EP1362168B1 - Device, system and method for cooling a coolant - Google Patents

Device, system and method for cooling a coolant Download PDF

Info

Publication number
EP1362168B1
EP1362168B1 EP02710943A EP02710943A EP1362168B1 EP 1362168 B1 EP1362168 B1 EP 1362168B1 EP 02710943 A EP02710943 A EP 02710943A EP 02710943 A EP02710943 A EP 02710943A EP 1362168 B1 EP1362168 B1 EP 1362168B1
Authority
EP
European Patent Office
Prior art keywords
branch
electric motor
valve
pipe
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02710943A
Other languages
German (de)
French (fr)
Other versions
EP1362168A1 (en
Inventor
Nicolas Vidal
Robert Yu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renault SAS
Original Assignee
Renault SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0100109A external-priority patent/FR2815402B1/en
Application filed by Renault SAS filed Critical Renault SAS
Publication of EP1362168A1 publication Critical patent/EP1362168A1/en
Application granted granted Critical
Publication of EP1362168B1 publication Critical patent/EP1362168B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/165Controlling of coolant flow the coolant being liquid by thermostatic control characterised by systems with two or more loops
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/20Cooling circuits not specific to a single part of engine or machine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P2005/105Using two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P5/00Pumping cooling-air or liquid coolants
    • F01P5/10Pumping liquid coolant; Arrangements of coolant pumps
    • F01P5/12Pump-driving arrangements
    • F01P2005/125Driving auxiliary pumps electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/30Engine incoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/32Engine outcoming fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/24Hybrid vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/30Circuit boards
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/04Lubricant cooler
    • F01P2060/045Lubricant cooler for transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/08Cabin heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2060/00Cooling circuits using auxiliaries
    • F01P2060/12Turbo charger
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/08Controlling of coolant flow the coolant being cooling-air by cutting in or out of pumps

