EP1364387B1 - Procede et appareil destines a un dispositif capillaire comportant plusieurs pieces, a utiliser en spectrometrie de masse - Google Patents

Procede et appareil destines a un dispositif capillaire comportant plusieurs pieces, a utiliser en spectrometrie de masse Download PDF

Info

Publication number
EP1364387B1
EP1364387B1 EP01913068.1A EP01913068A EP1364387B1 EP 1364387 B1 EP1364387 B1 EP 1364387B1 EP 01913068 A EP01913068 A EP 01913068A EP 1364387 B1 EP1364387 B1 EP 1364387B1
Authority
EP
European Patent Office
Prior art keywords
capillary
ions
section
source
ionization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01913068.1A
Other languages
German (de)
English (en)
Other versions
EP1364387A2 (fr
Inventor
Melvin A. Park
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bruker Corp
Original Assignee
Bruker Daltonics Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bruker Daltonics Inc filed Critical Bruker Daltonics Inc
Publication of EP1364387A2 publication Critical patent/EP1364387A2/fr
Application granted granted Critical
Publication of EP1364387B1 publication Critical patent/EP1364387B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometers or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components

Definitions

  • the present invention relates generally to mass spectrometry and the analysis of chemical samples, and more particularly to capillaries for use in mass spectrometry. Described herein is a multiple part capillary for use in mass spectrometry (particularly with ionization sources) to transport ions from an ionization source to subsequent regions of a mass spectrometer for analysis therein.
  • the present invention relates to capillary tubes for use in mass spectrometry.
  • Mass spectrometry is an important tool in the analysis of a wide range of chemical compounds. Specifically, mass spectrometers can be used to determine the molecular weight of sample compounds.
  • the analysis of samples by mass spectrometry consists of three main steps -- formation of ions from sample material, mass analysis of the ions to separate the ions from one another according to ion mass, and detection of the ions.
  • a variety of means exist in the field of mass spectrometry to perform each of these three functions. The particular combination of means used in a given spectrometer determine the characteristics of that spectrometer.
  • mass analyze ions for example, one might use a magnetic (B) or electrostatic (E) analyzer. Ions passing through a magnetic or electrostatic field will follow a curved path. In a magnetic field the curvature of the path will be indicative of the momentum-to-charge ratio of the ion. In an electrostatic field, the curvature of the path will be indicative of the energy-to-charge ratio of the ion. If magnetic and electrostatic analyzers are used consecutively, then both the momentum-to-charge and energy-to-charge ratios of the ions will be known and the mass of the ion will thereby be determined. Other mass analyzers are the quadrupole (Q), the ion cyclotron resonance (ICR), the time-of-flight (TOF), and the quadrupole ion trap analyzers.
  • Q the quadrupole
  • ICR ion cyclotron resonance
  • TOF time-of-flight
  • quadrupole ion trap analyzers the quadrupole
  • gas phase ions must be formed from sample material. If the sample material is sufficiently volatile, ions may be formed by electron ionization (EI) or chemical ionization (CI) of the gas phase sample molecules. For solid samples (e.g. semiconductors, or crystallized materials), ions can be formed by desorption and ionization of sample molecules by bombardment with high energy particles. Secondary ion mass spectrometry (SIMS), for example, uses keV ions to desorb and ionize sample material. In the SIMS process a large amount of energy is deposited in the analyte molecules. As a result, fragile molecules will be fragmented. This fragmentation is undesirable in that information regarding the original composition of the sample -- e.g., the molecular weight of sample molecules -- will be lost.
  • SIMS Secondary ion mass spectrometry
  • Macfarlane et al. discovered that the impact of high energy (MeV) ions on a surface, like SIMS would cause desorption and ionization of small analyte molecules, however, unlike SIMS, the PD process results also in the desorption of larger, more labile species -- e.g., insulin and other protein molecules.
  • MeV high energy
  • an analyte is dissolved in a solid, organic matrix.
  • Laser light of a wavelength that is absorbed by the solid matrix but not by the analyte is used to excite the sample.
  • the matrix is excited directly by the laser, and the excited matrix sublimes into the gas phase carrying with it the analyte molecules.
  • the analyte molecules are then ionized by proton, electron, or cation transfer from the matrix molecules to the analyte molecules.
  • TOFMS time-of-flight mass spectrometry
  • Atmospheric pressure ionization includes a number of methods. Typically, analyte ions are produced from liquid solution at atmospheric pressure.
  • electrospray ionization EI
  • EI electrospray ionization
  • analyte is dissolved in a liquid solution and sprayed from a needle. The spray is induced by the application of a potential difference between the needle (where the liquid emerges) and a counter electrode.
  • Electrospray mass spectrometry was introduced by Yamashita and Fein ( M. Yamashita and M.B. Fein, J. Phys. Chem. 88, 4671, 1984 ). To establish this combination of ESI and MS, ions had to be formed at atmospheric pressure, and then introduced into the vacuum system of a mass analyzer via a differentially pumped interface. The combination of ESI and MS afforded scientists the opportunity to mass analyze a wide range of samples, and ESMS is now widely used primarily in the analysis of biomolecules (e.g. proteins) and complex organic molecules.
  • biomolecules e.g. proteins
