EP1356593B1 - Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal - Google Patents

Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal Download PDF

Info

Publication number
EP1356593B1
EP1356593B1 EP02706728A EP02706728A EP1356593B1 EP 1356593 B1 EP1356593 B1 EP 1356593B1 EP 02706728 A EP02706728 A EP 02706728A EP 02706728 A EP02706728 A EP 02706728A EP 1356593 B1 EP1356593 B1 EP 1356593B1
Authority
EP
European Patent Office
Prior art keywords
signal
filter
arrangement according
difference
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02706728A
Other languages
German (de)
French (fr)
Other versions
EP1356593A1 (en
Inventor
Björn JELONNEK
Armin Splett
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP01101968A external-priority patent/EP1227593A1/en
Priority claimed from DE2001103812 external-priority patent/DE10103812B4/en
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP02706728A priority Critical patent/EP1356593B1/en
Publication of EP1356593A1 publication Critical patent/EP1356593A1/en
Application granted granted Critical
Publication of EP1356593B1 publication Critical patent/EP1356593B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/322Continuously compensating for, or preventing, undesired influence of physical parameters
    • H03M3/368Continuously compensating for, or preventing, undesired influence of physical parameters of noise other than the quantisation noise already being shaped inherently by delta-sigma modulators
    • H03M3/37Compensation or reduction of delay or phase error
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/414Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having multiple quantisers arranged in cascaded loops, each of the second and further loops processing the quantisation error of the loop preceding it, i.e. multiple stage noise shaping [MASH] type

Definitions

  • the present invention relates to an arrangement for delay compensation one by a replica of a high frequency signal occurring transit time difference according to the preamble of claim 1.
  • High-frequency signals which by means of arbitrary transmission systems linear or nonlinear type, such as Amplifier chains can be transmitted by signal processing equipment be reproduced.
  • An example a transmission system shows that of the applicant filed with the same filing date patent application, concerning a sigma-delta modulator for digitizing analogue Radio frequency signals.
  • the signal is replicated the output signal of the transmission system without time delay from the original signal, so that the exactly simulated signal components of the replicated Signals the original signal in a difference signal completely extinguish.
  • delay elements which delay the signal x ( t ) by the duration of the transit time difference ⁇ of the signal replica x and ( t ).
  • x ( t - ⁇ ) - x ( t ) ⁇ ( t - ⁇ ) - x ( t - ⁇ ) 0
  • the high-linear delay elements used for this purpose are technically complex due to the high spectral purity of the signal x ( t ) and cause high production costs.
  • the object of the invention is therefore an arrangement for delay compensation one by a replica of a high frequency signal occurring runtime difference to create a broadband signal simulation allows and thereby technically easy to implement.
  • the object is achieved by an arrangement for delay compensation of a runtime difference occurring due to a simulation of a high-frequency signal with a signal x ( t ) to be emulated, with a signal processing device which emulates the signal x ( t ) by a signal x and ( t ), and with a signal processing device Device for determining a difference signal of the signals x ( t ) and x and ( t ), which is characterized in that the simulated signal x and ( t ) is passed through a filter with negative group delay for certain frequency ranges.
  • the parameters of the filter are selected such that the total transfer function of the difference signal has zeros in the desired frequency range or is strongly attenuated. In this frequency range, the time difference resulting from the signal simulation is thus largely compensated.
  • the signal forms x (t) the output signal of a transmission system and a Signal u (t) forms the input signal of the transmission system.
  • the transmission system can in this case be e.g. from an amplifier or even an amplifier chain. But it can any linear or non-linear transmission system be used.
  • the arrangement has a regulating device, by means of which the simulated signal x and ( t ) can be changed such that the difference signal becomes minimal.
  • the differential signal is preferred for regulating the signal simulation guided to the signal processing device.
  • a signal evaluation unit provided, which evaluates the difference signal and the evaluated signal to the signal processing device leads.
  • the analog input signal for controlling the simulation of the signal the signal processing device out.
  • the filter has delay elements, which the delay digital signal.
  • a linear filter used. It can for example be a FIR, an IIR or also every other linear filter can be used.
  • the arrangement shown in FIG. 1 for signal reproduction has an input signal u (t), which is transmitted by any linear or non-linear transmission system 1.
  • the signal x (t) is applied.
  • the signal x (t) is simulated in the signal processing device 2, wherein runtime differences, ie delays relative to the signal x (t) occur.
  • the signal x and ( t ) is present.
  • a delay element 3 is provided for the signal x (t), which delays the signal x (t) by a time ⁇ .
  • is preferably chosen such that it corresponds to the transit time difference caused by the signal processing device 2.
  • the difference signal which normally is not equal to 0, to the signal processing device 2 sends. It can also be the delayed signal x (t- ⁇ ) as a controlled variable be used.
  • Termination element to compensate for the transit time difference omitted.
  • An illustration of the invention is shown in FIG. 2.
  • the simulated signal x and ( t ) is given as an input to a linear filter 4.
  • a linear filter 4 can be a FIR, IIR or any other linear filter can be used.
  • the coefficients of the linear filter are selected such that for certain frequency ranges the transit time difference caused by the signal processing device 2 is compensated by the linear filter.
  • the filter used has a negative group delay in the specific frequency ranges, but is nevertheless causal and therefore realizable because of positive group delays in other frequency ranges, ie delays in the signal. In this way, a signal simulation is achieved in the desired frequency range, which is compared to previous solutions broadband and easy to implement due to the digital filter used.
  • the difference signal formed at the summer 5 can be used as a controlled variable for the signal processing device 2.
  • a signal evaluation unit 6 which, for example, converts the difference signal into a Taylor series. It can be used according to the invention, other types of signal decomposition.
  • spectral analysis Fourier analysis
  • the goal is it, the power of the difference signal within a subband to minimize. For that it is sufficient those Results of the spectral analysis of the difference signal to the Signal processing device 2 to send the the frequency response describe within the considered subband.
  • the Power of the error signal within the considered frequency band be used.
  • an FIR filter 4a is used to obtain the negative group delay for certain frequency ranges. It should be made a runtime compensation in the low-pass range.
  • phase is approximately ⁇ -2 ⁇ , which gives rise to ⁇ negative values: - ⁇ is the group delay that should be compensated.
  • FIG. 4 A concrete application example of the invention is shown in FIG. 4. It is a cascade stage of an analog-to-digital converter system shown with a low-pass sigma-delta modulator 7, which Subject of another patent application of the applicant is.
  • the digital signal simulation of the analog input signal u (t) is here through the low-pass sigma-delta modulator. 7 achieved.
  • the two output signals of a signal processing device 2a which by the multiplication of the input signal u (t) with a sin or a cos signal and referred to as in-phase or quadrature component, become again in the digital mixer 8 to a signal assembled and then in a band-pass digital-to-analog converter 9 analogized.
  • the output of the bandpass digital to analog converter 9 becomes negative passed to a summer 10.
  • the input signal u (t) becomes amplified for amplitude adjustment in an amplifier 11 and passes to the summer 10.
  • the signal u (t) is additionally delayed by the signal processing means 2a introduced delay of Balance the input
  • FIG. 5 An implementation according to the invention of a delay compensation based on the application example shown in FIG. 4 is shown in FIG. 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Amplifiers (AREA)
  • Test And Diagnosis Of Digital Computers (AREA)

