EP1365120B1 - Schallwandler für ein Kraftfahrzeug - Google Patents

Schallwandler für ein Kraftfahrzeug Download PDF

Info

Publication number
EP1365120B1
EP1365120B1 EP03010875A EP03010875A EP1365120B1 EP 1365120 B1 EP1365120 B1 EP 1365120B1 EP 03010875 A EP03010875 A EP 03010875A EP 03010875 A EP03010875 A EP 03010875A EP 1365120 B1 EP1365120 B1 EP 1365120B1
Authority
EP
European Patent Office
Prior art keywords
acoustic transducer
transducer according
vibrating body
chamber
transmission body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03010875A
Other languages
English (en)
French (fr)
Other versions
EP1365120A1 (de
Inventor
Andreas Enderich
Lutz Fröhlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mahle Filtersysteme GmbH
Original Assignee
Mahle Filtersysteme GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mahle Filtersysteme GmbH filed Critical Mahle Filtersysteme GmbH
Publication of EP1365120A1 publication Critical patent/EP1365120A1/de
Application granted granted Critical
Publication of EP1365120B1 publication Critical patent/EP1365120B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/16Silencing apparatus characterised by method of silencing by using movable parts
    • F01N1/22Silencing apparatus characterised by method of silencing by using movable parts the parts being resilient walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1205Flow throttling or guiding
    • F02M35/1222Flow throttling or guiding by using adjustable or movable elements, e.g. valves, membranes, bellows, expanding or shrinking elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/12Intake silencers ; Sound modulation, transmission or amplification
    • F02M35/1294Amplifying, modulating, tuning or transmitting sound, e.g. directing sound to the passenger cabin; Sound modulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/14Combined air cleaners and silencers
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/22Methods or devices for transmitting, conducting or directing sound for conducting sound through hollow pipes, e.g. speaking tubes
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K9/00Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers
    • G10K9/02Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers driven by gas; e.g. suction operated
    • G10K9/04Devices in which sound is produced by vibrating a diaphragm or analogous element, e.g. fog horns, vehicle hooters or buzzers driven by gas; e.g. suction operated by compressed gases, e.g. compressed air

