EP1349434B1 - Lighting circuit, especially for cars - Google Patents

Lighting circuit, especially for cars Download PDF

Info

Publication number
EP1349434B1
EP1349434B1 EP03100572A EP03100572A EP1349434B1 EP 1349434 B1 EP1349434 B1 EP 1349434B1 EP 03100572 A EP03100572 A EP 03100572A EP 03100572 A EP03100572 A EP 03100572A EP 1349434 B1 EP1349434 B1 EP 1349434B1
Authority
EP
European Patent Office
Prior art keywords
led
row
lighting circuit
series
matrix
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03100572A
Other languages
German (de)
French (fr)
Other versions
EP1349434A2 (en
EP1349434A3 (en
Inventor
Josef Studniorz
Bernd Schulte-Ewersum
Andreas Hinderlich
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hella GmbH and Co KGaA
Original Assignee
Hella KGaA Huek and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hella KGaA Huek and Co filed Critical Hella KGaA Huek and Co
Publication of EP1349434A2 publication Critical patent/EP1349434A2/en
Publication of EP1349434A3 publication Critical patent/EP1349434A3/en
Application granted granted Critical
Publication of EP1349434B1 publication Critical patent/EP1349434B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/40Details of LED load circuits

Definitions

  • the invention relates to a lighting circuit, in particular for motor vehicles.
  • Such lighting circuits are increasingly constructed with light-emitting diodes as lamps.
  • a different number of LEDs is required. This raises the question of the circuit arrangement in which the LEDs are arranged.
  • a series connection of all LEDs would have the disadvantage that all LEDs would fail if one LED fails.
  • a pure parallel connection of all LEDs would, especially in motor vehicles, the disadvantage of high power loss, since the vehicle electrical system voltage, which is typically 12 volts, is substantially higher than the forward voltage of an LED, which is typically between 2V and 3V, and therefore a correspondingly high voltage drop on a series resistor to adapt to the LED flux voltage is necessary, which in turn causes a high power dissipation on the series resistor.
  • a compromise between these two extremes is a combined series / parallel connection in which the parallel-connected rows are networked together to form a light-emitting diode matrix.
  • Such a light-emitting diode matrix consists of n parallel-connected rows, each with m strings connected in series, wherein a light-emitting diode is arranged in each strand and runs between the strands of each row an electrically conductive cross-connection to the respective adjacent rows.
  • the cross connections ensure that if one LED fails, the remaining LEDs can continue to be supplied with power and can continue to illuminate.
  • Such a light-emitting diode matrix for motor vehicles is known, for example, from EP 0896 899A2.
  • the cross connections between the rows are realized by cables or printed conductors whose ohmic resistance is negligibly small.
  • the LEDs shine uniformly bright, so that a homogeneous lighting impression is produced.
  • the voltage class refers to the range of permissible Anlagennecken.
  • the LEDs of a voltage class also differ in terms of their diode characteristic within a tolerance range.
  • the currents through the different strands of the light-emitting diode matrix can be very different; in extreme cases, they can turn around differentiate the factor 2 and more. This in turn undesirably causes different brightnesses.
  • this can lead to the rated currents of certain LEDs in the light-emitting diode matrix being significantly exceeded, which has a negative effect on the life of the LEDs.
  • the object of the invention is to provide a lighting circuit for an LED matrix, which overcomes the disadvantages listed above.
  • an ohmic resistance is arranged in at least one of the conductive cross-connections.
  • the cross resistances allow potential separation between strings of adjacent parallel rows and at the same time the flow of a compensation current if the LED forward voltages are different. As a result, in the case of different forward voltages a more uniform current distribution through the different LED strands is achieved than in the prior art according to EP 0896 899A2.
