B1 EP1365473B1 EP02701640A EP02701640A EP1365473B1 EP 1365473 B1 EP1365473 B1 EP 1365473B1 EP 02701640 A EP02701640 A EP 02701640A EP 02701640 A EP02701640 A EP 02701640A EP 1365473 B1 EP1365473 B1 EP 1365473B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- reflector
- antenna
- axis
- antenna apparatus
- elevation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/12—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
- H01Q3/16—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
- H01Q3/20—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device wherein the primary active element is fixed and the reflecting device is movable
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/18—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
- H01Q19/19—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q19/00—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
- H01Q19/10—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
- H01Q19/18—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces
- H01Q19/19—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface
- H01Q19/193—Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces having two or more spaced reflecting surfaces comprising one main concave reflecting surface associated with an auxiliary reflecting surface with feed supported subreflector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/02—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
- H01Q3/08—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole for varying two co-ordinates of the orientation
Definitions
- This invention relates to a reflector antenna apparatus, and in particular it relates to a reflector antenna apparatus which can perform scanning by pivoting about two axes which are perpendicular to each other.
- That reflector antenna apparatus is a normal axially symmetric Cassegrain antenna in which the reflector has a subreflector which receives irradiation of electromagnetic waves from a radiator and a main reflector which reflects electromagnetic waves which are reflected from the subreflector and directs them at a target.
- the central axis of elevation rotation does not pass through the reflector but passes through a location spaced from the reflector, so if the direction (angle) of the reflector is changed, its position necessarily changes, so it is necessary to provide a large operating space for the reflector of the antenna apparatus, and a large space was necessary for installing the reflector apparatus.
- an object of this invention is to provide a reflector antenna apparatus which can be installed in a small space, which has sufficient practicality, and which can perform scanning by pivoting about two axes which are perpendicular with respect to each other.
- Embodiment 1 of a reflector antenna apparatus is shown in Figure 1 and Figure 2.
- a reflector antenna apparatus has a reflector 1 and a rotating mechanism 4 which rotates the reflector 1 about an azimuth axis 2 and an elevation axis 3.
- the reflector 1 has a subreflector 6 which receives irradiation of electromagnetic waves from a radiator 5 which generates electromagnetic waves, and a main reflector 7 which reflects electromagnetic waves which are reflected from the subreflector 6 and directs them at a target (not shown).
- the subreflector 6 is supported by a support mechanism 8 in a state in which it is separated from and axially aligned with the main reflector 7.
- the reflector 1 is supported by a rotating support mechanism 9 so that it can rotate about the elevation axis 3 with respect to a rotating table 10, and it is rotated by the rotational drive source 11.
- a first rotary joint 13 is inserted into a power supply path 12 at a location on the elevation axis 3 so that the power supply path 12 which is connected to the radiator 5 does not interfere with the rotation of the reflector 1.
- a second rotary joint 16 is provided in the power supply path 12 which connects a power supply apparatus 15 and the radiator 5 at a location on the center of rotation of the rotating table 10, i.e., on the azimuth axis 2 of the reflector 1, and this portion permits rotational movement of the rotating table 10 and the reflector 1 disposed on it about the azimuth axis 2.
- the reflector 1 includes the main reflector 7 and the subreflector 6. Overall, it is an antenna having a substantially rectangular aperture having dimensions of a length D in the direction of the elevation axis 3 (see Figure 1 and Figure 2) and dimensions of a width W in the direction perpendicular to the elevation axis 3 (see Figure 2 and Figure 3).
- the elevation axis 3 passes through a location substantially at the center of the distance (the height) H in the direction of the azimuth axis 2 (the height direction) of the reflector 1 (see Figure 1 and Figure 3), and it has an axial center passing through a location at substantially the center of the direction (the width direction) W perpendicular to the elevation axis 3 of the reflector 1 (see Figure 2 and Figure 3).
- the range in which the reflector 1 moves i.e., the operating region S is, as shown in Figure 3, on the inside of a circle Y which is drawn on the extreme outer edge of the main reflector 7 and is centered on the elevation axis 3.
- the operating region S shown by this circle Y is extremely small compared to the antenna described in the previously-mentioned paper by Wakana, so the height of the antenna does not become large when the reflector rotates around the elevation axis.
- the main reflector 7 and the subreflector 6 of the reflector 1 have undergone reflector surface adjustment so that substantially all of the electromagnetic waves which are provided to the reflector 1 are received and reflected.