Definitions

  • the present invention relates to a cooling system for a hybrid-propulsion vehicle.
  • Hybrid-propulsion vehicles generally include a heat engine, one or two electric motors, a voltage generator, and an electronic power converter assembly that powers the one or more electric motors, or charges the batteries, all of which must be cooled. in order to function under the conditions for which they are intended. We seek to take advantage of this dual engine to minimize consumption and polluting emissions, so as to remain below the authorized levels.
  • the coolant of an electric motor has a flow rate of the order of 100 to 500 l / hour at a temperature of 50 to 70 °.
  • the coolant of a heat engine has a flow rate that can be twenty times higher, at a temperature of the order of 100 to 110 ° maximum.
  • the document FR 2 748 428 (RENAULT) describes a cooling system for a hybrid-propulsion vehicle comprising a heat engine and an electric motor, comprising a liquid coolant circulating in the engines and in a radiator and means that, with the engine stopped and the electric motor running, the heat transfer liquid circulates in a first part of the radiator only, and so that both engines being in operation, the coolant circulates in both parts of the radiator.
  • Japanese Abstract 10 266 855 discloses a cooling system comprising a radiator, an expansion vessel common to a circuit dedicated to the heat engine and a circuit dedicated to the electric motor.
  • the radiator comprises two inlets and two outlets connected to two water boxes, one of which is divided by a partition.
  • the other water box is devoid of partition and the two circuits are in communication via it. During operation, the water in both circuits will hardly mix.
  • the heat generated by the electric motor can not be used to heat or preheat the engine or the cabin of the vehicle.
  • the electric motor circuit pump operates as long as the electric motor is in operation which reduces the life of said pump.
  • the radiator dedicated to it is useless and does not benefit the cooling of the engine and vice versa when the engine is not in use, the radiator dedicated to him does not is useless and does not benefit the cooling of the electric motor.
  • the publication DE 196 817 describes a device for cooling the heat transfer fluid by heat exchange with another fluid comprising an inlet and a main heat transfer fluid outlet, and an auxiliary outlet whose fluid is at a temperature below that of the outlet. main.
  • the present invention proposes to overcome the limitations of conventional techniques by providing a device and a cooling system operating optimally in all cases and to reduce energy consumption and polluting emissions.
  • the present invention proposes to reduce the operating time of a coolant circulation pump in the electric motor.
  • the present invention proposes to keep the electric motor at a low temperature.
  • a cooling system for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor.
  • the system is of the type comprising a coolant capable of cooling the thermal and electrical engines, a radiator capable of cooling the heat transfer fluid by heat exchange with a stream of air and comprising a plurality of cooling channels, an inlet and an outlet, a first pipe between the radiator outlet and the heat engine and a second pipe between said heat engine and the radiator inlet.
  • the radiator comprises an auxiliary output so that the heat transfer fluid from the auxiliary output is a temperature lower than that of the main output connected to the first pipe, said auxiliary output being connected to a bypass pipe suitable for cooling the electric motor.
  • the bypass line comprises a first branch connected to the auxiliary output and a second branch connected to a pipe upstream of the heat engine.
  • the first branch is able to be connected to the first conduit.
  • the first branch can go through the electric motor and an electronic power unit of the electric motor.
  • the first branch can be equipped with a coolant circulation pump.
  • the second branch is connected to an output pipe of a heating radiator of a vehicle passenger compartment.
  • the bypass line comprises a third branch connected to the second conduit.
  • the bypass line comprises a fourth branch connected to the output of the heat engine upstream of a thermostat.
  • branches of the branch line are interconnected by a multi-way valve.
  • a thermostat can be integrated with said multi-way valve.
  • the multi-way valve may include a rotary control core.
  • said coolant circulation pump is driven by the electric motor.
  • said coolant circulation pump is driven independently of the electric motor.
  • the system comprises a thermostat disposed on the first pipe, the thermostat being able to close the first pipe, a pipe connected to the electric motor being able to be in communication with the heat engine.
  • the system comprises a first valve adapted to put the output of the electric motor at least in communication with the heat engine.
  • the first valve is of multichannel type and is able to put the output of the electric motor into communication with the heat engine or with the second pipe.
  • the system comprises a second valve adapted to put the auxiliary output at least in communication with the electric motor.
  • the second valve is multi-port type and is able to put the auxiliary output in communication with the electric motor or with the heat engine.
  • the electric motor is mounted on a bypass line parallel to the heat engine.
  • said auxiliary output is connected to a branch line capable of cooling an electronic control unit.
  • the invention also relates to a vehicle comprising a cooling system as above.
  • the invention also proposes a cooling method for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor cooled by the circulation of a coolant in said engines, a heat exchange means capable of cooling the coolant by heat exchange with another fluid and provided with an inlet and an outlet, in which process the flow of heat transfer fluid is divided in the heat exchange means between a main output and an auxiliary outlet so that the heat transfer fluid from the auxiliary output has a temperature lower than that of the main output, said auxiliary output being connected to a bypass line suitable for cooling the electric motor.
  • the cooling can be carried out in series, the fluid coolant passing in the bypass line then passing into the engine which is preferable in case of high temperature output of the heat exchange means.
  • the coolant flow rate in the bypass pipe is varied as a function of the temperature at the outlet of the heat exchange means.
  • the heat transfer fluid in the event of a temperature of the coolant insufficient to cause the opening of a thermostat disposed at the output of the heat engine, the heat transfer fluid is circulated in the bypass line connected thirdly to the input of the heat exchange means for cooling the electric motor in the absence of heat transfer fluid circulation in the engine. This mode of operation can also be adopted when the heat engine is stopped.
  • the heat transfer fluid in the event of a temperature of the coolant significantly lower than the opening temperature of a thermostat disposed at the output of the heat engine, the heat transfer fluid is circulated in the fourth connected branch line. part at the output of the engine upstream of the thermostat, to cool the electric motor while warming the engine. It is thus possible to obtain a faster temperature rise of the engine during its start and reduce the formation of pollutants.
  • This mode of operation can also be adopted when the heat engine is stopped, if the pump associated with the heat engine is electrically driven or if said pump can be bypassed. It can thus preheat the engine.
  • the term “electric motor” defines all machines that convert electrical energy into mechanical energy, or mechanical energy into electrical energy
  • the term “power electronics” defines all electronics that convert alternating current into direct current, direct current into alternating current, high voltage current into low voltage current, or low voltage current into high voltage current.
  • the cooling system is associated with a heat engine 1 and with an electric motor 2 provided with an electronic power unit 3. There is also provided a heating radiator 4 for heating the heat.
  • the cooling system comprises a radiator 6 of which a main output 6a is connected to a pipe 7 and whose input is connected to a pipe 8.
  • the pipe 7 is connected to a pump 9 whose output is connected to the heat engine 1.
  • the pump 9 can be driven by the heat engine 1 or by an electric motor which is dedicated to it and which has not been shown.
  • the output of the engine 1 is provided with a thermostat 10, itself connected to the pipe 8.
  • the radiator 6 is generally provided with a motorized fan 11, able to accelerate the flow of air through said radiator 6 .
  • the cooling system comprises a temperature sensor 12 disposed at the output of the engine 1, immediately upstream of the thermostat 10, a temperature sensor 13 mounted on the pipe 7 at the outlet of the radiator 6, and a control unit 14. receiving temperature information from the sensors 12 and 13.
  • the connection between the control unit 14 and the sensors 12 and 13 can be effected by dedicated electrical wires or via a communication bus.
  • the inlet of the heating radiator 4 is connected to an output of the heat engine 1 and the output of the radiator 4 is connected to the pipe 7.
  • the inlet of the heat exchanger 5 is connected to an output of the heat engine 1 and its output is connected to line 7.
  • the cooling system further comprises a generally referenced branch line 15 provided with a plurality of branches, and a multi-way valve 16 to which said branches are connected.
  • a first branch 17 is connected, on the one hand to an auxiliary output 6b of the radiator 6 and on the other hand to the multi-way valve 16.
  • the branch 17 passes through the electric motor 2 and the unit 3.
  • the circulation of the cooling fluid in said branch 17 makes it possible to maintain the electric motor 2 and the power unit 3 at a normal operating temperature, if possible low enough so that current industrial components, both electrical and electronic devices, can be used in the construction of these elements.
  • a second branch 18 is connected at one end to the first pipe 7 to near the pump 9 and at the end opposite the multi-way valve 16.
  • a third branch 19 is connected, on the one hand to the pipe 8 and on the other hand to the multi-way valve 16.
  • a fourth branch 20 is connected, on the one hand, to an output of the heat engine 1 upstream of the thermostat 10 and on the other hand to the multi-way valve 16.
  • the multi-way valve 16 is adapted to put in communication the branches 17 and 18 by closing the branches 19 and 20, to put in communication the branches 17 and 19 closing off the other branches and placing the branches 17 and 20 in communication by closing off the other branches, and this by order of the control unit 14 to which it is connected.
  • the multi-way valve 16 which is here four-way, has the function of ensuring the selective passage of the cooling fluid between the branch 17 and one of the other three branches 18, 19 or 20 .
  • bypass line 15 comprises a fifth branch 22 and a 3-way valve 23.
  • the valve 23 is mounted on the branch 17 near the outlet 6b of the radiator 6, in other words between the outlet 6b and the pump 21.
  • the fifth branch 22 is connected, on the one hand to the valve 23 and, on the other hand to the pipe 7 downstream of the temperature sensor 13.
  • the structure of the radiator 6 is illustrated in more detail in FIG. 2.
  • the radiator 6 comprises a plurality of parallel pipes and two water boxes 24 and 25 into which the ends of the pipes open.
  • the water box 24 is divided into an upstream portion 24a and a downstream portion 24b by a partition 26 forming a tight separation.
  • the upstream portion 24a is connected to an inlet 27 of the radiator 6.
  • the downstream portion 24b is connected to the main outlet 6a.
  • the water box 25 is divided into an upstream part 25a and a downstream part 25b by a partition 28 forming a tight separation.
  • the upstream portion 25a communicates tubings connected to the upstream portion 24a and tubing connected to the downstream portion 24b.
  • the radiator 6 is said to U-shaped circulation, the upstream portion 25a forming the bottom of the U.
  • the downstream portion 25b is connected to the auxiliary output 6b.
  • the downstream portion 24b communicates tubings connected to the upstream portion 25a and tubing connected to the downstream portion 25b.
  • the cooling fluid passes through the radiator 6, a first pass from the upstream portion 24a of the water box 24 to the upstream portion 25a of the water box 25, then a second pass of the upstream portion 25a of the box 25 to the downstream portion 24b of the water box 24 and is divided into two streams one passing through the main outlet 6a, the other performing a third pass from the downstream portion 24b of the water box 24 to the downstream part 25b of the water box 25.
  • Said other stream benefits from a heat exchange of longer duration and leaves the radiator 6 at a lower temperature than the flow through the main exit 6a. In some cases one of the streams may be zero. It is therefore possible to maintain the electric motor 2 and the power unit 3 at a low temperature which makes it possible to use large-scale industrial components at low cost.
  • the operation of the cooling system is as follows.
  • the multi-way valve 16 communicates the branches 17 and 20 and allows to pass the fluid from the branch 20 to the branch 17.
  • the pump 21 is stopped.
  • the cooling fluid which is in the heat engine 1 is subjected to a high pressure due to the pump 9, higher pressure than that prevailing in the branch 17.
  • the valve 23 communicates the branches 17 and 22 and allows to leave passing the fluid from the branch 17 to the branch 22.
  • the valve 23 intersects the outlet 6b.
  • the multi-way valve 16 communicates the branches 17 and 19.
  • the pump 21 is started at low speed, for example with a low supply voltage U 1 .
  • the valve 16 is maintained as before or on the contrary cut the branch 22 and opens the outlet 6b.
  • the electric motor 2 and its power unit 3 are then cooled by means of the radiator 6, the heat exchange capacity of which is much greater, for example by a factor of the order of 3 to 5, at the heat likely to be cleared by the electric motor 2 and its power unit 3.
  • the pipe 8, the radiator 6 and the pipe 7 being sized for the high flow rates of cooling fluid required by the heat engine 1, the pressure losses are low.
  • the energy consumed by the pump 21 is therefore also low. Its wear is too.
  • the multi-way valve 16 communicates the branches 17 and 18.
  • the pump 21 is turned on.
  • the valve 23 intersects the branch 22 and opens the outlet 6b.
  • the flow rate of the output 6b of the radiator 6 passes through the branches 17 and 18.
  • the electric motor 2 and its power unit 3 are cooled by coolant at low temperature.
  • the pump 21 operates at a low flow rate, for example with the low voltage of supply U 1 , and that against if the sensor 13 indicates a temperature above the temperature T c2 , the pump 21 operates at a high rate, for example powered by a voltage U 2 greater than U 1 to obtain a higher rate in the branch 17. It will be understood that T c2 is greater than T ot .
  • control unit 14 of the cooling system can control the operation of the fan 11 as a function of the temperature measured by the sensor 13.
  • the multi-way valve 16 communicates the branches 17 and 20 and allows to pass the fluid from the branch 17 to the branch 20
  • the valve 23 communicates the branches 17 and 22 and allows to pass the fluid from the branch 22 to the branch 17.
  • the valve 23 intersects the outlet 6b.
  • the pump 21 is started at low flow, for example powered by the voltage U 1 . It is thus possible to heat the heat engine 1 and, if necessary, the passenger compartment by the radiator 4.
  • the multi-way valve 16 communicates the branches 17 and 19 and allows to pass the fluid from the branch 17 to the branch 19
  • the valve 23 intersects the branch 22 and opens the outlet 6b.
  • the pump 21 is started at low flow, for example powered by the voltage U 1 . This mode allows excellent cooling of the electric motor 2 and the power unit 3 because the cooling fluid passes through the entire radiator 6 (three passes).
  • the fan 11 is started, however, this will only rarely occur or a reduction in the operating time of said fan 11 and a reduction in the power consumption. 'energy.
  • the pump 21 can be started to pass cooling fluid in the third pass and thus provide additional cooling of the engine.
  • the valve 16 communicates the branches 17 and 18.
  • the valve 23 communicates the branch 17 with the outlet 6b and closes the branch 22.
  • the water temperature at the inlet of the electric motor 2 and the electronic power unit 3 remains very low in all cases of operation.
  • the temperature measured by the sensor 13 is greater than T c2 , an increase in the flow rate of the pump 21 and / or the triggering of the fan 11 can maintain this temperature within the desired limits.
  • the pump 21 needs a low power, runs slower and less frequently. In one operating case, the pump 21 is at a standstill. In two other operating cases where the thermostat is closed, the heat exchange capacity of the radiator 6, sized for thermal losses of the heat engine 1, is largely in excess of the thermal losses of the electric motor 2 and the electronic unit. of power 3 and thus allows the pump 21 to operate at low flow. Finally, the branches 17, 18 and 19 are connected to pipes 7 and 8 of large diameter, which minimizes the pressure drop experienced by the fluid driven by the pump 21.
  • the pump 21 is driven by an independent electric motor. It is also conceivable that the pump 21 is driven by the electric traction motor 2. This is advantageous for the cost and the lifetime of the system. Indeed, a conventional electric pump is generally DC. Compared to a mechanical pump, the electric motor is the main additional cost of an electric pump and generally has a life significantly lower than that of the mechanical pump. The operation of the system is then the following.
  • the branches 17 and 19 are put into communication. If the water temperature measured by the sensor 12 is greater than or equal to the temperature T ot , and if the vehicle is in electric traction mode, with the engine 1 stopped, the fluid communication between the branches 17 is maintained. and 19. If the coolant temperature measured by the sensor 12 becomes greater than or equal to the temperature T ot and if the engine is in operation, the valve 16 establishes communication between the branches 17 and 18. Further, if the sensor 13 measures a temperature higher than the predetermined temperature T c2 the fan 11 is activated, especially if the speed of the vehicle is low, for example less than a value between 60 and 80 km / h.
  • FIG. 3 illustrates a variant in which the electric motor 2 and the electronic power unit 3 are cooled in parallel, the branch 17 dividing into a sub-branch 17a passing through the electric motor 2 and into a sub-branch. branch 17b passing through the electronic power unit 3.
  • FIG 4 there is illustrated a variant in which the valve 23 and the branch 22 are removed.
  • the branch 17 is permanently in communication with the output 6b.
  • This economical variant is interesting if the heating of the heat engine 1 is not a priority.
  • FIG 5 is shown a variant close to the previous except that the branch 20 is removed.
  • the valve 16 is three-way. This economical variant is advantageous if the heating of the heat engine 1 is not a priority and if the life of the pump 21 is not critical, for example if the pump 21 is driven by the electric motor 2.
  • FIG 6 is shown a variant similar to that of Figure 1.
  • the radiator 6 is of two-pass type with a water box 24 without partition.
  • the coolant passes between inlet 27 and outlet 6a.
  • FIG 7 is shown a variant similar to that of Figure 5 except that the branch 19 and the valve 16 are deleted.
  • the thermostat 10 When the thermostat 10 is closed with the pump 21 running and for certain speeds of the heat engine 1, the cooling fluid from the radiator 4 and the heat exchanger 5 can enter through the outlet 6a of the radiator 6, make a pass, and exit through exit 6b.
  • the cooling fluid from the branch 18 can pass through the pump 9 and the heat engine 1.
  • FIG. 8 a variant similar to that of FIG. 7 is illustrated, except that the branch 18 is connected to the pipe 7 closer to the outlet 6a, in other words between the sensor 13 and the branch to the exchanger 5.
  • FIG. 9 shows a radiator variant similar to that of FIG. 2, except that the water box 24 is divided into three upstream parts 24a, 24b central and 24c downstream by partitions 26 and 29.
  • downstream portion 24c is connected to the auxiliary output 6b.
  • the downstream portion 25b of the water box 25 communicates tubings connected to the central portion 24b and tubing connected to the downstream portion 24c.
  • the radiator 6 is said to four passes with circulation in double U. We obtain a temperature at the auxiliary output 6b even lower.
  • the main outlet 6a can be provided for a current operation at around 90 to 105 ° C, the desired temperature for the heat engine, without the risk of overconsumption of fuel due to a too low temperature.
  • the auxiliary output 6b can provide for current operation at a significantly lower temperature, allowing a good performance of the electric motor and the electronic power unit and their construction from inexpensive standard components.
  • FIG. 10 illustrates another embodiment in which the thermostat 10 is disposed on the pipe 7 upstream of the pump 9, itself mounted immediately upstream of the engine 1.
  • the bypass pipe 15 comprises a branch 17 passing through the electric motor 2, the control unit 3 and the electric pump 21.
  • a temperature sensor 30 is mounted between the electric pump 21 and the control unit 3.
  • the branch 17 is connected to a three-way valve 23 also connected to the outlet 6b of the radiator 6 and to a pipe 31.
  • the pipe 31 joins the branch 18 from the three-way valve 16.
  • the branch 18 opens into a pipe 32 which passes through the heating radiator 4 which is connected at one end to the pipe 8 and at another end to a downstream portion of the thermostat 10.
  • a temperature sensor 12 is associated with the thermostat 10.
  • the thermostat 10 is suitable closing the pipe 7, while the pipe 32 is in free communication with the pump 9 and the motor 1.
  • the pump 21 and the valves 16 and 23 are controlled by the control unit which has not been shown in the figure.
  • the three-way valve 16 connects the branch 17 to the branch 18 or the branch 19.
  • the three-way valve 23 connects the branch 17 to the outlet 6b of the radiator 6 or the pipe 31.
  • Two set temperatures TC1 and TC2 are provided, compared in real time with the temperature measured by the sensor 30.
  • the heat engine 1 In thermal mode, the heat engine 1 is in operation and drives the pump 9.
  • the valve 16 communicates the branches 17 and 18.
  • the valve 23 communicates the branch 17 and the pipe 31.
  • the mechanical pump 9 In electrical mode, the mechanical pump 9 is at a standstill.
  • the electric pump 21 is in operation. If the temperature measured by the sensor 30 is lower than TC1, for example in the case of a cold start, the valve 16 communicates the branches 17 and 19 and the valve 23 communicates the branch 17 and the pipe 31 It is thus possible to supply heat to the heating radiator 4 and / or to preheat the heat engine 1 in order to reduce its pollutant emissions during a subsequent start-up.
  • the rise in temperature of the water is effective because the circuit water does not pass into the radiator 6.
  • the valve 16 then communicates the branches 17 and 18 and the valve 23 communicates the output 6b of the radiator 6 and the branch 17. It thus always ensures a flow in the heating radiator 4 and in the heat engine 1, while by cooling the electrical components by passing through the radiator 6.
  • the valve 16 communicates the branch 17 and the branch 19 and the valve 23 communicates the output 6b of the radiator 6 and the branch 17. It thus benefits from the cooling provided by the entire radiator dimensioned for the dissipation of heat of the traction assembly constituted by the heat engine 1 and the electric motor 2.
  • the control unit 3 and the electric motor 2 are cooled without operating the pump 21.
  • the valve 16 communicates the branches 17 and 19 and the valve 23 communicates the branch 17 and the pipe 31. This reduces the operating time of the electric pump.
  • the valve 16 puts in communication the branches 17 and 18 and the valve 23 sets communicating the output 6b of the radiator 6 and the branch 17.
  • the electric pump 21 is at a standstill. This ensures a good cooling of the electronic power components of the unit 3 by circulation of the coolant throughout the radiator 6.
  • the electric pump 21 is started.
  • the thermostat 10 being closed, we take advantage of the entire radiator 6 to cool the bodies of electric traction.
  • the valve 23 communicates the output 6b of the radiator 6 and the branch 17.
  • the valve 16 communicates the branch 17 and the branch 19.
  • the temperature of the cooling circuit of the electric traction units can be much lower than that of the heat engine circuit.
  • valve 16 communicates the branches 17 and 18. This provides a flow of water in the larger heat engine, which can promote the reduction of pollution by a rise in temperature more fast engine.
  • the electric pump 21 operates to provide a flow in the branch 17.
  • the valve 16 communicates the branches 17 and 18.
  • the valve 23 sets communicating the output 6b of the radiator 6 and the branch 17.
  • Figure 11 is shown a variant similar to Figure 10, except that the electric motor 2 and its control unit 3 are connected in parallel, which reduces the pressure losses.
  • the control of the valves is identical to that of FIG.
  • FIG. 12 there is illustrated an embodiment simplified to that of Figure 10, wherein the valve 23 and the pipe 31 are deleted.
  • the outlet 6b of the radiator 6 is directly connected to the electric pump 21.
  • the valve 23 serves in the previous embodiments, in electrical and hybrid mode, to promote a good temperature rise of the heat engine 1 and to a possible heating of the passenger compartment. If these two functions are not a priority, the embodiment of FIG. 12 can be used.
  • FIG. 13 is further simplified with respect to that illustrated in FIG. 12.
  • the branch 19 is simplified and the three-way valve 16 is replaced by a simple valve 33 which makes it possible to close and thus to cut the communication between the branches 17 and 18.
  • the valve 33 disconnects the branch of the electrical components in pure thermal mode.
  • the preheating of the engine 1 and the heating of the passenger compartment are less efficient.
  • this embodiment is very economical because of the simplification of the cooling circuit and the simplification of the control.
  • Only the valve 33 and the electric pump 21 must be controlled.
  • the electric pump 21 can always be turned off when operating in hybrid mode, the thermostat 10 being closed and the temperature measured by the sensor 30 being less than TC2.
  • valve 33 When the valve 33 is in the open position, in electrical mode, it allows the circulation of cooling fluid and the cooling of the electric motor 2 and its control unit 3.
  • hybrid mode when the temperature measured by the sensor 30 is lower than TC2 and the temperature measured by the sensor 12 is lower than the opening temperature of the thermostat, the electric pump 21 and the flow of coolant in the branch are stopped. 17 is provided by the mechanical pump 9 driven by the heat engine 1.
  • the electric pump 21 is turned on.
  • FIG. 14 is close to that illustrated in FIG. 10, except that the electric motor 2 is no longer disposed on the branch 17 but on a pipe 34 mounted parallel to the heating radiator 4. cooling of the electric motor 2 can be ensured, either by passage of the coolant between the lines 8 and 34, or by the engine oil 1. In the latter case, there will be provided an oil-water temperature exchanger.
  • FIG. 15 is close to that illustrated in FIG. 1, except that branch 19 is omitted.
  • the branch 20 is connected, on the one hand, to the valve 16 and, on the other hand, to the pipe 32 between the heating radiator 4 and the heat engine 1, the temperature sensor 12 being also mounted on this part of the pipe 32.
  • the pump 9 In thermal mode, the pump 9 is running, the valve 16 connects the branches 17 and 18.
  • the valve 23 connects the branch 17 and the branch 22. The two circuits are then decoupled.
  • the valve 16 communicates the branches 17 and 20 and the valve 23 communicates the branches 17 and 22. It is thus possible to heat the heating radiator 4 while ensuring a temperature rise of the heat engine 1. The rise in temperature is effective because the coolant does not pass into the radiator 6.
  • the valve 16 communicates the branches 17 and 20 and the valve 23 communicates the outlet 6b of the radiator 6 and the branch 17. It always ensures a flow of cooling liquid in the heating radiator 4 and in the engine 1, while cooling the electrical components by passing through the radiator 6. If the thermostat 10 opens, then we have the entire radiator 6.
  • the valve 16 communicates the branches 17 and 18 and the valve 23 communicates the outlet 6b of the radiator 6 and the branch 17.
  • the cooling of the electrical components is ensured by the third pass of the radiator 6, in other words by the part of the radiator 6 between the main output 6a and the auxiliary output 6b.
  • the control unit 3 and the electric motor 2 can be cooled with the electric pump 21 stopped.
  • the valve 16 communicates the branches 20 and 17 and the valve 23 communicates the branches 17 and 22. It reduces the operating time of the electric pump. During a cold start in hybrid mode, it takes advantage of the heat dissipation of the electrical components to ensure a rapid rise in the temperature of the engine 1 and possibly to ensure the heating of the passenger compartment.
  • the valve 16 puts in communication the branches 20 and 17 and the valve 23 sets communicating the output 6b of the radiator 6 and the branch 17.
  • the electric pump 21 can remain at a standstill.
  • the electric pump 21 is in operation.
  • the valve 16 communicates the branches 17 and 18 and the valve 23 communicates the output 6b of the radiator 6 and the branch 17. If the thermostat 10 is closed, the two circuits are completely decoupled. If the thermostat 10 is open, the two circuits are pooled at the output of the radiator 6, on the engine side.
  • FIG 16 The embodiment illustrated in Figure 16 is a simplification of that of Figure 15.
  • the valve 23 is removed.
  • the electric motor 2, its control unit 3, the temperature sensor 30 and the electric pump 21 are connected in series on the branch 18.
  • the branch 17 directly connects the outlet 6b of the radiator 6 and the valve 16.
  • valve 16 In thermal mode, the valve 16 communicates the branches 17 and 18.
  • the valve 16 In electrical mode, when the temperature measured by the sensor 30 is lower than the set temperature TC2, the valve 16 puts in communication the branches 20 and 17. The heat dissipation of the electrical components is therefore used to heat the heat engine 1 and the heating radiator 4. As soon as the temperature measured by the sensor 11 becomes greater than the temperature TC2, the valve 16 puts the branches into communication 17 and 18, which allows cooling of the electrical components with a good flow in the third pass of the radiator 6.
  • the valve 16 In hybrid mode, when the temperature measured by the sensor 30 is lower than TC2, the valve 16 communicates the branches 20 and 18. It is thus possible to stop the electric pump 21 and use the heat released by the electrical organs to heat the interior and ensure the temperature rise of the engine 1. As soon as the temperature measured by the sensor 30 is greater than the temperature TC2, the electric pump 21 is turned on and the valve 16 communicates the branches 17 and 18.
  • valve 16 The valve 23 may be of the same type.
  • the valve 16 has a cylindrical body 35 inside which is mounted a movable member 36 comprising a central core 37 and arms 38 and 39.
  • the movable member 36 is rotated by an electric motor.
  • the coolant circulates in the annular space between the central hub 37 and the body 35.
  • the valve 16 is in a position allowing the circulation of fluid between the branches 18 and 19 and prohibiting the flow of fluid from the branch 17.
  • the passage of the coolant is carried out as in a tube bent at 120 ° angle.
  • the pressure drop is extremely low.
  • the embodiments in which the thermostat is placed upstream of the heat engine allow, in certain operating modes, to cut the power of the electric pump, in particular in hybrid mode, closed thermostat.
  • the mechanical pump driven by the heat engine ensures a circulation of coolant in the radiator, then in the electric traction members, through the stopped electric pump.
  • the coupling of the two cooling circuits, that of the heat engine and that of the electric motor, is achieved when the temperature in the components is low and the thermostat is closed. Coolant circulation is provided by one of the two pumps.
  • the electric pump ensures a flow in all the branches of the circuit.
  • hybrid mode the driven mechanical pump by the heat engine allows the circulation of coolant in all the organs of the circuit.
  • the management of the cooling circuit via the sensors and the control acting on the valves, allows the decoupling of the high temperature circuit of the heat engine and the circuit to be low temperature electric traction units.
  • the temperature of the coolant at the inlet of the electric traction members is very low in all cases of operation where said members dissipate heat in the cooling circuit.
  • the electric pump operates less often, resulting in a reduction in energy consumption and the possibility of using conventional technology pumps, low cost and whose lifespan is greater than or equal to that of the vehicle.
  • the heat dissipation by the electric traction members can be used for the temperature rise of the engine and also for the heating of the passenger compartment.

