EP1364732A2 - Hard metal part with graded structure - Google Patents

Hard metal part with graded structure Download PDF

Info

Publication number
EP1364732A2
EP1364732A2 EP03008539A EP03008539A EP1364732A2 EP 1364732 A2 EP1364732 A2 EP 1364732A2 EP 03008539 A EP03008539 A EP 03008539A EP 03008539 A EP03008539 A EP 03008539A EP 1364732 A2 EP1364732 A2 EP 1364732A2
Authority
EP
European Patent Office
Prior art keywords
component
hard metal
carbide
metal alloy
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03008539A
Other languages
German (de)
French (fr)
Other versions
EP1364732A3 (en
EP1364732B1 (en
Inventor
Johannes Glätzle
Rolf Dr. Kösters
Wolfgang Dr. Glätzle
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ceratizit Austria GmbH
Original Assignee
Ceratizit Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=3485393&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1364732(A2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Ceratizit Austria GmbH filed Critical Ceratizit Austria GmbH
Publication of EP1364732A2 publication Critical patent/EP1364732A2/en
Publication of EP1364732A3 publication Critical patent/EP1364732A3/en
Application granted granted Critical
Publication of EP1364732B1 publication Critical patent/EP1364732B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/08Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on tungsten carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the invention relates to a powder metallurgically produced component of a Hard metal alloy with a binder content of 0.1 to 20 wt.%,
  • The contains at least one grain growth inhibiting additive and a method for its production.
  • hard metal is meant a composite material consisting essentially of a carbide component and a binder.
  • Carbide components include the carbides or mixed carbides of the metals W, Ti, Zr, Hf, V, Nb, Ta, Mo and Cr.
  • Typical binder metals are Co, Ni and Fe.
  • the properties of hard metals are determined by the ratio of carbide content to binder content, chemical composition, carbide grain size and carbide grain size distribution. This opens up many possibilities to adapt the properties of carbide to the respective field of application.
  • increasing binder content improves fracture toughness and flexural strength while reducing hardness, stiffness and compressive strength.
  • a reduction in the carbide grain size leads to an increase in hardness, compressive and flexural strength, with reduced impact and fracture toughness.
  • carbide powders in the particle size range 0.2 ⁇ m to 15 ⁇ m are used today for the production of carbide components.
  • grain growth inhibitors are added.
  • the most effective grain growth inhibiting additives are vanadium carbide, chromium carbide, titanium carbide, tantalum carbide and niobium carbide.
  • two or more additives are used, such as mixtures of VC and Cr 3 C 2 or TaC, NbC and TiC.
  • the grain growth-inhibiting additive can be finely distributed in the main component before or during the carburization. However, the effectiveness is also present when the grain growth inhibitor is added to the hard metal powder or individual constituents of the hard metal powder before, during or after the grinding.
  • Hard metal components can be locally loaded very differently. Therefore are early solutions have been known or implemented on a Composite of two or more carbide alloys based. So describes the US 5,543,235 a hard metal composite material, which by powder metallurgical composite pressing is produced, wherein the individual material areas by their composition or microstructure differ. A rotating compound tool that consists of two Hard metal alloys is constructed, is also in PCT / US00 / 33644 described. The preparation is also preferably via composite presses.
  • a disadvantage of the material composites described here is that in the areas of the composite where materials with different Properties meet, stress concentrations arise. Furthermore, it has to be considered that every material component has its own Having sintering behavior. This can cause a distortion of the component during the Trigger sintering.
  • composition graded construction it is understood that the composition is gradual over a range of continuously changes.
  • graded Finishes in the area of the layer, in the area of the transition Layer / base material and in the neighboring base material for a long time known.
  • This grading is achieved, for example, by the addition of Carbonitrides.
  • the nitrogen is broken down in the edge zone of the carbide body.
  • the metallic carbide or nitride forming elements diffuse towards the center of the Carbide body. This achieves a binder enrichment in the field of Edge zone and a graded transition to the matrix composition.
  • indexable inserts with a binder-rich edge zone, adjacent the hard material layer, long used for steel cutting.
  • grading is limited to a small, near-surface area.
  • EP 0247985 and EP 0498 781 are also carbide body with a gradient of the binder phase and a method of preparation described. It is first using a carburized Starting powder mixture by means of conventional process steps a sintered body with evenly distributed ⁇ -phase produced. About a subsequent Treatment in a carburizing atmosphere achieves a dissolution of the ⁇ -phase in the area of the edge zone. Towards the center of the carbide body As the proportion of ⁇ -phase gradually increases, the binder metal content gradually decreases. The disadvantage, however, is that the ⁇ phase has an embrittling effect. In addition, the additional carburizing step time and energy consuming.
  • EP 0 111 600 is a highly stressed tool for the Rockwork described. This consists of an inner and an outer area, with a continuous transition of mechanical properties between these areas.
  • Process engineering is proposed a complex powder feed, with the it is possible during the filling process, the concentration of the powder to change continuously. Such a powder feed is expensive in terms of apparatus and technically difficult to master.
  • a component made of a hard metal alloy and a method for its production wherein the hard metal alloy at least a carbide, mixed carbide or carbonitride of the metals of group W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr and V, at least one grain growth inhibiting additive the group V, Cr, Ti, Ta and Nb or a compound of these metals and contains at least one metallic binder of the group Co, Ni and Fe, wherein at least one of the grain growth inhibiting additives at least locally Has graded concentration curve.
  • the hard metal alloy at least a carbide, mixed carbide or carbonitride of the metals of group W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr and V, at least one grain growth inhibiting additive the group V, Cr, Ti, Ta and Nb or a compound of these metals and contains at least one metallic binder of the group Co, Ni and Fe, wherein at least one of the grain growth inhibiting additives at least locally Has graded concentration curve.
  • the graded concentration course of the grain growth inhibiting additive leads to a graded course of the carbide grain size. Subsequently, the mechanical properties also show a graded course. This is advantageous, for example, where a high level of wear resistance and bending strength at the surface and at the same time a high level of toughness in the core is required, for example in the case of forming tools or tools for diamond production. If now the concentration profile of the grain growth-inhibiting additive is adjusted so that the concentration values are higher in the region of the edge zone and they decrease in the direction of the center of the component, the edge zone is fine-grained, with a graded transition to the coarse-grained center.
  • components with excellent wear resistance and bending strength in the region of the edge zone, combined with a high toughness of the center can be produced. These have improved tool life.
  • a high fracture toughness in the region of the edge zone may be advantageous. This is achieved by a reduced content of grain growth inhibiting additive in the region of the edge zone.
  • the compressive and flexural strength properties are improved in the core of the component.
  • This version is also favorable for coated parts.
  • the effect of the invention is also given if the hard metal alloy contains other non-carbide hard material phases, as long as the mechanical properties are not appreciably affected unfavorably.
  • Advantageous grain growth inhibiting additives are vanadium and chromium compounds, the maximum concentration being 2% by weight. Higher levels lead to embrittlement effects.
  • a particularly advantageous process is the superficial application of a dispersion or solution on a green body.
  • the dispersion contains the grain growth inhibiting additive in very finely divided form.
  • the green compact can be in the as-pressed state. If the green compact contains waxing or plasticizing agent additives, it can also be present in the dewaxed or partially dewaxed state, in accordance with an advantageous embodiment of the present invention.
  • the dispersion or solution can be applied, for example, by dipping, spraying or brushing on. Subsequently, the dispersion or solution penetrates into the interior of the green body along open pore channels.
  • the reaction time and the content of the dispersion or solution of grain growth inhibiting additive essentially determine the amount introduced or the penetration depth. It is therefore possible, depending on the requirement profile, to set a grading which extends only on the micrometer scale. However, it is also possible to perform the grading so that it extends to the center of the component. Furthermore, the process can also be carried out so that initially the green compact is completely soaked with the dispersion. This is then removed again by appropriate solvents or by thermal processes from the near-surface areas. Furthermore, the dispersion can be applied over the entire surface or even only locally. Specifically, the local application allows the production of components or tools that only have a high hardness where wear resistance is required. The remaining areas have a coarser texture with high fracture toughness.
  • FIGS. 1 to 5 show the vanadium content over the sample cross-section.
  • Fig. 1 shows the vanadium content over the sample cross-section.
  • Figure 2 in addition to the vanadium content and the carbide grain size is indicated.
  • 3 and 5 each show the hardness profile over the sample cross-section.
  • Fig. 4 shows schematically the cross section of a drawing tool.
  • FIG. 1 and FIG. 2 relate to example 1, FIG. 3 to example 2, FIG. 4 and FIG. 5 to example 3.
  • green compacts were produced in the form of indexable inserts.
  • the greenlings were subjected to a usual eviscerating process.
  • a dispersion of distilled water and V 2 O 5 was prepared, the solid content being 2% by weight and the average V 2 O 5 particle size being less than 50 nm.
  • the green compacts were immersed for 5 seconds in the above-described dispersion and then dried in air at 50 ° C.
  • Fig. 1 shows that the vanadium content in the region of the edge zone is 0.24% by weight and this value decreases gradually over the cross section of the sample towards the inside.
  • the vanadium content at a distance of 3.8 mm from the sample edge is 0.08 wt.%.
  • the corresponding vanadium concentrations were below the detection limit of the microprobe.
  • the graded vanadium distribution results in a graded grain stabilization effect, as documented by the WC grain size values in FIG. As the average grain size increases from the edge zone toward the center, the corresponding hardness values decrease, as shown in FIG.
  • a cemented carbide approach with 89.5 wt.% WC micron a mean grain size of 0.8, 0.5 wt.% Cr 3 C 2, balance Co was prepared according to the usual method in the hard metal industry.
  • samples were sintered with reference green sheets that were not aftertreated at a temperature of 1400 ° C under vacuum.
  • the analysis of the samples was carried out by means of electron microprobe, the microstructural and mechanical characterization by a light microscopic examination or hardness testing.
  • the samples according to the invention again show a graded vanadium concentration course, with a marginal zone value of 0.21 wt.% V and a center value of 0.03 wt.% V.
  • the corresponding hardness values are 1698 HV30 or 1648 HV30.
  • the hardness profile is reproduced in FIG.
  • the reference sample shows a uniform hardness profile over the cross section with an average value of 1605 HV30.
  • the samples according to the invention and the reference samples were also subjected to a bending test.
  • the mean value of ten measurements is 3950 MPa for the samples according to the invention and 3500 MPa for the comparative samples.
  • a hard metal batch with 93.4 wt.% WC with an average particle size of 2.0 .mu.m, 0.2 wt.% TiC, 0.4 wt.% TaC / NbC, remainder Co was prepared according to the methods customary in the hard metal industry. Cylindrical green compacts were produced by isostatic pressing with a compacting pressure of 100 MPa, which were formed by mechanical machining into a hard metal drawing tool. The greenlings were subjected to a usual eviscerating process. In turn, a dispersion of distilled water and V 2 O 5 was prepared, wherein the solids content was 2 wt.%, With a particle size of dispersed V 2 O 5 particles of less than 50 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Structural component comprises cemented carbide alloy containing carbonized material, mixed carbonized material or carbonitride of tungsten, titanium, tantalum, vanadium, molybdenum, zirconium, hafnium, niobium and/or chromium, additive(s) and binder (1-20 wt.%) of cobalt, nickel and/or iron. Additive suppresses crystal growth of vanadium, chromium, titanium, tantalum, niobium or their compounds. An Independent claim is included for manufacture of structural component.