Definitions

  • the present invention relates to a sound transducer for a motor vehicle having the features of the preamble of the claim 1.
  • Such a transducer is for example from the DE 199 22 216 A1 and has a hollow transfer body, the at his entrance to the extraction of airborne sound connected to a fresh air line, the fresh air too an internal combustion engine of the vehicle leads.
  • This Transmission body is a modulated airborne sound at one Output of the transmission body to an interior of the vehicle radiated.
  • the decoupled airborne sound has the transfer body a serving as a vibrating body membrane made of plastic or rubber, due to the decoupled airborne sound is excitable to vibrations.
  • the generated vibrating diaphragm the modulated airborne sound and radiates this to the output of the transmission body.
  • Size, texture, mass and texture of the membrane can affect the modulation of the decoupled airborne sound so as to have a desired modulated airborne sound to be able to radiate.
  • a further sound transducer is the initially known type, wherein the transmission body for the extraction of airborne sound with its input to a Exhaust pipe of the internal combustion engine is connected.
  • the modulation of the decoupled airborne sound also occurs here with the help of a membrane that stimulates to vibrate is and at the output of the transmission body modulated Airborne sound, e.g. radiates into an engine compartment.
  • the transfer body must be sealed gas-tight be to exhaust passage in the engine compartment too prevent.
  • the gas-tight closure of the transmission body takes place here again through the membrane, so that on the membrane on the one hand the exhaust pressure prevails, while on the other hand essentially the ambient pressure is applied. Because the exhaust pressure during operation of the internal combustion engine relatively strong Is subject to fluctuations and regularly significantly above the ambient pressure, the above-described Problems also occur here because the membrane due the pressure difference bulges and tense. The accompanying Change in the radiation characteristic is undesirable.
  • the present invention deals with the problem for an acoustic transducer of the type mentioned an improved Specify embodiment, in particular the Dependence of pressure changes at the entrance of the transfer body is reduced.
  • the present invention is based on the general idea Instead of a flexible membrane a rigid or To use stiff vibrating body, with the help of a bracket is held vibratory, this holder against spring force in the vibration direction of the vibrating body is adjustable.
  • this construction is achieved that low - frequency pressure fluctuations in the input area of Transmission body by appropriate relative adjustments the holder together with the vibrating body held by it can be compensated by the holder so far adjusted until the spring force establishes a balance.
  • the low-frequency pressure fluctuations in the respective Sound source usually does not move in one audible frequency spectrum. Accordingly, they can only an adjustment of the relative position of the vibrating body reach, without this for the delivery of an audible sound radiation to stimulate.
  • the decoupled higher-frequency airborne sound the vibrating body after to excite vibrations that cause a radiation of audible, caused modulated airborne sound.
  • the decoupled from Airborne noise at the vibrating body are excitable amplitudes essentially independent of the deflection of the holder, so that the vibration characteristic of the vibrating body essentially independent of the audible frequency range from that at the input side of the transmission body is prevailing pressure.
  • transducer can thus from a fresh air line or from an exhaust pipe one Internal combustion engine independent of pressure fluctuations, the during operation of the internal combustion engine in the fresh air line or occur in the exhaust pipe, airborne sound decoupled and with a substantially constant remaining Modulation behavior of the oscillating body in modulated Airborne sound to be converted.
  • the holder as Corrugated pipe made of metal or as a bellows made of plastic or Be formed rubber, said corrugated pipe or the bellows at one end has the oscillating body and at the other end attached to the transfer body.
  • a corrugated pipe and a Bellows can be made relatively inexpensive and as well be formed so that they act simultaneously as a spring and due to the internal elasticity always a defined Seek to take starting position.
  • the transmission body in a range of relatively low temperatures is connected to the sound wave.
  • the Transfer body to an intake manifold of an internal combustion engine connected.
  • the metal-corrugated tube holder is preferred.
  • the respective, portion of the transmission body connected to the sound source made of metal (hot area) or plastic (cold area) made.
  • the vibrating body is made of a heat-resistant Material, e.g. made of metal, glass or ceramic, made and attached to the metal corrugated pipe.
  • the transmission body can a Have chamber, wherein the vibrating body at the entrance or at the exit of this chamber or between entry and exit is arranged.
  • this chamber is called Resonatorhunt trained to thereby specifically decoupled Airborne sound to excite the oscillating body and / or the to modulate airborne sound emitted by the oscillating body. For example, certain frequencies or frequency bands be amplified while other frequencies or frequency bands to be dampened or suppressed.
  • These Chamber or resonator chamber is different from the adjoining one Section of the transfer body by a Jump in cross section.
  • a first chamber and / or a second chamber may be provided, wherein the Oscillating body separates the two chambers from each other and accordingly at the exit of the first chamber and at the entrance the second chamber is arranged.
  • the transmission body in the area of one chamber and / or in the area of the other Chamber having an adjustable portion, wherein by adjusting the section the volume of the one Chamber and / or the volume of the other chamber variable is.
  • This volume adjustment for example, during installation the transducer according to the invention in the form of a one-time adjustment. It is the same possible, with the help of a corresponding actuator, the volume adjustment the respective chamber depending on predetermined parameters, e.g. Load and / or speed of one Internal combustion engine, during operation of the sound source automatically or perform manually, eliminating that from the transducer transmissible frequency spectrum can be varied.
  • FIG. 1 includes an internal combustion engine 1 of an otherwise not shown Vehicle, in particular a passenger car, a Fresh air line 2, which housed in an engine block 27 Cylinders 3 of the internal combustion engine 1 feeds fresh air.
  • a Fresh air line 2 In the fresh air line 2 is usually a Air filter 4 is arranged, which contains a filter body 5, in the interior of the air filter 4 a clean side 6 of a Raw side 7 separates.
  • An air distributor 8 distributes the supplied Fresh air in front of the engine block 27 to the individual Cylinder 3.
  • an exhaust pipe. 9 connected, which produced in the cylinders 3 Exhaust gases from the internal combustion engine 1 dissipates.
  • the exhaust pipe 9 after the engine block 27 an exhaust manifold 10, which merges the exhaust gases of the cylinder 3.
  • a catalyst 11 is arranged be.
  • the exhaust pipe 9 not shown other components, e.g. an exhaust gas turbocharger and a silencer included.
  • the internal combustion engine forms 1 a sound source, in particular airborne sound generated.
  • airborne sound are under the present Invention understood pressure pulsations, resulting in a gaseous fluid, e.g. Air or exhaust, spread.
  • an inventive device Sound transducer 12 a transmission body 13. With the help of Sound transducer 12 can now on the internal combustion engine 1 airborne sound decoupled, modulated and in or to a Target area are radiated.
  • a destination space can For example, an engine compartment 14 and / or by a End wall 15 from the engine compartment 14 separate interior 16 of the Be a vehicle.
  • Fig. 1 for decoupling the airborne sound of Internal combustion engine 1, an input 17 of the transmission body 13 at a suitable location with the internal combustion engine. 1 be communicatively connected.
  • Fig. 1 are exemplified several different connection points shown, the distinguishable by the letters a to g are. Accordingly, it is possible in particular, the Sound transducer 12 to the fresh air line 2 or to the exhaust pipe 9 connect. Appropriately, the connection is made each relatively close to the engine to damping effects, for example to avoid the catalyst 11 or the filter element 5.
  • the transfer body has 13 an output 18, the modulated airborne sound to the interior 16 radiates out.
  • the output 18 is here as Schallabichtertrichter designed to a purposeful To improve sound radiation.
  • the output 18 can - as shown - in front of the end wall 15, ie within the engine compartment 14 may be arranged. Likewise it is possible the exit 18 directly on the end wall 15 or in the end wall 15th to install.
  • the transfer body 13 also penetrate the end wall 15, so that the output 18th already in the target area, that is arranged in the interior 16.
  • a vibrating body 19 is formed relatively stiff or rigid.