  • FIG. 1 shows an LED matrix according to the prior art according to EP 0896 899A2. It consists of a combined series / parallel circuit with 2 rows, each having 3 strands. In each strand an LED is arranged. Between the strands of each row an electrically conductive connection is arranged, the ohmic resistance is virtually equal to zero.
  • the LED matrix is connected to the supply voltage via a series resistor (Rv).
  • Rv series resistor
  • a protective diode serves as reverse polarity protection.
  • FIG. 2 shows an LED matrix according to the prior art according to EP 0793 402 B1. There, a series resistor of a LED is connected in series in each strand.
  • FIG. 3 shows a lighting circuit with a 6-LED matrix, as in FIG. 1, but according to the invention, a transverse resistance is incorporated in the cross-connections between the strands.
  • the effect achieved according to the invention, which is achieved with the transverse resistances, will be explained with reference to FIGS. 7 and 8.
  • FIG. 7 shows the characteristics for the LED with the number 4 and the LED with the number 3.
  • the LED with the No. 4 should have a forward voltage at the lower edge of the tolerance range of a voltage class while the forward voltage of the # 3 LED is at the top.
  • the forward voltages of the remaining LEDs (1, 2, 5, 6) are the same and lie in the middle of the tolerance band.
  • the rated current of the LEDs is 50 m amperes.
  • the LED matrix is connected via series resistors to the supply voltage (Vcc).
  • Vcc supply voltage
  • the number of LEDs connected in series in accordance with the forward voltage can be selected such that the voltage drop across all LEDs connected in series (functional voltage limit) approaches as close as possible to the lower limit of the supply voltage due to fluctuation.
  • the supply voltage can drop in the short term from normally 14 volts to 9 volts.
  • the series resistor is used to adjust the current flowing into the LED matrix. In order to evenly distribute the power loss, two or more series-connected series resistors (Rv) are preferably provided.
  • the series resistors are also arranged in the LED matrix in series with the LEDs
  • the LED matrix with the thermally low-loaded transverse resistances in the housing of a filament eg headlights or tail lamp
  • the series resistors are included as part of the LED matrix in the housing.
  • the equalizing currents can be adjusted independently of the load current through the LEDs.
  • the LED matrix is powered by a constant current source that provides a constant current independent of voltage fluctuations.
  • a low, optimally adapted to the functional voltage limit supply voltage can be selected because the voltage drop across the series resistors in the strands according to EP 0 793 402 B1 is omitted.
  • FIG. 4 shows the embodiment of a lighting circuit with a 9-LED matrix consisting of 3 rows connected in parallel, each having three strings.
  • a transverse resistance is arranged between the first and the second strand of the first row and between the first and the second strand of the second row.
  • a transverse resistance is arranged between the first and the second strand of the second row and between the first and the second strand of the third row.
  • Corresponding transverse resistances can also be found between the second and third strands of the respective adjacent rows.
  • the lighting circuit according to Figure 4 is analogous to the lighting circuit of Figure 3.
  • the transverse resistances are each with their one end with a common Sternkontentician connected and connected at their other end in each case with a row in the area between two strands.
  • this star connection is represented once more for the sake of clarity. The use of such a star connection allows greater freedom in the layout of the printed circuit board on which the LED matrix is arranged.