Description

Die Erfindung betrifft ein pulvermetallurgisch hergestelltes Bauteil aus einer Hartmetalllegierung mit einem Bindergehalt von 0,1 bis 20 Gew.%, die zumindest einen kornwachstumshemmenden Zusatz enthält und ein Verfahren zu dessen Herstellung.The invention relates to a powder metallurgically produced component of a Hard metal alloy with a binder content of 0.1 to 20 wt.%, The contains at least one grain growth inhibiting additive and a method for its production.

Unter Hartmetall versteht man einen Verbundwerkstoff, der im wesentlichen aus einer karbidischen Komponente und einem Binder besteht. Zu den wichtigsten karbidischen Komponenten zählen die Karbide bzw. Mischkarbide der Metalle W, Ti, Zr, Hf, V, Nb, Ta, Mo und Cr. Typische Bindermetalle sind Co, Ni und Fe. Auch Zusätze von weiteren Hartstoffen, wie beispielsweise Karbonitride, kommen zur Anwendung.By hard metal is meant a composite material consisting essentially of a carbide component and a binder. Among the most important Carbide components include the carbides or mixed carbides of the metals W, Ti, Zr, Hf, V, Nb, Ta, Mo and Cr. Typical binder metals are Co, Ni and Fe. Also additives of other hard materials, such as carbonitrides, come to the application.

Die Eigenschaften von Hartmetallen sind vom Verhältnis Karbidgehalt zu Bindergehalt, von der chemischen Zusammensetzung, der Karbidkorngröße und der Karbidkorngrößenverteilung bestimmt. Damit eröffnen sich viele Möglichkeiten, die Eigenschaften von Hartmetall auf das jeweilige Anwendungsgebiet anzupassen.
So bewirkt eine Erhöhung des Bindergehaltes eine Verbesserung der Bruchzähigkeit und Biegefestigkeit, bei gleichzeitiger Verringerung der Härte, Steifigkeit und Druckfestigkeit. Eine Verringerung der Karbidkorngröße führt zu einer Erhöhung der Härte, der Druck- und Biegefestigkeit, bei reduzierter Schlag- und Bruchzähigkeit.
The properties of hard metals are determined by the ratio of carbide content to binder content, chemical composition, carbide grain size and carbide grain size distribution. This opens up many possibilities to adapt the properties of carbide to the respective field of application.
Thus, increasing binder content improves fracture toughness and flexural strength while reducing hardness, stiffness and compressive strength. A reduction in the carbide grain size leads to an increase in hardness, compressive and flexural strength, with reduced impact and fracture toughness.

Angepasst an den jeweiligen Verwendungszweck kommen heute für die Herstellung von Hartmetallbauteilen karbidische Pulver im Korngrößenbereich 0,2 µm bis 15 µm zum Einsatz. Um bei Verwendung von feinkörnigem Karbidpulver die Kornvergröberung während des Sintervorganges zu verringern, werden Kornwachstumshemmer beigefügt. Die wirksamsten kornwachstumshemmenden Zusätze sind Vanadiumkarbid, Chromkarbid, Titankarbid, Tantalkarbid und Niobkarbid. Vielfach werden auch zwei oder mehrere Zusätze verwendet, wie beispielsweise Mischungen aus VC und Cr3C2 oder TaC, NbC und TiC. Der kornwachstumshemmende Zusatz kann dabei bereits vor bzw. während der Karburierung feinst in der Hauptkomponente verteilt werden. Die Wirksamkeit ist jedoch auch gegeben, wenn der Kornwachstumshemmer dem Hartmetallpulver oder einzelnen Bestandteilen des Hartmetallpulvers vor, während oder nach der Mahlung beigemengt wird.Adapted to the particular application, carbide powders in the particle size range 0.2 μm to 15 μm are used today for the production of carbide components. In order to reduce the grain coarsening during the sintering process when using fine-grained carbide powder, grain growth inhibitors are added. The most effective grain growth inhibiting additives are vanadium carbide, chromium carbide, titanium carbide, tantalum carbide and niobium carbide. In many cases, two or more additives are used, such as mixtures of VC and Cr 3 C 2 or TaC, NbC and TiC. The grain growth-inhibiting additive can be finely distributed in the main component before or during the carburization. However, the effectiveness is also present when the grain growth inhibitor is added to the hard metal powder or individual constituents of the hard metal powder before, during or after the grinding.

Hartmetallbauteile können örtlich sehr unterschiedlich belastet sein. Daher sind schon früh Lösungen bekannt bzw. auch umgesetzt worden, die auf einem Werkstoffverbund aus zwei oder mehreren Hartmetalllegierungen beruhen. So beschreibt die US 5 543 235 einen Hartmetallwerkstoffverbund, der durch pulvermetallurgisches Verbundpressen hergestellt wird, wobei sich die einzelnen Werkstoffbereiche durch ihre Zusammensetzung oder Mikrostruktur unterscheiden. Ein rotierendes Verbundwerkzeug, das aus zwei Hartmetalllegierungen aufgebaut ist, ist auch in der PCT/US00/33644 beschrieben. Die Herstellung erfolgt ebenfalls bevorzugt über Verbundpressen.Hard metal components can be locally loaded very differently. Therefore are early solutions have been known or implemented on a Composite of two or more carbide alloys based. So describes the US 5,543,235 a hard metal composite material, which by powder metallurgical composite pressing is produced, wherein the individual material areas by their composition or microstructure differ. A rotating compound tool that consists of two Hard metal alloys is constructed, is also in PCT / US00 / 33644 described. The preparation is also preferably via composite presses.