  • the vibrating body 19 consists of the vibrating body 19 to a corresponding stiff or rigid material.
  • the vibrating body 19 by constructive measures have the desired stiffness or strength.
  • the vibrating body 19 is formed as a circular disk.
  • the vibrating body 19 by means of a holder 20 vibrationally supported on the transfer body 13.
  • the holder 20 is designed so that they for the oscillating body 19 translational, bidirectional Vibrational movements enabled by a double arrow indicated direction of vibration 21 parallel to a indicated by an arrow sound propagation direction 22 of the incoming sound and parallel to one, also indicated by an arrow sound propagation direction 23 of the outgoing sound passes.
  • a conventional flexurally soft membrane when swinging accordingly buckles its excitation
  • the vibration behavior takes place in accordance with the invention swinging suspended bending stiff Vibrating body 19 according to another principle.
  • the Oscillator 19 bulges or bends when swinging substantially not, but moves completely accordingly the oscillation frequency parallel to the initial position, what through the oscillatory mount 20 is made possible.
  • the holder 20 is here as a bellows 24 or as a corrugated pipe 25 trained. While a corrugated tube 25 in the rule Made of metal, the bellows is made of rubber or out Made of plastic. The waves or folds of the bellows 24 and the corrugated pipe 25 cause the bellows 24 or the corrugated tube 25 behaves like a spring. Of the Bellows 24 and the corrugated tube 25 is on the one hand, e.g. above a ring 26, attached to the transfer body 13 and carries on the other hand, the vibrating body 19th
  • the holder 20 of the oscillating body 19 in or on the transfer body 13 against spring force in parallel arranged adjustable to the vibration direction 21.
  • the adjustability as well as the spring force arise during training the holder 20 as a corrugated pipe 25 and bellows 24 by itself.
  • the transmission body 13 is sealed gas-tight, so that in particular no clean air or exhaust gas can escape through the outlet 18.
  • a communicating connection between output 18 and input 17 would destroy, for example, the pressure conditions desired in the fresh air line 2 or in the exhaust line 9.
  • the sealing of the transmission body 13 is carried out so that the oscillating body 19 on the one hand, the output side gas pressure p 0 and on the other hand, the input side gas pressure p 1 according to FIG. 2 or p 3 according to FIG. While the output-side pressure p 0 generally corresponds to the atmospheric ambient pressure and accordingly is essentially contant, the input-side pressure p 1 or p 2 depends on the respective operating state of the internal combustion engine 1.
  • FIGS. 2 and 3 two different pressure situations are shown in FIGS. 2 and 3, wherein the inlet-side gas pressure p 1 shown in FIG. 2 is greater than the gas pressure p 2 shown in FIG. 2, with different axial lengths of the bellows 24 and of the corrugated tube 25 goes along.
  • the holder 20 Due to the adjustability of the holder 20 according to the invention can this adapt to the prevailing pressure conditions, so that the bellows 24 and the corrugated tube 25 at Condition according to FIG. 2 expands in the direction of vibration 21 and compressed in the pressure situation in Fig. 3.
  • the Design of the holder 20 takes place so that through the different length the vibration behavior of the vibrating body 19 is not or only slightly affected. This has the consequence that the vibration excitation of the vibrating body 19 by the application of decoupled airborne sound essentially independent of the vibrating body 19 applied pressure differences is.
  • the of the oscillating body 19 generated vibration amplitudes are therefore substantially regardless of the system pressures. This is achieved for example, by a linear or quasi-linear spring constant in the bellows 24 and in the corrugated pipe 25th
  • the vibrating body 19 made of a heat-resistant material, e.g. from sheet metal, and is the metal corrugated pipe 25, for example soldered.
  • the ring 26 and the associated, to the entrance 17 leading portion of the transfer body 13 is then expediently also made of metal.
  • the portion of the transmission body containing the output 18 13 be made of plastic, since this Section not directly exposed to the hot exhaust gases is.
  • FIGS. 2 and 3 has the transfer body 13 between input 17 and outlet 18 a first chamber 28 and a second chamber 29.
  • the first chamber 28 is via a first line section 30 connected to the input 17, wherein in one Transition from this first line section 30 to the first Chamber 28 formed a jump-like cross-sectional widening 31 is.
  • the second chamber 29 via a second line section 32 of the transmission body 13 connected to the output 18, wherein the second chamber 29 via a sudden cross-section decrease 33 in the second line section 32 passes.
  • first pipe section 30 form as ⁇ / 2 resonator, where ⁇ is the wavelength of a preferred frequency is.
  • the bellows 24 and the corrugated tube 25 is cylindrical and coaxially aligned with the respective chamber 28,29.
  • the two Line sections 30 and 32 are coaxial and aligned with the Bellows 24 and aligned to the corrugated pipe 25.
  • the vibrating body 19 is on the one hand am Exit the first chamber 28 and on the other hand at the entrance the second chamber 29 is arranged.
  • the first chamber 28 can together with the integrated vibrating body 19 an assembly form in their interior with hot gases, e.g. with combustion exhaust gases can be acted upon.
  • the bellows 24 and the vibrating body 19 formed as a one-piece or one-piece integral component 34 be, for example, by a blow molding process can be produced.
  • a corresponding adapted Shape of the bellows 24 may be the integral component 34 can also be realized as a cast component.
  • the spring elasticity the bellows 24 and the rigidity of the vibrating body 19 can be achieved by the selected material thicknesses and / or by the geometric shape of the respective Reach section in the integral component 24.
  • the integral body 34 is at the free end of its bellows 24 at 37 connected to the ring 26, e.g. through a bond.
  • the desired suspension properties or rigidities also determined by the material selection be, for example, by the vibrating body 19 a relatively rigid plastic is used during the Bellows 24 made of a relatively flexible plastic or made of rubber.
  • bellows 24 and vibrating body 19 can again be formed as a one-piece integral component 34, wherein the shape here is such that the integral component 34 is produced as an injection molded component.
  • the stiffness of the Oscillating body 19 can also be increased as shown in FIG. 6, that the vibrating body 19 by a suitable shaping, e.g. by a circumferential annular collar 35 and by Webs 36, stiffened.
  • Fig. 7 is such a stiffener of the vibrating body 19 shown by way of example.
  • at Fig. 6 is the free end of the bellows 24 at 38 directly connected to the transfer body 13, for example through a bond.
  • the Bellows 24 is substantially conically shaped.
  • the transfer body has 13 in the region of the second chamber 29 a adjustable section 39, which corresponds to a double arrow 40 relative to the other areas of the transmission body 13 positionable in the sound propagation direction 22,23 is.
  • a adjustable section 39 For example, the volume of the second chamber 29 can be varied. On This way, the resonance behavior of the second chamber 29 to a specific target frequency or a specific target frequency band be matched.
  • This voting process can for example, during assembly of the transducer 12 am Vehicle done. Section 39 will be after the vote fixes and retains the once found setting. at the particular embodiments shown in FIGS.
  • a controller can Actuator 41 as a function of the speed and / or the load of the internal combustion engine 1 actuate.
  • section 39 also has the output 18 of the transmission body 13, so that this in the adjustment of section 39 also is moved relative to the bulkhead 15, is the section 39 in the embodiment of FIG. 9 between arranged two stationary sections of the transfer body 13, so that in particular the position of the output 18 is also invariant with an adjustment of the section 39.
  • FIGS. 10 and 11 therefore differentiate Embodiments of this holder 20 shown.
  • the holder 20 may be e.g. through a hollow cylinder 42 may be formed at the at one axial end of the Vibrating body 19 is attached.
  • the hollow cylinder 42 is by means of a suspension 43 connected to the transfer body 13.
  • the hollow cylinder 42 is also outside on a cylindrical Section 44 of the transmission body 13 attached, the dimensions are coordinated with each other are that the hollow cylinder 20 is substantially gas-tight and low-friction telescopic in the direction of vibration 21 is mounted on section 44.
  • the suspension 43 allows on the one hand the required pressure compensation and on the other hand, the translatory oscillatory motion of Vibrating body 19.
  • the hollow cylinder 42 formed as Holder 20 also in a cylindrical portion 45th the transfer body 13 inserted and adjustable in stroke be stored, and here too the dimensions are coordinated so that the hollow cylinder 42nd essentially frictionless and gas-tight in the cylinder section 45 is stored.
  • this suspension for example, by a coil spring may be formed.