- reflector surface adjustment is a means for controlling the shape of the antenna aperture and the aperture distribution of the antenna and is described in detail in "IEE Proc. Microw. Antennas Propag.”, Vol. 146, No. 1, pages 60-64, 1999, for example.
- reflector surface adjustment is performed such that the shape of the aperture of the antenna is substantially rectangular and such that the aperture distribution is uniform.
- This reflector antenna apparatus is a dual-reflector Cassegrain antenna in which electromagnetic waves which are irradiated by the primary radiator 5 are reflected by the subreflector 6, and the reflected electromagnetic waves are reflected by the main reflector 7 and irradiated towards an unillustrated target.
- the main reflector 7, the subreflector 6, the support mechanism 8 for the subreflector, the primary radiator 5, and a first portion 12a of the power supply path 12 can rotate about the center of the elevation rotational axis 3.
- the power supply path 12a is connected to a second portion 12b through the rotary joint 13, and power can be supplied to the primary radiator 5 even when the antenna rotates about the elevation axis 3.
- the rotary joint 13 and the second portion 12b of the power supply path 12 are secured atop the rotating table 10, and they can rotate about the azimuth axis 2 (in the azimuth direction).
- This antenna can freely scan about the two axes for the elevation and the azimuth, so the beam of the antenna can be directed in any desired direction.
- Figure 2 is a view of this reflector antenna apparatus from above (from the direction of the reflector axis).
- This reflector antenna apparatus is characterized in that the antenna is designed such that not only the antenna height H but also the size (the width) W in the direction perpendicular to the elevation axis 3 and perpendicular to the antenna reflector axis (azimuth axis 2) is small so that the antenna height does not become large when scanning is performed in the elevation direction.
- a summary of the design process for the reflector antenna apparatus is the following two steps.
- an axially symmetric Cassegrain antenna is designed such that the antenna height H is D/4 so that the height is small when the antenna is not scanning.
- This condition is a condition such that when the subreflector 6 is a perfect hyperboloid and the main reflector 7 is a perfect paraboloid, the antenna height H including the main reflector 7 and the subreflector 6 is the minimum height for a given aperture diameter.
- reflector surface adjustment is carried out such that the size (the width) W of the main reflector 7 in the direction perpendicular to both the azimuth axis 2 and the elevation axis 3 is small.
- Reflector surface adjustment is a means of controlling the shape of the antenna aperture and the aperture distribution of the antenna. It is described in the above-mentioned "IEE Proc. Microw. Antennas Propag.”, Vol. 146, No. 1, pages 60-64, 1999, for example. By performing reflector surface adjustment, various shapes of the antenna aperture and aperture distributions can be realized.
- Figure 3 is a view from the elevation axis 3 of an antenna for which antenna design was carried out by the above-described means.
- the aperture diameter D of the antenna can be adjusted to adjust the gain of the antenna and the beam width in the azimuth direction.
- the aperture distribution of the antenna can be controlled at the time of reflector surface adjustment to adjust the gain of the antenna, the beam width, and the like.
- This antenna has a small antenna height even when it rotates about the elevation axis 3, so it has the effect that it can be used even in the case when there are restrictions on the place of installation of the antenna.
- FIG. 1 The characteristics of a reflector antenna apparatus according to this invention are shown in Figure 4.
- a power supply apparatus is installed below a rotary joint which rotates about the azimuth, but depending upon the antenna structure, a portion of the power supply circuit 16a and other portions 16b must be installed above the above-described rotary joint and must rotate in the azimuth and elevation directions at the same time as the main reflector. In this case, it is necessary to guarantee a space to be occupied by these parts.
- This is an antenna apparatus which previously takes into consideration this occupied space and in which the antenna height does not become large when the entire antenna apparatus including the main reflector rotates about the elevation axis.
- This antenna apparatus has the effect that it can suppress the antenna height when it actually constitutes an antenna together with necessary parts.
- FIG. 5 A side view of another embodiment of a reflector antenna apparatus of this invention is shown in Figure 5, and a plan view is shown in Figure 6.
- 1 is a reflector
- 7 is a main reflector
- 6 is a subreflector
- 8 is a support mechanism for the subreflector
- 5 is a primary radiator
- 12 is a current supply path
- 2 is an azimuth axis
- 3 is an elevation rotational axis
- 13 and 16 are rotary joints
- 10 is a rotating table.
- an antenna can rotate about two axes, i.e., the azimuth axis 2 and the elevation axis 3, and its mechanism is the same as for the reflector antenna apparatus of the above-described embodiment.