Eine weitere Verfahrenstechnik zur Herstellung eines Hartmetallverbundkörpers geht aus der US 5 594 931 hervor. Auf einen Grünling wird ein Schlicker aufgebracht, der aus einer Pulvermischung, einem Lösungsmittel, einem Binder und einem Plastifizierungsmittel besteht. Der so hergestellte Verbundgrünling wird durch Sintern verdichtet.Another process technique for producing a hard metal composite body is shown in US Pat. No. 5,594,931. On a green body is a slip applied, consisting of a powder mixture, a solvent, a binder and a plasticizer. The composite green product thus produced is compressed by sintering.

Nachteilig bei den hier beschriebenen Werkstoffverbunden ist jedoch, dass in den Bereichen des Verbundkörpers, wo Werkstoffe mit unterschiedlichen Eigenschaften aufeinandertreffen, Spannungskonzentrationen entstehen. Weiters ist zu berücksichtigen, dass jede Werkstoffkomponente ihr eigenes Sinterverhalten aufweist. Dies kann einen Verzug des Bauteils während des Sintern auslösen.A disadvantage of the material composites described here, however, is that in the areas of the composite where materials with different Properties meet, stress concentrations arise. Furthermore, it has to be considered that every material component has its own Having sintering behavior. This can cause a distortion of the component during the Trigger sintering.

Führt man den Übergang zwischen zwei Werkstoffbereichen jedoch in der Zusammensetzung gradiert aus, so können Spannungsspitzen weitgehendst vermieden werden. Unter einem, in der Zusammensetzung, gradierten Aufbau versteht man, dass sich die Zusammensetzung über einen Bereich graduell - kontinuierlich ändert. Speziell bei beschichtetem Hartmetall sind gradierte Ausführungen im Bereich der Schicht, im Bereich des Überganges Schicht/Grundmaterial und im benachbarten Grundmaterial seit langem bekannt. Diese Gradierung erreicht man beispielweise durch den Zusatz von Karbonitriden. Während des Sinterns kommt es zu einem Abbau des Stickstoffs in der Randzone des Hartmetallkörpers. Die metallischen karbid-, bzw. nitridbildenden Elemente diffundieren in Richtung Zentrum des Hartmetallkörpers. Damit erreicht man eine Binderanreicherung im Bereich der Randzone und einen gradierten Übergang zur Matrixzusammensetzung. So werden Wendeschneidplatten mit einer binderreichen Randzone, benachbart der Hartstoffschicht, seit langem für die Stahlzerspanung eingesetzt. Die Gradierung ist jedoch auf einen kleinen, oberflächennahen Bereich beschränkt.However, if you make the transition between two material areas in the Composition graded, so spikes can largely be avoided. Under one, in composition, graded construction it is understood that the composition is gradual over a range of continuously changes. Especially with coated carbide are graded Finishes in the area of the layer, in the area of the transition Layer / base material and in the neighboring base material for a long time known. This grading is achieved, for example, by the addition of Carbonitrides. During sintering, the nitrogen is broken down in the edge zone of the carbide body. The metallic carbide or nitride forming elements diffuse towards the center of the Carbide body. This achieves a binder enrichment in the field of Edge zone and a graded transition to the matrix composition. So are indexable inserts with a binder-rich edge zone, adjacent the hard material layer, long used for steel cutting. The However, grading is limited to a small, near-surface area.

Für hoch belastete Bauteile ist es vorteilhaft, einen, über einen weiten Bereich, gradierten Aufbau einzustellen. Es können damit deutliche Standzeitverbesserungen erreicht werden, und zwar speziell dann, wenn sich die mechanischen Anforderungen an das Hartmetall im Rand- und Kernbereich unterscheiden.For highly stressed components, it is advantageous to have a, over a wide range, to adjust the graded structure. It can be so clear Stand time improvements are achieved, especially when the mechanical requirements for the carbide in the edge and core area differ.

Da die üblichen Bindermetalle, wie beispielsweise Kobalt, bei Sintertemperatur eine hohe Diffusivität zeigen, ist es möglich, einen Konzentrationsausgleich in der Übergangszone zwischen zwei Hartmetalllegierungen, die einen unterschiedlichen Kobaltgehalt aufweisen, über Diffusionsprozesse zu erreichen. Dadurch kann ein kontinuierlicher Übergang eingestellt werden. Ein Verfahren dazu ist beispielsweise in der EP 0 871 556 beschrieben. Ein Verbundkörper, der zumindest aus zwei Bereichen, die sich im Bindergehalt unterscheiden, wird durch Verbundpressen hergestellt. Beim Sintern ist die Temperatur so einzustellen, dass das Bindermetall aus dem Verbundbereich mit dem höheren Bindergehalt in den Verbundbereich mit niedrigerem Bindergehalt diffundiert. Nachteilig dabei ist, dass die Sintertemperatur sehr exakt einzustellen ist, um nicht einen vollständigen Konzentrationsausgleich und damit Verlust der unterschiedlichen Werkstoffeigenschaften zu erreichen. Ein weiterer Nachteil ist, dass das Verbundpressen mit höheren Fertigungskosten verbunden ist, als dies bei der Herstellung eines monolithischen Grünlings der Fall ist. Since the usual binder metals, such as cobalt, at sintering temperature show a high diffusivity, it is possible to balance the concentration in the transition zone between two hard metal alloys, the one have different cobalt content, via diffusion processes to reach. This allows a continuous transition to be set. One Processes for this purpose are described for example in EP 0 871 556. One Composite body consisting of at least two areas that are in binder content distinguish, is produced by composite presses. When sintering is the Adjust temperature so that the binder metal from the composite area with the higher binder content in the composite area with lower Binder content diffused. The disadvantage here is that the sintering temperature is very high is to be set exactly, so as not to complete a concentration adjustment and thus to achieve loss of different material properties. Another disadvantage is that the composite presses with higher Manufacturing costs associated with this than in the production of a monolithic greenlings is the case.

In der EP 0 247 985 und der EP 0498 781 sind ebenfalls Hartmetallkörper mit einem Gradienten der Binderphase und ein Verfahren zur Herstellung beschrieben. Dabei wird zunächst unter Einsatz einer unterkohlten Ausgangspulvermischung mittels üblicher Prozessschritte ein Sinterkörper mit gleichmäßig verteilter η-Phase hergestellt. Über eine anschließende Behandlung in aufkohlender Atmosphäre erreicht man eine Auflösung der η-Phase im Bereich der Randzone. In Richtung Zentrum des Hartmetallkörpers nimmt der Anteil η-Phase graduell zu, der Bindermetallgehalt graduell ab. Nachteilig jedoch ist, dass die η-Phase versprödend wirkt. Zudem ist der zusätzliche Karburierschritt zeit- und energieaufwendig.In EP 0247985 and EP 0498 781 are also carbide body with a gradient of the binder phase and a method of preparation described. It is first using a carburized Starting powder mixture by means of conventional process steps a sintered body with evenly distributed η-phase produced. About a subsequent Treatment in a carburizing atmosphere achieves a dissolution of the η-phase in the area of the edge zone. Towards the center of the carbide body As the proportion of η-phase gradually increases, the binder metal content gradually decreases. The disadvantage, however, is that the η phase has an embrittling effect. In addition, the additional carburizing step time and energy consuming.

In der EP 0 111 600 ist ein hoch beanspruchtes Werkzeug für die Gesteinsbearbeitung beschrieben. Dieses besteht aus einem inneren und einem äußeren Bereich, mit einem kontinuierlichen Übergang der mechanischen Eigenschaften zwischen diesen Bereichen. Als Verfahrenstechnik ist eine aufwendige Pulverzuführung vorgeschlagen, mit der es möglich ist, während des Füllvorganges die Konzentration des Pulvers kontinuierlich zu ändern. Eine solche Pulverzuführung ist apparativ aufwendig und prozesstechnisch schwierig zu beherrschen.In EP 0 111 600 is a highly stressed tool for the Rockwork described. This consists of an inner and an outer area, with a continuous transition of mechanical properties between these areas. When Process engineering is proposed a complex powder feed, with the it is possible during the filling process, the concentration of the powder to change continuously. Such a powder feed is expensive in terms of apparatus and technically difficult to master.

Es ist somit Aufgabe dieser Erfindung, ein Hartmetallbauteil mit gradiertem Aufbau bereitzustellen, das die Nachteile des Standes der Technik nicht aufweist. Es ist weiters Aufgabe der Erfindung, ein Verfahren zu dessen Herstellung anzugeben.It is therefore an object of this invention, a hard metal component with gradiertem To provide construction that does not overcome the disadvantages of the prior art having. It is a further object of the invention to provide a method for this Specify production.