Description

Die vorliegende Erfindung betrifft einen Schallwandler für ein Kraftfahrzeug mit den Merkmalen des Oberbegriffs des Anspruchs 1.
Ein derartiger Schallwandler ist beispielsweise aus der DE 199 22 216 A1 bekannt und besitzt einen hohlen Übertragskörper, der an seinem Eingang zur Auskopplung von Luftschall mit einer Frischluftleitung verbunden ist, die Frischluft zu einer Brennkraftmaschine des Fahrzeugs führt. Mit diesem Übertragungskörper ist ein modulierter Luftschall an einem Ausgang des Übertragungskörpers zu einem Innenraum des Fahrzeugs abstrahlbar. Zur gezielten Beeinflussung oder Modulation des ausgekoppelten Luftschalls weist der Übertragungskörper eine als Schwingkörper dienende Membran aus Kunststoff oder Gummi auf, die durch den ausgekoppelten Luftschall zu Schwingungen anregbar ist. Dabei erzeugt die schwingende Membran den modulierten Luftschall und strahlt diesen zum Ausgang des Übertragungskörpers ab. Durch die Größe, Beschaffenheit, Masse und Beschaffenheit der Membran kann die Modulation des ausgekoppelten Luftschalls beeinflußt werden, um so einen gewünschten modulierten Luftschall abstrahlen zu können.
Für den Fall, daß der Übertragungskörper an die Reinseite der Frischluftleitung angeschlossen ist, erfolgt über die Membran gleichzeitig ein gasdichter Verschluß des Übertragungskörpers, derart, daß an der Membran einerseits der eingangsseitige Gasdruck anliegt und andererseits der ausgangsseitige Gasdruck anliegt. Während der ausgangsseitige Gasdruck in der Regel dem Umgebungsdruck des Fahrzeugs entspricht und somit im wesentlichen konstant ist, kann der eingangsseitige Druck in der Luftansaugleitung einerseits großen Schwankungen unterworfen sein und andererseits beträchlich vom Umgebungsdruck abweichen, insbesondere bei aufgeladenen Motoren. Eine starke Druckdifferenz an der Membran hat jedoch zur Folge, daß sich diese relativ stark durchbiegt. Durch diese Wölbung verändert sich die Schwingungscharakteristik der Membran sehr stark, was zu einer Beeinträchtigung der Funktion des Schallwandlers führt. Des weiteren kann im eingangsseitigen Abschnitt des kommunizierenden Systems gegenüber dem Umgebungsdruck eine Druckänderung von Unterdruck zu Überdruck oder umgekehrt erfolgen, wodurch sich die Wölbung der Membran sprungartig umkehrt, was mit einer unerwünschten Geräuschentwicklung verbunden sein kann.
Aus der EP 1 138 887 A2 ist ein weiterer Schallwandler der eingangs genannten Art bekannt, bei dem der Übertragungskörper zur Auskopplung von Luftschall mit seinem Eingang an eine Abgasleitung der Brennkraftmaschine angeschlossen ist. Die Modulation des ausgekoppelten Luftschalls erfolgt auch hier mit Hilfe einer Membran, die zu Schwingungen angeregt wird und am Ausgang des Übertragungskörpers den modulierten Luftschall z.B. in einen Motorraum abstrahlt. Bei dieser Ausführungsform muß der Übertragungskörper gasdicht verschlossen sein, um einen Abgasaustritt in den Motorraum zu verhindern. Der gasdichte Verschluß des Übertragungskörpers erfolgt hierbei wieder durch die Membran, so daß an der Membran einerseits der Abgasdruck herrscht, während andererseits im wesentlichen der Umgebungsdruck anliegt. Da der Abgasdruck im Betrieb der Brennkraftmaschine relativ starken Schwankungen unterworfen ist und regelmäßig deutlich über dem Umgebungsdruck liegt, können die vorstehend geschilderten Probleme auch hier auftreten, da sich die Membran aufgrund der Druckdifferenz wölbt und verspannt. Die damit einhergehende Veränderung der Abstrahlungscharakteristik ist unerwünscht.
Die vorliegende Erfindung beschäftigt sich mit dem Problem, für einen Schallwandler der eingangs genannten Art eine verbesserte Ausführungsform anzugeben, bei der insbesondere die Abhängigkeit von Druckänderungen am Eingang des Übertragungskörpers reduziert ist.
Dieses Problem wird erfindungsgemäß mit dem Gegenstand des unabhängigen Anspruchs gelöst. Vorteilhafte Ausführungsformen sind Gegenstand der abhängigen Ansprüche.
Die vorliegende Erfindung beruht auf dem allgemeinen Gedanken, anstelle einer biegeweichen Membran einen starren oder steifen Schwingkörper zu verwenden, der mit Hilfe einer Halterung schwingungsfähig gehaltert ist, wobei diese Halterung gegen Federkraft in der Schwingungsrichtung des Schwingkörpers verstellbar ist. Durch diese Bauweise wird erreicht, daß niederfrequente Druckschwankungen im Eingangsbereich des Übertragungskörpers durch entsprechende Relativverstellungen der Halterung zusammen mit dem daran gehalterten Schwingkörper kompensiert werden können, indem sich die Halterung soweit verstellt, bis die Federkraft ein Gleichgewicht herstellt. Die niederfrequenten Druckschwankungen in der jeweiligen Schallquelle bewegen sich in der Regel in einem nicht hörbaren Frequenzspektrum. Dementsprechend können sie lediglich eine Verstellung der Relativposition des Schwingkörpers erreichen, ohne diesen zur Abgabe einer hörbaren Schallabstrahlung anzuregen. Im Unterschied dazu kann der ausgekoppelte höherfrequente Luftschall den Schwingkörper nach wie vor zu Schwingungen anregen, die eine Abstrahlung von hörbarem, moduliertem Luftschall verursacht. Die vom ausgekoppelten Luftschall am Schwingkörper anregbaren Amplituden sind dabei im wesentlichen unabhängig von der Auslenkung der Halterung, so daß die Schwingungscharakteristik des Schwingkörpers für den hörbaren Frequenzbereich im wesentlichen unabhängig von dem an der Eingangsseite des Übertragungskörpers herrschenden Druck ist.
Mit Hilfe des erfindungsgemäßen Schallwandlers kann somit aus einer Frischluftleitung oder aus einer Abgasleitung einer Brennkraftmaschine unabhängig von Druckschwankungen, die während des Betriebs der Brennkraftmaschine in der Frischluftleitung oder in der Abgasleitung auftreten, Luftschall ausgekoppelt und mit einem im wesentlichen konstant bleibenden Modulationsverhalten vom Schwingkörper in modulierten Luftschall umgewandelt werden.
Bei einer bevorzugten Ausführungsform kann die Halterung als Wellrohr aus Metall oder als Faltenbalg aus Kunststoff oder Gummi ausgebildet sein, wobei dieses Wellrohr bzw. der Faltenbalg einenends den Schwingkörper aufweist und anderenends am Übertragungskörper befestigt ist. Ein Wellrohr und ein Faltenbalg können relativ preiswert hergestellt und außerdem so ausgebildet werden, daß sie gleichzeitig als Feder wirken und aufgrund der inneren Elastizität stets eine definierte Ausgangslage einzunehmen suchen. Durch die am Schwingkörper herrschende Druckdifferenz ergibt sich eine am Wellrohr bzw. am Faltenbalg wirkende resultierende Kraft, die das Wellrohr bzw. den Faltenbalg bezüglich seiner Längsrichtung auseinanderzieht oder zusammendrückt. Innerhalb eines zulässigen Verstellbereichs, der auf die zu erwartenden Druckdifferenzen abgestimmt ist, ermöglicht das Wellrohr bzw. der Faltenbalg translatorische Schwingungsbewegungen durch Luftschallanregung. Die Charakteristik des vom Schwingkörper abgestrahlten modulierten Luftschalls ist durch die Beweglichkeit des Wellrohrs bzw. Faltenbalgs nicht oder nur geringfügig von der momentanten Dehnung oder Kompression des Wellrohrs bzw. Faltenbalgs abhängig. Bei einer entsprechenden Auslegung kann somit über den gesamten Betriebsbereich der jeweiligen Schallwelle, z.B. Brennkraftmaschine, ein gewünschter Sound generiert werden.
Die als Kunststoff- oder Gummi-Faltenbalg ausgebildete Halterung kommt vorwiegend dann zum Einsatz, wenn der Übertragungskörper in einem Bereich relativ niedriger Temperaturen an die Schallwelle angeschlossen ist. Beispielsweise ist der Übertragungskörper an eine Ansaugleitung einer Brennkraftmaschine angeschlossen. Wenn der Übertragungskörper an einen relativ heißen Bereich der Schallwelle, z.B. an eine Abgasleitung einer Brennkraftmaschine, angeschlossen werden soll, wird die als Metall-Wellrohr ausgebildete Halterung bevorzugt. In entsprechender Weise ist dann auch der jeweilige, mit der Schallquelle verbundene Abschnitt des Übertragungskörpers aus Metall (heißer Bereich) bzw. aus Kunststoff (kalter Bereich) hergestellt.
Sofern der Übertragungskörper den Luftschall an einem relativ heißen Abschnitt der Schallquelle, z.B. an einem Abgaskrümmer oder an einem Abgassammelrohr einer Brennkraftmaschine, abzweigen soll, ist der Schwingkörper aus einem hitzebeständigen Material, z.B. aus Metall, Glas oder Keramik, hergestellt und am Metall-Wellrohr befestigt.
Gemäß einer Weiterbildung kann der Übertragungskörper eine Kammer aufweisen, wobei der Schwingkörper am Eintritt oder am Austritt dieser Kammer oder zwischen Eintritt und Austritt angeordnet ist. Zweckmäßig wird diese Kammer als Resonatorkammer ausgebildet, um dadurch gezielt den ausgekoppelten Luftschall zur Anregung des Schwingkörpers und/oder den vom Schwingkörper abgestrahlten Luftschall zu modulieren. Beispielsweise sollen bestimmte Frequenzen bzw. Frequenzbänder verstärkt werden, während andere Frequenzen oder Frequenzbänder gedämpft oder unterdrückt werden sollen. Diese Kammer oder Resonatorkammer unterscheidet sich vom daran anschließenden Abschnitt des Übertragungskörpers durch einen Querschnittssprung.