Description

Die vorliegende Erfindung betrifft eine Anordnung zum Laufzeitausgleich einer durch eine Nachbildung eines Hochfrequenzsignals auftretenden Laufzeitdifferenz nach dem Oberbegriff des Anspruchs 1.The present invention relates to an arrangement for delay compensation one by a replica of a high frequency signal occurring transit time difference according to the preamble of claim 1.

Hochfrequente Signale, welche mittels beliebiger Übertragungssysteme linearer oder nichtlinearer Art, wie beispielsweise Verstärkerketten übertragen werden, können durch Signalverarbeitungseinrichtungen nachgebildet werden. Ein Beispiel eines Übertragungssystems zeigt die von der Anmelderin mit gleichem Anmeldetag eingereichte Patentanmeldung, betreffend einen Sigma-Delta-Modulator zur Digitalisierung von analogen Hochfrequenzsignalen. Im Idealfall erfolgt die Signalnachbildung des Ausgangssignals des Übertragungssystems dabei ohne Zeitverzögerung gegenüber dem ursprünglichen Signal, so dass die exakt nachgebildeten Signalanteile des nachgebildeten Signals das ursprüngliche Signal in einem Differenzsignal vollständig auslöschen.High-frequency signals, which by means of arbitrary transmission systems linear or nonlinear type, such as Amplifier chains can be transmitted by signal processing equipment be reproduced. An example a transmission system shows that of the applicant filed with the same filing date patent application, concerning a sigma-delta modulator for digitizing analogue Radio frequency signals. Ideally, the signal is replicated the output signal of the transmission system without time delay from the original signal, so that the exactly simulated signal components of the replicated Signals the original signal in a difference signal completely extinguish.

Praktische Realisierungen der Signalnachbildung verursachen jedoch in der Regel eine Laufzeitdifferenz des nachgebildeten gegenüber dem ursprünglichen Signal. Wie nachstehend verdeutlicht werden kann, führt die Zeitverzögerung des nachgebildeten Signals zu einer Auslöschung der Signalanteile nur in einem gewissen Frequenzbereich. Hierbei bezeichnet x(t) das ursprüngliche Ausgangssignal des Übertragungssystems und x and(t) das nachgebildete Signal; τ steht fór die Laufzeitdifferenz des nachgebildeten Signals. Practical implementations of the signal simulation, however, usually cause a transit time difference of the replicated versus the original signal. As can be seen below, the time delay of the replicated signal results in cancellation of the signal components only in a certain frequency range. Here, x ( t ) denotes the original output of the transmission system and x and ( t ) the replica signal; τ stands for the transit time difference of the simulated signal.