Landscapes

  • Circuit Arrangement For Electric Light Sources In General (AREA)
  • Audible And Visible Signals (AREA)
  • Led Devices (AREA)

Description

Die Erfindung bezieht sich auf einen Beleuchtungsschaltkreis, insbesondere für Kraftfahrzeuge. Solche Beleuchtungsschaltkreise werden zunehmend mit Leuchtdioden als Leuchtmitteln aufgebaut. Je nach Anwendung ist dabei eine unterschiedliche Anzahl von LEDs erforderlich. Dabei stellt sich die Frage nach der Schaltungsanordnung, in der die LEDs angeordnet werden. Eine Reihenschaltung aller LEDs hätte den Nachteil, daß beim Ausfall einer LED sämtliche LEDs ausfallen würden. Eine reine Parallelschaltung aller LEDs hätte, insbesondere bei Kraftfahrzeugen, den Nachteil einer hohen Verlustleistung, da die Bordnetzspannung, die typischerweise 12Volt beträgt, wesentlich höher ist als die Flußspannung einer LED, die typischerweise zwischen 2V und 3 V beträgt, und daher ein entsprechend hoher Spannungsabfall an einem Vorwiderstand zur Anpassung an die LED-Flußspannung notwendig ist, was wiederum eine hohe Verlustleistung an dem Vorwiderstand hervorruft. Ein Kompromiß zwischen diesen beiden Extremen ist eine kombinierte Reihen/Parallelschaltung, in der die parallelgeschalteten Reihen untereinander unter Ausbildung einer Leuchtdiodenmatrix vernetzt sind. Eine derartige Leuchtdiodenmatrix besteht aus n parallelgeschalteten Reihen mit jeweils m hintereinandergeschalteten Strängen, wobei in jedem Strang eine Leuchtdiode angeordnet ist und zwischen den Strängen jeweils einer Reihe eine elektrisch leitende Querverbindung zu den jeweils benachbarten Reihen verläuft. Durch die Querverbindungen wird sichergestellt, daß bei Ausfall einer LED die übrigen LEDs weiter mit Strom versorgt werden und weiterleuchten können. Eine solche Leuchtdiodenmatrix für Kraftfahrzeuge ist beispielsweise aus der EP 0896 899A2 bekannt. Die Querverbindungen zwischen den Reihen sind durch Kabel oder Leiterbahnen realisiert, deren ohmscher Widerstand vernachlässigbar klein ist.The invention relates to a lighting circuit, in particular for motor vehicles. Such lighting circuits are increasingly constructed with light-emitting diodes as lamps. Depending on the application, a different number of LEDs is required. This raises the question of the circuit arrangement in which the LEDs are arranged. A series connection of all LEDs would have the disadvantage that all LEDs would fail if one LED fails. A pure parallel connection of all LEDs would, especially in motor vehicles, the disadvantage of high power loss, since the vehicle electrical system voltage, which is typically 12 volts, is substantially higher than the forward voltage of an LED, which is typically between 2V and 3V, and therefore a correspondingly high voltage drop on a series resistor to adapt to the LED flux voltage is necessary, which in turn causes a high power dissipation on the series resistor. A compromise between these two extremes is a combined series / parallel connection in which the parallel-connected rows are networked together to form a light-emitting diode matrix. Such a light-emitting diode matrix consists of n parallel-connected rows, each with m strings connected in series, wherein a light-emitting diode is arranged in each strand and runs between the strands of each row an electrically conductive cross-connection to the respective adjacent rows. The cross connections ensure that if one LED fails, the remaining LEDs can continue to be supplied with power and can continue to illuminate. Such a light-emitting diode matrix for motor vehicles is known, for example, from EP 0896 899A2. The cross connections between the rows are realized by cables or printed conductors whose ohmic resistance is negligibly small.

In den meisten Anwendung besteht die Anforderung, daß die LEDs gleichmäßig hell leuchten, damit ein homogener Beleuchtungseindruck entsteht. Zu diesem Zweck werden in einer solchen Leuchtdiodenmatrix vorzugsweise nur LEDs verbaut, die in derselben Spannungsklasse liegen, wobei die Spannungsklasse sich auf den Wertebereich der zulässigen Fußspannungen bezieht. Allerdings unterscheiden sich auch die LEDs einer Spannungsklasse hinsichtlich ihrer Diodenkennlinie innerhalb eines Toleranzbereiches. Dies führt dazu, daß bei ungünstigen Konstellationen die Ströme durch die verschiedenen Stränge der Leuchtdiodenmatrix sehr unterschiedlich sein können; in Extremfällen können sie sich um den Faktor 2 und mehr unterscheiden. Dies bewirkt nun wiederum in unerwünschter Weise unterschiedliche Helligkeiten. Darüber hinaus kann dies dazu führen, daß die Nennströme bestimmter LEDs in der Leuchtdiodenmatrix deutlich überschritten werden, was sich negativ auf die Lebensdauer der LEDs auswirkt.In most applications there is a requirement that the LEDs shine uniformly bright, so that a homogeneous lighting impression is produced. For this purpose, preferably only LEDs are installed in such a light-emitting diode, which lie in the same voltage class, the voltage class refers to the range of permissible Fußspannungen. However, the LEDs of a voltage class also differ in terms of their diode characteristic within a tolerance range. As a result, in unfavorable constellations, the currents through the different strands of the light-emitting diode matrix can be very different; in extreme cases, they can turn around differentiate the factor 2 and more. This in turn undesirably causes different brightnesses. In addition, this can lead to the rated currents of certain LEDs in the light-emitting diode matrix being significantly exceeded, which has a negative effect on the life of the LEDs.