Bei einer besonderen Ausführungsform können eine erste Kammer und/oder eine zweite Kammer vorgesehen sein, wobei der Schwingkörper die beiden Kammern voneinander trennt und dementsprechend am Austritt der ersten Kammer sowie am Eintritt der zweiten Kammer angeordnet ist.
Bei einer besonderen Weiterbildung kann der Übertragungskörper im Bereich der einen Kammer und/oder im Bereich der anderen Kammer einen verstellbaren Abschnitt aufweisen, wobei durch eine Verstellung des Abschnitts das Volumen der einen Kammer und/oder das Volumen der anderen Kammer variierbar ist. Mit Hilfe dieser Maßnahme kann somit das Resonanzverhalten der jeweiligen Kammer eingestellt und beispielsweise an das Frequenzspektrum der Schallquelle angepaßt werden. Diese Volumen-Verstellung kann beispielsweise bei der Installation des erfindungsgemäßen Schallwandlers in Form einer einmaligen Justage durchgeführt werden. Ebenso ist es möglich, mit Hilfe eines entsprechenden Aktuators die Volumen-Verstellung der jeweiligen Kammer in Abhängigkeit von vorbestimmten Parametern, z.B. Last und/oder Drehzahl einer Brennkraftmaschine, im Betrieb der Schallquelle automatisch oder manuell durchzuführen, wodurch das vom Schallwandler übertragbare Frequenzspektrum variiert werden kann.
Weitere wichtige Merkmale und Vorteile der Erfindung ergeben sich aus den Unteransprüchen, aus den Zeichnungen und aus der zugehörigen Figurenbeschreibung anhand der Zeichnungen.
Es versteht sich, daß die vorstehend genannten und die nachstehend noch zu erläuternden Merkmale nicht nur in der jeweils angegebenen Kombination, sondern auch in anderen Kombinationen oder in Alleinstellung verwendbar sind, ohne den Rahmen der vorliegenden Erfindung zu verlassen.
Bevorzugte Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und werden in der nachfolgenden Beschreibung näher erläutert, wobei sich gleiche Bezugszeichen auf gleiche oder funktional gleiche oder ähnliche Bauteile beziehen.
Es zeigen, jeweils schematisch,
Fig. 1
eine stark vereinfachte Darstellung einer Brennkraftmaschine, die mit einem Schallwandler nach der Erfindung ausgestattet ist,
Fig. 2 und 3
vereinfachte Darstellungen des Schallwandlers bei unterschiedlichen Druckverhältnissen,
Fig. 4 bis 6
Schnittansichten durch verschiedene Ausführungsformen eines Schwingkörpers mit Halterung,
Fig. 7
eine Draufsicht auf den Schwingkörper der Fig. 6,
Fig. 8 und 9
vereinfachte Ansichten auf den Schallwandler bei verschiedenen Ausführungsformen mit variablem Kammervolumen,
Fig. 10 und 11
vereinfachte Ansichten auf weitere Ausführungsformen des Schallwandlers.
Entsprechend der vereinfachten Darstellung der Fig. 1 umfaßt eine Brennkraftmaschine 1 eines im übrigen nicht dargestellten Fahrzeugs, insbesondere eines Personenkraftwagens, eine Frischluftleitung 2, die in einem Motorblock 27 untergebrachten Zylindern 3 der Brennkraftmaschine 1 Frischluft zuführt. In der Frischluftleitung 2 ist üblicherweise ein Luftfilter 4 angeordnet, das einen Filterkörper 5 enthält, der im Inneren des Luftfilters 4 eine Reinseite 6 von einer Rohseite 7 trennt. Ein Luftverteiler 8 verteilt die zugeführte Frischluft vor dem Motorblock 27 auf die einzelnen Zylinder 3.
An die Brennkraftmaschine 1 ist außerdem eine Abgasleitung 9 angeschlossen, welche die in den Zylindern 3 produzierten Abgase von der Brennkraftmaschine 1 abführt. Hierzu weist die Abgasleitung 9 nach dem Motorblock 27 einen Abgassammler 10 auf, der die Abgase der Zylinder 3 zusammenführt. In der Abgasleitung 9 kann beispielsweise ein Katalysator 11 angeordnet sein. Des weiteren kann die Abgasleitung 9 nicht gezeigte weitere Komponenten, wie z.B. einen Abgasturbolader und einen Schalldämpfer enthalten.
Im Rahmen der vorliegenden Erfindung bildet die Brennkraftmaschine 1 eine Schallquelle, die insbesondere Luftschall erzeugt. Unter "Luftschall" werden im Rahmen der vorliegenden Erfindung Druckpulsationen verstanden, die sich in einem gasförmigen Fluid, z.B. Luft oder Abgas, ausbreiten.
Gemäß den Fig. 2,3 und 8 bis 11 umfaßt ein erfindungsgemäßer Schallwandler 12 einen Übertragungskörper 13. Mit Hilfe des Schallwandlers 12 kann nun an der Brennkraftmaschine 1 Luftschall ausgekoppelt, moduliert und in einen oder zu einem Zielraum abgestrahlt werden. Ein derartiger Zielraum kann beispielsweise ein Motorraum 14 und/oder ein durch eine Stirnwand 15 vom Motorraum 14 getrennter Innenraum 16 des Fahrzeugs sein.
Entsprechend Fig. 1 kann zur Auskopplung des Luftschalls der Brennkraftmaschine 1 ein Eingang 17 des Übertragungskörpers 13 an einer geeigneten Stelle mit der Brennkraftmaschine 1 kommunizierend verbunden sein. In Fig. 1 sind dazu exemplarisch mehrere verschiedene Anschlußstellen dargestellt, die durch die Buchstaben a bis g voneinander unterscheidbar sind. Dementsprechend ist es insbesondere möglich, den Schallwandler 12 an die Frischluftleitung 2 oder an die Abgasleitung 9 anzuschließen. Zweckmäßig erfolgt der Anschluß jeweils relativ motornah, um Dämpfungseffekte, beispielsweise des Katalysators 11 oder des Filterelements 5 zu vermeiden.
Entsprechend den Fig. 2 und 3 besitzt der Übertragungskörper 13 einen Ausgang 18, der den modulierten Luftschall zum Innenraum 16 hin abstrahlt. Der Ausgang 18 ist hier als Schallabstrahltrichter ausgestaltet, um eine gezielte Schallabstrahlung zu verbessern. Der Ausgang 18 kann - wie dargestellt - vor der Stirnwand 15, also innerhalb des Motorraums 14 angeordnet sein. Ebenso ist es möglich, den Ausgang 18 direkt an der Stirnwand 15 oder in der Stirnwand 15 anzubringen. Des weiteren kann der Übertragungskörper 13 auch die Stirnwand 15 durchdringen, so daß der Ausgang 18 bereits im Zielraum, also im Innenraum 16 angeordnet ist.
Für die Schallwandlung bzw. Schallmodulation enthält der Übertragungskörper 13 einen Schwingkörper 19, der erfindungsgemäß relativ steif oder starr ausgebildet ist. Beispielsweise besteht der Schwingkörper 19 dazu aus einem entsprechend steifen oder starren Material. Alternativ oder zusätzlich kann der Schwingkörper 19 durch konstruktive Maßnahmen die gewünschte Steifigkeit oder Festigkeit besitzen. Zweckmäßig ist der Schwingkörper 19 als Kreisscheibe ausgebildet.
Erfindungsgemäß ist der Schwingkörper 19 mittels einer Halterung 20 schwingungsfähig am Übertragungskörper 13 gehaltert. Die Halterung 20 ist dabei so ausgestaltet, daß sie für den Schwingkörper 19 translatorische, bidirektionale Schwingungsbewegungen ermöglicht, deren durch einen Doppelpfeil angedeutete Schwingungsrichtung 21 parallel zu einer durch einen Pfeil dargestellten Schallausbreitungsrichtung 22 des ankommenden Schalls sowie parallel zu einer, ebenfalls durch einen Pfeil dargestellten Schallausbreitungsrichtung 23 des abgehenden Schalls verläuft. Während sich eine herkömmliche biegeweiche Membran beim Schwingen entsprechend ihrer Anregung wölbt, erfolgt das Schwingungsverhalten beim erfindungsgemäß schwingend aufgehängten biegesteifen Schwingkörper 19 nach einem anderen Prinzip. Der Schwingkörper 19 wölbt oder biegt sich beim Schwingen im wesentlichen nicht, sondern bewegt sich komplett entsprechend der Schwingungsfrequenz parallel zur Ausgangslage, was durch die schwingungsfähige Halterung 20 ermöglicht wird.
Die Halterung 20 ist hier als Faltenbalg 24 oder als Wellrohr 25 ausgebildet. Während ein Wellrohr 25 in der Regel aus Metall besteht, ist der Faltenbalg aus Gummi oder aus Kunststoff hergestellt. Die Wellen oder Falten des Faltenbalgs 24 bzw. des Wellrohrs 25 bewirken, daß sich der Faltenbalg 24 bzw. das Wellrohr 25 wie eine Feder verhält. Der Faltenbalg 24 bzw. das Wellrohr 25 ist einerseits, z.B. über einen Ring 26, am Übertragungskörper 13 befestigt und trägt andererseits den Schwingkörper 19.
Erfindungsgemäß ist die Halterung 20 des Schwingkörpers 19 im bzw. am Übertragungskörper 13 gegen Federkraft parallel zur Schwingungsrichtung 21 verstellbar angeordnet. Die Verstellbarkeit sowie die Federkraft ergeben sich bei der Ausbildung der Halterung 20 als Wellrohr 25 bzw. als Faltenbalg 24 von selbst.
Im Bereich des Schwingkörpers 19 ist der Übertragungskörper 13 gasdicht verschlossen, so daß insbesondere keine Reinluft oder kein Abgas durch den Ausgang 18 austreten kann. Außerdem würde eine kommunizierende Verbindung zwischen Ausgang 18 und Eingang 17 beispielsweise die in der Frischluftleitung 2 bzw. in der Abgasleitung 9 erwünschten Druckverhältnisse zerstören. Die Abdichtung des Übertragungskörpers 13 erfolgt dabei so, daß am Schwingkörper 19 einerseits der ausgangsseitige Gasdruck p0 und andererseits der eingangsseitige Gasdruck p1 gemäß Fig. 2 bzw. p3 gemäß Fig. 3 anliegt. Während der ausgangsseitige Druck p0 in der Regel dem atmosphärischen Umgebungsdruck entspricht und dementsprechend im wesentlichen kontant ist, hängt der eingangsseitig Druck p1 bzw. p2 vom jeweiligen Betriebszustand der Brennkraftmaschine 1 ab. Exemplarisch sind in den Fig. 2 und 3 zwei unterschiedliche Drucksituationen dargestellt, wobei der in Fig. 2 gezeigte eingangsseitige Gasdruck p1 größer ist als der in Fig. 2 gezeigte Gasdruck p2, was mit unterschiedlichen axialen Längen des Faltenbalgs 24 bzw. des Wellrohrs 25 einhergeht.