  • MALDI has recently been adapted by Victor Laiko and Alma Burlingame to work at atmospheric pressure ( Atmospheric Pressure Matrix Assisted Laser Desorption Ionization, poster #1121, 4th International Symposium on Mass Spectrometry in the Health and Life Sciences, San Francisco, Aug. 25 - 29, 1998) and by Standing et al. at elevated pressures ( Time of Flight Mass Spectrometry of Biomolecules with Orthogonal Injection + Collisional Cooling, poster #1272, 4th International Symposium on Mass Spectrometry in the Health and Life Sciences, San Francisco, Aug. 25 - 29, 1998 ; and Orthogonal Injection TOFMS Anal. Chem. 71(13), 452A (1999 )).
  • the benefit of adapting ion sources in this manner is that the ion optics and mass spectral results are largely independent of the ion production method used.
  • An elevated pressure ion source always has an ion production region (wherein ions are produced) and an ion transfer region (wherein ions are transferred through differential pumping stages and into the mass analyzer).
  • the ion production region is at an elevated pressure -- most often atmospheric pressure -- with respect to the analyzer.
  • the ion production region will often include an ionization "chamber".
  • ESI source for example, liquid samples are "sprayed" into the "chamber" to form ions.
  • Analyte ions produced via an API method need to be transported from the ionization region through regions of differing pressures and ultimately to a mass analyzer for subsequent analysis (e.g., via time-of-flight mass spectrometry (TOFMS), Fourier transform mass spectrometry (FTMS), etc.).
  • TOFMS time-of-flight mass spectrometry
  • FTMS Fourier transform mass spectrometry
  • FIG. 1 An example of such a prior art capillary tubes is shown in FIG. 1 .
  • capillary 7 comprises a generally cylindrical glass tube 2 having an internal bore 4.
  • capillary 7 The ends of capillary 7 include a metal coating (e.g., platinum, copper, etc.) to form conductors 5 which encompass the outer surface of capillary 7 at its ends, leaving a central aperture 6 such that the entrance and exit to internal bore 3 are left uncovered.
  • Conductors 5 may be connected to electrical contacts (not shown) in order to maintain a desired space potential at each end of capillary 7.
  • a first electrode (one of conductors 5) of capillary 7 may be maintained at an extreme negative potential (e.g.
  • the other electrode (the other of conductors 5), which may form the first stage of a multistage lensing system for the final direction of the ions to the spectrometer, may be maintained at a positive potential (e.g., 160 volts.
  • capillary 8 which comprises an outer capillary sleeve 9 surrounding an inner capillary tube 10.
  • Sleeve 9 has substantially cylindrical inner surface 11 and outer surface 14.
  • tube 10 has substantially cylindrical inner surface 12 and outer surface 13.
  • the innermost channel, or bore, of capillary 8 is substantially formed by inner surface 12 of tube 10.
  • Capillary 8 is substantially radially symmetrical about its central longitudinal axis 15 extending from an upstream end 16 to a downstream end 17.
  • capillary 8 has conductive end caps 18 comprising the unitary combination of a tubular body having cylindrical inner surface 20 and outer surface 21 and an end plate 22 having inner surface 23 and outer surface 24 with a central aperture.
  • the tubular body of end cap 18 encompasses and is in circumferential engagement with a reduced diameter portion 25 of sleeve 9 adjacent to the respective ends of capillary 8, such that the external diameter of end cap 18 substantially the same as the external diameter of sleeve outer surface 14.
  • end cap 18 at the upstream end of capillary 8 is first removed.
  • a removal tool (not shown) is inserted into the tube as to engage the tube's inner surface 12. It is further suggested by the prior art that in order to remove tube 10 it may be necessary to apply a slight torque orthogonal to axis 15, or other appropriate means such as bonding a removal tool to the tube using an adhesive. Once the tube is withdrawn, a replacement tube may be inserted into sleeve 9. However, this too is difficult and cumbersome, requiring tools to remove and replace the inner capillary tube.
  • Such prior art designs for the transfer capillary have inherent limitations relating to geometry, orientation, and ease of use.
  • the capillary according to these prior art designs is substantially fixed in the source. Only if the instrument -- or at least the source -- is vented to atmospheric pressure can the capillary be removed. The geometric relation of the capillary is therefore fixed with respect to the source and all its components. This implies that the ion production means - e.g. an electrospray needle, atmospheric pressure chemical ionization sprayer, or MALDI probe - must be positioned with respect to the capillary entrance. In order to change from one ion production means to another - e.g.
  • the first means must be removed from the vicinity of the capillary entrance and the second must then be properly positioned with respect to the capillary entrance.
  • a positioning means must be provided for positioning the ion production means with respect to the capillary entrance. This might take the form of precision machined components, a translation stage on which the ion production means is mounted, or some other device. If the ion production means is required or desired to be remote from the source, a long, fixed length capillary would have to be produced and installed (in a fixed position) in the source.
  • capillaries Another limitation of prior art capillaries relates to the orientation of the capillary bore with respect to the ion production means. Such orientation can be important for the operation of the source.
  • One major consideration in the operation of an electrospray source is the formation of large droplets from the analyte solution at the spray needle. Such droplets do not readily evaporate. If these droplets enter the capillary, they may cause the capillary to become contaminated with a residue of analyte molecules and salts. In view of this, Apfel et al.