Description

La présente invention concerne un système de refroidissement pour véhicule à propulsion hybride.The present invention relates to a cooling system for a hybrid-propulsion vehicle.

Les véhicules à propulsion hybride comprennent en général un moteur thermique, un ou deux moteurs électriques, un générateur de tension électrique, et un ensemble de convertisseur électronique de puissance qui soit alimente le ou les moteurs électriques, soit charge les batteries, tous devant être refroidis afin de fonctionner dans les conditions pour lesquelles ils sont prévus. On cherche à profiter de cette double motorisation pour réduire au maximum la consommation et les émissions polluantes, de façon à rester en dessous des niveaux autorisés.Hybrid-propulsion vehicles generally include a heat engine, one or two electric motors, a voltage generator, and an electronic power converter assembly that powers the one or more electric motors, or charges the batteries, all of which must be cooled. in order to function under the conditions for which they are intended. We seek to take advantage of this dual engine to minimize consumption and polluting emissions, so as to remain below the authorized levels.

On a constaté que les plages de débit et de température du liquide de refroidissement sont très différentes pour un moteur électrique et pour un moteur thermique. Le liquide de refroidissement d'un moteur électrique a un débit de l'ordre de 100 à 500 l/heure à une température de 50 à 70°. Le liquide de refroidissement d'un moteur thermique a un débit qui peut être vingt fois supérieur, à une température de l'ordre de 100 à 110° maximum. Ces différences de débit et de température rendent difficile l'utilisation d'un seul circuit et d'un seul radiateur fonctionnant dans des conditions optimales sur l'ensemble des situations rencontrées pour un véhicule à propulsion hybride.It has been found that the flow and temperature ranges of the coolant are very different for an electric motor and for a heat engine. The coolant of an electric motor has a flow rate of the order of 100 to 500 l / hour at a temperature of 50 to 70 °. The coolant of a heat engine has a flow rate that can be twenty times higher, at a temperature of the order of 100 to 110 ° maximum. These differences in flow and temperature make it difficult to use a single circuit and a single radiator operating under optimum conditions on all the situations encountered for a hybrid-propulsion vehicle.

Le document FR 2 748 428 (RENAULT) décrit un système de refroidissement pour véhicule à propulsion hybride comportant un moteur thermique et un moteur électrique, comprenant un liquide caloporteur circulant dans les moteurs et dans un radiateur et des moyens pour que, le moteur thermique étant à l'arrêt et le moteur électrique étant en marche, le liquide caloporteur circule dans une première partie du radiateur seulement, et pour que, les deux moteurs étant en marche, le liquide caloporteur circule dans les deux parties du radiateur.The document FR 2 748 428 (RENAULT) describes a cooling system for a hybrid-propulsion vehicle comprising a heat engine and an electric motor, comprising a liquid coolant circulating in the engines and in a radiator and means that, with the engine stopped and the electric motor running, the heat transfer liquid circulates in a first part of the radiator only, and so that both engines being in operation, the coolant circulates in both parts of the radiator.

Toutefois, lorsque les deux moteurs sont en marche, le moteur électrique voit passer un liquide caloporteur à relativement haute température.However, when both engines are running, the electric motor passes a coolant at relatively high temperature.

L'abrégé japonais 10 266 855 (TOYOTA) décrit un système de refroidissement comportant un radiateur, un vase d'expansion communs à un circuit dédié au moteur thermique et à un circuit dédié au moteur électrique. Le radiateur comprend deux entrées et deux sorties reliées à deux boîtes à eau dont l'une est divisée par une cloison. L'autre boîte à eau est dépourvue de cloison et les deux circuits sont en communication par son intermédiaire. Lors du fonctionnement, l'eau des deux circuits ne se mélange quasiment pas.Japanese Abstract 10 266 855 (TOYOTA) discloses a cooling system comprising a radiator, an expansion vessel common to a circuit dedicated to the heat engine and a circuit dedicated to the electric motor. The radiator comprises two inlets and two outlets connected to two water boxes, one of which is divided by a partition. The other water box is devoid of partition and the two circuits are in communication via it. During operation, the water in both circuits will hardly mix.

Toutefois, la chaleur dégagée par le moteur électrique ne peut pas servir à chauffer ou préchauffer ni le moteur thermique, ni l'habitacle du véhicule. La pompe du circuit du moteur électrique fonctionne tant que le moteur électrique est en service ce qui réduit la durée de vie de ladite pompe. Lorsque le moteur électrique n'est pas en service, le radiateur qui lui est dédié ne sert à rien et ne profite pas au refroidissement du moteur thermique et réciproquement lorsque le moteur thermique n'est pas en service, le radiateur qui lui est dédié ne sert à rien et ne profite pas au refroidissement du moteur électrique.However, the heat generated by the electric motor can not be used to heat or preheat the engine or the cabin of the vehicle. The electric motor circuit pump operates as long as the electric motor is in operation which reduces the life of said pump. When the electric motor is not in use, the radiator dedicated to it is useless and does not benefit the cooling of the engine and vice versa when the engine is not in use, the radiator dedicated to him does not is useless and does not benefit the cooling of the electric motor.

La publication DE 196 817 décrit un dispositif de refroidissement de fluide caloporteur par échange thermique avec un autre fluide comportant une entrée et une sortie principale de fluide caloporteur, ainsi qu'une sortie auxiliaire dont le fluide est à une température inférieure à celle de la sortie principale.The publication DE 196 817 describes a device for cooling the heat transfer fluid by heat exchange with another fluid comprising an inlet and a main heat transfer fluid outlet, and an auxiliary outlet whose fluid is at a temperature below that of the outlet. main.

La présente invention propose de remédier aux limitations des techniques classiques en proposant un dispositif et un système de refroidissement fonctionnant de façon optimale dans tous les cas de figure et permettant de réduire la consommation d'énergie et les émissions polluantes.The present invention proposes to overcome the limitations of conventional techniques by providing a device and a cooling system operating optimally in all cases and to reduce energy consumption and polluting emissions.

La présente invention propose de réduire la durée de fonctionnement d'une pompe de circulation de fluide de refroidissement dans le moteur électrique.The present invention proposes to reduce the operating time of a coolant circulation pump in the electric motor.

La présente invention propose de maintenir le moteur électrique à faible température.The present invention proposes to keep the electric motor at a low temperature.

Dans ce but, elle propose un système de refroidissement destiné à un véhicule à propulsion hybride comprenant un moteur thermique et au moins un moteur électrique. Le système est du type comprenant un fluide caloporteur apte à refroidir les moteurs thermique et électrique, un radiateur capable de refroidir le fluide caloporteur par échange thermique avec un courant d'air et comprenant une pluralité de canaux de refroidissement, une entrée et une sortie, une première conduite entre la sortie du radiateur et le moteur thermique et une deuxième conduite entre ledit moteur thermique et l'entrée du radiateur. Le radiateur comprend une sortie auxiliaire de telle sorte que le fluide caloporteur issu de la sortie auxiliaire soit à une température inférieure à celle de la sortie principale reliée à la première conduite, ladite sortie auxiliaire étant reliée à une conduite de dérivation apte à refroidir le moteur électrique.For this purpose, it proposes a cooling system for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor. The system is of the type comprising a coolant capable of cooling the thermal and electrical engines, a radiator capable of cooling the heat transfer fluid by heat exchange with a stream of air and comprising a plurality of cooling channels, an inlet and an outlet, a first pipe between the radiator outlet and the heat engine and a second pipe between said heat engine and the radiator inlet. The radiator comprises an auxiliary output so that the heat transfer fluid from the auxiliary output is a temperature lower than that of the main output connected to the first pipe, said auxiliary output being connected to a bypass pipe suitable for cooling the electric motor.

De préférence, la conduite de dérivation comprend une première branche connectée à la sortie auxiliaire et une deuxième branche connectée à une conduite en amont du moteur thermique.Preferably, the bypass line comprises a first branch connected to the auxiliary output and a second branch connected to a pipe upstream of the heat engine.

De préférence, la première branche est apte à être connectée à la première conduite.Preferably, the first branch is able to be connected to the first conduit.

La première branche peut passer par le moteur électrique et une unité électronique de puissance du moteur électrique.The first branch can go through the electric motor and an electronic power unit of the electric motor.

La première branche peut être équipée d'une pompe de circulation du fluide caloporteur.The first branch can be equipped with a coolant circulation pump.

Dans un mode de réalisation de l'invention, la deuxième branche est connectée à une conduite de sortie d'un radiateur de chauffage d'un habitacle de véhicule.In one embodiment of the invention, the second branch is connected to an output pipe of a heating radiator of a vehicle passenger compartment.

Dans un mode de réalisation de l'invention, la conduite de dérivation comprend une troisième branche connectée à la deuxième conduite.In one embodiment of the invention, the bypass line comprises a third branch connected to the second conduit.

Dans un mode de réalisation de l'invention, la conduite de dérivation comprend une quatrième branche connectée à la sortie du moteur thermique en amont d'un thermostat.In one embodiment of the invention, the bypass line comprises a fourth branch connected to the output of the heat engine upstream of a thermostat.

Dans un mode de réalisation de l'invention, les branches de la conduite de dérivation sont connectées entre elles par une vanne multi-voies. Un thermostat peut être intégré à ladite vanne multi-voies. La vanne multi-voies peut comprendre un noyau de commande rotatif.In one embodiment of the invention, branches of the branch line are interconnected by a multi-way valve. A thermostat can be integrated with said multi-way valve. The multi-way valve may include a rotary control core.

Dans un mode de réalisation de l'invention, ladite pompe de circulation du fluide caloporteur est entraînée par le moteur électrique.In one embodiment of the invention, said coolant circulation pump is driven by the electric motor.

Dans un autre mode de réalisation de l'invention, ladite pompe de circulation de fluide caloporteur est entraînée indépendamment du moteur électrique.In another embodiment of the invention, said coolant circulation pump is driven independently of the electric motor.

Dans un mode de réalisation préféré de l'invention, le système comprend un thermostat disposé sur la première conduite, le thermostat étant apte à obturer la première conduite, une conduite reliée au moteur électrique étant apte à être en communication avec le moteur thermique.In a preferred embodiment of the invention, the system comprises a thermostat disposed on the first pipe, the thermostat being able to close the first pipe, a pipe connected to the electric motor being able to be in communication with the heat engine.

Dans un mode de réalisation de l'invention, le système comprend une première vanne apte à mettre en communication la sortie du moteur électrique au moins avec le moteur thermique.In one embodiment of the invention, the system comprises a first valve adapted to put the output of the electric motor at least in communication with the heat engine.

Dans un mode de réalisation de l'invention, la première vanne est de type multivoies et est apte à mettre en communication la sortie du moteur électrique avec le moteur thermique ou avec la deuxième conduite.In one embodiment of the invention, the first valve is of multichannel type and is able to put the output of the electric motor into communication with the heat engine or with the second pipe.

Dans un mode de réalisation de l'invention, le système comprend une deuxième vanne apte à mettre en communication la sortie auxiliaire au moins avec le moteur électrique.In one embodiment of the invention, the system comprises a second valve adapted to put the auxiliary output at least in communication with the electric motor.

Dans un mode de réalisation de l'invention, la deuxième vanne est de type multivoies et est apte à mettre en communication la sortie auxiliaire avec le moteur électrique ou avec le moteur thermique.In one embodiment of the invention, the second valve is multi-port type and is able to put the auxiliary output in communication with the electric motor or with the heat engine.

Dans un mode de réalisation de l'invention, le moteur électrique est monté sur une conduite de dérivation parallèle au moteur thermique.In one embodiment of the invention, the electric motor is mounted on a bypass line parallel to the heat engine.

Dans un mode de réalisation de l'invention, ladite sortie auxiliaire est reliée à une conduite de dérivation apte à refroidir une unité électronique de commande.In one embodiment of the invention, said auxiliary output is connected to a branch line capable of cooling an electronic control unit.

L'invention concerne également un véhicule comprenant un système de refroidissement tel que ci-dessus.The invention also relates to a vehicle comprising a cooling system as above.

L'invention propose également un procédé de refroidissement pour véhicule à propulsion hybride comprenant un moteur thermique et au moins un moteur électrique refroidis par la circulation d'un fluide caloporteur dans lesdits moteurs, un moyen d'échange thermique capable de refroidir le fluide caloporteur par échange thermique avec un autre fluide et pourvu d'une entrée et d'une sortie, procédé dans lequel le flux de fluide caloporteur se divise dans le moyen d'échange thermique entre une sortie principale et une sortie auxiliaire de telle sorte que le fluide caloporteur issu de la sortie auxiliaire présente une température inférieure à celle de la sortie principale, ladite sortie auxiliaire étant reliée à une conduite de dérivation apte à refroidir le moteur électrique.The invention also proposes a cooling method for a hybrid-propulsion vehicle comprising a heat engine and at least one electric motor cooled by the circulation of a coolant in said engines, a heat exchange means capable of cooling the coolant by heat exchange with another fluid and provided with an inlet and an outlet, in which process the flow of heat transfer fluid is divided in the heat exchange means between a main output and an auxiliary outlet so that the heat transfer fluid from the auxiliary output has a temperature lower than that of the main output, said auxiliary output being connected to a bypass line suitable for cooling the electric motor.

Le refroidissement peut être effectué en série, le fluide caloporteur passant dans la conduite de dérivation passant ensuite dans le moteur thermique ce qui est préférable en cas de température élevée en sortie du moyen d'échange thermique.The cooling can be carried out in series, the fluid coolant passing in the bypass line then passing into the engine which is preferable in case of high temperature output of the heat exchange means.

Avantageusement, on fait varier le débit de fluide caloporteur dans la conduite de dérivation en fonction de la température en sortie du moyen d'échange thermique.Advantageously, the coolant flow rate in the bypass pipe is varied as a function of the temperature at the outlet of the heat exchange means.