Durch die erfindungsgemäße Verstellbarkeit der Halterung 20 kann sich diese an die herrschenden Druckverhältnisse anpassen, so daß sich der Faltenbalg 24 bzw. das Wellrohr 25 beim Zustand gemäß Fig. 2 in der Schwingungsrichtung 21 ausdehnt und sich bei der Drucksituation in Fig. 3 komprimiert. Die Auslegung der Halterung 20 erfolgt dabei so, daß durch die unterschiedliche Länge das Schwingungsverhalten des Schwingkörpers 19 nicht oder nur unwesentlich beeinträchtigt wird. Dies hat zur Folge, daß die Schwingungsanregung des Schwingkörpers 19 durch die Beaufschlagung mit ausgekoppeltem Luftschall im wesentlichen unabhängig von den am Schwingkörper 19 anliegenden Druckdifferenzen ist. Die vom Schwingkörper 19 erzeugbaren Schwingungsamplituden sind daher im wesentlichen unabhängig von den Systemdrücken. Erzielt wird dies beispielsweise durch eine lineare oder quasi lineare Federkonstante im Faltenbalg 24 bzw. im Wellrohr 25.
Wenn der Schallwandler 12 an der Abgasseite der Brennkraftmaschine 1 den Luftschall auskoppeln soll, müssen die zumindest in der Nähe des Motorblocks 27 herrschenden hohen Temperaturen berücksichtigt werden. Beispielsweise besteht dann der Schwingkörper 19 aus einem hitzebeständigen Material, z.B. aus Blech, und ist am Metall-Wellrohr 25 beispielsweise angelötet. Der Ring 26 und der damit verbundene, zum Eingang 17 führende Abschnitt des Übertragungskörpers 13 ist dann zweckmäßig ebenfalls aus Metall hergestellt. Im Unterschied dazu kann der den Ausgang 18 enthaltende Abschnitt des Übertragungskörpers 13 aus Kunststoff hergestellt sein, da dieser Abschnitt den heißen Abgasen nicht direkt ausgesetzt ist.
Gemäß der in den Fig. 2 und 3 gezeigten besonderen Ausführungsform besitzt der Übertragungskörper 13 zwischen Eingang 17 und Ausgang 18 eine erste Kammer 28 und eine zweite Kammer 29. Die erste Kammer 28 ist über einen ersten Leitungsabschnitt 30 mit dem Eingang 17 verbunden, wobei in einem Übergang von diesem ersten Leitungsabschnitt 30 zur ersten Kammer 28 eine sprungartige Querschnittserweiterung 31 ausgebildet ist. Im Unterschied dazu ist die zweite Kammer 29 über einen zweiten Leitungsabschnitt 32 des Übertragungskörpers 13 mit dem Ausgang 18 verbunden, wobei die zweite Kammer 29 über eine sprungartige Querschnittsabnahme 33 in den zweiten Leitungsabschnitt 32 übergeht. Zweckmäßig sind die beiden Kammern, zumindest jedoch eine davon, als Resonatorkammer ausgebildet; d.h., die jeweilige Kammer 28,29 ist im Hinblick auf bestimmte Frequenzen oder Frequenzbänder ausgelegt, die vom Schallwandler bevorzugt abgestrahlt werden sollen.
Zusätzlich ist es möglich, den ersten Leitungsabschnitt 30 als λ/2-Resonator auszubilden, wobei λ die Wellenlänge einer bevorzugten Frequenz ist.
Bei den Ausführungsformen der Fig. 2 und 3 ist der Faltenbalg 24 bzw. das Wellrohr 25 zylindrisch ausgebildet und koaxial zur jeweiligen Kammer 28,29 ausgerichtet. Die beiden Leitungsabschnitte 30 und 32 sind koaxial und fluchtend zum Faltenbalg 24 bzw. zum Wellrohr 25 ausgerichtet.
Bei der hier gezeigten bevorzugten Ausführungsform sind die beiden Kammern 28 und 29 durch den Schwingkörper 19 voneinander getrennt, d.h., der Schwingkörper 19 ist einerseits am Austritt der ersten Kammer 28 und andererseits am Eintritt der zweiten Kammer 29 angeordnet. Die erste Kammer 28 kann zusammen mit dem integrierten Schwingkörper 19 eine Baugruppe bilden, die in ihrem Inneren mit Heißgasen, z.B. mit Verbrennungsabgasen beaufschlagbar ist.
Gemäß Fig. 4 können der Faltenbalg 24 und die Schwingkörper 19 als einteiliges oder einstückiges Integralbauteil 34 ausgebildet sein, das beispielsweise durch ein Blasformverfahren hergestellt werden kann. Bei einer entsprechenden angepaßten Gestalt des Faltenbalgs 24 kann das Integralbauteil 34 auch als Gußbauteil realisiert werden. Die Federelastizität des Faltenbalgs 24 und die Steifigkeit des Schwingkörpers 19 lassen sich dabei durch die gewählten Materialstärken und/oder durch die geometrische Formgebung des jeweiligen Abschnitts im Integralbauteil 24 erreichen. Der Integralkörper 34 ist am freien Ende seines Faltenbalgs 24 bei 37 mit dem Ring 26 verbunden, z.B. durch eine Verklebung.
Gemäß Fig. 5 können die gewünschten Federungseigenschaften bzw. Steifigkeiten auch durch die Materialauswahl mitbestimmt werden, indem für den Schwingkörper 19 beispielsweise ein relativ steifer Kunststoff verwendet wird, während der Faltenbalg 24 aus einem relativ flexiblen Kunststoff oder aus Gummi hergestellt ist. Dabei kann der Faltenbalg 24 an den zuvor hergestellten Schwingkörper 19 angeformt, insbesondere angespritzt werden. Ebenso ist es möglich, den Schwingkörper 19 an den zuvor hergestellten Faltenbalg 24 anzuformen, insbesondere anzuspritzen.
Gemäß Fig. 6 können Faltenbalg 24 und Schwingkörper 19 wieder als einteiliges Integralbauteil 34 ausgebildet sein, wobei die Formgebung hier so erfolgt, daß das Integralbauteil 34 als Spritzgußbauteil herstellbar ist. Die Steifigkeit des Schwingkörpers 19 kann gemäß Fig. 6 auch dadurch erhöht werden, daß der Schwingkörper 19 durch eine geeignete Formgebung, z.B. durch einen umlaufenden Ringkragen 35 sowie durch Stege 36, versteift ist. In Fig. 7 ist eine derartige Versteifung des Schwingkörpers 19 exemplarisch dargestellt. Bei Fig. 6 ist das freie Ende des Faltenbalgs 24 bei 38 direkt mit dem Übertragungskörper 13 verbunden, beispielsweise durch eine Verklebung. Bei dieser Ausführungsform ist der Faltenbalg 24 im wesentlichen konisch geformt.
Bei den Ausführungsformen der Fig. 8 und 9 besitzt der Übertragungskörper 13 im Bereich der zweiten Kammer 29 einen verstellbaren Abschnitt 39, der entsprechend einem Doppelpfeil 40 relativ zu den anderen Bereichen des Übertragungskörpers 13 in der Schallausbreitungsrichtung 22,23 positionierbar ist. Mit Hilfe der Verstellung des Abschnitts 39 kann das Volumen der zweiten Kammer 29 variiert werden. Auf diese Weise kann das Resonanzverhalten der zweiten Kammer 29 auf eine bestimmte Zielfrequenz bzw. ein bestimmtes Zielfrequenzband abgestimmt werden. Dieser Abstimmungsvorgang kann beispielsweise bei der Montage des Schallwandlers 12 am Fahrzeug erfolgen. Der Abschnitt 39 wird nach der Abstimmung fixiert und behält die einmal gefundene Einstellung bei. Bei den in Fig. 8 und 9 gezeigten besonderen Ausführungsformen ist der Abschnitt 39 mit Hilfe eines geeigneten Aktuators 41 im Betrieb des Schallwandlers 12 verstellbar, so daß das Resonanzverhalten der zweiten Kammer 29 und somit die Schallabstrahlcharakteristik bzw. das Modulationsverhalten des Schallwandlers 12 in Abhängigkeit von vorbestimmten Parametern veränderbar ist. Beispielsweise kann eine Steuerung den Aktuator 41 in Abhängigkeit der Drehzahl und/oder der Last der Brennkraftmaschine 1 betätigen.
Während bei der Ausführungsform gemäß Fig. 8 der Abschnitt 39 auch den Ausgang 18 des Übertragungskörpers 13 aufweist, so daß dieser bei der Verstellung des Abschnitts 39 ebenfalls relativ zur Spritzwand 15 bewegt wird, ist der Abschnitt 39 bei der Ausführungsform gemäß Fig. 9 zwischen zwei ortsfesten Abschnitten des Übertragungskörpers 13 angeordnet, so daß insbesondere die Position des Ausgangs 18 auch bei einer Verstellung des Abschnitts 39 invariant ist.
Während bei den bisher beschriebenen Ausführungsbeispielen die Halterung 20 des Schwingkörpers 19 stets als Faltenbalg 24 und als Wellrohr 25 beschrieben worden ist, sind grundsätzlich auch andere Ausführungsformen möglich, die einen Druckausgleich ohne Verspannung des Schwingkörpers 19 ermöglichen. Beispielhaft sind in den Fig. 10 und 11 daher andere Ausführungsformen dieser Halterung 20 dargestellt.
Gemäß Fig. 10 kann die Halterung 20 z.B. durch einen Hohlzylinder 42 gebildet sein, an dem an einem axialen Ende der Schwingkörper 19 befestigt ist. Der Hohlzylinder 42 ist mittels einer Federung 43 mit dem Übertragungskörper 13 verbunden. Der Hohlzylinder 42,ist außerdem außen auf einen zylindrischen Abschnitt 44 des Übertragungskörpers 13 aufgesteckt, wobei die Dimensionierungen so aufeinander abgestimmt sind, daß der Hohlzylinder 20 im wesentlichen gasdicht und reibungsarm teleskopisch in der Schwingungsrichtung 21 am Abschnitt 44 gelagert ist. Die Federung 43 ermöglicht dabei einerseits den erforderlichen Druckausgleich und andererseits die translatorische Schwingungsbewegung des Schwingkörpers 19.
Entsprechend Fig. 11 kann die als Hohlzylinder 42 ausgebildete Halterung 20 auch in einem zylindrischen Abschnitt 45 des Übertragungskörpers 13 eingesteckt und darin hubverstellbar gelagert sein, wobei auch hier die Dimensionierungen so aufeinander abgestimmt sind, daß der Hohlzylinder 42 im wesentlichen reibungsfrei und gasdicht im Zylinderabschnitt 45 gelagert ist. Hier sind der Hohlzylinder 42 und der Übertragungskörper 13 über die Federung 43 miteinander fest verbunden, wobei diese Federung beispielsweise durch eine Schraubenfeder gebildet sein kann.