- this reflector antenna apparatus instead of there being a single reflector (antenna), it is constituted by an array antenna using two antenna elements 1, i.e., two Cassegrain antennas. Rotation about the azimuth axis 2 is carried out not by rotating each antenna element 1, but by rotating the entire array of antenna elements 1 supported by the rotating table 10.
- an antenna which is lowest in a state when the antenna is not scanning is 1/4 of the antenna aperture diameter. Accordingly, an antenna having half the size in the direction of the elevation axis 3 of the antenna has half the height. By arranging two of these antennas in the direction of the elevation axis 3 to form an array antenna structure, the antenna height can be made less than half of the antenna height of the preceding embodiment.
- the antenna height can be made lower than in the previous embodiment, so it has the effect that it can be used even when the installation space of the reflector antenna apparatus is stricter with respect to dimensions.
- an array antenna having two elements separated by several wavelengths is normally used, so grating lobes which are generated are suppressed.
- reflector surface adjustment like that shown in Figure 7 is carried out.
- 7a is a main reflector prior to reflector surface adjustment
- 6a is a subreflector prior to reflector surface adjustment
- 7b is a main reflector after reflector surface adjustment
- 6b is a subreflector after reflector surface adjustment.
- reflector surface adjustment is carried out in which the aperture is made as rectangular as possible as viewed from the direction of the reflector axis.
- the aperture distribution which is realized is a uniform distribution.
- Two antennas having a rectangular aperture with a uniform aperture distribution are equivalent to an antenna having one large aperture, so theoretically grating lobes are not generated.
- FIG 8 A side view of a reflector antenna apparatus according to this invention is shown in Figure 8, and a plan view is shown in Figure 9.
- 1 is a reflector
- 7 is a main reflector
- 6 is a subreflector
- 8 is a support mechanism for the subreflector
- 5 is a primary radiator
- 12 is a power supply path
- 3 is an elevation rotational axis
- 13 and 16 are rotary joints
- 10 is a rotating table.
- the reflector 1 can rotate about two axes, i.e., an azimuth axis and an elevation axis, and the mechanism is the same as in the preceding embodiment.
- this embodiment has an array antenna structure using two offset Cassegrain antennas.
- the effect of blocking by the subreflector can be made small, properties of the antenna such as the side lobe level can be improved, and it can be employed in situations having strict antenna specifications not only with respect to dimensional limitations but with respect to side lobes and the like.
- FIG. 10 A side view of a reflector apparatus according to another embodiment of this invention is shown in Figure 10.
- 1 is a reflector
- 7 is a main reflector
- 6 is a subreflector
- 8 is a support mechanism for the subreflector
- 5 is a primary radiator
- 12 is a power supply path
- 2 is an azimuth axis
- 3 is an elevation rotational axis
- 16 is a rotary joint
- 10 is a rotating table.
- the reflector surface is designed such that the direction of the primary radiator 5 is parallel to the azimuth rotational surface.
- the primary radiators 5 can be rotated with respect to the primary reflectors 7, so there is the effect that it becomes unnecessary to rotate the primary radiators 5 at the time of elevational rotation.
- the power supply path 12 for supplying power to the two primary radiators 5 can be connected without bending, so there is the effect that a simple structure can be employed.
- FIG. 11 A side view of a reflector antenna apparatus according to this invention is shown in Figure 11, and a plan view is shown in Figure 12.
- FIG. 12 the same or corresponding parts as shown in Figures 1 - 3 are affixed with the same symbols, so an explanation thereof will be abbreviated. Mentioning a portion thereof, 1 is a reflector, 7 is a main reflector, 6 is a subreflector, 8 is a support mechanism for the subreflector, 5 is a primary radiator, 12 is a power supply path, 2 is an azimuth axis, 3 is an elevation rotational axis, 16 is a rotary joint, and 10 is a rotating table.
- the reflector antenna apparatus of this embodiment is fundamentally the same as the preceding embodiment, but the reflector surface is designed such that there is no blocking by the shadows from the subreflectors 6 when viewed from the direction of the azimuth axis 2 (the reflector axis).
- the effect of blocking by the subreflectors 6 can be eliminated, so there is the effect that properties of the antenna such as the side lobe level can be improved.
- FIG. 13 A side view of a reflector antenna apparatus according to this invention is shown in Figure 13, and a plan view is shown in Figure 14.
- 1 is a reflector
- 7 is a main reflector
- 6 is a subreflector
- 8 is a support mechanism for the subreflector
- 5 is a primary radiator
- 12 is a power supply path
- 2 is an azimuth axis
- 3 is an elevation rotational axis
- 13 and 16 are rotary joints
- 10 is a rotating table.