  • Prior art capillaries are further limited in the geometry of the capillary bore. That is, prior art capillaries, as depicted in FIGs. 1-3 , are substantially straight (i.e., cylindrically symmetric) and fixed (i.e., the geometry of the capillary and its bore is fixed at the time of manufacture).
  • Applicant has recognized the need for an ion transfer device or capillary which can be cleaned or replaced without the need to shut down the entire mass spectrometer in which it resides.
  • the present invention allows for the removal of one or more sections of the capillary (for cleaning or replacement) without having to shut down the pumping system or the instrument to which it is attached.
  • the capillary according to the present invention can, among other things, be made from different materials, take on different sizes, shapes or forms, as well as perform different functions.
  • the design of the multiple part capillary according to the present invention provides added versatility to the use of ionization chambers as well as to the use and performance of any new and existing ionization methods. Furthermore, the invention provides for interfacing with robotic sampling devices to provide a fully automated system for the analysis of a variety of chemical species efficiently and cost effectively.
  • the present invention relates generally to mass spectrometry and the analysis of chemical samples, and more particularly to capillaries for use therein.
  • the invention described herein comprises an improved method and apparatus for transporting ions from a first pressure region in a mass spectrometer to a second region therein. More specifically, the present invention provides a multiple part capillary for more efficient use in mass spectrometry (particularly with ionization sources) to transport ions from the first pressure region to a second pressure region.
  • a first aspect of the present invention is to provide a capillary for use in an ion source having improved flexibility and accessibility over prior art designs.
  • a capillary according to the invention consists of at least two sections joined together end to end such that gas and sample material in the gas can be transmitted through the capillary across a pressure differential.
  • the capillary is intended for use in an ion source wherein ions are produced at an elevated pressure and transported by the capillary into a vacuum region of the source.
  • the present invention allows for the removal of one or more sections of the capillary (for cleaning or replacement) without having to shut down the pumping system of the instrument to which it is attached.
  • These sections may be made of different materials -- e.g., glass, metal, composite, etc. -- which may be either electrically conducting or non-conducting.
  • each section of the capillary according to the invention does not have to be straight or rigid, rather, one or more of the sections may be flexible such that it (or they) can bend in any direction.
  • a further object of the invention is to provide a multiple part capillary which offers improved flexibility in its geometric orientation with respect to other devices in the ionization source -- especially the ion production means.
  • the axis of the bore or "channel" of the capillary at the capillary entrance might be positioned at any angle with respect to the ion production means. This angle, as discussed in Apfel U.S. Patent Nos. 5,495,108 and 5,750,988 can be important, for example, in the separation of spray droplets from desolvated analyte ions.
  • the entrance section of the capillary might be modified or exchanged before or during instrument operation to effect a change in the orientation of the entrance with respect to the ion production means or other device.
  • This flexibility applies to the translational position of the entrance of the capillary as well as its angular orientation. That is, the position of the entrance of the capillary might be changed before or during instrument operation by either modification or exchange of the first sections of the capillary. This allows for the transmission of ions from a variety of locations either near or removed from the immediate location of the source.
  • Another object of the present invention is to provide a multipurpose multiple part capillary wherein the bore or "channel" of one or more of the sections of the multiple part capillary may comprise any useful geometry (i.e., straight, helical, wave-like, etc.). For instance, it may be particularly useful to have an inner channel of helical geometry. This will cause larger particles (e.g., droplets from electrospray) to collide with the walls of the capillary, while allowing smaller particles (e.g., fully desolvated electrosprayed ions) to pass through the capillary.
  • the geometry of the bore may be, but is not necessarily, related to the outer surface of the capillary. That is, a capillary might have a cylindrically symmetric outer surface but have an inner bore which is helical.
  • a complete ion source may include a multitude of sub-assemblies.
  • an ion source might include an ion production means sub-assembly and vacuum sub-assembly.
  • the ion production means sub-assembly might include a spray needle, its holder, a translation stage, etc.
  • the vacuum sub-assembly might contain pumps, pumping restrictions, and ion optics for guiding ions into the mass analyzer.
  • the capillary would be integrated entirely in one sub-assemblythe vacuum sub-assembly.
  • the multiple part capillary eases the integration of such sub-assemblies by including capillary sections in each of the sub-assembly.
  • the sub-assemblies are integrated by joining the capillary sections together. Any necessary alignments are performed within a given sub-assembly -- e.g. alignment of the spray needle with the first section of capillary.
  • the present invention provides added flexibility for switching from one ionization source to another or from one sample to another.
  • the capillary according to the invention is capable of efficiently and accurately being used with multiple electrospray sources.