Gelöst wird diese Aufgabe durch ein Bauteil aus einer Hartmetalllegierung und ein Verfahren zu dessen Herstellung, wobei die Hartmetalllegierung zumindest ein Karbid, Mischkarbid oder Karbonitrid der Metalle der Gruppe W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr und V, zumindest einen kornwachstumshemmenden Zusatz der Gruppe V, Cr, Ti, Ta und Nb oder eine Verbindung dieser Metalle und zumindest einen metallischen Binder der Gruppe Co, Ni und Fe enthält, wobei zumindest einer der kornwachstumshemmenden Zusätze zumindest lokal einen gradierten Konzentrationsverlauf aufweist. This object is achieved by a component made of a hard metal alloy and a method for its production, wherein the hard metal alloy at least a carbide, mixed carbide or carbonitride of the metals of group W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr and V, at least one grain growth inhibiting additive the group V, Cr, Ti, Ta and Nb or a compound of these metals and contains at least one metallic binder of the group Co, Ni and Fe, wherein at least one of the grain growth inhibiting additives at least locally Has graded concentration curve.

Der gradierte Konzentrationsverlauf des kornwachstumshemmenden Zusatzes führt zu einem gradierten Verlauf der Karbidkorngröße. In weiterer Folge zeigen auch die mechanischen Eigenschaften einen gradierten Verlauf. Dies ist beispielsweise dort vorteilhaft, wo eine hohe Verschleißbeständigkeit und Biegebruchfestigkeit an der Oberfläche und gleichzeitig eine hohe Zähigkeit im Kern gefordert ist, wie beispielsweise bei Umformwerkzeugen oder Werkzeugen für die Diamantherstellung. Wird nun der Konzentrationsverlauf des kornwachstumshemmenden Zusatzes so eingestellt, dass im Bereich der Randzone die Konzentrationswerte höher liegen und diese in Richtung des Zentrums des Bauteils abnehmen, liegt die Randzone feinkörnig vor, mit einem gradierten Übergang zum grobkörnigeren Zentrum. Dadurch können Bauteile mit einer ausgezeichneten Verschleißbeständigkeit und Biegebruchfestigkeit im Bereich der Randzone, verbunden mit einer hohen Zähigkeit des Zentrums hergestellt werden. Diese weisen eine verbesserte Werkzeugstandzeit auf. Bei hoher zyklischer oder schlagender Beanspruchung kann wiederum eine hohe Risszähigkeit im Bereich der Randzone vorteilhaft sein. Dies wird durch einen verringerten Gehalt an kornwachstumshemmenden Zusatz im Bereich der Randzone erreicht. Durch einen gradierten Verlauf der Korngröße und ein feinkörnigeres Zentrum werden die Druck- und Biegefestigkeitseigenschaften im Kern des Bauteiles verbessert. Diese Ausführung ist auch bei beschichteten Teilen günstig. Der erfindungsgemäße Wirkung ist auch dann gegeben, wenn die Hartmetalllegierung weitere nicht karbidische Hartstoffphasen enthält, solange dadurch die mechanischen Eigenschaften nicht nennenswert ungünstig beeinflusst werden.
Als vorteilhafte kornwachstumshemmende Zusätze sind Vanadium- und Chromverbindungen zu nennen, wobei die maximale Konzentration 2 Gew.% beträgt. Höhere Gehalte führen zu Versprödungseffekten. Als besonders vorteilhaftes Verfahren ist das oberflächliche Aufbringen einer Dispersion oder Lösung auf einem Grünling zu nennen. Die Dispersion enthält dabei den kornwachstumshemmenden Zusatz in feinst verteilter Form. Der Grünling kann im wie-gepressten Zustand vorliegen. Enthält der Grünling Wachs-, bzw. Plastifizierungsmittelzusätze, kann dieser, entsprechend einer vorteilhaften Ausgestaltung der vorliegenden Erfindung, auch im entwachsten oder teilentwachsten Zustand vorliegen. Das Aufbringen der Dispersion bzw. Lösung kann beispielsweise durch Tauchen, Aufsprühen oder Aufpinseln erfolgen. In weiterer Folge dringt die Dispersion bzw. Lösung entlang offener Porenkanäle in das Innere des Grünlings ein. Die Einwirkzeit und der Gehalt der Dispersion bzw. Lösung an kornwachstumshemmendem Zusatz bestimmen im wesentlichen die eingebrachte Menge bzw. die Eindringtiefe. Es kann daher, je nach Anforderungsprofil, eine Gradierung eingestellt werden, die sich nur im Mikrometermassstab erstreckt. Es ist jedoch auch möglich, die Gradierung so auszuführen, dass diese bis zum Zentrum des Bauteils reicht. Des weiteren kann der Prozess auch so durchgeführt werden, dass zunächst der Grünling vollständig mit der Dispersion getränkt wird. Diese wird dann durch entsprechende Lösungsmittel oder durch thermische Verfahren wieder aus den oberflächennahen Bereichen entfernt. Weiters kann die Dispersion auf der gesamten Oberfläche oder auch nur örtlich aufgebracht werden. Speziell das örtliche Aufbringen ermöglicht die Herstellung von Bauteilen bzw. Werkzeugen, die nur dort eine hohe Härte aufweisen, wo Verschleißbeständigkeit erforderlich ist. Die restlichen Bereiche weisen ein gröberes Gefüge mit hoher Risszähigkeit auf. Weiters erweist es sich als vorteilhaft, wenn die karbidische Komponente des Grünlings eine mittlere Korngröße von kleiner 2 µm aufweist.
Im folgenden sind Herstellbeispiele angeführt, die exemplarisch die erfindungsgemäße Ausführung erläutern sollen. Zur Veranschaulichung der Ergebnisse der Beispiele 1 bis 3 dienen Fig. 1 bis Fig. 5.
Fig. 1 zeigt den Vanadium-Gehalt über den Probenquerschnitt. In Fig.2 ist neben dem Vanadium-Gehalt auch die Karbidkorngröße angegeben. Fig.3 und Fig. 5 zeigen jeweils den Härteverlauf über den Probenquerschnitt. Fig. 4 zeigt schematisch den Querschnitt eines Ziehwerkzeuges. Fig. 1 und Fig. 2 beziehen sich dabei auf Beispiel 1, Fig. 3 auf Beispiel 2, Fig. 4 und Fig. 5 auf Beispiel 3.
The graded concentration course of the grain growth inhibiting additive leads to a graded course of the carbide grain size. Subsequently, the mechanical properties also show a graded course. This is advantageous, for example, where a high level of wear resistance and bending strength at the surface and at the same time a high level of toughness in the core is required, for example in the case of forming tools or tools for diamond production. If now the concentration profile of the grain growth-inhibiting additive is adjusted so that the concentration values are higher in the region of the edge zone and they decrease in the direction of the center of the component, the edge zone is fine-grained, with a graded transition to the coarse-grained center. As a result, components with excellent wear resistance and bending strength in the region of the edge zone, combined with a high toughness of the center can be produced. These have improved tool life. At high cyclic or impact stress, in turn, a high fracture toughness in the region of the edge zone may be advantageous. This is achieved by a reduced content of grain growth inhibiting additive in the region of the edge zone. By a graded course of the grain size and a finer-grained center, the compressive and flexural strength properties are improved in the core of the component. This version is also favorable for coated parts. The effect of the invention is also given if the hard metal alloy contains other non-carbide hard material phases, as long as the mechanical properties are not appreciably affected unfavorably.
Advantageous grain growth inhibiting additives are vanadium and chromium compounds, the maximum concentration being 2% by weight. Higher levels lead to embrittlement effects. A particularly advantageous process is the superficial application of a dispersion or solution on a green body. The dispersion contains the grain growth inhibiting additive in very finely divided form. The green compact can be in the as-pressed state. If the green compact contains waxing or plasticizing agent additives, it can also be present in the dewaxed or partially dewaxed state, in accordance with an advantageous embodiment of the present invention. The dispersion or solution can be applied, for example, by dipping, spraying or brushing on. Subsequently, the dispersion or solution penetrates into the interior of the green body along open pore channels. The reaction time and the content of the dispersion or solution of grain growth inhibiting additive essentially determine the amount introduced or the penetration depth. It is therefore possible, depending on the requirement profile, to set a grading which extends only on the micrometer scale. However, it is also possible to perform the grading so that it extends to the center of the component. Furthermore, the process can also be carried out so that initially the green compact is completely soaked with the dispersion. This is then removed again by appropriate solvents or by thermal processes from the near-surface areas. Furthermore, the dispersion can be applied over the entire surface or even only locally. Specifically, the local application allows the production of components or tools that only have a high hardness where wear resistance is required. The remaining areas have a coarser texture with high fracture toughness. Furthermore, it proves to be advantageous if the carbide component of the green body has a mean particle size of less than 2 microns.
In the following production examples are given, which are intended to illustrate the embodiment of the invention by way of example. To illustrate the results of Examples 1 to 3, FIGS. 1 to 5 are used.
Fig. 1 shows the vanadium content over the sample cross-section. In Figure 2, in addition to the vanadium content and the carbide grain size is indicated. 3 and 5 each show the hardness profile over the sample cross-section. Fig. 4 shows schematically the cross section of a drawing tool. FIG. 1 and FIG. 2 relate to example 1, FIG. 3 to example 2, FIG. 4 and FIG. 5 to example 3.