Dans un mode de réalisation de l'invention, en cas de température du fluide caloporteur insuffisante pour provoquer l'ouverture d'un thermostat disposé en sortie du moteur thermique, on fait circuler le fluide caloporteur dans la conduite de dérivation connectée de troisième part à l'entrée du moyen d'échange thermique, pour refroidir le moteur électrique en l'absence de circulation de fluide caloporteur dans le moteur thermique. Ce mode de fonctionnement peut aussi être adopté lorsque le moteur thermique est à l'arrêt.In one embodiment of the invention, in the event of a temperature of the coolant insufficient to cause the opening of a thermostat disposed at the output of the heat engine, the heat transfer fluid is circulated in the bypass line connected thirdly to the input of the heat exchange means for cooling the electric motor in the absence of heat transfer fluid circulation in the engine. This mode of operation can also be adopted when the heat engine is stopped.

Dans un mode de réalisation de l'invention, en cas de température du fluide caloporteur nettement inférieure à la température d'ouverture d'un thermostat disposé en sortie du moteur thermique, on fait circuler le fluide caloporteur dans la conduite de dérivation connectée de quatrième part à la sortie du moteur thermique en amont du thermostat, pour refroidir le moteur électrique tout en réchauffant le moteur thermique. On peut ainsi obtenir une montée en température plus rapide du moteur thermique lors de son démarrage et réduire la formation d'éléments polluants.In one embodiment of the invention, in the event of a temperature of the coolant significantly lower than the opening temperature of a thermostat disposed at the output of the heat engine, the heat transfer fluid is circulated in the fourth connected branch line. part at the output of the engine upstream of the thermostat, to cool the electric motor while warming the engine. It is thus possible to obtain a faster temperature rise of the engine during its start and reduce the formation of pollutants.

Ce mode de fonctionnement peut aussi être adopté lorsque le moteur thermique est à l'arrêt, si la pompe associée au moteur thermique est à entraînement électrique ou si ladite pompe peut être bipassée. On peut ainsi préchauffer le moteur thermique.This mode of operation can also be adopted when the heat engine is stopped, if the pump associated with the heat engine is electrically driven or if said pump can be bypassed. It can thus preheat the engine.

L'invention sera mieux comprise et d'autres avantages apparaîtront à la lecture de la description détaillée de quelques modes de réalisation pris à titre d'exemples nullement limitatifs et illustrés par les dessins annexés, sur lesquels :

  • la figure 1 est une vue schématique d'un système de refroidissement selon un mode de réalisation de l'invention;
  • la figure 2 est une vue schématique d'un radiateur;
  • les figures 3 à 8 et 10 à 16 sont des vues schématiques d'un système de refroidissement selon d'autres modes de réalisation de l'invention;
  • la figure 9 est une vue schématique d'un autre radiateur; et
  • la figure 17 est une schématique d'une vanne.
The invention will be better understood and other advantages will appear on reading the detailed description of some embodiments taken as non-limiting examples and illustrated by the appended drawings, in which:
  • Figure 1 is a schematic view of a cooling system according to one embodiment of the invention;
  • Figure 2 is a schematic view of a radiator;
  • Figures 3 to 8 and 10 to 16 are schematic views of a cooling system according to other embodiments of the invention;
  • Figure 9 is a schematic view of another radiator; and
  • Figure 17 is a schematic of a valve.

Pour simplifier notre description, le terme "moteur électrique" définit toutes les machines qui convertissent l'énergie électrique en énergie mécanique, ou de l'énergie mécanique en énergie électrique, et le terme "électronique de puissance" définit l'ensemble des électroniques qui convertissent du courant alternatif en courant continu, du courant continu en courant alternatif, du courant de haute tension en courant de faible tension, ou encore du courant de faible tension en courant de haute tension.To simplify our description, the term "electric motor" defines all machines that convert electrical energy into mechanical energy, or mechanical energy into electrical energy, and the term "power electronics" defines all electronics that convert alternating current into direct current, direct current into alternating current, high voltage current into low voltage current, or low voltage current into high voltage current.

Comme on peut le voir sur la figure 1, le système de refroidissement est associé à un moteur thermique 1 et à un moteur électrique 2 pourvu d'une unité électronique de puissance 3. Il est également prévu un radiateur de chauffage 4 permettant de chauffer l'habitacle du véhicule dans lequel est installé le système de refroidissement, ainsi qu'un échangeur 5 permettant de refroidir un fluide quelconque, par exemple l'huile de lubrification, l'huile de boîte de vitesses, ... ou un organe quelconque, par exemple un palier de turbocompresseur, ...As can be seen in FIG. 1, the cooling system is associated with a heat engine 1 and with an electric motor 2 provided with an electronic power unit 3. There is also provided a heating radiator 4 for heating the heat. the passenger compartment of the vehicle in which the cooling system is installed, as well as an exchanger 5 for cooling any fluid, for example the lubricating oil, the gearbox oil, ... or any other organ, for example a turbocharger bearing, ...

Le système de refroidissement comprend un radiateur 6 dont une sortie principale 6a est reliée à une conduite 7 et dont l'entrée est reliée à une conduite 8. La conduite 7 est reliée à une pompe 9 dont la sortie est reliée au moteur thermique 1. La pompe 9 peut être entraînée par le moteur thermique 1 ou par un moteur électrique qui lui est dédié et qui n'a pas été représenté. La sortie du moteur 1 est pourvue d'un thermostat 10, lui-même relié à la conduite 8. Le radiateur 6 est généralement pourvu d'un ventilateur 11 motorisé, apte à accélérer l'écoulement de l'air à travers ledit radiateur 6.The cooling system comprises a radiator 6 of which a main output 6a is connected to a pipe 7 and whose input is connected to a pipe 8. The pipe 7 is connected to a pump 9 whose output is connected to the heat engine 1. The pump 9 can be driven by the heat engine 1 or by an electric motor which is dedicated to it and which has not been shown. The output of the engine 1 is provided with a thermostat 10, itself connected to the pipe 8. The radiator 6 is generally provided with a motorized fan 11, able to accelerate the flow of air through said radiator 6 .

Le système de refroidissement comprend un capteur de température 12 disposé en sortie du moteur 1, immédiatement en amont du thermostat 10, un capteur de température 13 monté sur la conduite 7 à la sortie du radiateur 6, et une unité de commande 14 recevant des informations de température en provenance des capteurs 12 et 13. La liaison entre l'unité de commande 14 et les capteurs 12 et 13 peut être effectuée par des fils électriques dédiés ou par l'intermédiaire d'un bus de communication.The cooling system comprises a temperature sensor 12 disposed at the output of the engine 1, immediately upstream of the thermostat 10, a temperature sensor 13 mounted on the pipe 7 at the outlet of the radiator 6, and a control unit 14. receiving temperature information from the sensors 12 and 13. The connection between the control unit 14 and the sensors 12 and 13 can be effected by dedicated electrical wires or via a communication bus.

L'entrée du radiateur de chauffage 4 est reliée à une sortie du moteur thermique 1 et la sortie du radiateur 4 est reliée à la conduite 7. De même, l'entrée de l'échangeur 5 est reliée à une sortie du moteur thermique 1 et sa sortie est reliée à la conduite 7.The inlet of the heating radiator 4 is connected to an output of the heat engine 1 and the output of the radiator 4 is connected to the pipe 7. Similarly, the inlet of the heat exchanger 5 is connected to an output of the heat engine 1 and its output is connected to line 7.

Le système de refroidissement comprend, en outre, une conduite de dérivation référencée 15 dans son ensemble et pourvue de plusieurs branches, et d'une vanne multi-voies 16 à laquelle sont reliées lesdites branches.The cooling system further comprises a generally referenced branch line 15 provided with a plurality of branches, and a multi-way valve 16 to which said branches are connected.

Plus précisément, une première branche 17 est reliée, d'une part à une sortie auxiliaire 6b du radiateur 6 et, d'autre part à la vanne multi-voies 16. La branche 17 passe par le moteur électrique 2 et par l'unité de puissance 3. La circulation du fluide de refroidissement dans ladite branche 17 permet de maintenir le moteur électrique 2 et l'unité de puissance 3 à une température de fonctionnement normale, si possible suffisamment basse pour que des composants industriels courants, tant électriques qu'électroniques, puissent être utilisés dans la construction de ces éléments.More specifically, a first branch 17 is connected, on the one hand to an auxiliary output 6b of the radiator 6 and on the other hand to the multi-way valve 16. The branch 17 passes through the electric motor 2 and the unit 3. The circulation of the cooling fluid in said branch 17 makes it possible to maintain the electric motor 2 and the power unit 3 at a normal operating temperature, if possible low enough so that current industrial components, both electrical and electronic devices, can be used in the construction of these elements.

Il est de plus prévu une pompe électrique 21 disposée sur la branche 7, commandée par l'unité de commande 14 et faisant circuler le fluide de refroidissement dans ladite branche 17. Une deuxième branche 18 est reliée à une extrémité à la première conduite 7 à proximité de la pompe 9 et à l'extrémité opposée à la vanne multi-voies 16.There is further provided an electric pump 21 disposed on the branch 7, controlled by the control unit 14 and circulating the cooling fluid in said branch 17. A second branch 18 is connected at one end to the first pipe 7 to near the pump 9 and at the end opposite the multi-way valve 16.

Une troisième branche 19 est reliée, d'une part à la conduite 8 et, d'autre part à la vanne multi-voies 16. Une quatrième branche 20 est reliée, d'une part à une sortie du moteur thermique 1 en amont du thermostat 10 et, d'autre part à la vanne multi-voies 16. La vanne multi-voies 16 est apte à mettre en communication les branches 17 et 18 en obturant les branches 19 et 20, à mettre en communication les branches 17 et 19 en obturant les autres branches et à mettre en communication les branches 17 et 20 en obturant les autres branches, et ce sur ordre de l'unité de commande 14 à laquelle elle est reliée.A third branch 19 is connected, on the one hand to the pipe 8 and on the other hand to the multi-way valve 16. A fourth branch 20 is connected, on the one hand, to an output of the heat engine 1 upstream of the thermostat 10 and on the other hand to the multi-way valve 16. The multi-way valve 16 is adapted to put in communication the branches 17 and 18 by closing the branches 19 and 20, to put in communication the branches 17 and 19 closing off the other branches and placing the branches 17 and 20 in communication by closing off the other branches, and this by order of the control unit 14 to which it is connected.

En d'autres termes, la vanne multi-voies 16, qui est ici à quatre voies, a pour fonction d'assurer le passage sélectif du fluide de refroidissement entre la branche 17 et l'une des trois autres branches 18, 19 ou 20.In other words, the multi-way valve 16, which is here four-way, has the function of ensuring the selective passage of the cooling fluid between the branch 17 and one of the other three branches 18, 19 or 20 .

En outre, la conduite de dérivation 15 comprend une cinquième branche 22 et une vanne 3 voies 23. La vanne 23 est montée sur la branche 17 à proximité de la sortie 6b du radiateur 6, en d'autres termes entre la sortie 6b et la pompe 21. La cinquième branche 22 est reliée, d'une part à la vanne 23 et, d'autre part à la conduite 7 en aval du capteur de température 13.In addition, the bypass line 15 comprises a fifth branch 22 and a 3-way valve 23. The valve 23 is mounted on the branch 17 near the outlet 6b of the radiator 6, in other words between the outlet 6b and the pump 21. The fifth branch 22 is connected, on the one hand to the valve 23 and, on the other hand to the pipe 7 downstream of the temperature sensor 13.

La structure du radiateur 6 est illustrée plus en détail sur la figure 2. Le radiateur 6 comprend une pluralité de tubulures parallèles et deux boîtes à eau 24 et 25 dans lesquelles débouchent les extrémités des tubulures. La boîte à eau 24 est divisée en une partie amont 24a et en une partie aval 24b par une cloison 26 formant séparation étanche. La partie amont 24a est reliée à une entrée 27 du radiateur 6. La partie aval 24b est reliée à la sortie principale 6a.The structure of the radiator 6 is illustrated in more detail in FIG. 2. The radiator 6 comprises a plurality of parallel pipes and two water boxes 24 and 25 into which the ends of the pipes open. The water box 24 is divided into an upstream portion 24a and a downstream portion 24b by a partition 26 forming a tight separation. The upstream portion 24a is connected to an inlet 27 of the radiator 6. The downstream portion 24b is connected to the main outlet 6a.

La boîte à eau 25 est divisée en une partie amont 25a et en une partie aval 25b par une cloison 28 formant séparation étanche. La partie amont 25a met en communication des tubulures reliées à la partie amont 24a et des tubulures reliées à la partie aval 24b. Le radiateur 6 est dit à circulation en U, la partie amont 25a formant le fond du U. La partie aval 25b est reliée à la sortie auxiliaire 6b. La partie aval 24b met en communication des tubulures reliées à la partie amont 25a et des tubulures reliées à la partie aval 25b.The water box 25 is divided into an upstream part 25a and a downstream part 25b by a partition 28 forming a tight separation. The upstream portion 25a communicates tubings connected to the upstream portion 24a and tubing connected to the downstream portion 24b. The radiator 6 is said to U-shaped circulation, the upstream portion 25a forming the bottom of the U. The downstream portion 25b is connected to the auxiliary output 6b. The downstream portion 24b communicates tubings connected to the upstream portion 25a and tubing connected to the downstream portion 25b.

Le fluide de refroidissement effectue, en traversant le radiateur 6, une première passe de la partie amont 24a de la boîte à eau 24 à la partie amont 25a de la boîte à eau 25, puis une deuxième passe de la partie amont 25a de la boîte à eau 25 à la partie aval 24b de la boîte à eau 24 et se divise en deux flux l'un passant par la sortie principale 6a, l'autre effectuant une troisième passe de la partie aval 24b de la boîte à eau 24 à la partie aval 25b de la boîte à eau 25. Ledit autre flux profite d'un échange thermique de plus longue durée et sort du radiateur 6 à une température inférieure à celle du flux passant par la sortie principale 6a. Dans certains cas l'un des flux peut être nul. On peut donc maintenir le moteur électrique 2 et l'unité de puissance 3 à une température basse permettant la mise en oeuvre de composants industriels de grande série à bas coût.The cooling fluid passes through the radiator 6, a first pass from the upstream portion 24a of the water box 24 to the upstream portion 25a of the water box 25, then a second pass of the upstream portion 25a of the box 25 to the downstream portion 24b of the water box 24 and is divided into two streams one passing through the main outlet 6a, the other performing a third pass from the downstream portion 24b of the water box 24 to the downstream part 25b of the water box 25. Said other stream benefits from a heat exchange of longer duration and leaves the radiator 6 at a lower temperature than the flow through the main exit 6a. In some cases one of the streams may be zero. It is therefore possible to maintain the electric motor 2 and the power unit 3 at a low temperature which makes it possible to use large-scale industrial components at low cost.

Le fonctionnement du système de refroidissement est le suivant.The operation of the cooling system is as follows.

1) Moteur thermique 1 en marche.1) Engine 1 running.