  • the capillary according to the invention is useful in multiplexing.
  • Another purpose of the invention is to provide a multiple part capillary which can be used with chromatographic sample preparation (e.g., liquid chromatography, capillary electrophoresis, etc.).
  • the effluent from such a chromatographic column may be injected directly or indirectly into one of the sprayers.
  • a plurality of such chromatographic columns may be used in conjunction with a plurality of sprayers -- for example one sprayer per column.
  • the presence of analyse in the effluent of any given column might be detected by any appropriate mans, for example a UV detector.
  • the sprayer associated with the column in question is "turned on" so that while analyte is present the sprayer is producing ions but otherwise the sprayer does not. If analyte is present simultaneously at more than one sprayer, the sprayers are multiplexed, as discussed above.
  • the present invention relates generally to the mass spectroscopic analysis of chemical samples and more particularly to mass spectrometry. Specifically, an apparatus and method are described for transport of ions between pressure regions within a mass spectrometer. Reference is herein made to the figures, wherein the numerals representing particular parts are consistently used throughout the figures and accompanying discussion.
  • multiple part capillary 35 comprises: first section 28 having capillary inlet end 26 and first channel 27; union 29 having o-ring 31; second section 33 having second channel 32 and capillary outlet end 34; and metal coatings 30A and 30B.
  • first section 28 is connected to second section 33 by union 29.
  • union 29 is substantially cylindrical having two coaxial bores, 60 and 61, and through hole 62 of the same diameter as channels 26 and 32.
  • section 28 and union 29 are composed of metal - e.g. stainless steel.
  • the inner diameter of bore 60 and the outer diameter of section 28 are chosen to achieve a "press fit" when section 28 is inserted into bore 60. Because the press fit is designed to be tight, union 29 is thereby strongly affixed to section 28 and a gas seal is produced between union 29 and section 28 at the surface of the bore.
  • the inner diameter of bore 61 is of slightly larger diameter than the outer diameter of section 33 (including metal coating 30A) so as to produce a "slip fit" between union 29 and section 33.
  • a gas seal is established between bore 61 and section 33 via o-ring 31. Electrical contact between metal coating 30A, union 29, and section 28 via direct physical contact between the three.
  • Through hole 62 allows for the transmission of gas from entrance end 26 through to exit end 34 of the capillary.
  • union 29 and sections 28 and 33 are formed in such a way as to eliminate any "dead volume" between these components. To accomplish this, the ends of sections 28 and 33 are formed to be flush with the inner surface of union 29. Note that the body of section 33 - excluding metal coatings 30A and 30B - is composed of glass in the preferred embodiment. As a result, metal coating 30A - together with union 29 and section 28 - can be maintained at a different electrical potential than metal coating 30B.
  • union 29, and sections 28 and 33 may be composed of a variety of materials conducting or non-conducting; the outer diameters of the sections may differ substantially from one another; the inner diameters of the sections may differ substantially from one another; either or both ends or any or all sections may be covered with a metal or other coating; rather than a coating, the ends or capillary sections may be covered with a cap composed of metal or other material; the capillary may be composed of more than two sections always with one fewer union than sections; and the union may be any means for removably securing the sections of capillary together and providing an airtight seal between these sections.
  • Each end of union 29 could comprise a generally cylindrical opening having an internal diameter slightly larger than the external diameter of the end of the capillary section which is to be inserted therein.
  • a gas seal is made with each capillary section via an o-ring similar to o-ring 31.
  • springs to accomplish electrical contact between union 29 and sections 28 and 33. In this case a conducting spring would be positioned in union 29 adjacent to o-ring 31.
  • the length of first section 28 is less than (even substantially less than) the length of second section 33. More specifically, the dimensions of first section 28 and second section 33 are such that within a range of desired pressure differentials across capillary 35, a gas flow rate within a desired range will be achieved.
  • the length of second section 33 and the internal diameter of second channel 32 are such that the gas transport across second section 33 alone (i.e., with first section 28 removed) at the desired pressure differential will not overload the pumps which generate the vacuum in the source chamber of the system. This allows the removal (e.g., for cleaning or replacement) of first section 28 of capillary 35 without shutting down the pumping system of the mass spectrometer.
  • capillary section 28 has a serpentine internal channel 64. That is, the geometric structure of the internal channel of the capillary section is sinusoidal. Of course, other geometrical structures (i.e., helical, varying diameter, non-uniform, etc.) may be used in accordance with the invention. Having sinusoidal internal channel 64 causes larger particles -- such as droplets from an electrospray -- to collide with the walls of the channel and thereby not pass completely through the capillary. On the other hand, smaller particlessuch as fully desolvated electrosprayed ions -- do not collide with the walls and pass completely through the capillary.
  • the curved (or sinusoidal) geometry of channel 64 also increases the length of the channel, which provides the advantage of permitting a larger diameter channel.