- an array antenna structure is employed using two offset Cassegrain antennas as a reflector 1, but it is possible to have an array antenna using 3 or more offset Cassegrain antennas.
- Figure 13 and Figure 14 show an example of a reflector 1 having an array antenna structure using four offset Cassegrain antennas.
- the aperture diameter of each offset Cassegrain antenna can be made small, so there is the effect that the antenna height of a reflector 1 of a reflector antenna apparatus which can be realized can be made smaller.
- FIG. 15 A side view of a reflector antenna apparatus according to yet another embodiment of this invention is shown in Figure 15.
- 1 is a reflector
- 7 is a main reflector
- 6 is a subreflector
- 8 is a support mechanism for the subreflector
- 5 is a primary radiator
- 12 is a power supply path
- 2 is an azimuth axis
- 3 is an elevation rotational axis
- 13 and 16 are rotary joints
- 10 is a rotating table.
- an antenna structure was employed using one or a plurality of Cassegrain antennas as a reflector 1, but this embodiment is a reflector antenna apparatus applying Gregorian antennas to an antenna structure having the same overall structure.
- a reflector antenna apparatus applying Gregorian antennas to the reflector antenna apparatus of the above-described Embodiment 4 is shown in Figure 15.
- the structure of the antenna is different, so it has the effect that depending upon the design, the antenna height can be decreased.
- a reflector antenna apparatus is useful as a reflector antenna apparatus which can perform scanning by pivoting about two axes which are perpendicular with respect to each other.
Landscapes
- Aerials With Secondary Devices (AREA)
Description
Claims (9)
- A reflector antenna apparatus having a reflector and a rotating mechanism which rotates the reflector about an azimuth axis and an elevation axis, characterized in that
the elevation axis passes through a location at substantially the center of the reflector in the direction of the azimuth axis and at substantially the center of the reflector in the direction perpendicular to the elevation axis,
the reflector has a substantially rectangular aperture which is elongated in the direction of the elevation axis, and
the reflector has its reflector surface adjusted so as to receive and reflect substantially all of the supplied electromagnetic waves,
whereby the antenna height does not become large when the reflector rotates about the elevation axis. - A reflector antenna apparatus as claimed in claim 1 characterized by having a subreflector which receives electromagnetic waves irradiated by a radiator and a main reflector which reflects electromagnetic waves which are reflected from the subreflector and directs them towards a target.
- A reflector antenna apparatus as claimed in claim 1 characterized in that the reflector includes a portion of a current supply apparatus which rotates at the same time as the reflector antenna so that the antenna height does not become large.
- A reflector antenna apparatus as claimed in claim 1 characterized in that the reflector is a reflector array having a plurality of reflector elements which are arranged in alignment with the elevation axis.
- A reflector antenna apparatus as claimed in claim 4 characterized in that each of the reflector antennas of the main reflector has a substantially rectangular aperture, and reflector surface adjustment is carried out so that when each reflector antenna is viewed in the direction of the reflector axis, the aperture is rectangular and the electromagnetic field distribution in the aperture is nearly uniform so as to suppress grating lobes.
- A reflector antenna apparatus as claimed in claim 1 characterized in that the reflector surface is set so that the radiator is parallel to the azimuth rotational surface, and the center of the central axis of the radiator is aligned with the elevation axis.
- A reflector antenna apparatus as claimed in claim 6 characterized in that the reflector surface is set so that blocking by the subreflector does not occur as viewed from the direction of the reflector axis.
- A reflector antenna apparatus as claimed in claim 1 characterized in that the reflector antenna is a Cassegrain antenna.
- A reflector antenna apparatus as claimed in claim 1 characterized in that the reflector antenna is a Gregorian antenna.