Beispiel 1example 1

Ein Hartmetallansatz mit 94 Gew.% WC einer mittleren Korngröße von 1 µm, Rest Co, wurde nach den in der Hartmetallindustrie üblichen Verfahren hergestellt. Durch Matrizenpressen mit einem Pressdruck von 50 kN wurden dabei Grünlinge in Form von Wendeschneidplatten hergestellt. Die Grünlinge wurden einem üblichen Entwachungsprozess unterzogen. Weiters wurde eine Dispersion aus destilliertem Wasser und V2O5 zubereitet, wobei der Feststoffanteil 2 Gew.% und die mittlere V2O5 Teilchengröße weniger als 50 nm betrug. In weiterer Folge wurden die Grünlinge für 5 Sekunden in die oben beschriebene Dispersion getaucht und anschließend an Luft bei 50°C getrocknet. Diese Proben wurden mit Referenzgrünlingen, die nicht nachbehandelt wurden, bei einer Temperatur von 1400°C unter Vakuum gesintert. Die Analyse der Proben erfolgte mittels Elektronenstrahl-Mikrosonde, die mikrostrukturelle und mechanische Charakterisierung durch eine lichtmikroskopische Untersuchung bzw. Härteprüfung, jeweils an Querschliffen. Fig. 1 zeigt, dass der Vanadium-Gehalt im Bereich der Randzone 0,24 Gew.% beträgt und dieser Wert graduell über den Querschnitt der Probe nach innen hin abnimmt. Der Vanadium-Gehalt in einem Abstand von 3,8 mm vom Probenrand beträgt 0,08 Gew.%. Bei der Referenzprobe lagen die entsprechenden Vanadium-Konzentrationen unter der Nachweisgrenze der Mikrosonde. Die gradierte Vanadium-Verteilung führt zu einem gradierten Kornstabilisierungseffekt, wie dies die WC-Korngrößenwerte in Fig. 2 dokumentieren. Während die mittlere Korngröße von der Randzone in Richtung Zentrum zunimmt, nehmen die entsprechenden Härtewerte ab, wie dies in Fig. 3 gezeigt ist.A hard metal batch with 94 wt.% WC with a mean particle size of 1 .mu.m, remainder Co, was produced according to the methods customary in the hard metal industry. By means of die pressing with a pressing pressure of 50 kN, green compacts were produced in the form of indexable inserts. The greenlings were subjected to a usual eviscerating process. Further, a dispersion of distilled water and V 2 O 5 was prepared, the solid content being 2% by weight and the average V 2 O 5 particle size being less than 50 nm. Subsequently, the green compacts were immersed for 5 seconds in the above-described dispersion and then dried in air at 50 ° C. These samples were sintered with reference green sheets that were not aftertreated at a temperature of 1400 ° C under vacuum. The analysis of the samples was carried out by means of electron microprobe, the microstructural and mechanical characterization by light microscopic examination or hardness testing, respectively on cross sections. Fig. 1 shows that the vanadium content in the region of the edge zone is 0.24% by weight and this value decreases gradually over the cross section of the sample towards the inside. The vanadium content at a distance of 3.8 mm from the sample edge is 0.08 wt.%. For the reference sample, the corresponding vanadium concentrations were below the detection limit of the microprobe. The graded vanadium distribution results in a graded grain stabilization effect, as documented by the WC grain size values in FIG. As the average grain size increases from the edge zone toward the center, the corresponding hardness values decrease, as shown in FIG.

Beispiel 2Example 2

Ein Hartmetallansatz mit 89,5 Gew.% WC einer mittleren Korngröße von 0,8 µm, 0,5 Gew.% Cr3C2, Rest Co wurde nach den in der Hartmetallindustrie üblichen Verfahren hergestellt. Durch Matrizenpressen mit einem Pressdruck von 50 kN wurden Grünlinge in Form von Wendeschneidplatten hergestellt. Die Grünlinge wurden einem üblichen Entwachungsprozess unterzogen. Weiters wurde eine Dispersion aus destilliertem Wasser und V2O5 zubereitet, wobei der Feststoffanteil 2 Gew.% und die mittlere V2O5 Teilchengröße weniger als 50 nm betrug. In weiterer Folge wurden die Grünlinge für 5 Sekunden in die oben beschriebene Dispersion getaucht und anschließend an Luft bei 50°C getrocknet. Diese Proben wurden mit Referenzgrünlingen, die nicht nachbehandelt wurden, bei einer Temperatur von 1400°C unter Vakuum gesintert. Die Analyse der Proben erfolgte mittels Elektronenstrahl-Mikrosonde, die mikrostrukturelle und mechanische Charakterisierung durch eine lichtmikroskopische Untersuchung bzw. Härteprüfung. Die erfindungsgemäßen Proben zeigen wiederum einen gradierten Vanadium-Konzentrationsverlauf, mit einem Randzonenwert von 0,21 Gew.% V und einem Zentrumswert von 0,03 Gew.% V. Die entsprechenden Härtewerte liegen bei 1698 HV30 bzw. bei 1648 HV30. Der Härteverlauf ist in Fig.3 wiedergegeben. Die Referenzprobe zeigt einen über den Querschnitt gleichmäßigen Härteverlauf mit einem Mittelwert bei 1605 HV30. Die erfindungsgemäßen Proben und die Referenzproben wurden auch einem Biegeversuch unterzogen. Der Mittelwert aus zehn Messungen beträgt bei den erfindungsgemäßen Proben 3950 MPa, bei den Vergleichsproben 3500 MPa.A cemented carbide approach with 89.5 wt.% WC micron a mean grain size of 0.8, 0.5 wt.% Cr 3 C 2, balance Co was prepared according to the usual method in the hard metal industry. By means of die pressing with a pressing pressure of 50 kN, green compacts were produced in the form of indexable inserts. The greenlings were subjected to a usual eviscerating process. Further, a dispersion of distilled water and V 2 O 5 was prepared, the solid content being 2% by weight and the average V 2 O 5 particle size being less than 50 nm. Subsequently, the green compacts were immersed for 5 seconds in the above-described dispersion and then dried in air at 50 ° C. These samples were sintered with reference green sheets that were not aftertreated at a temperature of 1400 ° C under vacuum. The analysis of the samples was carried out by means of electron microprobe, the microstructural and mechanical characterization by a light microscopic examination or hardness testing. The samples according to the invention again show a graded vanadium concentration course, with a marginal zone value of 0.21 wt.% V and a center value of 0.03 wt.% V. The corresponding hardness values are 1698 HV30 or 1648 HV30. The hardness profile is reproduced in FIG. The reference sample shows a uniform hardness profile over the cross section with an average value of 1605 HV30. The samples according to the invention and the reference samples were also subjected to a bending test. The mean value of ten measurements is 3950 MPa for the samples according to the invention and 3500 MPa for the comparative samples.