Es gilt die Beziehung x(t)- x (t) ≈ x(t) - x(t-τ)  X(jω)-e -jωτ X(jω) = X(jω)·(1-e -jωτ) It applies the relationship x ( t ) - x (t) ≈ x ( t ) - x ( t -τ)  X ( j ω) - e - j ωτ X ( j ω) = X ( j ω) · (1- e - j ωτ )

Um eine breitbandige Signalauslöschung zu erzielen, ist der Einsatz von Laufzeitgliedern üblich, die das Signal x(t) um die Zeitdauer der Laufzeitdifferenz τ der Signalnachbildung x and(t) verzögern. x(t-τ)- x (t)≈(t-τ)-x(t-τ)=0 In order to achieve a broadband signal extinction, the use of delay elements is common, which delay the signal x ( t ) by the duration of the transit time difference τ of the signal replica x and ( t ). x ( t -τ) - x ( t ) ≈ ( t -τ) - x ( t -τ) = 0

Die hierzu eingesetzten hochlinearen Laufzeitglieder sind aufgrund der hohen spektralen Reinheit des Signals x(t) techriisch aufwendig und verursachen hohe Herstellungskosten.The high-linear delay elements used for this purpose are technically complex due to the high spectral purity of the signal x ( t ) and cause high production costs.

Aufgabe der Erfindung ist es daher, eine Anordnung zum Laufzeitausgleich einer durch eine Nachbildung eines Hochfrequenzsignals auftretenden Laufzeitdifferenz zu schaffen, die eine breitbandige Signalnachbildung ermöglicht und dabei technisch einfach realisierbar ist.The object of the invention is therefore an arrangement for delay compensation one by a replica of a high frequency signal occurring runtime difference to create a broadband signal simulation allows and thereby technically easy to implement.

Die Aufgabe wird gelöst durch eine Anordnung zum Laufzeitausgleich einer durch eine Nachbildung eines Hochfrequenzsignals auftretenden Laufzeitdifferenz mit einem nachzubildenden Signal x(t), mit einer Signalverarbeitungseinrichtung, welche das Signal x(t) durch ein Signal x and(t) nachbildet, und mit einer Einrichtung zur Ermittlung eines Differenzsignals der Signale x(t) und x and(t) , welche dadurch gekennzeichnet ist, dass das nachgebildete Signal x and(t) über ein Filter mit für bestimmte Frequenzbereiche negativer Gruppenlaufzeit geführt wird. Dabei werden die Parameter des Filters derart gewählt, dass die Gesamtübertragungsfunktion des Differenzsignals in dem gewünschten Frequenzbereich Nullstellen aufweist bzw. stark gedämpft wird. In diesem Frequenzbereich wird somit die aus der Signalnachbildung resultierende Laufzeitdifferenz weitestgehend kompensiert.The object is achieved by an arrangement for delay compensation of a runtime difference occurring due to a simulation of a high-frequency signal with a signal x ( t ) to be emulated, with a signal processing device which emulates the signal x ( t ) by a signal x and ( t ), and with a signal processing device Device for determining a difference signal of the signals x ( t ) and x and ( t ), which is characterized in that the simulated signal x and ( t ) is passed through a filter with negative group delay for certain frequency ranges. In this case, the parameters of the filter are selected such that the total transfer function of the difference signal has zeros in the desired frequency range or is strongly attenuated. In this frequency range, the time difference resulting from the signal simulation is thus largely compensated.

Nach einer Ausführungsform der Erfindung bildet das Signal x(t) das Ausgangssignal eines Übertragungssystems und ein Signal u(t) bildet das Eingangssignal des Übertragungssystems. Das Übertragungssystem kann hierbei z.B. aus einem Verstärker oder auch einer Verstärkerkette bestehen. Es kann aber ein beliebiges lineares oder nichtlineares Übertragungssystem eingesetzt werden.According to one embodiment of the invention, the signal forms x (t) the output signal of a transmission system and a Signal u (t) forms the input signal of the transmission system. The transmission system can in this case be e.g. from an amplifier or even an amplifier chain. But it can any linear or non-linear transmission system be used.

Gemäß einer weiteren Ausführungsform der Erfindung weist die Anordnung eine Regelungseinrichtung auf, durch die das nachgebildete Signal x and(t) veränderbar ist, derart, dass das Differenzsignal minimal wird.According to a further embodiment of the invention, the arrangement has a regulating device, by means of which the simulated signal x and ( t ) can be changed such that the difference signal becomes minimal.

Bevorzugt wird das Differenzsignal zur Regelung der Signalnachbildung zu der Signalverarbeitungseinrichtung geführt.The differential signal is preferred for regulating the signal simulation guided to the signal processing device.

Nach einer Ausführungsform der Erfindung ist eine Signalauswertungseinheit vorgesehen, welche das Differenzsignal auswertet und das ausgewertete Signal zu der Signalverarbeitungseinrichtung führt.According to one embodiment of the invention, a signal evaluation unit provided, which evaluates the difference signal and the evaluated signal to the signal processing device leads.