  • a larger diameter channel may be advantageous in that it may provide greater acceptance of sampled species (e.g., electrosprayed ions, etc.) at a given flow rate and pressure differential.
  • a sinusoidal -- or any other geometry -- channel may be used in either first section 28 or second section 33, or both.
  • FIG. 6 shown is an embodiment of the multiple part capillary according to the invention as used with an ESI sprayer 65 wherein axis 70 of sprayer 65 is oriented at angle ⁇ 66 with respect to axis 69 of the body of capillary 72.
  • angle ⁇ 67 between sprayer axis 70 and axis 71 of channel entrance 68 can be substantially different than angle ⁇ 66.
  • the capillary entrance angle ⁇ 66 may be any angle from 0° and 180°. The specific angle selected is dependent upon, among other things, the sample species being tested, the ionization source used, etc.
  • the electrospray process results in the formation of charged droplets and molecular ions.
  • the presence of large droplets in the spray can result in contamination of the capillary and generally poor instrument performance.
  • One way of limiting the influence of large droplets on instrument performance is to spray away from the capillary entrance. That is, the spray needle is oriented so that it is not pointed directly at the capillary entrance.
  • the sinusoidal geometry of channel 73 tends to limit the contamination of capillary 72 due to large droplets to section 74. Large droplets which enter the capillary will tend to strike the walls of channel 73 and not pass through to section 33. Section 74 can be removed from the system - by pulling it off along axis 69 - and cleaned without necessarily shutting the instrument or its vacuum system off.
  • FIG. 7 Depicted in FIG. 7 is an ionization source which incorporates the multiple part capillary of the invention where the ion production means is an ESI sprayer device, shown as spray needle 36 in spray chamber 40.
  • the ion production means is an ESI sprayer device, shown as spray needle 36 in spray chamber 40.
  • sample solution is formed into droplets at atmospheric pressure by spraying the sample solution from spray needle 36 into spray chamber 40.
  • the spray is induced by the application of a high potential between spray needle 36 and entrance 26 of first capillary section 28 within spray chamber 40. Sample droplets from the spray evaporate while in spray chamber 40 thereby leaving behind an ionized sample material (i.e., sample ions).
  • sample ions are accelerated toward capillary inlet 26 of channel 27 by an electric field generated between spray needle 36 and inlet 26 of first section 28 of capillary 35. These ions are transported through first channel 27 into and through second channel 32 to capillary outlet 34. As described above with regard to FIG. 4 , first section 28 is joined to second section 33 in a sealed manner by union 29. The flow of gas created by the pressure differential between spray chamber 40 and first transfer region 45 further causes the ion to flow through the capillary channels from the ionization source toward the mass analyzer.
  • first transfer region 45 is formed by mounting flange 48 on source block 54 where a vacuum tight seal is formed between flange 48 and source block 54 by o-ring 58.
  • Capillary 35 penetrates through a hole in flange 48 where another vacuum tight seal is maintained (i.e., between flange 48 and capillary 35) by o-ring 56.
  • a vacuum is then generated and maintained in first transfer 45 by a pump (e.g., a roughing pump, etc., not shown).
  • the inner diameter and length of capillary 35 and the pumping speed of the pump are selected to provide as high a rate of gas flow through capillary 35 as reasonably possible while maintaining a pressure of 1 mbar in the first transfer region 45. A higher gas flow rate through capillary 35 will result in more efficient transport of ions.
  • first skimmer 51 is placed adjacent to capillary exit 34 within first transfer region 45.
  • An electric potential between capillary outlet end 34 and first skimmer 51 accelerates the sample ions toward first skimmer 51.
  • a fraction of the sample ions then pass through an opening in first skimmer 51 and into second pumping region 43 where pre-hexapole 49 is positioned to guide the sample ions from the first skimmer 51 to second skimmer 52.
  • Second pumping region 43 is pumped to a lower pressure than first transfer region 45 by pump 53.
  • a fraction of the sample ions pass through an opening in second skimmer 52 and into third pumping region 44, which is pumped to a lower pressure than second pumping region 43 via pump 53.
  • the sample ions are guided from second skimmer 52 to exit electrodes 55 by hexapole 50. While in hexapole 50 ions undergo collisions with a gas (i.e., a collisional gas) and are thereby cooled to thermal velocities. The ions then reach exit electrodes and are accelerated from the ionization source into the mass analyzer for subsequent analysis.
  • a gas i.e., a collisional gas
  • a complete ion source may include a multitude of sub-assemblies.
  • ion source 80 includes ion production means sub-assembly 81 and vacuum sub-assembly 82.
  • the ion production means sub-assembly includes, among other things, spray chamber 40 and spray needle 36.
  • the vacuum sub-assembly includes among other things, pump 53, pumping restrictions 51 and 52, and ion optical elements 49 - 52 and 55 for guiding ions into the mass analyzer.
  • capillary In prior art sources and instruments, the capillary would be integrated entirely in one sub-assembly - the vacuum sub-assembly. As a result, significant effort is required in prior art systems to align the ion production means sub-assembly - specifically the spray needle - with the vacuum sub-assembly - specifically the capillary entrance.
  • the multiple part capillary according to the present invention can be used to ease the integration of such sub-assemblies by including capillary sections in each of the sub-assembly.
  • capillary section 28 is an integral component of ion production means sub-assembly 81