Beispiel 3Example 3

Ein Hartmetallansatz mit 93,4 Gew.% WC mit einer mittleren Korngröße von 2,0 µm, 0,2 Gew.% TiC, 0,4 Gew.% TaC/NbC, Rest Co wurde nach den in der Hartmetallindustrie üblichen Verfahren hergestellt. Durch isostatisches Pressen mit einem Pressdruck von 100 MPa wurden zylindrische Grünlinge hergestellt, die durch mechanische Bearbeitung zu einem Hartmetallziehwerkzeug geformt wurden. Die Grünlinge wurden einem üblichen Entwachungsprozess unterzogen. Es wurde wiederum eine Dispersion aus destilliertem Wasser und V2O5 hergestellt, wobei der Feststoffanteil 2 Gew.% betrug, bei einer Partikelgröße der dispergierten V2O5 Teilchen von kleiner 50 nm. In weiterer Folge wurde selektiv die Dispersion im Einlauf- und Bohrungsbereich aufgetragen. Die Trocknung erfolgte wiederum bei 50°C an Luft. Diese Proben wurden bei einer Temperatur von 1400°C in Vakuum gesintert. Durch metallographische Probenpräparation wurde eine Querschliff angefertigt, wie in Fig. 4 dargestellt. Fig. 4 zeigt auch den Bereich, wo die Charakterisierung mittels Elektronenstrahl-Mikrosonde und Härteprüfung vorgenommen wurde. Der Vanadium-Gehalt beträgt in der Randzone 0,18 Gew.%, in einem Abstand von 2 mm vom Probenrand nur noch 0,11 Gew.%. Fig. 5 zeigt den graduellen Härteverlauf.A hard metal batch with 93.4 wt.% WC with an average particle size of 2.0 .mu.m, 0.2 wt.% TiC, 0.4 wt.% TaC / NbC, remainder Co was prepared according to the methods customary in the hard metal industry. Cylindrical green compacts were produced by isostatic pressing with a compacting pressure of 100 MPa, which were formed by mechanical machining into a hard metal drawing tool. The greenlings were subjected to a usual eviscerating process. In turn, a dispersion of distilled water and V 2 O 5 was prepared, wherein the solids content was 2 wt.%, With a particle size of dispersed V 2 O 5 particles of less than 50 nm. Subsequently, the dispersion was selectively in the inlet and Applied drilling area. The drying was again carried out at 50 ° C in air. These samples were sintered at a temperature of 1400 ° C in vacuum. By metallographic sample preparation, a cross-section was made, as shown in Fig. 4. Figure 4 also shows the area where the characterization was done by electron beam microprobe and hardness testing. The vanadium content in the edge zone is 0.18 wt.%, At a distance of 2 mm from the sample edge only 0.11 wt.%. Fig. 5 shows the gradual hardness curve.

Claims (13)

Bauteil aus einer Hartmetalllegierung, enthaltend zumindest ein Karbid, Mischkarbid oder Karbonitrid der Metalle der Gruppe W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr und V, zumindest einen kornwachstumshemmenden Zusatz der Gruppe V, Cr, Ti, Ta und Nb oder eine Verbindung dieser Metalle, und zumindest einen metallischen Binder der Gruppe Co, Ni und Fe, wobei der Bindergehalt 0,1 - 20 Gewichtsprozent beträgt, dadurch gekennzeichnet, dass zumindest einer der kornwachstumshemmenden Zusätze zumindest lokal einen gradierten Konzentrationsverlauf aufweist.Component of a hard metal alloy containing at least one carbide, mixed carbide or carbonitride of the metals of the group W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr and V, at least one grain growth inhibiting additive of group V, Cr, Ti, Ta and Nb or a compound of these metals, and at least one metallic binder of the group Co, Ni and Fe, wherein the binder content is 0.1 to 20 weight percent, characterized in that at least one of the grain growth inhibiting additives at least locally has a graded concentration curve. Bauteil aus einer Hartmetalllegierung nach Anspruch 1, dadurch gekennzeichnet, dass dieses zumindest örtlich einen gradierten Verlauf der Korngröße aufweist.Component made of a hard metal alloy according to claim 1, characterized in that this at least locally has a graded course of the grain size. Bauteil aus einer Hartmetalllegierung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass dieses zumindest örtlich einen gradierten Härteverlauf aufweist.Component made of a hard metal alloy according to claim 1 or 2, characterized in that this at least locally has a graded hardness curve. Bauteil aus einer Hartmetalllegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der kornwachstumshemmende Zusatz von der Randzone des Bauteils in Richtung Zentrum des Bauteils gradiert abnimmt.Component made of a hard metal alloy according to one of claims 1 to 3, characterized in that the grain growth-inhibiting additive from the edge zone of the component in the direction of the center of the component decreases in gradient. Bauteil aus einer Hartmetalllegierung nach Anspruch 4, dadurch gekennzeichnet, dass die Karbidkorngröße von der Randzone des Bauteils in Richtung des Zentrums des Bauteils gradiert zunimmt. Component made of a hard metal alloy according to claim 4, characterized in that the carbide grain size of the edge zone of the component increases in the direction of the center of the component graded. Bauteil aus einer Hartmetalllegierung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der kornwachstumshemmende Zusatz von der Randzone des Bauteils in Richtung Zentrum des Bauteils gradiert zunimmt.Component made of a hard metal alloy according to one of claims 1 to 3, characterized in that the grain growth-inhibiting additive from the edge zone of the component increases in the direction of the center of the component graded. Bauteil aus einer Hartmetalllegierung nach Anspruch 6, dadurch gekennzeichnet, dass die Karbidkorngröße von der Randzone des Bauteils in Richtung Zentrum des Bauteils gradiert abnimmt.Component made of a hard metal alloy according to claim 6, characterized in that the carbide grain size decreases graded from the edge zone of the component in the direction of the center of the component. Bauteil aus einer Hartmetalllegierung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der kornwachstumshemmendem Zusatz aus Cr und/oder V oder einer Verbindung dieser Metalle besteht und der maximale Gehalt bezogen auf die Hartmetalllegierung 2 Gew.% beträgt und dieser graduell auf einen Wert x absinkt, mit 0 < x < 1.0 Gew.%. Component of a hard metal alloy according to one of claims 1 to 7, characterized in that the grain growth inhibiting additive consists of Cr and / or V or a compound of these metals and the maximum content based on the hard metal alloy 2 wt.% And this gradually to a value x decreases, with 0 <x <1.0 wt%. Verfahren zur Herstellung eines Bauteils nach Anspruch 1, dadurch gekennzeichnet, dass dessen Herstellung zumindest folgende Verfahrensschritte umfasst: Herstellen eines Grünlings aus einer Hartmetalllegierung, enthaltend zumindest ein Karbid, Mischkarbid oder Karbonitrid der Metalle der Gruppe W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr und V, zumindest einen metallischen Binder aus der Gruppe Co, Ni und Fe und optional einen Wachszusatz oder ein Plastifizierungsmittel, nach den üblichen pulvermetallurgischen Kompaktierungs- bzw. Formgebungsverfahren; Herstellen einer Dispersion oder Lösung, die zumindest einen kornwachstumshemmenden Zusatz aus der Gruppe V, Cr, Ti, Ta und Nb oder einer Verbindung dieser Metalle in fein verteilter oder gelöster Form enthält; Aufbringen und dieser Dispersion oder Lösung auf die Oberfläche des Grünlings durch beispielsweise Tauchen, Aufsprühen oder Aufpinseln; Gezieltes Einwirkenlassen zur Einstellung des Konzentrationsgradienten Warmkonsolidierung. Method for producing a component according to claim 1, characterized in that the production thereof comprises at least the following method steps: Producing a green compact from a hard metal alloy, comprising at least one carbide, mixed carbide or carbonitride of the metals of the group W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr and V, at least one metallic binder from the group Co, Ni and Fe and optionally a wax additive or a plasticizer, according to the usual powder metallurgical compaction or molding process; Preparing a dispersion or solution containing at least one grain growth inhibiting additive from the group V, Cr, Ti, Ta and Nb or a compound of these metals in finely divided or dissolved form; Applying and this dispersion or solution to the surface of the green body by, for example, dipping, spraying or brushing; Targeted exposure to adjust the concentration gradient Warm consolidation. Verfahren zur Herstellung eines Bauteils nach Anspruch 1, dadurch gekennzeichnet, dass dessen Herstellung zumindest folgende Verfahrensschritte umfasst: Herstellen eines Grünlings aus einer Hartmetalllegierung, enthaltend zumindest ein Karbid, Mischkarbid oder Karbonitrid der Metalle der Gruppe W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr und V, zumindest einen metallischen Binder aus der Gruppe Co, Ni und Fe und optional einen Wachszusatz oder ein Plastifizierungsmittel, nach den üblichen pulvermetallurgischen Kompaktierungs- bzw. Formgebungsverfahren; Herstellen einer Lösung, die zumindest einen kornwachstumshemmenden Zusatz aus der Gruppe V, Cr, Ti, Ta und Nb oder eine Verbindung dieser Metalle enthält; Aufbringen dieser Lösung auf die Oberfläche des Grünlings durch beispielsweise Tauchen, Aufsprühen oder Aufpinseln; Gezieltes Einwirkenlassen zur Einstellung eines Konzentrationsgradienten oder vollständiger Durchdringung; Gradueller Abbau des Kornwachstumshemmers aus oberflächennahen Bereichen durch eine thermische Behandlung und/oder ein Lösungsmittel; Warmkonsolidierung. Method for producing a component according to claim 1, characterized in that the production thereof comprises at least the following method steps: Producing a green compact from a hard metal alloy, comprising at least one carbide, mixed carbide or carbonitride of the metals of the group W, Ti, Ta, Mo, Zr, Hf, V, Nb, Cr and V, at least one metallic binder from the group Co, Ni and Fe and optionally a wax additive or a plasticizer, according to the usual powder metallurgical compaction or molding process; Preparing a solution containing at least one grain growth inhibiting additive from the group V, Cr, Ti, Ta and Nb or a compound of these metals; Applying this solution to the surface of the green body by, for example, dipping, spraying or brushing; Targeted exposure to the setting of a concentration gradient or full penetration; Gradual degradation of the grain growth inhibitor from near-surface areas by a thermal treatment and / or a solvent; Warm consolidation. Verfahren zur Herstellung eines Bauteils nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Dispersion oder Lösung nur auf einen Teilbereich der Bauteiloberfläche aufgebracht wird.A method for producing a component according to claim 9 or 10, characterized in that the dispersion or solution is applied only to a portion of the component surface. Verfahren zur Herstellung eines Bauteils nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die karbidische Pulverkomponente des Grünlings eine mittlere Korngröße von < 2 µm aufweist.A method for producing a component according to claim 9 or 10, characterized in that the carbide powder component of the green compact has an average particle size of <2 microns. Verfahren zur Herstellung eines Bauteils nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass der Grünling durch einen Wärmebehandlungsschritt zumindest teilentwachst wird.A method for producing a component according to claim 9 or 10, characterized in that the green compact is at least partially dewaxed by a heat treatment step.
EP03008539A 2002-04-17 2003-04-14 Hard metal part with graded structure Expired - Lifetime EP1364732B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0024502U AT5837U1 (en) 2002-04-17 2002-04-17 HARD METAL COMPONENT WITH GRADED STRUCTURE
AT2452002U 2002-04-17