Si la température de l'eau telle que mesurée par le capteur 12, est inférieure à une température prédéterminée Tc1 et qui est inférieure ou égale à la température Tot d'ouverture du thermostat 10, généralement comprise entre 83 et 89°C, la vanne multi-voies 16 met en communication les branches 17 et 20 et permet de laisser passer le fluide de la branche 20 vers la branche 17. La pompe 21 est à l'arrêt. Le fluide de refroidissement qui se trouve dans le moteur thermique 1 est soumis à une forte pression en raison de la pompe 9, pression supérieure à celle régnant dans la branche 17. La vanne 23 met en communication les branches 17 et 22 et permet de laisser passer le fluide de la branche 17 vers la branche 22. La vanne 23 coupe la sortie 6b.If the temperature of the water as measured by the sensor 12, is lower than a predetermined temperature T c1 and which is less than or equal to the temperature T ot of the thermostat opening 10, generally between 83 and 89 ° C, the multi-way valve 16 communicates the branches 17 and 20 and allows to pass the fluid from the branch 20 to the branch 17. The pump 21 is stopped. The cooling fluid which is in the heat engine 1 is subjected to a high pressure due to the pump 9, higher pressure than that prevailing in the branch 17. The valve 23 communicates the branches 17 and 22 and allows to leave passing the fluid from the branch 17 to the branch 22. The valve 23 intersects the outlet 6b.

Dans cet état, qui est celui d'un fonctionnement au démarrage du moteur thermique 1 ou à très faible charge, aucune énergie n'est consommée par la pompe 21 qui se trouve à l'arrêt. La chaleur dégagée par le fonctionnement du moteur électrique 2 et de l'unité de puissance 3 permet d'augmenter la température du moteur thermique 1 et donc de réduire la durée de sa montée en température, ce qui se traduit par la diminution de la quantité d'éléments polluants générée par la combustion du moteur thermique 1. Le maintien à l'arrêt de la pompe 21 réduit sa durée de fonctionnement et permet donc une durée de vie globale plus longue.In this state, which is that of a running operation of the heat engine 1 or very low load, no energy is consumed by the pump 21 which is at a standstill. The heat generated by the operation of the electric motor 2 and the power unit 3 makes it possible to increase the temperature of the heat engine 1 and thus to reduce the duration of its rise in temperature, which is reflected in the reduction in the quantity of polluting elements generated by the combustion of the heat engine 1. The stopping of the pump 21 reduces its operating time and thus allows a longer overall service life.

Si le capteur 12 indique une température d'eau supérieure ou égale à la température Tc1 mais inférieure à la température Tot d'ouverture du thermostat 10, la vanne multi-voies 16 met en communication les branches 17 et 19. La pompe 21 est mise en marche à faible vitesse, par exemple avec une faible tension d'alimentation U1. La vanne 16 est maintenue comme précédemment ou au contraire coupe la branche 22 et ouvre la sortie 6b. Le moteur électrique 2 et son unité de puissance 3 sont alors refroidis au moyen du radiateur 6 dont la capacité d'échange thermique est largement supérieure, par exemple d'un facteur de l'ordre de 3 à 5, à la chaleur susceptible d'être dégagée par le moteur électrique 2 et son unité de puissance 3. La conduite 8, le radiateur 6 et la conduite 7 étant dimensionnés pour les forts débits de fluide de refroidissement nécessités par le moteur thermique 1, les pertes de charge sont faibles. L'énergie consommée par la pompe 21 est donc également faible. Son usure l'est également.If the sensor 12 indicates a water temperature greater than or equal to the temperature Tc1 but lower than the temperature T ot of the thermostat opening 10, the multi-way valve 16 communicates the branches 17 and 19. The pump 21 is started at low speed, for example with a low supply voltage U 1 . The valve 16 is maintained as before or on the contrary cut the branch 22 and opens the outlet 6b. The electric motor 2 and its power unit 3 are then cooled by means of the radiator 6, the heat exchange capacity of which is much greater, for example by a factor of the order of 3 to 5, at the heat likely to be cleared by the electric motor 2 and its power unit 3. The pipe 8, the radiator 6 and the pipe 7 being sized for the high flow rates of cooling fluid required by the heat engine 1, the pressure losses are low. The energy consumed by the pump 21 is therefore also low. Its wear is too.

Si le capteur 12 indique une température d'eau supérieure ou égale à la température Tot, la vanne multi-voies 16 met en communication les branches 17 et 18. La pompe 21 est mise en marche. La vanne 23 coupe la branche 22 et ouvre la sortie 6b.If the sensor 12 indicates a water temperature greater than or equal to the temperature T ot , the multi-way valve 16 communicates the branches 17 and 18. The pump 21 is turned on. The valve 23 intersects the branch 22 and opens the outlet 6b.

En d'autres termes, le débit de la sortie 6b du radiateur 6 passe par les branches 17 et 18. Le moteur électrique 2 et son unité de puissance 3 sont refroidis par du fluide de refroidissement à basse température.In other words, the flow rate of the output 6b of the radiator 6 passes through the branches 17 and 18. The electric motor 2 and its power unit 3 are cooled by coolant at low temperature.

De plus, on peut prévoir que si le capteur de température 13 à la sortie du radiateur 6 indique une température de fluide de refroidissement inférieure à une température prédéterminée Tc2, la pompe 21 fonctionne à faible débit, par exemple avec la faible tension d'alimentation U1, et que par contre si le capteur 13 indique une température supérieure à la température Tc2, la pompe 21 fonctionne à débit élevé, par exemple alimentée par une tension U2 supérieure à U1 pour obtenir un débit plus fort dans la branche 17. On comprendra que Tc2 est supérieure à Tot.In addition, it can be provided that if the temperature sensor 13 at the radiator output 6 indicates a coolant temperature lower than a predetermined temperature T c2 , the pump 21 operates at a low flow rate, for example with the low voltage of supply U 1 , and that against if the sensor 13 indicates a temperature above the temperature T c2 , the pump 21 operates at a high rate, for example powered by a voltage U 2 greater than U 1 to obtain a higher rate in the branch 17. It will be understood that T c2 is greater than T ot .

Bien entendu, l'unité de commande 14 du système de refroidissement peut commander le fonctionnement du ventilateur 11 en fonction de la température mesurée par le capteur 13.Of course, the control unit 14 of the cooling system can control the operation of the fan 11 as a function of the temperature measured by the sensor 13.

2) Moteur thermique 1 à l'arrêt, véhicule en tout électrique.2) Engine 1 stopped, all-electric vehicle.

Si la température de l'eau mesurée par le capteur 12, est inférieure à la température Tc1, la vanne multi-voies 16 met en communication les branches 17 et 20 et permet de laisser passer le fluide de la branche 17 vers la branche 20. La vanne 23 met en communication les branches 17 et 22 et permet de laisser passer le fluide de la branche 22 vers la branche 17. La vanne 23 coupe la sortie 6b. La pompe 21 est mise en marche à faible débit, par exemple alimentée par la tension U1. On peut ainsi chauffer le moteur thermique 1 et, si nécessaire, l'habitacle par le radiateur 4.If the temperature of the water measured by the sensor 12 is lower than the temperature T c1 , the multi-way valve 16 communicates the branches 17 and 20 and allows to pass the fluid from the branch 17 to the branch 20 The valve 23 communicates the branches 17 and 22 and allows to pass the fluid from the branch 22 to the branch 17. The valve 23 intersects the outlet 6b. The pump 21 is started at low flow, for example powered by the voltage U 1 . It is thus possible to heat the heat engine 1 and, if necessary, the passenger compartment by the radiator 4.

Si la température de l'eau mesurée par le capteur 12, est supérieure à la température Tc1, la vanne multi-voies 16 met en communication les branches 17 et 19 et permet de laisser passer le fluide de la branche 17 vers la branche 19. La vanne 23 coupe la branche 22 et ouvre la sortie 6b. La pompe 21 est mise en marche à faible débit, par exemple alimentée par la tension U1. Ce mode permet un excellent refroidissement du moteur électrique 2 et de l'unité de puissance 3 car le fluide de refroidissement passe dans tout le radiateur 6 (trois passes).If the temperature of the water measured by the sensor 12, is greater than the temperature T c1 , the multi-way valve 16 communicates the branches 17 and 19 and allows to pass the fluid from the branch 17 to the branch 19 The valve 23 intersects the branch 22 and opens the outlet 6b. The pump 21 is started at low flow, for example powered by the voltage U 1 . This mode allows excellent cooling of the electric motor 2 and the power unit 3 because the cooling fluid passes through the entire radiator 6 (three passes).

On peut aussi obtenir une performance de refroidissement intermédiaire en ne faisant passer l'eau que dans la troisième passe du radiateur 6 à l'aide de la vanne multivoies 16 qui met en communication les branches 17 et 18. Cette configuration intermédiaire peut être intéressante pour réduire l'oscillation éventuelle de la température de l'eau lors de passage de la phase montée en température et chauffage à la phase super refroidissement décrites ci-dessus.It is also possible to obtain an intermediate cooling performance by only passing the water through the third pass of the radiator 6 by means of the multichannel valve 16 which puts in communication the branches 17 and 18. This intermediate configuration can be of interest for to reduce the possible oscillation of the temperature of the water during the transition from the temperature rise phase and heating to the super cooling phase described above.

Si le capteur 13 indique une température supérieure à la température Tc2, on met en marche le ventilateur 11, toutefois, ceci ne se produira que rarement d'ou une réduction de la durée de fonctionnement dudit ventilateur 11 et une réduction de la consommation d'énergie.If the sensor 13 indicates a temperature higher than the temperature T c2 , the fan 11 is started, however, this will only rarely occur or a reduction in the operating time of said fan 11 and a reduction in the power consumption. 'energy.

3) Moteur électrique 2 à l'arrêt, sans la nécessité de refroidissement de composants électroniques.3) Electric motor 2 stopped, without the need for cooling of electronic components.

La pompe 21 peut être mise en route pour faire passer du fluide de refroidissement dans la troisième passe et assurer ainsi un refroidissement d'appoint du moteur thermique. La vanne 16 met en communication les branches 17 et 18. La vanne 23 met en communication la branche 17 avec la sortie 6 b et obture la branche 22.The pump 21 can be started to pass cooling fluid in the third pass and thus provide additional cooling of the engine. The valve 16 communicates the branches 17 and 18. The valve 23 communicates the branch 17 with the outlet 6b and closes the branch 22.

En variante, on peut prévoir de maintenir la pompe 21 à l'arrêt et de mettre en communication la branche 22 avec la sortie 6b et tout en obturant la branche 17 au moyen de la vanne 16.Alternatively, it can be provided to maintain the pump 21 to stopping and communicating the branch 22 with the output 6b and while closing the branch 17 by means of the valve 16.

Ainsi, la température d'eau à l'entrée du moteur électrique 2 et de l'unité électronique de puissance 3, reste très basse dans tous les cas de fonctionnement. Pour les cas où la température mesurée par le capteur 13 est supérieure à Tc2, une augmentation du débit de la pompe 21 et/ou le déclenchement du ventilateur 11 permettent de maintenir cette température dans les limites souhaitées.Thus, the water temperature at the inlet of the electric motor 2 and the electronic power unit 3 remains very low in all cases of operation. For cases where the temperature measured by the sensor 13 is greater than T c2 , an increase in the flow rate of the pump 21 and / or the triggering of the fan 11 can maintain this temperature within the desired limits.

Grâce à l'invention, la pompe 21 a besoin d'une faible puissance, tourne moins vite et moins fréquemment. Dans un cas de fonctionnement, la pompe 21 est à l'arrêt. Dans deux autres cas de fonctionnement où le thermostat est fermé, la capacité d'échange thermique du radiateur 6, dimensionnée pour les pertes thermiques du moteur thermique 1, est largement excédentaire par rapport aux pertes thermiques du moteur électrique 2 et de l'unité électronique de puissance 3 et permet donc à la pompe 21 de fonctionner à faible débit. Enfin, les branches 17, 18 et 19 sont connectées à des conduites 7 et 8 de fort diamètre, ce qui minimise la perte de charge subie par le fluide entraîné par la pompe 21.Thanks to the invention, the pump 21 needs a low power, runs slower and less frequently. In one operating case, the pump 21 is at a standstill. In two other operating cases where the thermostat is closed, the heat exchange capacity of the radiator 6, sized for thermal losses of the heat engine 1, is largely in excess of the thermal losses of the electric motor 2 and the electronic unit. of power 3 and thus allows the pump 21 to operate at low flow. Finally, the branches 17, 18 and 19 are connected to pipes 7 and 8 of large diameter, which minimizes the pressure drop experienced by the fluid driven by the pump 21.

On a supposé ci-dessus que la pompe 21 était entraînée par un moteur électrique indépendant. On peut également concevoir que la pompe 21 est entraînée par le moteur électrique de traction 2. Ceci est avantageux pour le coût et la durée de vie du système. En effet, une pompe électrique classique est généralement à courant continu. Par rapport à une pompe mécanique, le moteur électrique est le principal surcoût d'une pompe électrique et présente en général une durée de vie nettement inférieure à celle de la pompe mécanique. Le fonctionnement du système est alors le suivant.It has been assumed above that the pump 21 is driven by an independent electric motor. It is also conceivable that the pump 21 is driven by the electric traction motor 2. This is advantageous for the cost and the lifetime of the system. Indeed, a conventional electric pump is generally DC. Compared to a mechanical pump, the electric motor is the main additional cost of an electric pump and generally has a life significantly lower than that of the mechanical pump. The operation of the system is then the following.

Si la température d'eau mesurée par le capteur 12 est inférieure à la température Tot d'ouverture du thermostat, les branches 17 et 19 sont mises en communication. Si la température d'eau mesurée par le capteur 12 est supérieure ou égale à la température Tot, et si le véhicule est en mode de traction électrique, moteur thermique 1 à l'arrêt, on maintient la communication de fluide entre les branches 17 et 19. Si la température de fluide de refroidissement mesurée par le capteur 12 devient supérieure ou égale à la température Tot, et si le moteur thermique est en fonctionnement, la vanne 16 met en communication les branches 17 et 18. En outre, si le capteur 13 mesure une température supérieure à la température prédéterminée Tc2, le ventilateur 11 est mis en action, notamment si la vitesse du véhicule est faible, par exemple inférieure à une valeur comprise entre 60 et 80 km/h.If the water temperature measured by the sensor 12 is lower than the thermostat opening temperature T ot , the branches 17 and 19 are put into communication. If the water temperature measured by the sensor 12 is greater than or equal to the temperature T ot , and if the vehicle is in electric traction mode, with the engine 1 stopped, the fluid communication between the branches 17 is maintained. and 19. If the coolant temperature measured by the sensor 12 becomes greater than or equal to the temperature T ot and if the engine is in operation, the valve 16 establishes communication between the branches 17 and 18. Further, if the sensor 13 measures a temperature higher than the predetermined temperature T c2 the fan 11 is activated, especially if the speed of the vehicle is low, for example less than a value between 60 and 80 km / h.