Nach einer bevorzugten Ausführungsform der Erfindung wird das analoge Eingangssignal zur Steuerung der Signalnachbildung zu der Signalverarbeitungseinrichtung geführt. According to a preferred embodiment of the invention, the analog input signal for controlling the simulation of the signal the signal processing device out.

Bevorzugt weist das Filter Laufzeitglieder auf, welche das digitale Signal verzögern.Preferably, the filter has delay elements, which the delay digital signal.

Vorzugsweise wird zur Lösung der Aufgabe ein lineares Filter eingesetzt. Es kann beispielsweise ein FIR-, ein IIR oder auch jedes andere lineare Filter verwendet werden.Preferably, to solve the problem is a linear filter used. It can for example be a FIR, an IIR or also every other linear filter can be used.

Ausführungsbeispiele der Erfindung werden nachstehend anhand der beiliegenden Zeichnungen erläutert.Embodiments of the invention will be described below of the accompanying drawings.

Dabei zeigen:

Fig. 1
eine Darstellung einer Anordnung zur Signalnachbildung gemäß dem Stand der Technik,
Fig. 2
eine Darstellung einer erfindungsgemäßen Anordnung zur Signalnachbildung,
Fig. 3
eine Darstellung einer weiteren Ausführungsform einer erfindungsgemäßen Anordnung zur Signalnachbildung,
Fig. 4
eine Darstellung eines Anwendungsbeispiels der erfindungsgemäßen Anordnung zur Signalnachbildung, und
Fig. 5
eine Darstellung einer zweiten Ausführungsform einer erfindungsgemäßen Anordnung zur Signalnachbildung.
Showing:
Fig. 1
FIG. 4 is an illustration of a prior art signal replication arrangement; FIG.
Fig. 2
a representation of an arrangement according to the invention for signal simulation,
Fig. 3
a representation of another embodiment of an arrangement according to the invention for signal simulation,
Fig. 4
a representation of an application example of the inventive arrangement for signal simulation, and
Fig. 5
a representation of a second embodiment of an arrangement according to the invention for signal simulation .

Die in Fig. 1 gezeigte Anordnung zur Signalnachbildung, wie sie aus dem Stand bekannt ist, weist ein Eingangssignal u(t) auf, welches durch ein beliebiges lineares oder nichtlineares Übertragungssystem 1 übertragen wird. Am Ausgang des Übertragungssystems 1 liegt das Signal x(t) an. Das Signal x(t) wird in der Signalverarbeitungseinrichtung 2 nachgebildet, wobei Laufzeitdifferenzen, d.h. Verzögerungen gegenüber dem Signal x(t) auftreten. Am Ausgang der Signalverarbeitungseinrichtung 2 liegt das Signal x and(t) an. Zum Ausgleich der Laufzeitdifferenzen ist für das Signal x(t) ein Laufzeitglied 3 vorgesehen, welches das Signal x(t) um eine Zeit τ verzögert. Dabei wird τ vorzugsweise derart gewählt, dass es der durch die Signalverarbeitungseinrichtung 2 verursachten Laufzeitdifferenz entspricht. Eine ideale Signalnachbildung sowie eine Verzögerung τ vorausgesetzt, welche exakt der durch die Signalnachbildung hervorgerufenen Signalverzögerung entspricht, gilt für das aus x and(t) und dem verzögerten Signal x(t-τ) gebildete Differenzsignal x(t-τ)-x and(t) für alle Frequenzen x(t-τ)- x (t) = 0 The arrangement shown in FIG. 1 for signal reproduction, as known from the prior art, has an input signal u (t), which is transmitted by any linear or non-linear transmission system 1. At the output of the transmission system 1, the signal x (t) is applied. The signal x (t) is simulated in the signal processing device 2, wherein runtime differences, ie delays relative to the signal x (t) occur. At the output of the signal processing device 2, the signal x and ( t ) is present. To compensate for the differences in transit time, a delay element 3 is provided for the signal x (t), which delays the signal x (t) by a time τ. In this case, τ is preferably chosen such that it corresponds to the transit time difference caused by the signal processing device 2. An ideal signal simulation as well as a delay τ provided that exactly corresponds to the signal delay caused by the signal simulation applies to the difference signal x (t-τ) -x and (x) formed from x and ( t ) and the delayed signal x (t-τ). t ) for all frequencies x (t-τ) - x ( t ) = 0

Zur Verbesserung der Signalnachbildung kann ein Regelkreis gebildet werden, der das Differenzsignal, welches im Normalfall ungleich 0 ist, an die Signalverarbeitungseinrichtung 2 sendet. Es kann auch das verzögerte Signal x(t-τ) als Regelgröße verwendet werden.To improve the signal simulation can be a loop are formed, the difference signal, which normally is not equal to 0, to the signal processing device 2 sends. It can also be the delayed signal x (t-τ) as a controlled variable be used.

Gemäß der vorliegenden Erfindung wird auf den Einsatz eines Laufzeitglieds zur Kompensation der Laufzeitdifferenz verzichtet. Eine Darstellung der Erfindung zeigt Fig. 2.According to the present invention, the use of a Termination element to compensate for the transit time difference omitted. An illustration of the invention is shown in FIG. 2.