Claims (18)

  1. Schallwandler für ein Kraftfahrzeug,
    mit folgenden Merkmalen:
    ein hohler Übertragungskörper (13) ist an seinem Eingang (17) zur Auskopplung von Luftschall mit einer Schallquelle (1) eines Fahrzeugs kommunizierend verbunden,
    mit dem Übertragungskörper (13) ist modulierter Luftschall an einem Ausgang (18) des Übertragungskörpers (13) in wenigstens einem oder zu wenigstens einem Zielraum (16) abstrahlbar,
    der Übertragungskörper (13) weist einen Schwingkörper (19) auf und ist gasdicht verschlossen, derart, daß am Schwingkörper (19) einerseits der eingangsseitige Gasdruck (p1,p2) anliegt und andererseits der ausgangsseitige Gasdruck (p0) anliegt,
    der Schwingkörper (19) ist durch den ausgekoppelten Luftschall zu Schwingungen anregbar, wobei er modulierten Luftschall erzeugt und diesen am oder zum Ausgang (18) des Übertragungskörpers (13) abstrahlt,
    gekennzeichnet durch folgende Merkmale:
    der Schwingkörper (19) ist als steifer und/oder starrer Körper ausgebildet, der mit einer Halterung (20) parallel zur Schallausbreitungsrichtung (22,23) des ankommenden und/oder des abgehenden Luftschalls schwingungsfähig gehaltert ist,
    die Halterung (20) ist im oder am Übertragungskörper (13) parallel zur Schwingungsrichtung (21) des Schwingkörpers (19) gegen Federkraft verstellbar angeordnet.
  2. Schallwandler nach Anspruch 1,
    dadurch gekennzeichnet, daß die Halterung (20) als Wellrohr (25) aus Metall oder als Faltenbalg (24) aus Kunststoff oder aus Gummi ausgebildet ist, das/der einenends den Schwingkörper (19) aufweist und anderenends am Übertragungskörper (13) befestigt ist.
  3. Schallwandler nach Anspruch 2,
    dadurch gekennzeichnet, daß der Schwingkörper (19) und der Faltenbalg (24) einstükkig oder einteilig hergestellt sind.
  4. Schallwandler nach Anspruch 3,
    dadurch gekennzeichnet, daß Schwingkörper (19) und Faltenbalg (24) als Blasformteil oder als Spritzgußteil oder als Formgußteil hergestellt sind.
  5. Schallwandler nach Anspruch 2,
    dadurch gekennzeichnet, daß der Faltenbalg (24) an den Schwingkörper (19) angeformt ist oder daß der Schwingkörper (19) an den Faltenbalg (24) angeformt ist.
  6. Schallwandler nach Anspruch 2,
    dadurch gekennzeichnet, daß der Schwingkörper (19) aus einem hitzebeständigen Material, z.B. Metall, Glas, Keramik, hergestellt und am Wellrohr (25) befestigt ist.
  7. Schallwandler nach einem der Ansprüche 2 bis 6,
    dadurch gekennzeichnet, daß das Wellrohr (25) oder der Faltenbalg (24) im wesentlichen zylindrisch oder konisch ausgebildet sind.
  8. Schallwandler nach Anspruch 1,
    dadurch gekennzeichnet, daß die Halterung (20) einen Hohlzylinder (42) aufweist, an dem einerseits der Schwingkörper (19) befestigt ist und der andererseits in oder auf einem zylindrischen Abschnitt (44,45) des Übertragungskörpers (13) teleskopisch verstellbar angeordnet ist, wobei eine am Hohlzylinder (42) und am Übertragungskörper (13) angreifende Federung (43) vorgesehen ist.
  9. Schallwandler nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, daß der Übertragungskörper (13) einen den Eingang (17) aufweisenden Leitungsabschnitt (30) aufweist, der über eine sprungartige Querschnittserweiterung (31) in eine Kammer (28) übergeht, wobei der Schwingkörper (19) am Eintritt oder am Austritt der Kammer (28) oder zwischen Eintritt und Austritt angeordnet ist.
  10. Schallwandler nach Anspruch 9,
    dadurch gekennzeichnet, daß der Leitungsabschnitt (30) als λ/2-Resonator ausgebildet ist oder einen als λ/2-Resonator ausgebildeten Abschnitt aufweist.
  11. Schallwandler nach Anspruch 9 oder 10,
    dadurch gekennzeichnet, daß die Kammer (28) mit integriertem Schwingkörper (19) eine Baugruppe bildet, die in ihrem Inneren mit Heißgasen beaufschlagbar ist.
  12. Schallwandler nach einem der Ansprüche 2 bis 7 sowie nach einem der Ansprüche 9 bis 11,
    dadurch gekennzeichnet, daß das Wellrohr (25) oder der Faltenbalg (24) im wesentlichen koaxial in der Kammer (28) angeordnet ist, derart, daß der Schwingkörper (19) gegenüber dem Eintritt der Kammer (19) und dazu fluchtend angeordnet ist.
  13. Schallwandler nach einem der Ansprüche 1 bis 12,
    dadurch gekennzeichnet, daß der Ausgang (18) des Übertragungskörpers (13) als Schallabstrahltrichter ausgebildet ist.
  14. Schallwandler nach einem der Ansprüche 1 bis 13,
    dadurch gekennzeichnet, daß der Übertragungskörper (13) eine Kammer (29) aufweist, die über eine sprungartige Querschnittsabnahme (33) in einen den Ausgang (18) aufweisenden Leitungsabschnitt (32) des Übertragungskörpers (13) übergeht, wobei der Schwingkörper (19) am Eintritt oder am Austritt der Kammer (29) oder zwischen Eintritt und Austritt angeordnet ist.
  15. Schallwandler nach einem der Ansprüche 9 bis 14,
    dadurch gekennzeichnet, daß der Übertragungskörper (13) im Bereich der einen Kammer (28) und/oder im Bereich der anderen Kammer (29) einen verstellbaren Abschnitt (39) aufweist, wobei durch eine Verstellung des Abschnitts (39) das Volumen der einen Kammer (28) und/oder das Volumen der anderen Kammer (29) variierbar ist.
  16. Schallwandler nach einem der Ansprüche 1 bis 15,
    dadurch gekennzeichnet, daß die Schallquelle durch eine Brennkraftmaschine (1) des Fahrzeugs gebildet ist, wobei der Übertragungskörper (13) an eine zur Brennkraftmaschine (1) führende Frischluftleitung (2) oder an eine von der Brennkraftmaschine (1) abführende Abgasleitung (9) angeschlossen ist.
  17. Schallwandler nach einem der Ansprüche 1 bis 16,
    dadurch gekennzeichnet, daß der Zielraum ein Motorraum (14) des Fahrzeugs ist, in dem eine Brennkraftmaschine (1) des Fahrzeugs untergebracht ist.
  18. Schallwandler nach einem der Ansprüche 1 bis 17,
    dadurch gekennzeichnet, daß der Zielraum ein Innenraum (16) des Fahrzeugs ist, in dem Sitzplätze für Fahrzeuginsassen angeordnet sind.
EP03010875A 2002-05-15 2003-05-15 Schallwandler für ein Kraftfahrzeug Expired - Lifetime EP1365120B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10221447A DE10221447A1 (de) 2002-05-15 2002-05-15 Schallwandler für ein Kraftfahrzeug
DE10221447 2002-05-15