Sur la figure 3, est illustrée une variante dans laquelle le moteur électrique 2 et l'unité électronique de puissance 3 sont refroidis en parallèle, la branche 17 se divisant en une sous-branche 17a passant par le moteur électrique 2 et en une sous-branche 17b passant par l'unité électronique de puissance 3.FIG. 3 illustrates a variant in which the electric motor 2 and the electronic power unit 3 are cooled in parallel, the branch 17 dividing into a sub-branch 17a passing through the electric motor 2 and into a sub-branch. branch 17b passing through the electronic power unit 3.

Sur la figure 4, est illustrée une variante dans laquelle la vanne 23 et la branche 22 sont supprimées. La branche 17 est en permanence en communication avec la sortie 6b. Cette variante économique est intéressante si le chauffage du moteur thermique 1 n'est pas prioritaire.In Figure 4, there is illustrated a variant in which the valve 23 and the branch 22 are removed. The branch 17 is permanently in communication with the output 6b. This economical variant is interesting if the heating of the heat engine 1 is not a priority.

Sur la figure 5, est illustrée une variante proche de la précédente à ceci près que la branche 20 est supprimée. La vanne 16 est à trois voies. Cette variante économique est intéressante si le chauffage du moteur thermique 1 n'est pas prioritaire et si la durée de vie de la pompe 21 n'est pas critique, par exemple si la pompe 21 est entraînée par le moteur électrique 2.In Figure 5, is shown a variant close to the previous except that the branch 20 is removed. The valve 16 is three-way. This economical variant is advantageous if the heating of the heat engine 1 is not a priority and if the life of the pump 21 is not critical, for example if the pump 21 is driven by the electric motor 2.

Sur la figure 6, est illustrée une variante proche de celle de la figure 1. Le radiateur 6 est de type à deux passes avec une boîte à eau 24 dépourvue de cloison. Le fluide de refroidissement effectue une passe entre l'entrée 27 et la sortie 6a.In Figure 6, is shown a variant similar to that of Figure 1. The radiator 6 is of two-pass type with a water box 24 without partition. The coolant passes between inlet 27 and outlet 6a.

Sur la figure 7, est illustrée une variante proche de celle de la figure 5 à ceci près que la branche 19 et la vanne 16 sont supprimées. Lorsque le thermostat 10 est fermé avec la pompe 21 en marche et pour certains régimes du moteur thermique 1, le fluide de refroidissement issu du radiateur 4 et de l'échangeur 5 peut entrer par la sortie 6a du radiateur 6, effectuer une passe, et ressortir par la sortie 6b. Le fluide de refroidissement issu de la branche 18 peut passer par la pompe 9 et le moteur thermique 1.In Figure 7, is shown a variant similar to that of Figure 5 except that the branch 19 and the valve 16 are deleted. When the thermostat 10 is closed with the pump 21 running and for certain speeds of the heat engine 1, the cooling fluid from the radiator 4 and the heat exchanger 5 can enter through the outlet 6a of the radiator 6, make a pass, and exit through exit 6b. The cooling fluid from the branch 18 can pass through the pump 9 and the heat engine 1.

Sur la figure 8, est illustrée une variante proche de celle de la figure 7 à ceci près que la branche 18 est reliée à la conduite 7 plus près de la sortie 6a, en d'autres termes entre le capteur 13 et l'embranchement vers l'échangeur 5.In FIG. 8, a variant similar to that of FIG. 7 is illustrated, except that the branch 18 is connected to the pipe 7 closer to the outlet 6a, in other words between the sensor 13 and the branch to the exchanger 5.

Sur la figure 9, est illustrée une variante de radiateur proche de celui de la figure 2, à ceci près que la boîte à eau 24 est divisée en trois parties amont 24a, centrale 24b, et aval 24c par des cloisons 26 et 29. La partie aval 24c est reliée à la sortie auxiliaire 6b. La partie aval 25b de la boîte à eau 25 met en communication des tubulures reliées à la partie centrale 24b et des tubulures reliées à la partie aval 24c. Le radiateur 6 est dit à quatre passes avec circulation en double U. On obtient une température à la sortie auxiliaire 6b encore plus basse.FIG. 9 shows a radiator variant similar to that of FIG. 2, except that the water box 24 is divided into three upstream parts 24a, 24b central and 24c downstream by partitions 26 and 29. downstream portion 24c is connected to the auxiliary output 6b. The downstream portion 25b of the water box 25 communicates tubings connected to the central portion 24b and tubing connected to the downstream portion 24c. The radiator 6 is said to four passes with circulation in double U. We obtain a temperature at the auxiliary output 6b even lower.

La sortie principale 6a peut prévue pour un fonctionnement courant aux environs de 90 à 105°C, température souhaitée pour le moteur thermique, sans risque de surconsommation de carburant liée à une température trop faible. La sortie auxiliaire 6b peut prévoir pour un fonctionnement courant à une température nettement plus faible, permettant un bon rendement du moteur électrique et de l'unité électronique de puissance et leur construction à partir de composants standards bon marché.The main outlet 6a can be provided for a current operation at around 90 to 105 ° C, the desired temperature for the heat engine, without the risk of overconsumption of fuel due to a too low temperature. The auxiliary output 6b can provide for current operation at a significantly lower temperature, allowing a good performance of the electric motor and the electronic power unit and their construction from inexpensive standard components.

Sur la figure 10, est illustré un autre mode de réalisation dans lequel le thermostat 10 est disposé sur la conduite 7 en amont de la pompe 9, elle-même montée immédiatement en amont du moteur 1. La conduite de dérivation 15 comprend une branche 17 passant par le moteur électrique 2, l'unité de commande 3 et la pompe électrique 21. Un capteur de température 30 est monté entre la pompe électrique 21 et l'unité de commande 3. En amont de la pompe électrique 21, la branche 17 est connectée à une vanne à trois voies 23 également reliée à la sortie 6b du radiateur 6 et à une conduite 31. La conduite 31 rejoint la branche 18 issue de la vanne trois voies 16. La branche 18 débouche dans une conduite 32 qui passe par le radiateur de chauffage 4 qui est connecté à une extrémité à la conduite 8 et à une autre extrémité à une partie aval du thermostat 10. Un capteur de température 12 est associé au thermostat 10. Le thermostat 10 est apte à obturer la conduite 7, tandis que la conduite 32 est en communication libre avec la pompe 9 et le moteur 1.FIG. 10 illustrates another embodiment in which the thermostat 10 is disposed on the pipe 7 upstream of the pump 9, itself mounted immediately upstream of the engine 1. The bypass pipe 15 comprises a branch 17 passing through the electric motor 2, the control unit 3 and the electric pump 21. A temperature sensor 30 is mounted between the electric pump 21 and the control unit 3. Upstream of the electric pump 21, the branch 17 is connected to a three-way valve 23 also connected to the outlet 6b of the radiator 6 and to a pipe 31. The pipe 31 joins the branch 18 from the three-way valve 16. The branch 18 opens into a pipe 32 which passes through the heating radiator 4 which is connected at one end to the pipe 8 and at another end to a downstream portion of the thermostat 10. A temperature sensor 12 is associated with the thermostat 10. The thermostat 10 is suitable closing the pipe 7, while the pipe 32 is in free communication with the pump 9 and the motor 1.

La pompe 21 et les vannes 16 et 23 sont pilotées par l'unité de commande qui n'a pas été représentée sur la figure. La vanne trois voies 16 connecte la branche 17 à la branche 18 ou à la branche 19. La vanne trois voies 23 connecte la branche 17 à la sortie 6b du radiateur 6 ou à la conduite 31.The pump 21 and the valves 16 and 23 are controlled by the control unit which has not been shown in the figure. The three-way valve 16 connects the branch 17 to the branch 18 or the branch 19. The three-way valve 23 connects the branch 17 to the outlet 6b of the radiator 6 or the pipe 31.

Il est prévu deux températures de consigne TC1 et TC2 comparées en temps réel à la température relevée par le capteur 30. Les valeurs de ces seuils sont déterminées par la température supportable par l'unité de commande 3 du moteur électrique 2. On peut prévoir par exemple TC1=60°C et TC2=70°C.Two set temperatures TC1 and TC2 are provided, compared in real time with the temperature measured by the sensor 30. The values of these thresholds are determined by the temperature tolerable by the control unit 3 of the electric motor 2. example TC1 = 60 ° C and TC2 = 70 ° C.

En mode thermique, le moteur thermique 1 est en fonctionnement et entraîne la pompe 9. La vanne 16 met en communication les branches 17 et 18. La vanne 23 met en communication la branche 17 et la conduite 31.In thermal mode, the heat engine 1 is in operation and drives the pump 9. The valve 16 communicates the branches 17 and 18. The valve 23 communicates the branch 17 and the pipe 31.

En mode électrique, la pompe mécanique 9 est à l'arrêt. La pompe électrique 21 est en fonctionnement. Si la température mesurée par le capteur 30 est inférieure à TC1, par exemple dans le cas d'un démarrage à froid, la vanne 16 met en communication les branches 17 et 19 et la vanne 23 met en communication la branche 17 et la conduite 31. On peut ainsi fournir de la chaleur au radiateur de chauffage 4 et/ou préchauffer le moteur thermique 1 afin de réduire ses émissions polluantes lors d'un démarrage ultérieur. La montée en température de l'eau est efficace car l'eau du circuit ne passe pas dans le radiateur 6.In electrical mode, the mechanical pump 9 is at a standstill. The electric pump 21 is in operation. If the temperature measured by the sensor 30 is lower than TC1, for example in the case of a cold start, the valve 16 communicates the branches 17 and 19 and the valve 23 communicates the branch 17 and the pipe 31 It is thus possible to supply heat to the heating radiator 4 and / or to preheat the heat engine 1 in order to reduce its pollutant emissions during a subsequent start-up. The rise in temperature of the water is effective because the circuit water does not pass into the radiator 6.

Si la température mesurée par le capteur 30 est comprise entre TC1 et TC2, on prévoit de refroidir les organes de traction électrique et de chauffer les organes de traction thermique. La vanne 16 met alors en communication les branches 17 et 18 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. On assure ainsi toujours un débit dans le radiateur de chauffage 4 et dans le moteur thermique 1, tout en refroidissant les composants électriques par passage dans le radiateur 6.If the temperature measured by the sensor 30 is between TC1 and TC2, it is expected to cool the electric traction members and heat the thermal traction members. The valve 16 then communicates the branches 17 and 18 and the valve 23 communicates the output 6b of the radiator 6 and the branch 17. It thus always ensures a flow in the heating radiator 4 and in the heat engine 1, while by cooling the electrical components by passing through the radiator 6.

Si la température mesurée par le capteur 30 est supérieure à TC2, la vanne 16 met en communication la branche 17 et la branche 19 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. On bénéficie ainsi du refroidissement assuré par l'ensemble du radiateur dimensionné pour la dissipation de chaleur de l'ensemble de traction constitué par le moteur thermique 1 et le moteur électrique 2.If the temperature measured by the sensor 30 is greater than TC2, the valve 16 communicates the branch 17 and the branch 19 and the valve 23 communicates the output 6b of the radiator 6 and the branch 17. It thus benefits from the cooling provided by the entire radiator dimensioned for the dissipation of heat of the traction assembly constituted by the heat engine 1 and the electric motor 2.

En mode hybride, les deux moteurs 1 et 2 sont en marche.In hybrid mode, both engines 1 and 2 are running.

Si la température mesurée par le capteur 30 est inférieure à TC1 et celle mesurée par le capteur 12 inférieure à la température d'ouverture du thermostat 10, on refroidit l'unité de commande 3 et le moteur électrique 2 sans faire fonctionner la pompe 21. La vanne 16 met en communication les branches 17 et 19 et la vanne 23 met en communication la branche 17 et la conduite 31. On réduit ainsi les durées de fonctionnement de la pompe électrique. Lors d'un démarrage à froid, en mode hybride, on profite de la dissipation de chaleur des organes électriques pour assurer une montée rapide de la température du moteur thermique 1. Ce qui permet de réduire ces émissions polluantes au démarrage.If the temperature measured by the sensor 30 is lower than TC1 and that measured by the sensor 12 is lower than the opening temperature of the thermostat 10, the control unit 3 and the electric motor 2 are cooled without operating the pump 21. The valve 16 communicates the branches 17 and 19 and the valve 23 communicates the branch 17 and the pipe 31. This reduces the operating time of the electric pump. During a cold start, in hybrid mode, we take advantage of the heat dissipation of the electrical components to ensure a rapid rise in the temperature of the engine 1. This reduces these pollutant emissions at startup.

Si la température mesurée par le capteur 30 est comprise entre TC1 et TC2, et la température mesurée par le capteur 12 inférieure à la température d'ouverture du thermostat, la vanne 16 met en communication les branches 17 et 18 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. La pompe électrique 21 est à l'arrêt. On assure ainsi un bon refroidissement des composants électroniques de puissance de l'unité 3 par circulation du liquide de refroidissement dans l'ensemble du radiateur 6.If the temperature measured by the sensor 30 is between TC1 and TC2, and the temperature measured by the sensor 12 is lower than the opening temperature of the thermostat, the valve 16 puts in communication the branches 17 and 18 and the valve 23 sets communicating the output 6b of the radiator 6 and the branch 17. The electric pump 21 is at a standstill. This ensures a good cooling of the electronic power components of the unit 3 by circulation of the coolant throughout the radiator 6.

Si la température mesurée par le capteur 30 est supérieure à TC2 et la température mesurée par le capteur 12 inférieure à la température d'ouverture du thermostat, la pompe électrique 21 est mise en route. Le thermostat 10 étant fermé, on profite de tout le radiateur 6 pour refroidir les organes de la traction électrique. La vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. La vanne 16 met en communication la branche 17 et la branche 19. Ainsi, les deux circuits sont découplés. La température du circuit de refroidissement des organes de traction électrique peut être beaucoup plus faible que celle du circuit du moteur thermique.If the temperature measured by the sensor 30 is greater than TC2 and the temperature measured by the sensor 12 is lower than the opening temperature of the thermostat, the electric pump 21 is started. The thermostat 10 being closed, we take advantage of the entire radiator 6 to cool the bodies of electric traction. The valve 23 communicates the output 6b of the radiator 6 and the branch 17. The valve 16 communicates the branch 17 and the branch 19. Thus, the two circuits are decoupled. The temperature of the cooling circuit of the electric traction units can be much lower than that of the heat engine circuit.

En variante, on peut également prévoir que la vanne 16 mette en communication les branches 17 et 18. On obtient ainsi un débit d'eau dans le moteur thermique plus important, ce qui peut favoriser la diminution de la pollution par une montée en température plus rapide du moteur thermique.Alternatively, it can also be provided that the valve 16 communicates the branches 17 and 18. This provides a flow of water in the larger heat engine, which can promote the reduction of pollution by a rise in temperature more fast engine.

Si la température mesurée par le capteur 12 est supérieure à la température d'ouverture du thermostat, la pompe électrique 21 fonctionne pour assurer un débit dans la branche 17. La vanne 16 met en communication les branches 17 et 18. La vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17.If the temperature measured by the sensor 12 is greater than the opening temperature of the thermostat, the electric pump 21 operates to provide a flow in the branch 17. The valve 16 communicates the branches 17 and 18. The valve 23 sets communicating the output 6b of the radiator 6 and the branch 17.