Das nachgebildete Signal x and(t) wird als Eingangssignal auf ein lineares Filter 4 gegeben. Es kann dabei ein FIR-, IIR- oder ein beliebiges anderes lineares Filter eingesetzt werden. Die Koeffizienten des linearen Filters werden derart gewählt, dass für bestimmte Frequenzbereiche die durch die Signalverarbeitungseinrichtung 2 verursachte Laufzeitdifferenz durch das lineare Filter kompensiert wird. Das eingesetzte Filter weist in den bestimmten Frequenzbereichen eine negative Gruppenlaufzeit auf, ist aber wegen positiver Gruppenlaufzeiten in anderen Frequenzbereichen, d.h. Verzögerungen des Signals, dennoch kausal und daher realisierbar. Auf diese Weise wird im gewünschten Frequenzbereich eine Signalnachbildung erreicht, welche im Vergleich zu bisherigen Lösungen breitbandiger und aufgrund der eingesetzten digitalen Filter einfach zu realisieren ist. Das an dem Summierer 5 gebildete Differenzsignal kann als Regelgröße für die Signalverarbeitungseinrichtung 2 eingesetzt werden. Es ist jedoch auch denkbar, eine Auswertung des Differenzsignals als Regelgröße heranzuziehen. Hierzu wird eine Signalauswertungseinheit 6 eingesetzt, welche beispielsweise das Differenzsignal in eine Taylorreihe umwandelt. Es können erfindungsgemäß auch andere Arten der Signalzerlegung eingesetzt werden.The simulated signal x and ( t ) is given as an input to a linear filter 4. It can be a FIR, IIR or any other linear filter can be used. The coefficients of the linear filter are selected such that for certain frequency ranges the transit time difference caused by the signal processing device 2 is compensated by the linear filter. The filter used has a negative group delay in the specific frequency ranges, but is nevertheless causal and therefore realizable because of positive group delays in other frequency ranges, ie delays in the signal. In this way, a signal simulation is achieved in the desired frequency range, which is compared to previous solutions broadband and easy to implement due to the digital filter used. The difference signal formed at the summer 5 can be used as a controlled variable for the signal processing device 2. However, it is also conceivable to use an evaluation of the difference signal as a controlled variable. For this purpose, a signal evaluation unit 6 is used which, for example, converts the difference signal into a Taylor series. It can be used according to the invention, other types of signal decomposition.

Ein weiteres Beispiel für eine Signalzerlegung ist die Spektralanalyse (Fourieranalyse) des Differenzsignals. Ziel ist es, die Leistung des Differenzsignals innerhalb eines Teilbandes zu minimieren. Hierfür ist es ausreichend, diejenigen Ergebnisse der Spektralanalyse des Differenzsignals an die Signalverarbeitungseinrichtung 2 zu senden, die den Frequenzgang innerhalb des betrachteten Teilbandes beschreiben.Another example of signal decomposition is spectral analysis (Fourier analysis) of the difference signal. the goal is it, the power of the difference signal within a subband to minimize. For that it is sufficient those Results of the spectral analysis of the difference signal to the Signal processing device 2 to send the the frequency response describe within the considered subband.

Als weitere alternative parametrische Regelgröße kann die Leistung des Fehlersignals innerhalb des betrachteten Frequenzbandes verwendet werden.As another alternative parametric control variable, the Power of the error signal within the considered frequency band be used.

Im folgenden wird eine Ausführungsform der Erfindung an einem Beispiel nach Fig. 3 beschrieben. In diesem Beispiel wird ein FIR-Filter 4a zur Erzielung der negativen Gruppenlaufzeit für bestimmte Frequenzbereiche verwendet. Es soll ein Laufzeitausgleich im Tiefpaßbereich vorgenommen werden. Für die Verzögerungsglieder τ' des Filters soll gelten τ' = τ, d.h. die Verzögerungsglieder t' des Filters entsprechen jeweils der Laufzeitdifferenz t der Signalverarbeitungseinrichtung. Den Ausgangspunkt bildet ein linearer Filterentwurf mit guter Sperrdämpfung bei der Frequenz ω = 0:

Figure 00070001
mit q = 1, 2, 3, ... und 1 = 1, 2, 3, ....An embodiment of the invention will now be described by way of example with reference to FIG. In this example, an FIR filter 4a is used to obtain the negative group delay for certain frequency ranges. It should be made a runtime compensation in the low-pass range. For the delay elements τ 'of the filter should apply τ '= τ, ie the delay elements t 'of the filter respectively correspond to the transit time difference t of the signal processing device. The starting point is a linear filter design with good stop attenuation at the frequency ω = 0:
Figure 00070001
with q = 1, 2, 3, ... and 1 = 1, 2, 3, ....