  • capillary section 33 is an integral component of vacuum sub-assembly 82.
  • Sub-assemblies 81 and 82 are integrated in part by joining capillary sections 28 and 33 together via union 29. Any necessary alignments are performed within a given sub-assembly - e.g. alignment of spray needle 36 with entrance 26 of channel 27.
  • any variety of sub-assemblies might be integrated, in part or in whole, by including capillary sections in these sub-assemblies and subsequently joining these capillary sections together as discussed with respect to figure 8 .
  • any number of sub-assemblies with any variety of functions might be used. Such functions might include ion production, desolvation of spray droplets via a heated capillary section, ion transfer to the mass analyzer, etc.
  • any type of atmospheric pressure ionization means including ESI, API MALDI, atmospheric pressure chemical ionization, nano electrospray, pneumatic assist electrospray, etc. - could be assembled into a source in this way.
  • the capillary according to the present invention might also be used to transport ions from ionization means remote from the instrument.
  • This is exemplified by the embodiment of FIG. 9 .
  • Shown in FIG. 9 is an embodiment of the multiple part capillary according to the invention as used for integrating a sample preparation robot with an Atmospheric Pressure Ionization (API) source.
  • the system shown comprises, among other things: robot 90; robot arm 91; sample tray (not shown); source tray 92; sprayer 93; multiple part capillary 98 comprising first section 28 having inlet 26, second section 33 having outlet 34, and union 29; gas transport line 94; source cover 95; vacuum sub-assembly 96; and mass analyzer 97.
  • Robots such as in the embodiment of FIG. 9 - for example, a Gilson 215 Liquid Handler Robot - consist of a robot arm - e.g. arm 91 - used to manipulate samples, and "trays" of samples and sample containers.
  • the robot arm is used to move samples, solutions, and reactants from one container - i.e. tubes, vials, or microtiter wells - to another.
  • the robot can be used to prepare samples for subsequent analysis.
  • sample spray and ionization would occur within robot 90 and only ions would be transported -- via multiple part capillary 98 -- to mass analyzer 97.
  • a specially prepared source tray 92 is used.
  • Sample is obtained by robot 90 from a sample tray by sucking solution into sprayer 93.
  • Robot arm 91 then moves sprayer 93 to source tray 92 and to a predefined location near entrance 26 of capillary 98. Drying gas can be transported into source tray from vacuum sub-assembly 96 via a gas transport line 94.
  • Sprayer 93 is attached to robot arm 91 and set at ground potential (of course, any ESI sprayer may be used (e.g., pneumatically assisted sprayers, nanosprayer needles, etc.)), while inlet 26 to first section 28 of capillary 98 set at high voltage. This potential difference between sprayer 94 and first section 28 induces the spray of the sample solution and production of analyte ions.
  • the capillary according to the present invention is also useful in transporting ions from varying locations during operation.
  • FIG. 10 shown is an embodiment of the multiple part capillary according to the invention as a means for integrating a sample preparation robot with an elevated pressure MALDI source for use in mass spectrometry.
  • the system depicted in FIG. 10 comprises a laser 99, attenuator 100, fiber optic 101, robot 90 having robot arm 91 for control and movement of sample probe 102, MALDI sample tray 103, sample holder 104, alternative embodiment of capillary 98 having first section 105, second section 33 joined by union 29, ionization source cover 95, vacuum sub-assembly 96, and mass analyzer 97.
  • the alternative embodiment of the multiple part capillary of the invention as shown in FIG. 10 comprises a flexible first section 105 such that its inlet end may be moved by robot arm 91 to various positions for acceptance of the MALDI samples to be analyzed.
  • sample preparation and ionization are both performed by robot 90 such that only ions would be transported through the multiple part capillary 98 to vacuum sub-assembly 96 and ultimately to mass analyzer 97.
  • robot arm has attached at its end sample probe 102, and fiber optic 101 for directing the laser beam from laser 99 onto sample holder 104 to ionize samples thereon.
  • the ions formed by the laser beam hitting the samples on sample holder 104 are then carried by the gas flow into and through capillary 98 to the differential pumping region of vacuum sub-assembly 96, where additional ion optics (not shown) are designed to further transport the ions from outlet end of capillary 98 to mass analyzer 97 for subsequent analysis.
  • the multiple part capillary provides a means for integrating a sample preparation robot with MALDI mass analysis. Shown in FIG. 11 are capillary 105, robot arm 91, receptacle 106, fiber optic 101, and sample plate 104 with raised conical formations 107 onto which samples (not shown) are deposited. Sample plate 104 and the conical formations form a unitary device composed of conducting material - e.g. stainless steel.
  • capillary section 105 optionally comprises a specially shaped orifice which fits over cone-shaped sample holder formations 107 (one at a time) in such a way that gas flowing through capillary 98 readily captures the ions formed from the sample by laser desorption ionization.
  • a potential may be applied between sample carrier 104 and capillary 78 section 105 to help draw ions into the channel of capillary 78 section 105.
  • fiber optic 101 might be adjusted via piezo electrics or other mechanics to direct the laser beam to any region of the specific cone-shaped sample of samples 82 to be ionized.
  • this redirecting of the laser beam may occur during the ionization process such that the entire sample is ionized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electron Tubes For Measurement (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Claims (13)