Sur la figure 11, est illustrée une variante proche de la figure 10, à ceci près que le moteur électrique 2 et son unité de commande 3 sont mis en parallèle, ce qui permet de diminuer les pertes de charge. La commande des vannes est identique à celui de la figure 10.In Figure 11, is shown a variant similar to Figure 10, except that the electric motor 2 and its control unit 3 are connected in parallel, which reduces the pressure losses. The control of the valves is identical to that of FIG.

Sur la figure 12, est illustré un mode de réalisation simplifié à celui de la figure 10, dans lequel la vanne 23 et la conduite 31 sont supprimées. La sortie 6b du radiateur 6 est directement reliée à la pompe électrique 21. Il est à noter que la vanne 23 sert dans les modes de réalisation précédents, en mode électrique et hybride, à favoriser une bonne montée en température du moteur thermique 1 et à un éventuel chauffage de l'habitacle. Si ces deux fonctions ne sont pas prioritaires, on peut utiliser le mode de réalisation de la figure 12.In Figure 12, there is illustrated an embodiment simplified to that of Figure 10, wherein the valve 23 and the pipe 31 are deleted. The outlet 6b of the radiator 6 is directly connected to the electric pump 21. It should be noted that the valve 23 serves in the previous embodiments, in electrical and hybrid mode, to promote a good temperature rise of the heat engine 1 and to a possible heating of the passenger compartment. If these two functions are not a priority, the embodiment of FIG. 12 can be used.

Le mode de réalisation illustré sur la figure 13 est encore simplifié par rapport à celui illustré sur la figure 12. La branche 19 est simplifiée et la vanne trois voies 16 est remplacée par une vanne 33 simple qui permet d'obturer et donc de couper la communication entre les branches 17 et 18. La vanne 33 permet de déconnecter la branche des composants électriques en mode thermique pur. Le préchauffage du moteur thermique 1 et le chauffage de l'habitacle sont moins performants. Toutefois, si ces deux fonctions ne sont pas prioritaires, ce mode de réalisation est très économique en raison de la simplification du circuit de refroidissement et de la simplification de la commande. Seules la vanne 33 et la pompe électrique 21 doivent être pilotées. On peut toujours mettre la pompe électrique 21 à l'arrêt lors d'un fonctionnement en mode hybride, le thermostat 10 étant fermé et la température mesurée par le capteur 30 étant inférieure à TC2.The embodiment illustrated in FIG. 13 is further simplified with respect to that illustrated in FIG. 12. The branch 19 is simplified and the three-way valve 16 is replaced by a simple valve 33 which makes it possible to close and thus to cut the communication between the branches 17 and 18. The valve 33 disconnects the branch of the electrical components in pure thermal mode. The preheating of the engine 1 and the heating of the passenger compartment are less efficient. However, if these two functions are not a priority, this embodiment is very economical because of the simplification of the cooling circuit and the simplification of the control. Only the valve 33 and the electric pump 21 must be controlled. The electric pump 21 can always be turned off when operating in hybrid mode, the thermostat 10 being closed and the temperature measured by the sensor 30 being less than TC2.

Lorsque la pompe mécanique 9 est en fonctionnement et la valve 33 en position d'obturation, la branche 17 ne voit pas de circulation de liquide de refroidissement. Le refroidissement du moteur thermique 1 s'effectue sans perturbations dues aux organes de traction électrique.When the mechanical pump 9 is in operation and the valve 33 in the closed position, the branch 17 does not see circulation of coolant. The cooling of the heat engine 1 is carried out without disturbances due to the electric traction members.

Lorsque la vanne 33 est en position ouverte, en mode électrique, elle autorise la circulation de fluide de refroidissement et le refroidissement du moteur électrique 2 et de son unité de commande 3.When the valve 33 is in the open position, in electrical mode, it allows the circulation of cooling fluid and the cooling of the electric motor 2 and its control unit 3.

En mode hybride, lorsque la température mesurée par le capteur 30 est inférieure à TC2 et la température mesurée par le capteur 12 inférieure à la température d'ouverture du thermostat, on arrête la pompe électrique 21 et le débit de liquide de refroidissement dans la branche 17 est assuré par la pompe mécanique 9 entraînée par le moteur thermique 1.In hybrid mode, when the temperature measured by the sensor 30 is lower than TC2 and the temperature measured by the sensor 12 is lower than the opening temperature of the thermostat, the electric pump 21 and the flow of coolant in the branch are stopped. 17 is provided by the mechanical pump 9 driven by the heat engine 1.

Si la température mesurée par le capteur 30 est supérieure à TC2 ou si la température mesurée par le capteur 12 est supérieure à la température d'ouverture du thermostat, la pompe électrique 21 est mise en marche.If the temperature measured by the sensor 30 is greater than TC2 or if the temperature measured by the sensor 12 is greater than the opening temperature of the thermostat, the electric pump 21 is turned on.

Le mode de réalisation illustré sur la figure 14 est proche de celui illustré sur la figure 10, à ceci près que le moteur électrique 2 n'est plus disposé sur la branche 17 mais sur une conduite 34 montée parallèlement au radiateur de chauffage 4. Le refroidissement du moteur électrique 2 peut être assuré, soit par passage du liquide de refroidissement entre les conduites 8 et 34, soit par l'huile du moteur thermique 1. Dans ce dernier cas, on prévoira un échangeur de température huile-eau.The embodiment illustrated in FIG. 14 is close to that illustrated in FIG. 10, except that the electric motor 2 is no longer disposed on the branch 17 but on a pipe 34 mounted parallel to the heating radiator 4. cooling of the electric motor 2 can be ensured, either by passage of the coolant between the lines 8 and 34, or by the engine oil 1. In the latter case, there will be provided an oil-water temperature exchanger.

Le mode de réalisation illustré sur la figure 15 est proche de celui illustré sur la figure 1, à ceci près que la branche 19 est supprimée. La branche 20 est reliée, d'une part, à la vanne 16 et, d'autre part, à la conduite 32 entre le radiateur de chauffage 4 et le moteur thermique 1, le capteur de température 12 étant également monté sur cette partie de la conduite 32.The embodiment illustrated in FIG. 15 is close to that illustrated in FIG. 1, except that branch 19 is omitted. The branch 20 is connected, on the one hand, to the valve 16 and, on the other hand, to the pipe 32 between the heating radiator 4 and the heat engine 1, the temperature sensor 12 being also mounted on this part of the pipe 32.

En mode thermique, la pompe 9 est en marche, la vanne 16 connecte les branches 17 et 18. La vanne 23 connecte la branche 17 et la branche 22. Les deux circuits sont alors découplés.In thermal mode, the pump 9 is running, the valve 16 connects the branches 17 and 18. The valve 23 connects the branch 17 and the branch 22. The two circuits are then decoupled.

En mode électrique, la pompe mécanique 9 est à l'arrêt, tandis que la pompe électrique 21 est en fonctionnement.In electrical mode, the mechanical pump 9 is at a standstill, while the electric pump 21 is in operation.

Si la température mesurée par le capteur 30 est inférieure à TC1, la vanne 16 met en communication les branches 17 et 20 et la vanne 23 met en communication les branches 17 et 22. On peut ainsi chauffer le radiateur de chauffage 4 tout en assurant une montée en température du moteur thermique 1. La montée en température est efficace car le liquide de refroidissement ne passe pas dans le radiateur 6.If the temperature measured by the sensor 30 is lower than TC1, the valve 16 communicates the branches 17 and 20 and the valve 23 communicates the branches 17 and 22. It is thus possible to heat the heating radiator 4 while ensuring a temperature rise of the heat engine 1. The rise in temperature is effective because the coolant does not pass into the radiator 6.

Si la température mesurée par le capteur 30 est comprise entre TC1 et TC2, la vanne 16 met en communication les branches 17 et 20 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. On assure toujours un débit de liquide dé refroidissement dans le radiateur de chauffage 4 et dans le moteur 1, tout en refroidissant les composants électriques par passage dans le radiateur 6. Si le thermostat 10 s'ouvre, on dispose alors de tout le radiateur 6.If the temperature measured by the sensor 30 is between TC1 and TC2, the valve 16 communicates the branches 17 and 20 and the valve 23 communicates the outlet 6b of the radiator 6 and the branch 17. It always ensures a flow of cooling liquid in the heating radiator 4 and in the engine 1, while cooling the electrical components by passing through the radiator 6. If the thermostat 10 opens, then we have the entire radiator 6.

Si la température mesurée par le moteur 30 est supérieure à TC2, la vanne 16 met en communication les branches 17 et 18 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. Le refroidissement des organes électriques est assuré par la troisième passe du radiateur 6, autrement dit par la partie du radiateur 6 comprise entre la sortie principale 6a et la sortie auxiliaire 6b.If the temperature measured by the motor 30 is greater than TC2, the valve 16 communicates the branches 17 and 18 and the valve 23 communicates the outlet 6b of the radiator 6 and the branch 17. The cooling of the electrical components is ensured by the third pass of the radiator 6, in other words by the part of the radiator 6 between the main output 6a and the auxiliary output 6b.

En mode hybride, les deux moteurs 1 et 2 sont en marche.In hybrid mode, both engines 1 and 2 are running.

Si la température mesurée par le capteur 30 est inférieure à TC1 et la température mesurée par le capteur 12 inférieure à la température d'ouverture du thermostat, on peut refroidir l'unité de commande 3 et le moteur électrique 2, avec la pompe électrique 21 à l'arrêt. La vanne 16 met en communication les branches 20 et 17 et la vanne 23 met en communication les branches 17 et 22. On réduit ainsi la durée de fonctionnement de la pompe électrique. Lors d'un démarrage à froid en mode hybride, on profite de la dissipation de chaleur des organes électriques pour assurer une montée rapide de la température du moteur thermique 1 et éventuellement pour assurer le chauffage de l'habitacle.If the temperature measured by the sensor 30 is lower than TC1 and the temperature measured by the sensor 12 is lower than the opening temperature of the thermostat, the control unit 3 and the electric motor 2 can be cooled with the electric pump 21 stopped. The valve 16 communicates the branches 20 and 17 and the valve 23 communicates the branches 17 and 22. It reduces the operating time of the electric pump. During a cold start in hybrid mode, it takes advantage of the heat dissipation of the electrical components to ensure a rapid rise in the temperature of the engine 1 and possibly to ensure the heating of the passenger compartment.

Si la température mesurée par le capteur 30 est comprise entre TC1 et TC2, et la température mesurée par le capteur 12 inférieure à la température d'ouverture du thermostat, la vanne 16 met en communication les branches 20 et 17 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. La pompe électrique 21 peut rester à l'arrêt.If the temperature measured by the sensor 30 is between TC1 and TC2, and the temperature measured by the sensor 12 is lower than the opening temperature of the thermostat, the valve 16 puts in communication the branches 20 and 17 and the valve 23 sets communicating the output 6b of the radiator 6 and the branch 17. The electric pump 21 can remain at a standstill.

Si la température mesurée par le capteur 30 est supérieure à TC2, ou si la température mesurée par le capteur 12 est supérieure à la température d'ouverture du thermostat, la pompe électrique 21 est en fonctionnement. La vanne 16 met en communication les branches 17 et 18 et la vanne 23 met en communication la sortie 6b du radiateur 6 et la branche 17. Si le thermostat 10 est fermé, les deux circuits sont totalement découplés. Si le thermostat 10 est ouvert, les deux circuits sont mis en commun au niveau de la sortie du radiateur 6, côté moteur thermique.If the temperature measured by the sensor 30 is greater than TC2, or if the temperature measured by the sensor 12 is greater than the opening temperature of the thermostat, the electric pump 21 is in operation. The valve 16 communicates the branches 17 and 18 and the valve 23 communicates the output 6b of the radiator 6 and the branch 17. If the thermostat 10 is closed, the two circuits are completely decoupled. If the thermostat 10 is open, the two circuits are pooled at the output of the radiator 6, on the engine side.

Le mode de réalisation illustré sur la figure 16 est une simplification de celui de la figure 15. La vanne 23 est supprimée. Le moteur électrique 2, son unité de commande 3, le capteur de température 30 et la pompe électrique 21 sont montés en série sur la branche 18. La branche 17 relie directement la sortie 6b du radiateur 6 et la vanne 16.The embodiment illustrated in Figure 16 is a simplification of that of Figure 15. The valve 23 is removed. The electric motor 2, its control unit 3, the temperature sensor 30 and the electric pump 21 are connected in series on the branch 18. The branch 17 directly connects the outlet 6b of the radiator 6 and the valve 16.

En mode thermique, la vanne 16 met en communication les branches 17 et 18.In thermal mode, the valve 16 communicates the branches 17 and 18.

En mode électrique, lorsque la température mesurée par le capteur 30 est inférieure à la température de consigne TC2, la vanne 16 met en communication les branches 20 et 17. La dissipation de chaleur des organes électriques est donc utilisée pour chauffer le moteur thermique 1 et le radiateur de chauffage 4. Dès que la température mesurée par le capteur 11 devient supérieure à la température TC2, la vanne 16 met en communication les branches 17 et 18, ce qui permet un refroidissement des composants électriques avec un bon débit dans la troisième passe du radiateur 6.In electrical mode, when the temperature measured by the sensor 30 is lower than the set temperature TC2, the valve 16 puts in communication the branches 20 and 17. The heat dissipation of the electrical components is therefore used to heat the heat engine 1 and the heating radiator 4. As soon as the temperature measured by the sensor 11 becomes greater than the temperature TC2, the valve 16 puts the branches into communication 17 and 18, which allows cooling of the electrical components with a good flow in the third pass of the radiator 6.

En mode hybride, lorsque la température mesurée par le capteur 30 est inférieure à TC2, la vanne 16 met en communication les branches 20 et 18. On peut ainsi arrêter la pompe électrique 21 et utiliser la chaleur dégagée par les organes électriques pour chauffer l'habitacle et assurer la montée en température du moteur thermique 1. Dès que la température mesurée par le capteur 30 est supérieure à la température TC2, la pompe électrique 21 est mise en marche et la vanne 16 met en communication les branches 17 et 18.In hybrid mode, when the temperature measured by the sensor 30 is lower than TC2, the valve 16 communicates the branches 20 and 18. It is thus possible to stop the electric pump 21 and use the heat released by the electrical organs to heat the interior and ensure the temperature rise of the engine 1. As soon as the temperature measured by the sensor 30 is greater than the temperature TC2, the electric pump 21 is turned on and the valve 16 communicates the branches 17 and 18.

Sur la figure 17, est représentée de façon schématique une vanne 16. La vanne 23 peut être de même type. La vanne 16 possède un corps cylindrique 35 à l'intérieur duquel est monté un élément mobile 36 comprenant un noyau central 37 et des bras 38 et 39. L'élément mobile 36 est entraîné en rotation par un moteur électrique. Le liquide de refroidissement circule dans l'espace annulaire entre le moyeu central 37 et le corps 35. Telle qu'elle est représentée sur la figure 17, la vanne 16 est dans une position autorisant la circulation de fluide entre les branches 18 et 19 et interdisant la circulation de fluide de la branche 17. Le passage du liquide de refroidissement s'effectue comme dans un tube coudé à 120° d'angle. La perte de charge est extrêmement faible.In Figure 17, is shown schematically a valve 16. The valve 23 may be of the same type. The valve 16 has a cylindrical body 35 inside which is mounted a movable member 36 comprising a central core 37 and arms 38 and 39. The movable member 36 is rotated by an electric motor. The coolant circulates in the annular space between the central hub 37 and the body 35. As shown in FIG. 17, the valve 16 is in a position allowing the circulation of fluid between the branches 18 and 19 and prohibiting the flow of fluid from the branch 17. The passage of the coolant is carried out as in a tube bent at 120 ° angle. The pressure drop is extremely low.