In diesem Beispiel wird H Entwurf =(1-z -1) v mit v=2 und z=e jωτ
gewählt. Es ergibt sich somit für das Differenzsignal y(t) am Ausgang des Summierers 5

Figure 00070002
In this example will H draft = (1- z -1 ) v with v = 2 and z = e jωτ
selected. It thus results for the difference signal y (t) at the output of the summer fifth
Figure 00070002

Aus der Linearität der Fouriertransformation folgt Y(e) =(1-e-jωτ)2 X(e) = (1- 2e-jωτ + e-jω2τ) X(e) = X(e) -2e-jωτ X(e)+e-jω2τ X(e) korrespondiert mit y(t)=x(t)-2x(t-τ)+x(t+2τ) From the linearity of the Fourier transform follows Y (e ) = (1-e -jωτ ) 2 X (e ) = (1- 2e -jωτ + e -jω2τ ) X (e ) = X (e ) -2e -jωτ X (e ) + E -jω2τ X (e ) corresponds with y (t) = x (t) -2x (t-τ) + x (t + 2τ)

Die Definition der Gruppenlaufzeit nach K. D. Kammeyer, Nachrichtenübertragung, Teubner Stuttgart 1996, lautet wie folgt τ g (ω) =- dϕ(ω) dω The definition of group maturity according to KD Kammeyer, Nachrichtenübertragung, Teubner Stuttgart 1996, is as follows τ G (ω) = - d φ (ω) d ω

Frequenzgang des betrachteten Teilsystems Hteil= 2-e-jωτ Frequency response of the considered subsystem H part = 2-e -jωτ

Bei Frequenzen ωτ≈2π ist e -jω2π≈1-j(ωτ-2π) (Taylorreihenentwicklung). Damit gilt annähernd Hteil= 2-(1-j(ωτ-2π))=1+ j(ωτ-2π)) At frequencies ωτ≈2π e - j ω2π ≈1- j (ωτ-2π) (Taylor series evolution). This approximately applies H part = 2- (1-j (ωτ-2π)) = 1+ j (ωτ-2π))

Die Phase beträgt approximativ ωτ-2π, die Ableitung nach ω ergibt negative Werte: -τ ist diejenige Gruppenlaufzeit, die kompensiert werden soll.The phase is approximately ωτ-2π, which gives rise to ω negative values: -τ is the group delay that should be compensated.

Für das dargestellte Filter werden daher die Koeffizienten α1... αn wie folgt gewählt: α1 = 2, α2 = -1 und α3... αn = 0For the illustrated filter, therefore, the coefficients α 1 ... α n are chosen as follows: α 1 = 2, α 2 = -1 and α 3 ... α n = 0

Ein konkretes Anwendungsbeispiel der Erfindung zeigt Fig. 4. Es ist eine Kaskadenstufe eines Analog-Digital-Wandlersystems mit einem Tiefpaß-Sigma-Delta-Modulator 7 dargestellt, welches Gegenstand einer weiteren Patentanmeldung der Anmelderin ist. Die digitale Signalnachbildung des analogen Eingangssignals u(t) wird hier durch den Tiefpaß-Sigma-Delta-Modulator 7 erzielt. Die beiden Ausgangssignale einer Signalverarbeitungseinrichtung 2a, welche durch die Multiplikation des Eingangssignals u(t) mit ein sin- bzw. einem cos-Signal entstehen und als Inphase- bzw. Quadraturkomponente bezeichnet werden, werden in dem digitalen Mischer 8 wieder zu einem Signal zusammengesetzt und anschließend in einem Bandpaß-Digital-Analog-Wandler 9 analogisiert. Das Ausgangssignal des Bandpaß-Digital-Analog-Wandlers 9 wird mit negativem Vorzeichen auf einen Summierer 10 geführt. Das Eingangssignal u(t) wird zur Amplitudenanpassung in einem Verstärker 11 verstärkt und gelangt zu dem Summierer 10. Gemäß dem Stand der Technik wird das Signal u(t) zusätzlich verzögert, um die durch die Signalverarbeitungseinrichtung 2a eingebrachte Verzögerung des Eingangssignals auszugleichen.A concrete application example of the invention is shown in FIG. 4. It is a cascade stage of an analog-to-digital converter system shown with a low-pass sigma-delta modulator 7, which Subject of another patent application of the applicant is. The digital signal simulation of the analog input signal u (t) is here through the low-pass sigma-delta modulator. 7 achieved. The two output signals of a signal processing device 2a, which by the multiplication of the input signal u (t) with a sin or a cos signal and referred to as in-phase or quadrature component, become again in the digital mixer 8 to a signal assembled and then in a band-pass digital-to-analog converter 9 analogized. The output of the bandpass digital to analog converter 9 becomes negative passed to a summer 10. The input signal u (t) becomes amplified for amplitude adjustment in an amplifier 11 and passes to the summer 10. According to the prior art the signal u (t) is additionally delayed by the signal processing means 2a introduced delay of Balance the input signal.