Publications (3)

Publication Number Publication Date
EP1364732A2 true EP1364732A2 (en) 2003-11-26
EP1364732A3 EP1364732A3 (en) 2005-12-21
EP1364732B1 EP1364732B1 (en) 2008-03-05

Family

ID=3485393

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03008539A Expired - Lifetime EP1364732B1 (en) 2002-04-17 2003-04-14 Hard metal part with graded structure

Country Status (7)

Country Link
US (2) US20040009088A1 (en)
EP (1) EP1364732B1 (en)
JP (1) JP2003328067A (en)
CN (1) CN100482836C (en)
AT (2) AT5837U1 (en)
DE (1) DE50309292D1 (en)
IL (1) IL155430A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006005308A1 (en) * 2004-07-15 2006-01-19 Mtu Aero Engines Gmbh Sealing arrangement and method for producing a sealing body for a sealing arrangement
DE102008040093A1 (en) 2008-07-02 2008-12-18 Basf Se Producing a ring like oxidic mold, useful e.g. in partial gas phase oxidation of e.g. an organic compound, comprising mechanical packing of a powdery material which is brought into the fill space of a die made of a metal compound
DE102008040094A1 (en) 2008-07-02 2009-01-29 Basf Se Production of an oxidic geometric molded body used as a catalyst in a heterogeneously catalyzed partial gas phase oxidation comprises mechanically compressing a powdered material inserted into a filling chamber of a die
CN1636654B (en) * 2003-12-15 2011-09-21 山特维克知识产权股份有限公司 Cemented carbide tool and method of making the same
US8277959B2 (en) 2008-11-11 2012-10-02 Sandvik Intellectual Property Ab Cemented carbide body and method
CN114698373A (en) * 2020-10-30 2022-07-01 住友电工硬质合金株式会社 Cemented carbide and cutting tool provided with same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313587B2 (en) * 2003-03-03 2009-08-12 株式会社タンガロイ Cemented carbide and coated cemented carbide members and methods for producing them
US7385889B2 (en) * 2003-03-03 2008-06-10 Samsung Electronics Co., Ltd. Method and apparatus for managing disc defect using temporary DFL and temporary DDS including drive and disc information disc with temporary DFL and temporary DDS
BRPI0410197A (en) * 2003-05-09 2006-06-06 Lg Electronics Inc single recording type physical medium, formatting method, method of recording management information on it, method of recording management data on it, method of reproducing management data on it, and apparatus for recording management data on it
CA2547926C (en) * 2003-12-15 2013-08-06 Sandvik Intellectual Property Ab Cemented carbide tools for mining and construction applications and method of making the same
US7634582B2 (en) * 2003-12-19 2009-12-15 Intel Corporation Method and architecture for optical networking between server and storage area networks
DE04090325T1 (en) * 2004-08-24 2006-06-22 Tungaloy Corporation, Kawasaki Hard metal, coated hard metal part and method for its production
CN100419105C (en) * 2005-02-04 2008-09-17 李北 Metal ceramic material and formation technology
WO2009111749A1 (en) * 2008-03-07 2009-09-11 University Of Utah Thermal degradation and crack resistant functionally graded cemented tungsten carbide and polycrystalline diamond
SE532704C2 (en) * 2008-03-31 2010-03-23 Atlas Copco Secoroc Ab Procedure for increasing the toughness of pins for a rock drill tool.
CN101429618B (en) * 2008-11-21 2012-10-31 嘉应学院 In-mold melting and diffusion forming gradient wear-resistant material and manufacturing method thereof
AT13536U1 (en) * 2013-05-07 2014-02-15 Plansee Se Process for the preparation of a shaped body and thus producible molded body
WO2014191505A1 (en) * 2013-05-31 2014-12-04 Sandvik Intellectual Property Ab New process of manufacturing cemented carbide and a product obtained thereof
IN2013CH04500A (en) 2013-10-04 2015-04-10 Kennametal India Ltd
CN104404283B (en) * 2014-12-15 2017-01-04 中南大学 A kind of method that gradient hard alloy prepared by direct interpolation refractory metal
CN104988372B (en) * 2015-08-06 2017-04-26 广东工业大学 Surface-softened gradient cemented carbide and preparation method thereof
ES2958207T3 (en) 2016-09-28 2024-02-05 Sandvik Intellectual Property One piece rock drill insert
CN108480624B (en) * 2018-04-13 2019-09-13 昆明理工大学 A kind of powder is incremented by pressure setting and drawing method
EP3653743A1 (en) * 2018-11-14 2020-05-20 Sandvik Mining and Construction Tools AB Binder redistribution within a cemented carbide mining insert
ES2912991T3 (en) * 2019-07-10 2022-05-30 Sandvik Mining And Construction Tools Ab Gradient cemented carbide body and manufacturing method thereof
CN111069610A (en) * 2019-12-20 2020-04-28 株洲硬质合金集团有限公司 Hard alloy spherical tooth with gradient structure and preparation method thereof
EP3909707A1 (en) * 2020-05-14 2021-11-17 Sandvik Mining and Construction Tools AB Method of treating a cemented carbide mining insert
DE102020120576A1 (en) * 2020-08-04 2022-02-10 Hauni Maschinenbau Gmbh Carbide knife for strand cutting and knife holder
CN114737097B (en) * 2022-04-27 2022-12-09 山东大学 Three-layer gradient structure hard alloy and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5594931A (en) * 1995-05-09 1997-01-14 Newcomer Products, Inc. Layered composite carbide product and method of manufacture
US5945167A (en) * 1994-10-27 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing composite material
WO2000038864A1 (en) * 1998-12-23 2000-07-06 De Beers Industrial Diamond Division (Proprietary) Limited Abrasive body