  1. Appareil destiné à transporter des ions d'une région à une première pression à une région à une deuxième pression dans un spectromètre de masse, où ledit appareil comprend :
    des première et deuxième sections capillaires (28, 33), ayant chacune une extrémité d'orifice d'entrée (26) et une extrémité d'orifice de sortie (34), et
    un raccord (29) ayant des première et deuxième ouvertures,
    dans lequel ladite extrémité d'orifice de sortie de ladite première section capillaire (28) est positionnée de manière mobile dans ladite première ouverture dudit raccord (29), et dans lequel ledit orifice d'entrée de ladite deuxième section capillaire (33) est positionné de manière mobile dans ladite deuxième ouverture dudit raccord (29),
    ledit appareil étant caractérisé en ce que lesdites première et deuxième sections capillaires sont destinées à transporter des ions.
  2. Appareil selon la revendication 1, caractérisé en ce que ladite première section (28) comprend un canal ayant une structure hélicoïdale.
  3. Appareil selon la revendication 1, caractérisé en ce que ladite première section comprend un canal (64, 73) ayant une structure sinusoïdale.
  4. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit raccord (29) comprend un moyen destiné à fixer de manière amovible lesdites extrémités desdites première et deuxième sections (28, 33).
  5. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit raccord (29) comprend un moyen (31) destiné à fournir une étanchéité à l'air entre lesdites extrémités desdites première et deuxième sections (28, 33) dans ledit raccord (29).
  6. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdites extrémités d'orifice d'entrée et lesdites extrémités d'orifice de sortie (34) d'au moins ladite deuxième section capillaire (33) comprennent des bouchons d'extrémité conducteurs (30A, 30B).
  7. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que lesdits ions sont transportés à partir d'au moins une source d'ionisation jusque dans une première région de vide d'un spectromètre de masse.
  8. Appareil selon la revendication 7, caractérisé en ce que ladite source d'ionisation comprend une source API et/ou un dispositif ESI, en particulier un nano-électronébuliseur, et/ou une source d'électronébulisation assistée pneumatique et/ou une source d'impact d'électron et/ou une source d'ionisation chimique et/ou une source de désorption-ionisation assistée par matrice (MALDI) et/ou une source de désorption plasma et/ou dans lequel ladite source d'ionisation utilise une chromatographie en phase liquide.
  9. Appareil selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit appareil est conçu pour multiplexer des matériaux d'échantillons.
  10. Spectromètre de masse comprenant un analyseur de masse et un appareil selon l'une quelconque des revendications précédentes.
  11. Spectromètre de masse selon la revendication 10 caractérisé par appareil selon la revendication 6 et comprenant en outre un robot (90) destiné à positionner l'extrémité d'orifice d'entrée (26) de ladite première section capillaire (28) pour accepter des ions à partir d'au moins une desdites sources d'ionisation et dans lequel ladite extrémité d'orifice de sortie (34) de ladite deuxième section capillaire (33) est positionnée de sorte que lesdits ions soient introduits dans ledit analyseur de masse.
  12. Spectromètre de masse selon l'une quelconque des revendications 10 ou 11, caractérisé en ce que ledit analyseur de masse est sélectionné à partir du groupe constitué d'un analyseur de masse à temps de vol, d'un analyseur de masse quadripôle, d'un analyseur de masse à piège d'ions quadripôle, et d'un analyseur de masse à résonance à cyclotron ionique à transformation de Fourier.
  13. Spectromètre de masse selon l'une quelconque des revendications 10 à 12 caractérisé en ce qu'un bac destiné à contenir des échantillons est prévu dans lequel ladite extrémité d'orifice de sortie (34) de ladite deuxième section capillaire (33) est positionnée de sorte que des ions produits à partir desdits échantillons soient introduits dans ledit analyseur de masse, et dans lequel ladite extrémité d'orifice d'entrée (26) de ladite première section capillaire (28) est positionnée par une interface robotique destinée à accepter des ions desdits échantillons.
EP01913068.1A 2001-02-23 2001-02-23 Procede et appareil destines a un dispositif capillaire comportant plusieurs pieces, a utiliser en spectrometrie de masse Expired - Lifetime EP1364387B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2001/006133 WO2002068949A2 (fr) 2001-02-23 2001-02-23 Procede et appareil destines a un dispositif capillaire comportant plusieurs pieces, a utiliser dans une spectrometrie de masse