Eine erfindungsgemäße Realisierung eines Laufzeitausgleichs ausgehend von dem in Fig. 4 dargestellten Anwendungsbeispiel zeigt Fig. 5. Es wird hier ein digitales Filter mit den Koeffizienten α1 = 2 und α2 = -1 eingesetzt. Wie obenstehend beschrieben, weist dieses Filter eine hohe Sperrdämpfung bei ω = 0 auf. Die Inphase- und die Quadraturkomponente des Tiefpaß-Sigma-Delta-Modulators 7 werden zum einen über einen digitalen Mischer 8 geführt, mit dem Koeffizienten α1 = 2 multipliziert und in einem Bandpaß-Digital-Analog-Wandler 9 in ein analoges Signal umgewandelt.An implementation according to the invention of a delay compensation based on the application example shown in FIG. 4 is shown in FIG. 5. Here, a digital filter with the coefficients α 1 = 2 and α 2 = -1 is used. As described above, this filter has a high stopband attenuation at ω = 0. The in-phase and the quadrature components of the low-pass sigma-delta modulator 7 are firstly passed through a digital mixer 8, multiplied by the coefficients α 1 = 2 and converted in a band-pass digital-to-analog converter 9 into an analog signal.

Anschließend wird das Signal mit negativem Vorzeichen einem Summierer 10 zugeführt. Ferner werden die Inphase- und die Quadraturkomponente des Tiefpaß-Sigma-Delta-Modulators 7 in einem Verzögerungsglied 12 um τ verzögert, in einem Mischer 8a zusammengeführt und mit dem Koeffizienten α2 = -1 multipliziert. Nach einer Umwandlung in ein analoges Signal in einem Bandpaß-Digital-Analog-Wandler 9a wird dieses dem Summierer 10 mit negativem Vorzeichen zugeführt. Das Eingangssignal u(t) erfährt eine Amplitudenanpassung mittels eines Verstärkers 11, wird jedoch nicht wie in Fig. 4 verzögert. Durch das den digitalen Mischern nachgeschaltete Filter weisen Frequenzen im Bereich ω = 2π eine negative Gruppenlaufzeit auf, so dass die durch die Signalverarbeitungseinrichtung 2a verursachte Verzögerung für diesen Frequenzbereich kompensiert wird. In anderen Frequenzbereichen ist die Gruppenlaufzeit zwar positiv, jedoch ist das Ausgangssignal ohnehin bandbegrenzt, so dass keine zusätzliche Einschränkung durch das digitale Filter entsteht.Subsequently, the signal with a negative sign is fed to a summer 10. Furthermore, the in-phase and quadrature components of the low-pass sigma-delta modulator 7 are delayed by τ in a delay element 12, combined in a mixer 8a and multiplied by the coefficient α 2 = -1. After conversion to an analog signal in a band-pass digital-to-analog converter 9a, this is fed to the summer 10 with a negative sign. The input signal u (t) undergoes an amplitude adjustment by means of an amplifier 11, but is not delayed as in FIG. Due to the filter downstream of the digital mixers, frequencies in the range ω = 2π have a negative group delay, so that the delay caused by the signal processor 2a is compensated for this frequency range. In other frequency ranges, the group delay is positive, however, the output signal is anyway band-limited, so that no additional restriction is caused by the digital filter.

Claims (10)

  1. Arrangement for runtime compensation of a runtime difference arising through emulation of a high frequency signal with a signal to be emulated x(t), with a signal processing device, which emulates the signal x(t) with a signal x and(t), and with a device for determining a difference signal between the signals x(t) and x and(t), characterised in that the emulated signal x and(t) is routed via a filter with negative group runtime for certain frequency ranges.
  2. Arrangement according to claim 1, characterised in that the signal x(t) forms the output signal of a transmission system and a signal u(t) forms the input signal of the transmission system.
  3. Arrangement according to claim 1 or 2, characterised in that it has a regulation device, by means of which the emulated signal x and(t), can be modified so that the difference signal becomes minimal.
  4. Arrangement according to claim 3, characterised in that the difference signal for regulating signal emulation is routed to the signal processing device.
  5. Arrangement according to one of the preceding claims, characterised in that a signal evaluation unit is provided, which evaluates the difference signal and routes the evaluated signal to the signal processing device.
  6. Arrangement according to one of the preceding claims, characterised in that the analogue input signal for controlling signal emulation is routed to the signal processing device.
  7. Arrangement according to one of the preceding claims, characterised in that the filter has runtime elements.
  8. Arrangement according to one of the preceding claims, characterised in that the filter is linear.
  9. Arrangement according to one of claims 1 to 8, characterised in that the filter is an FIR filter.
  10. Arrangement according to one of claims 1 to 8, characterised in that the filter is an IIR filter.
EP02706728A 2001-01-29 2002-01-23 Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal Expired - Lifetime EP1356593B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02706728A EP1356593B1 (en) 2001-01-29 2002-01-23 Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10103812 2001-01-29
EP01101968A EP1227593A1 (en) 2001-01-29 2001-01-29 Arrangement for compensating the propagation delay caused by the reproduction of a high frequency signal
DE2001103812 DE10103812B4 (en) 2001-01-29 2001-01-29 Arrangement for delay compensation of a time difference occurring due to a simulation of a high-frequency signal
EP01101968 2001-01-29
PCT/EP2002/000656 WO2002061947A1 (en) 2001-01-29 2002-01-23 Arrangement for runtime compensation of a runtime difference arising through emulation of a high frequency signal
EP02706728A EP1356593B1 (en) 2001-01-29 2002-01-23 Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal