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001058811 | 2001-03-02 | ||
JP2001058811 | 2001-03-02 | ||
WOPCT/JP01/06236 | 2001-07-18 | ||
PCT/JP2001/006236 WO2002071538A1 (en) | 2001-03-02 | 2001-07-18 | Reflector antenna |
PCT/JP2002/001863 WO2002071540A1 (en) | 2001-03-02 | 2002-02-28 | Reflector antenna |
Publications (3)
Publication Number | Publication Date |
---|---|
EP1365473A1 EP1365473A1 (en) | 2003-11-26 |
EP1365473A4 EP1365473A4 (en) | 2004-12-15 |
EP1365473B1 true EP1365473B1 (en) | 2005-07-06 |
Family
ID=18918477
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02701640A Expired - Lifetime EP1365473B1 (en) | 2001-03-02 | 2002-02-28 | Reflector antenna |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1365473B1 (en) |
WO (1) | WO2002071538A1 (en) |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2694147A (en) * | 1946-08-21 | 1954-11-09 | Bell Telephone Labor Inc | Scanning antenna system |
JPS5032799B1 (en) * | 1970-01-09 | 1975-10-24 | ||
JPS56165405A (en) * | 1980-05-23 | 1981-12-19 | Nec Corp | Antenna having radiation beam of asymmetrical rotation |
JP3018347B2 (en) * | 1989-06-30 | 2000-03-13 | 日本電気株式会社 | Double reflector beam antenna |
US5952980A (en) * | 1997-09-17 | 1999-09-14 | Bei Sensors & Motion Systems Company | Low profile antenna positioning system |
JP3109584B2 (en) * | 1997-12-04 | 2000-11-20 | 日本電気株式会社 | Antenna device for low orbit satellite communication |
JP3313636B2 (en) * | 1997-12-22 | 2002-08-12 | 日本電気株式会社 | Antenna device for low-orbit satellite communication |
JPH11251824A (en) * | 1998-03-04 | 1999-09-17 | Sumitomo Electric Ind Ltd | Scanning antenna and radio communication system using the same |
US6285338B1 (en) * | 2000-01-28 | 2001-09-04 | Motorola, Inc. | Method and apparatus for eliminating keyhole problem of an azimuth-elevation gimbal antenna |
-
2001
- 2001-07-18 WO PCT/JP2001/006236 patent/WO2002071538A1/en active Application Filing
-
2002
- 2002-02-28 EP EP02701640A patent/EP1365473B1/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
WO2002071538A1 (en) | 2002-09-12 |
EP1365473A1 (en) | 2003-11-26 |
EP1365473A4 (en) | 2004-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6741216B2 (en) | Reflector antenna | |
US6043788A (en) | Low earth orbit earth station antenna | |
US5859619A (en) | Small volume dual offset reflector antenna | |
EP0028018B1 (en) | An improved phased array antenna system | |
CN109841961B (en) | Multi-beam double-mirror antenna based on super surface | |
EP3035444B1 (en) | Feed re-pointing technique for multiple shaped beams reflector antennas | |
JP5297461B2 (en) | Antenna with cellular and point-to-point communication capabilities | |
CN109921197A (en) | Wave beam large-angle scanning dual reflector antenna | |
GB2479999A (en) | Wide angle, multiple beam antenna system using an oversized reflector | |
US6747604B2 (en) | Steerable offset antenna with fixed feed source | |
JPH0352682B2 (en) | ||
JP2018137743A (en) | Reflect array antenna | |
CN115207625A (en) | Confocal antenna system, control method thereof, and storage medium | |
EP1014483B1 (en) | A rotatable and scannable reflector with a moveable feed system | |
EP1365473B1 (en) | Reflector antenna | |
JP2002204124A (en) | Offset cassegrain antenna of side feeding type provided with main reflecting mirror gimbals | |
US8212734B1 (en) | Hybrid reflector with radiating subreflector | |
JP3189050B2 (en) | Mobile station antenna device | |
CN115051143B (en) | Scanning method based on high-gain planar transmitting array antenna system | |
CN213071323U (en) | Two-dimensional offset-feed type beam scanning reflective array antenna | |
JPH03270404A (en) | Method for receiving radio waves from geostationary satellite and parabolic antenna used for the same | |
Amyotte et al. | High performance Ka-band multibeam antennas | |
JP3491503B2 (en) | Focused beam feeder | |
CA2444948C (en) | Device for exciting a centrally focused reflector antenna | |
RU2245595C1 (en) | Feedthrough antenna system (alternatives) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20041104 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: 7H 01Q 3/20 A Ipc: 7H 01Q 3/08 B Ipc: 7H 01Q 19/19 B Ipc: 7H 01Q 1/28 B |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60204946 Country of ref document: DE Date of ref document: 20050811 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
RAP2 | Party data changed (patent owner data changed or rights of a patent transferred) |
Owner name: MITSUBISHI DENKI KABUSHIKI KAISHA |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060407 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 746 Effective date: 20090305 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150228 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: IT Effective date: 20180516 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210113 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20210216 Year of fee payment: 20 Ref country code: GB Payment date: 20210217 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20210112 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60204946 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20220227 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20220227 |