Les modes de réalisation dans lesquels le thermostat est placé en amont du moteur thermique permettent, dans certains modes de fonctionnement, de couper l'alimentation de la pompe électrique, en particulier en mode hybride, thermostat fermé. La pompe mécanique entraînée par le moteur thermique assure une circulation de liquide de refroidissement dans le radiateur, puis dans les organes de traction électrique, à travers la pompe électrique arrêtée. Le couplage des deux circuits de refroidissement, celui du moteur thermique et celui du moteur électrique, est réalisé lorsque la température dans les composants est faible et que le thermostat est fermé. La circulation du liquide de refroidissement est assurée par l'une des deux pompes. En mode électrique, la pompe électrique assure un débit dans toutes les branches du circuit. En mode hybride, la pompe mécanique entraînée par le moteur thermique permet la circulation de liquide de refroidissement dans tous les organes du circuit. Dès que la température dans les composants électriques atteint une valeur déterminée, la gestion du circuit de refroidissement, par l'intermédiaire des capteurs et de la commande agissant sur les vannes, permet le découplage du circuit à haute température du moteur thermique et du circuit à basse température des organes électriques de traction.The embodiments in which the thermostat is placed upstream of the heat engine allow, in certain operating modes, to cut the power of the electric pump, in particular in hybrid mode, closed thermostat. The mechanical pump driven by the heat engine ensures a circulation of coolant in the radiator, then in the electric traction members, through the stopped electric pump. The coupling of the two cooling circuits, that of the heat engine and that of the electric motor, is achieved when the temperature in the components is low and the thermostat is closed. Coolant circulation is provided by one of the two pumps. In electric mode, the electric pump ensures a flow in all the branches of the circuit. In hybrid mode, the driven mechanical pump by the heat engine allows the circulation of coolant in all the organs of the circuit. As soon as the temperature in the electrical components reaches a certain value, the management of the cooling circuit, via the sensors and the control acting on the valves, allows the decoupling of the high temperature circuit of the heat engine and the circuit to be low temperature electric traction units.

La température du liquide de refroidissement, à l'entrée des organes électriques de traction, est très basse dans tous les cas de fonctionnement où lesdits organes dissipent de la chaleur dans le circuit de refroidissement. La pompe électrique fonctionne moins souvent, d'où une réduction de consommation d'énergie et la possibilité d'utiliser des pompes de technologie classique, à faible coût et dont la durée de vie est supérieure ou égale à celle du véhicule. En mode tout électrique, la dissipation de chaleur par les organes de traction électrique peut servir à la montée en température du moteur thermique et également au chauffage de l'habitacle.The temperature of the coolant at the inlet of the electric traction members is very low in all cases of operation where said members dissipate heat in the cooling circuit. The electric pump operates less often, resulting in a reduction in energy consumption and the possibility of using conventional technology pumps, low cost and whose lifespan is greater than or equal to that of the vehicle. In all-electric mode, the heat dissipation by the electric traction members can be used for the temperature rise of the engine and also for the heating of the passenger compartment.

Claims (15)

  1. Cooling system for hybrid propulsion vehicle comprising a heat engine (1) and at least one electric motor (2) of the type comprising a coolant able to cool the heat engine and electric motor, a radiator (6) capable of cooling the coolant by heat exchange with a current of air and comprising a plurality of cooling channels, an inlet and an outlet, a first pipe (7) between the outlet of the radiator and the heat engine and a second pipe (8) between the said heat engine and the inlet of the radiator, characterized in that the radiator (6) comprises an auxiliary outlet (6b) such that the coolant issuing from the auxiliary outlet is at a lower temperature than that of the main outlet (6a) linked to the first pipe, the said auxiliary outlet being linked to a bypass pipe (15) able to cool the electric motor.
  2. System according to Claim 1, characterized in that the bypass pipe comprises a first branch (17) connected to the auxiliary outlet and a second branch (18) connected to a pipe upstream of the heat engine.
  3. System according to Claim 1 or 2, characterized in that the first branch (17) is able to be connected to the first pipe (7).
  4. System according to Claim 1, 2 or 3, characterized in that the bypass pipe comprises a third branch (19) connected to the second pipe.
  5. System according to any one of Claims 1 to 4, characterized in that the bypass pipe comprises a fourth branch (20) connected to the outlet of the heat engine upstream of a thermostat (10).
  6. System according to one of Claims 1 to 5, characterized in that the branches of the bypass pipe are connected together by a multiway valve (16).
  7. System according to one of Claims 1 to 3, characterized in that it comprises a thermostat disposed on the first pipe (7), the thermostat being able to shut off the first pipe (7), a pipe linked to the electric motor (2) being to be in communication with the heat engine (1).
  8. System according to Claim 7, characterized in that it comprises a first valve (16) able to place the outlet of the electric motor (2) in communication at least with the heat engine (1).
  9. System according to Claim 7, characterized in that the first valve is of multiway type and is able to place the outlet of the electric motor (2) in communication with the heat engine (1) or with the second pipe (8).
  10. System according to Claim 7, 8 or 9, characterized in that it comprises a second valve (23) able to place the auxiliary outlet (6b) in communication at least with the electric motor (2).
  11. System according to Claim 10, characterized in that the second valve is of multiway type and is able to place the auxiliary outlet (6b) in communication with the electric motor (2) or with the heat engine (1).
  12. System according to one of Claims 1 to 11, characterized in that the electric motor (2) is mounted on a bypass pipe parallel to the heat engine (1).
  13. System according to any one of Claims 1 to 12, characterized in that the said auxiliary outlet is linked to a bypass pipe able to cool an electronic control unit (3).
  14. Vehicle comprising a system according to any one of Claims 1 to 13.
  15. Cooling method for hybrid propulsion vehicle comprising a heat engine and at least one electric motor that are cooled by the circulation of a coolant in the said engine and the said motor, a means of heat exchange capable of cooling the coolant by heat exchange with another fluid and provided with an inlet and with an outlet, in which the coolant stream divides in the means of heat exchange between a main outlet and an auxiliary outlet so that the coolant issuing from the auxiliary outlet exhibits a lower temperature than that of the main outlet, the said auxiliary outlet being linked to a bypass pipe able to cool the electric motor.
EP02710943A 2001-01-05 2002-01-04 Device, system and method for cooling a coolant Expired - Lifetime EP1362168B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0100109 2001-01-05
FR0100109A FR2815402B1 (en) 2000-10-13 2001-01-05 DEVICE, SYSTEM AND METHOD FOR COOLING A HEAT TRANSFER FLUID
PCT/FR2002/000021 WO2002079621A1 (en) 2001-01-05 2002-01-04 Device, system and method for cooling a coolant

Publications (2)

Publication Number Publication Date
EP1362168A1 EP1362168A1 (en) 2003-11-19
EP1362168B1 true EP1362168B1 (en) 2006-11-15

Family

ID=8858539

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02710943A Expired - Lifetime EP1362168B1 (en) 2001-01-05 2002-01-04 Device, system and method for cooling a coolant

Country Status (3)

Country Link
EP (1) EP1362168B1 (en)
DE (1) DE60216049T2 (en)
WO (1) WO2002079621A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008132B4 (en) * 2007-02-13 2012-08-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Air separator for low flow rate cooling systems

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3956945B2 (en) * 2004-02-13 2007-08-08 トヨタ自動車株式会社 Cooling system
FR2883806B1 (en) * 2005-03-31 2008-08-08 Valeo Systemes Thermiques INSTALLATION AND METHOD FOR COOLING A MOTOR VEHICLE EQUIPMENT
DE102007052926A1 (en) * 2007-11-07 2009-05-14 Daimler Ag Coolant circuit for an internal combustion engine
FR2951114B1 (en) * 2009-10-13 2011-11-04 Peugeot Citroen Automobiles Sa COOLING DEVICE FOR A HYBRID VEHICLE
CN102555776B (en) * 2011-09-01 2015-06-10 奇瑞汽车股份有限公司 Cooling system of range increasing system of electric vehicle and control method of cooling system
DE102012217101B4 (en) * 2012-09-24 2016-09-01 Bayerische Motoren Werke Aktiengesellschaft Coolant circuit for vehicles
CN103712482B (en) 2012-10-02 2017-04-12 马勒国际公司 Heat exchanger
SE541223C2 (en) * 2016-06-13 2019-05-07 Scania Cv Ab A cooling system for a combustion engine and a further object
FR3055368B1 (en) * 2016-08-24 2018-08-24 Peugeot Citroen Automobiles Sa THERMAL MOTOR AIR SUPPLY SYSTEM COOLING DEVICE, AND AIR SUPPLY SYSTEM EQUIPPED WITH SUCH A DEVICE
EP3720732B1 (en) 2017-12-06 2022-08-10 Volvo Construction Equipment AB A coolant system for a vehicle
DE102019207254A1 (en) 2019-05-17 2020-11-19 Zf Friedrichshafen Ag Method and control device for operating a drive train of a motor vehicle
EP3760848B1 (en) * 2019-07-05 2023-03-08 Ford Global Technologies, LLC Arrangement and method for controlling the temperature of an internal combustion engine and electric drive components of a hybrid vehicle
DE102020206674A1 (en) * 2020-05-28 2021-12-02 Volkswagen Aktiengesellschaft Hybrid vehicle with a cooling system

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634546B1 (en) * 1988-07-20 1991-08-02 Valeo HEAT EXCHANGER DEVICE FOR MULTIPLE COOLING CIRCUITS USING THE SAME HEAT FLUID
JP3422036B2 (en) * 1992-07-13 2003-06-30 株式会社デンソー Vehicle cooling system
FR2748428B1 (en) 1996-05-07 1998-06-19 Renault COOLING SYSTEM FOR HYBRID PROPULSION VEHICLE
DE19637817A1 (en) * 1996-09-17 1998-03-19 Laengerer & Reich Gmbh & Co Device and method for cooling and preheating
JP3728855B2 (en) 1997-03-21 2005-12-21 トヨタ自動車株式会社 Power cooling system for hybrid vehicles
DE19730678A1 (en) * 1997-07-17 1999-01-21 Volkswagen Ag Hybrid vehicle drive component cooling and interior heating arrangement
JP3572901B2 (en) * 1997-10-31 2004-10-06 日産自動車株式会社 Hybrid vehicle cooling system
US6124644A (en) * 1998-01-13 2000-09-26 Modine Manufacturing Company Single core dual circuit heat exchange system
JP2000073763A (en) * 1998-08-26 2000-03-07 Nissan Motor Co Ltd Cooling system of hybrid powered automatic
JP4078766B2 (en) * 1999-08-20 2008-04-23 株式会社デンソー Heat exchanger

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008008132B4 (en) * 2007-02-13 2012-08-02 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Air separator for low flow rate cooling systems

Also Published As

Publication number Publication date
DE60216049T2 (en) 2007-07-05
EP1362168A1 (en) 2003-11-19
DE60216049D1 (en) 2006-12-28
WO2002079621A1 (en) 2002-10-10

Similar Documents

Publication Publication Date Title
EP1362168B1 (en) Device, system and method for cooling a coolant
EP1444426B1 (en) System for managing heat energy produced by a motor vehicle heat engine
EP1197644B1 (en) System and method for cooling a hybrid vehicle
FR2890606A1 (en) METHOD FOR CONTROLLING A MOTOR POWERTRAIN COMPRISING TWO COOLING CIRCUITS
EP2112347B1 (en) Engine cooling circuit
EP3559425B1 (en) Method for operating a cooling system for a hybrid electric vehicle comprising a liquid coolant transfer circuit
FR2843168A1 (en) Heating and cooling system for vehicle engine uses heat accumulator with electro-valve control to assist with engine warm-up
FR2748428A1 (en) Cooling system for vehicle with hybrid propulsion
WO2014044952A1 (en) Cooling system and method for a hybrid powertrain of a motor vehicle
EP3899225A1 (en) Thermal management device for a heat-transfer fluid circuit of a hybrid vehicle
WO2012136929A1 (en) Hybrid vehicle provided with a system for thermal regulation of an automatic transmission
FR2914233A1 (en) DEVICE AND METHOD FOR RECOVERING ENERGY FOR INTERNAL COMBUSTION ENGINE OF MOTOR VEHICLE.
FR2815402A1 (en) Radiator for hybrid vehicle with heat engine and electric motors has inlet, outlet and auxiliary outlet at end of additional section of radiator, so that the liquid leaving it is at lower temperature than that leaving main outlet
EP3676516B1 (en) Cooling circuit assembly for a heat engine and a gearbox
FR2914694A1 (en) Heat exchange controlling system for engine of motor vehicle, has cooling loop coupled with parallel circuit through four way valves, where valves define distinct functioning modes corresponding to pathways of coolant in parallel circuit
FR2976322A1 (en) Air distributor for combustion engine of heat transfer system in car, has two U-shaped heat exchangers connected in series with respect to charging air and traversed by coolant having specified temperature at inlets of exchangers
FR2815401A1 (en) Cooling system for fluid coolant comprises coolant inlet and outlet and auxiliary outlet allowing issuing fluid to be at lower temperature than from principal outlet
FR2891205A1 (en) MACHINE WITH ELECTRIC MOVEMENT MOTOR, ELECTRIC PUMP MOTOR OF A HYDRAULIC SYSTEM AND LIQUID COOLING
EP4132809A1 (en) Arrangement for cooling a fuel cell and an electric traction and/or propulsion motor of a vehicle
EP1669570A2 (en) Cooling system for a hybrid traction train of a motor vehicle
EP3575118A1 (en) Thermal regulation system intended for an electric or hybrid vehicle
FR2904857A1 (en) Heat engine cooling circuit control device for vehicle i.e. motocar vehicle, has valves to occupy position to circulate oil in line at temperature value, and another position to circulate oil in exchanger at another temperature value
FR3078389A1 (en) THERMAL INSTALLATION FOR HEAT AND ELECTRIC MOTORS WITH AUTOMATIC ELECTRICAL TRANSMISSION AND FLUID / FLUID CONDENSER
FR2978206A1 (en) Temperature control device for car, has recycled gas radiator connected between port and connection point, and valve system for circulating fluids of principal and secondary circuits in recycled gas radiator
CH717116A2 (en) Device for recovering and regulating thermal energy of an electric vehicle with an electrochemical generator with an HVAC system.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030612

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RBV Designated contracting states (corrected)

Designated state(s): DE ES GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20061115

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 60216049

Country of ref document: DE

Date of ref document: 20061228

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070817

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180119

Year of fee payment: 17

Ref country code: DE

Payment date: 20180122

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60216049

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190104