Publications (2)

Publication Number Publication Date
EP1356593A1 EP1356593A1 (en) 2003-10-29
EP1356593B1 true EP1356593B1 (en) 2005-08-24

Family

ID=26008354

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02706728A Expired - Lifetime EP1356593B1 (en) 2001-01-29 2002-01-23 Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal

Country Status (5)

Country Link
US (1) US7249008B2 (en)
EP (1) EP1356593B1 (en)
JP (1) JP2004518378A (en)
DE (1) DE50204018D1 (en)
WO (1) WO2002061947A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005061813B4 (en) * 2005-12-23 2012-10-11 Intel Mobile Communications GmbH receiver circuit
DE102016116421A1 (en) * 2016-07-07 2018-01-11 Infineon Technologies Ag SENSOR ARRANGEMENT WITH OPTIMIZED GROUP RUNTIME AND PROCESS FOR SIGNAL PROCESSING

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5153593A (en) 1990-04-26 1992-10-06 Hughes Aircraft Company Multi-stage sigma-delta analog-to-digital converter
JPH08330968A (en) 1995-01-12 1996-12-13 Texas Instr Inc <Ti> Oversampling digital / analog converter and compemsation thereof
US6008703A (en) * 1997-01-31 1999-12-28 Massachusetts Institute Of Technology Digital compensation for wideband modulation of a phase locked loop frequency synthesizer
SE513954C2 (en) * 1999-04-01 2000-12-04 Abb Ab Method and systems for processing signals from a sensor driven by an AC excitation signal

Also Published As

Publication number Publication date
WO2002061947A8 (en) 2002-09-06
WO2002061947A1 (en) 2002-08-08
JP2004518378A (en) 2004-06-17
US20040049373A1 (en) 2004-03-11
EP1356593A1 (en) 2003-10-29
US7249008B2 (en) 2007-07-24
DE50204018D1 (en) 2005-09-29

Similar Documents

Publication Publication Date Title
DE69220723T2 (en) Analog / digital converter, digital / analog converter and digital modulators
DE69315723T2 (en) Circuit for correcting distortion in receivers
DE3614785A1 (en) AUXILIARY SYSTEM FOR EQUALIZING FREQUENCY-DEPENDENT NON-LINEAR SYSTEMS, IN PARTICULAR AMPLIFIERS
WO2004100482A1 (en) Arrangement and method for the digital pre-distortion of a complex baseband input signal
DE2143707B2 (en) Low distortion electrical signal amplifier with feedforward
DE102006030569A1 (en) A system and method for pulse signal device characterization using an adaptive matched filter bank
DE69314387T2 (en) Non-integer delay circuit
EP1356593B1 (en) Arrangement for compensating a propagation delay difference arising through emulation of a high frequency signal
DE102004029932A1 (en) Method and device for the simultaneous compensation of signal errors in IQ modulators
DE69124177T2 (en) Analog-digital converter
DE102005020318B4 (en) Method for determining a model for an electrical network and use of the method
DE10103812B4 (en) Arrangement for delay compensation of a time difference occurring due to a simulation of a high-frequency signal
DE69804193T2 (en) Pilot detection circuit for control system to reduce the equalization generated by electrical circuits
EP1227593A1 (en) Arrangement for compensating the propagation delay caused by the reproduction of a high frequency signal
EP2667509B1 (en) Digital filter
EP1287612B1 (en) Device and method for pre-treating a signal to be transmitted using a non-linear amplifier with an upstream band-pass filter
EP0075311B1 (en) Arrangement for speech transmission based on the channel vocoder principle
DE60010389T2 (en) Method and device for converting an analog signal into a digital signal with automatic gain control
EP2856642B1 (en) Switched amplifier for variable supply voltage
DE102005045592B4 (en) Frequency converter unit
EP1075097B1 (en) Filtre for the determination of cross-correlation and receiver with a filter
DE3408384C2 (en) Impedance simulation circuit
EP1356592B1 (en) Sigma-delta modulator for digitizing analog high frequency signals
DE102017110160A1 (en) Widely tunable preselection filter for radio receivers and spectrum analyzers
DE3939906C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030701

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: ARRANGEMENT FOR COMPENSATING A PROPAGATION DELAY DIFFERENCE ARISING THROUGH EMULATION OF A HIGH FREQUENCY SIGNAL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50204018

Country of ref document: DE

Date of ref document: 20050929

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20050916

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060526

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080124

Year of fee payment: 7

Ref country code: IT

Payment date: 20080122

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080111

Year of fee payment: 7

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090205 AND 20090211

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090123

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090123

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50204018

Country of ref document: DE

Owner name: NOKIA SOLUTIONS AND NETWORKS GMBH & CO. KG, DE

Free format text: FORMER OWNER: NOKIA SIEMENS NETWORKS GMBH & CO. KG, 81541 MUENCHEN, DE

Effective date: 20140731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20210112

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50204018

Country of ref document: DE