Publications (2)

Publication Number Publication Date
EP1364387A2 EP1364387A2 (fr) 2003-11-26
EP1364387B1 true EP1364387B1 (fr) 2016-01-20

Family

ID=21742367

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01913068.1A Expired - Lifetime EP1364387B1 (fr) 2001-02-23 2001-02-23 Procede et appareil destines a un dispositif capillaire comportant plusieurs pieces, a utiliser en spectrometrie de masse

Country Status (2)

Country Link
EP (1) EP1364387B1 (fr)
WO (1) WO2002068949A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103014B2 (en) 2016-09-05 2018-10-16 Agilent Technologies, Inc. Ion transfer device for mass spectrometry
US10541122B2 (en) 2017-06-13 2020-01-21 Mks Instruments, Inc. Robust ion source

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0703682D0 (en) 2007-02-26 2007-04-04 Micromass Ltd Mass spectrometer
GB2447330B (en) * 2007-02-26 2010-03-24 Micromass Ltd Helical ion guide
JP5475433B2 (ja) * 2009-12-22 2014-04-16 株式会社日立ハイテクノロジーズ 検査システム及びイオン化プローブ
US10388501B1 (en) 2018-04-23 2019-08-20 Agilent Technologies, Inc. Ion transfer device for mass spectrometry with selectable bores
CN114256055A (zh) * 2021-12-20 2022-03-29 杭州谱育科技发展有限公司 电喷雾离子源和基于电喷雾技术的离子化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289003A (en) * 1992-05-29 1994-02-22 The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Probe for thermospray mass spectrometry
US5288113A (en) * 1992-12-24 1994-02-22 Restek Corporation Connector for capillary tubes having a tapered inner bore
DE4415480C2 (de) * 1994-05-02 1999-09-02 Bruker Daltonik Gmbh Vorrichtung und Verfahren zur massenspektrometrischen Untersuchung von Substanzgemischen durch Kopplung kapillarelektrophoretischer Separation (CE) mit Elektrospray-Ionisierung (ESI)
US5540464A (en) * 1994-10-04 1996-07-30 J&W Scientific Incorporated Capillary connector
US5965883A (en) * 1997-08-25 1999-10-12 California Institute Of Technology Capillary for electrospray ion source

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10103014B2 (en) 2016-09-05 2018-10-16 Agilent Technologies, Inc. Ion transfer device for mass spectrometry
US10541122B2 (en) 2017-06-13 2020-01-21 Mks Instruments, Inc. Robust ion source
US10892153B2 (en) 2017-06-13 2021-01-12 Mks Instruments, Inc. Robust ion source

Also Published As

Publication number Publication date
WO2002068949A3 (fr) 2002-10-31
WO2002068949A2 (fr) 2002-09-06
EP1364387A2 (fr) 2003-11-26

Similar Documents

Publication Publication Date Title
US6777672B1 (en) Method and apparatus for a multiple part capillary device for use in mass spectrometry
US6794644B2 (en) Method and apparatus for automating an atmospheric pressure ionization (API) source for mass spectrometry
US7315020B2 (en) Ionization chamber for atmospheric pressure ionization mass spectrometry
US6787764B2 (en) Method and apparatus for automating a matrix-assisted laser desorption/ionization (MALDI) mass spectrometer
US7847244B2 (en) Enclosed desorption electrospray ionization
EP1419517B1 (fr) Moyen et procede permettant le multiplexage de pulverisation dans une source d'ionisation par electronebulisation
US8704170B2 (en) Method and apparatus for generating and analyzing ions
US7126115B2 (en) Method and apparatus for a nanoelectrosprayer for use in mass spectrometry
US7928364B2 (en) Sampling system for containment and transfer of ions into a spectroscopy system
US7253406B1 (en) Remote reagent chemical ionization source
EP1267387B1 (fr) Dispositif et méthode pour guider des ions dans un spectromètre de masse
US8440965B2 (en) Sampling system for use with surface ionization spectroscopy
US7095019B1 (en) Remote reagent chemical ionization source
US7332715B2 (en) Atmospheric pressure ion source high pass ion filter
US6809312B1 (en) Ionization source chamber and ion beam delivery system for mass spectrometry
US6515279B1 (en) Device and method for alternating operation of multiple ion sources
EP1364387B1 (fr) Procede et appareil destines a un dispositif capillaire comportant plusieurs pieces, a utiliser en spectrometrie de masse
JP7294535B2 (ja) イオン分析装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030923

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20081209

R17C First examination report despatched (corrected)

Effective date: 20081223

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20150730

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60149745

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60149745

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 60149745

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R085

Ref document number: 60149745

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20170207

REG Reference to a national code

Ref country code: GB

Ref legal event code: S47

Free format text: CANCELLATION OF ENTRY; APPLICATION FOR CANCELLATION OF ENTRY ON THE REGISTER OF A LICENCE OF RIGHT FILED ON 14 MARCH 2017

REG Reference to a national code

Ref country code: GB

Ref legal event code: S47

Free format text: ENTRY CANCELLED; NOTICE IS HEREBY GIVEN THAT THE LICENCE OF RIGHT ENTRY ON THE REGISTER FOR THE FOLLOWING PATENT WAS CANCELLED ON 26 MAY 2017 BRUKER DALTONICS, INC. METHOD AND APPARATUS FOR A MULTIPLE PART CAPILLARY DEVICE FOR USE IN MASS SPECTROMETRY

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 60149745

Country of ref document: DE

Representative=s name: KOHLER SCHMID MOEBUS PATENTANWAELTE PARTNERSCH, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 60149745

Country of ref document: DE

Owner name: BRUKER SCIENTIFIC LLC, BILLERICA, US

Free format text: FORMER OWNER: BRUKER DALTONICS, INC., BILLERICA, MASS., US

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200219

Year of fee payment: 20

Ref country code: GB

Payment date: 20200219

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60149745

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210222