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4101703A (en) * 1972-02-04 1978-07-18 Schwarzkopf Development Corporation Coated cemented carbide elements
US4610931A (en) * 1981-03-27 1986-09-09 Kennametal Inc. Preferentially binder enriched cemented carbide bodies and method of manufacture
EP0111600A1 (en) 1982-12-13 1984-06-27 Reed Rock Bit Company Improvements in or relating to cutting tools
EP0182759B2 (en) * 1984-11-13 1993-12-15 Santrade Ltd. Cemented carbide body used preferably for rock drilling and mineral cutting
SE456428B (en) 1986-05-12 1988-10-03 Santrade Ltd HARD METAL BODY FOR MOUNTAIN DRILLING WITH BINDING PHASE GRADIENT AND WANTED TO MAKE IT SAME
US5116416A (en) * 1988-03-11 1992-05-26 Vermont American Corporation Boron-treated hard metal
JP3046336B2 (en) * 1990-09-17 2000-05-29 東芝タンガロイ株式会社 Sintered alloy with graded composition and method for producing the same
JP3080983B2 (en) 1990-11-21 2000-08-28 東芝タンガロイ株式会社 Hard sintered alloy having gradient composition structure and method for producing the same
SE500049C2 (en) 1991-02-05 1994-03-28 Sandvik Ab Cemented carbide body with increased toughness for mineral felling and ways of making it
US5431239A (en) * 1993-04-08 1995-07-11 Tibbitts; Gordon A. Stud design for drill bit cutting element
US5494635A (en) * 1993-05-20 1996-02-27 Valenite Inc. Stratified enriched zones formed by the gas phase carburization and the slow cooling of cemented carbide substrates, and methods of manufacture
US6073518A (en) * 1996-09-24 2000-06-13 Baker Hughes Incorporated Bit manufacturing method
US5543235A (en) * 1994-04-26 1996-08-06 Sintermet Multiple grade cemented carbide articles and a method of making the same
US5762843A (en) 1994-12-23 1998-06-09 Kennametal Inc. Method of making composite cermet articles
US5623723A (en) * 1995-08-11 1997-04-22 Greenfield; Mark S. Hard composite and method of making the same
US6495115B1 (en) * 1995-09-12 2002-12-17 Omg Americas, Inc. Method to produce a transition metal carbide from a partially reduced transition metal compound
SE513740C2 (en) * 1995-12-22 2000-10-30 Sandvik Ab Durable hair metal body mainly for use in rock drilling and mineral mining
JPH10138027A (en) * 1996-11-11 1998-05-26 Shinko Kobelco Tool Kk Cemented carbide for drill and drill for printed board drilling using same cemented carbide
DE19752289C1 (en) 1997-11-26 1999-04-22 Hartmetall Beteiligungs Gmbh Sintered hard metal article with a binder-enriched and/or cubic carbide-depleted surface zone
US6511265B1 (en) * 1999-12-14 2003-01-28 Ati Properties, Inc. Composite rotary tool and tool fabrication method
DE10135790B4 (en) * 2001-07-23 2005-07-14 Kennametal Inc. Fine grained cemented carbide and its use
US6869460B1 (en) * 2003-09-22 2005-03-22 Valenite, Llc Cemented carbide article having binder gradient and process for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5945167A (en) * 1994-10-27 1999-08-31 Honda Giken Kogyo Kabushiki Kaisha Method of manufacturing composite material
US5594931A (en) * 1995-05-09 1997-01-14 Newcomer Products, Inc. Layered composite carbide product and method of manufacture
WO2000038864A1 (en) * 1998-12-23 2000-07-06 De Beers Industrial Diamond Division (Proprietary) Limited Abrasive body

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1636654B (en) * 2003-12-15 2011-09-21 山特维克知识产权股份有限公司 Cemented carbide tool and method of making the same
WO2006005308A1 (en) * 2004-07-15 2006-01-19 Mtu Aero Engines Gmbh Sealing arrangement and method for producing a sealing body for a sealing arrangement
DE102008040093A1 (en) 2008-07-02 2008-12-18 Basf Se Producing a ring like oxidic mold, useful e.g. in partial gas phase oxidation of e.g. an organic compound, comprising mechanical packing of a powdery material which is brought into the fill space of a die made of a metal compound
DE102008040094A1 (en) 2008-07-02 2009-01-29 Basf Se Production of an oxidic geometric molded body used as a catalyst in a heterogeneously catalyzed partial gas phase oxidation comprises mechanically compressing a powdered material inserted into a filling chamber of a die
US8277959B2 (en) 2008-11-11 2012-10-02 Sandvik Intellectual Property Ab Cemented carbide body and method
US8475710B2 (en) 2008-11-11 2013-07-02 Sandvik Intellectual Property Ab Cemented carbide body and method
CN114698373A (en) * 2020-10-30 2022-07-01 住友电工硬质合金株式会社 Cemented carbide and cutting tool provided with same

Also Published As

Publication number Publication date
US20080075621A1 (en) 2008-03-27
IL155430A0 (en) 2003-11-23
US20040009088A1 (en) 2004-01-15
IL155430A (en) 2009-05-04
ATE387978T1 (en) 2008-03-15
EP1364732A3 (en) 2005-12-21
AT5837U1 (en) 2002-12-27
CN100482836C (en) 2009-04-29
CN1480543A (en) 2004-03-10
DE50309292D1 (en) 2008-04-17
JP2003328067A (en) 2003-11-19
US7537726B2 (en) 2009-05-26
EP1364732B1 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
EP1364732B1 (en) Hard metal part with graded structure
EP3426813B1 (en) Machining tool
DE602004012521T2 (en) Cemented carbide insert and method for its production.
DE60110237T2 (en) METHOD FOR PRODUCING A DIAMOND-CONTAINING ABRASIVE PRODUCT
DE3346873C2 (en)
DE69728786T2 (en) POWDER ON IRON BASE
EP3247813B1 (en) Hard metal-cermet composite material and method for the production thereof
DE69433214T2 (en) Hard sintered alloy containing nitrogen
DE19907749A1 (en) Sintered hard metal body useful as cutter insert or throwaway cutter tip has concentration gradient of stress-induced phase transformation-free face-centered cubic cobalt-nickel-iron binder
EP3426814B1 (en) Machining tool
WO2017186468A1 (en) Carbide with toughness-increasing structure
DE10356470A1 (en) Zirconium and niobium-containing cemented carbide bodies and process for its preparation
DE2433737C3 (en) Carbide body, process for its manufacture and its use
DE112012000533B4 (en) Hard metal articles and process for its preparation
DE10361321A1 (en) Disposable tip and cutting tool
DE4406961C2 (en) Wear-resistant cutting insert, made from a cermet based on titanium carbonitride
DE102008048967A1 (en) Carbide body and process for its production
DE60133833T2 (en) MACHINING TOOL AND METHOD FOR THE PRODUCTION THEREOF
DE2110520C3 (en) Method of coating a cemented carbide article - US Pat
DE2029501A1 (en) Process for the production of carbon / tungsten carbide bodies
DE102013206497A1 (en) Cutting body and method for producing such
DE4423451A1 (en) Cermet and process for its manufacture
DE102008052559A1 (en) Use of binder alloy powder containing specific range of molybdenum (in alloyed form), iron, cobalt, and nickel to produce sintered hard metals based on tungsten carbide
DE10052021A1 (en) Water jet high pressure nozzle consists of sintered tungsten carbide with additions of carbides and binder
DE2537340B2 (en) PROCESS FOR MANUFACTURING ALLOY SINTER STEEL PIECES

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CERATIZIT AUSTRIA GESELLSCHAFT M.B.H.

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RIC1 Information provided on ipc code assigned before grant

Ipc: 7C 22C 29/02 B

Ipc: 7C 22C 1/05 B

Ipc: 7B 22F 7/02 A

17P Request for examination filed

Effective date: 20051121

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20070301

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080305

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50309292

Country of ref document: DE

Date of ref document: 20080417

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080616

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

BERE Be: lapsed

Owner name: CERATIZIT AUSTRIA -G. M.B.H.

Effective date: 20080430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080805

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SANDVIK INTELLECTUAL PROPERTY AB

Effective date: 20081205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PLBP Opposition withdrawn

Free format text: ORIGINAL CODE: 0009264

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080430

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080605

PLBD Termination of opposition procedure: decision despatched

Free format text: ORIGINAL CODE: EPIDOSNOPC1

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080414

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PLBM Termination of opposition procedure: date of legal effect published

Free format text: ORIGINAL CODE: 0009276

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION PROCEDURE CLOSED

27C Opposition proceedings terminated

Effective date: 20090706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080414

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080906

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20220421

Year of fee payment: 20

Ref country code: IT

Payment date: 20220420

Year of fee payment: 20

Ref country code: GB

Payment date: 20220420

Year of fee payment: 20

Ref country code: FR

Payment date: 20220420

Year of fee payment: 20

Ref country code: DE

Payment date: 20220420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20220421

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50309292

Country of ref document: DE

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20230413

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20230413