Publications (2)

Publication Number Publication Date
EP1365120A1 EP1365120A1 (de) 2003-11-26
EP1365120B1 true EP1365120B1 (de) 2004-06-16

Family

ID=29285391

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03010875A Expired - Lifetime EP1365120B1 (de) 2002-05-15 2003-05-15 Schallwandler für ein Kraftfahrzeug

Country Status (2)

Country Link
EP (1) EP1365120B1 (de)
DE (2) DE10221447A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086950A1 (de) * 2005-02-16 2006-08-24 Woco Industrietechnik Gmbh Vorrichtung zur schallkopplung zwischen einem ansaugtrakt und/oder motorraum und einem fahrzeuginnenraum eines kraftfahrzeuges
DE102012109668A1 (de) 2012-10-11 2014-04-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Geräuschübertragung bei einem Kraftfahrzeug
EP3543498B1 (de) * 2018-03-20 2023-10-11 Purem GmbH Verfahren zur herstellung eines schalldämpfers

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004000019A1 (de) * 2004-07-21 2006-02-16 Mann + Hummel Gmbh Vorrichtung zur Geräuschübertragung
JP4993755B2 (ja) * 2008-03-18 2012-08-08 日産自動車株式会社 吸気音発生装置
DE202008006365U1 (de) * 2008-05-08 2009-09-17 Mann + Hummel Gmbh Vorrichtung zur Geräuschübertragung in einem Kraftfahrzeug
DE102010005067B4 (de) * 2010-01-15 2022-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Geräuschübertragung
DE102015106000A1 (de) 2015-04-20 2016-10-20 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schallgenerator für ein Kraftfahrzeug
JP6639219B2 (ja) * 2015-12-18 2020-02-05 株式会社マーレ フィルターシステムズ 内燃機関の吸気音低減装置
GB2556046B (en) * 2016-11-14 2019-12-18 Jaguar Land Rover Ltd Vehicle exhaust system with sound transmission device
IT201700044358A1 (it) * 2017-04-21 2018-10-21 Ferrari Spa Dispositivo symposer isolante pneumaticamente e permeabile acusticamente per un condotto di trasmissione del rumore di un motore a combustione interna
IT201700044384A1 (it) * 2017-04-21 2018-10-21 Ferrari Spa Veicolo stradale con un motore a combustione interna e provvisto di un dispositivo di trasmissione del rumore di scarico
GB202111213D0 (en) * 2021-08-03 2021-09-15 Mclaren Automotive Ltd Improved sound bypass

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1052169B (de) * 1954-04-20 1959-03-05 Sigismond Wilman Ansauggeraeuschdaempfer
DE4435296C2 (de) * 1994-10-01 2002-04-25 Bayerische Motoren Werke Ag Kraftfahrzeug mit einer Brennkraftmaschine
DE19704376A1 (de) * 1997-02-06 1998-08-13 Knecht Filterwerke Gmbh Luftfilteranordnung
DE19940610A1 (de) * 1999-08-27 2001-03-01 Mann & Hummel Filter Luftfilter
DE19962888A1 (de) * 1999-12-24 2001-06-28 Mahle Filtersysteme Gmbh Filter, insbesondere Ansaugluftfilter
DE10015697C1 (de) * 2000-03-29 2001-12-20 Wolf Woco & Co Franz J Schallwandler für Abgaspulsationen

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086950A1 (de) * 2005-02-16 2006-08-24 Woco Industrietechnik Gmbh Vorrichtung zur schallkopplung zwischen einem ansaugtrakt und/oder motorraum und einem fahrzeuginnenraum eines kraftfahrzeuges
DE102005006914B4 (de) * 2005-02-16 2008-05-29 Woco Industrietechnik Gmbh Vorrichtung zur Schallkopplung zwischen einem Ansaugtrakt und/oder Motorraum und einem Fahrzeuginnenraum eines Kraftfahrzeuges
US7487857B2 (en) 2005-02-16 2009-02-10 Woco Industrietchnik Gmbh Sonic coupling between an intake tract or engine compartment and the interior of a motor vehicle
DE102012109668A1 (de) 2012-10-11 2014-04-17 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Vorrichtung zur Geräuschübertragung bei einem Kraftfahrzeug
EP3543498B1 (de) * 2018-03-20 2023-10-11 Purem GmbH Verfahren zur herstellung eines schalldämpfers

Also Published As

Publication number Publication date
EP1365120A1 (de) 2003-11-26
DE10221447A1 (de) 2003-11-27
DE50300024D1 (de) 2004-07-22

Similar Documents

Publication Publication Date Title
EP1365120B1 (de) Schallwandler für ein Kraftfahrzeug
DE10042012B4 (de) Vorrichtung zur Geräuschgestaltung bei einem Kraftfahrzeug
DE10212257A1 (de) Vorrichtung zur Geräuschgestaltung bei einem Kraftfahrzeug
DE102008005085B4 (de) Verstellbare Helmholtz-Resonatoranordnung
DE102007043147B4 (de) Kontinuierlich variabel abgestimmter Resonator
DE10223873A1 (de) Vorrichtung zur Geräuschgestaltung bei einem Kraftfahrzeug
EP1741091B1 (de) Vorrichtung zur schallkopplung zwischen einem ansaugtrakt und/oder motorraum und einem fahrzeuginnenraum eines kraftfahrzeuges
DE10217760B4 (de) Frischgasversorgungsanlage für eine Brennkraftmaschine
EP2354483B1 (de) Schalldämpfer
EP1111228B1 (de) Filter, insbesondere Ansaugfilter
DE102014107907A1 (de) Schalldämpfer
DE10116169C2 (de) Schallübertragungsvorrichtung für ein Kraftfahrzeug
WO1994019596A1 (de) Geräuschdämpfungsvorrichtung zur reduktion von mündungsgeräuschen bei anlagen mit pulsierenden gasströmungen
DE19960427C1 (de) Ladeluftschlauch und Verfahren zur Herstellung eines Ladeluftschlauchs
DE10352704A1 (de) Vorrichtung zur Geräuschübertragung in einem Kraftfahrzeug mit Brennkraftmaschine
EP1924769B1 (de) Resonator
DE102010023649A1 (de) Membranversteifung durch Verrippung für die Vorrichtung zur Übertragung des Motorengeräusches
EP1762709B1 (de) Schalldämpfer
DE10322570B4 (de) Schalldämpfungsvorrichtung bei einem Kraftfahrzeug
DE10149169C1 (de) Schallwandlerkopf und diesen umfassenden Schallwandler, insbesondere für ein Kraftfahrzeug
DE102007042869A1 (de) Vorrichtung zur Reduzierung von Geräuschemissionen
EP1898394B1 (de) Schallübertragungseinrichtung für ein Kraftfahrzeug
DE10131475B4 (de) Abgasschalldämpfer
DE10254631A1 (de) Schalldämpfer für eine Abgasanlage einer Brennkraftmaschine
DE10124860B4 (de) Schallübertragungsvorrichtung für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20031030

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50300024

Country of ref document: DE

Date of ref document: 20040722

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

AKX Designation fees paid

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040728

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040616

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20050317

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20220524

Year of fee payment: 20

Ref country code: FR

Payment date: 20220526

Year of fee payment: 20

Ref country code: DE

Payment date: 20220527

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50300024

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230514

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230514