Um diesen Nachteilen zu begegnen wird in der EP 0 793 402 B1 vorgeschlagen, jeder LED eines Stranges einen Widerstand in Reihenschaltung zu zuordnen. Hierdurch wird eine gleichartige Linearisierung unterschiedlicher LED-Kennlinien erreicht und somit insgesamt eine gleichmäßige Stromaufteilung auf die verschiedenen Stränge/LEDs. Die große Anzahl von Widerständen, die benötigt wird, ist jedoch problematisch, da damit hohe Bauteile- und Bestückungskosten verbunden sind. Außerdem ist für die Vielzahl der Widerstände zusätzlicher Bauraum erforderlich. Ein weiteres Problem besteht darin, daß über den in Reihe geschalteten Widerständen jeweils eine Spannung abfällt, die eine thermische Verlustleistung erzeugt. Die thermische Verlustleistung reduziert zum einen den Wirkungsgrad der Lichterzeugung und zum anderen bewirken die durch die thermische Verlustleistung erzeugten hohen Temperaturen eine erhöhte Degradation der LEDs.In order to counter these disadvantages, it is proposed in EP 0 793 402 B1 to assign a resistor in series to each LED of a string. As a result, a similar linearization of different LED characteristics is achieved and thus a total of a uniform current distribution on the different strands / LEDs. The large number of resistors that is needed, however, is problematic because it involves high component and assembly costs. In addition, additional space is required for the large number of resistors. Another problem is that across the series-connected resistors in each case a voltage drops, which generates a thermal power loss. On the one hand, the thermal power loss reduces the efficiency of light generation and, on the other hand, the high temperatures generated by the thermal power dissipation cause an increased degradation of the LEDs.

Aufgabe der Erfindung ist es, einen Beleuchtungsschaltkreis für eine LED-Matrix zu schaffen, der die vorstehend aufgeführten Nachteile überwindet.The object of the invention is to provide a lighting circuit for an LED matrix, which overcomes the disadvantages listed above.

Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in mindestens einer der leitenden Querverbindungen ein ohmscher Widerstand angeordnet ist. Auf Widerstände in den Strängen, welche jeweils in Reihe zu einer LED geschaltet sind (vgl. EP 0793 402 B1), kann dabei verzichtet werden. Die Querwiderstände erlauben eine Potentialtrennung zwischen Strängen benachbarter paralleler Reihen und gleichzeitig das Fließen eines Ausgleichsstromes, falls die LED-Flußspannungen unterschiedlich sind. Hierdurch wird im Falle unterschiedlicher Flußspannungen eine gleichmäßigere Stromverteilung durch die verschiedenen LED-Stränge erreicht als beim Stand der Technik gemäß EP 0896 899A2. Im Unterschied zur EP 0793 402 B1 fließt über die Querwiderstände nur dann ein thermische Verlustleistung erzeugender Ausgleichsstrom, wenn die LED-Flußspannungen tatsächlich unterschiedlich sind, während gemäß EP 0793 402 B1 über die Vorwiderstände in jedem LED-Strang immer, auch dann, wenn die Flußspannungen gleich sind, der LED-Strom fließt und dort Verlustleistung erzeugt. Außerdem wird durch die erfindungsgemäße Lösung die Zahl der Bauteile erheblich reduziert. Beispielweise werden bei einer LED-Matrix bestehend aus 2 Reihen mit jeweils 3 Strängen erfindungsgemäß maximal 2 Querwiderstände im Unterschied zu 6 Vorwiderständen gemäß EP 0 793 402 A1 benötigt.This object is achieved in that in at least one of the conductive cross-connections, an ohmic resistance is arranged. On resistances in the strands, which are each connected in series to an LED (see EP 0793 402 B1), can be dispensed with. The cross resistances allow potential separation between strings of adjacent parallel rows and at the same time the flow of a compensation current if the LED forward voltages are different. As a result, in the case of different forward voltages a more uniform current distribution through the different LED strands is achieved than in the prior art according to EP 0896 899A2. In contrast to EP 0793 402 B1 flows through the cross resistances only a thermal power dissipation generating compensation current when the LED forward voltages are actually different, while always according to EP 0793 402 B1 on the series resistors in each LED strand, even if the forward voltages are the same, the LED current flows and generates power loss there. In addition, by the solution according to the invention the Number of components significantly reduced. For example, in the case of an LED matrix consisting of 2 rows each having 3 strands, a maximum of 2 transverse resistors are required according to the invention in contrast to 6 series resistors according to EP 0 793 402 A1.

Anhand der beigefügten Zeichnungen soll die Erfindung nachfolgend näher erläutert werden. Es zeigt:

Figur 1
eine LED-Matrix gemäß dem Stand der Technik nach EP 0896 899A2,
Figur 2
eine LED-Matrix gemäß dem Stand der Technik nach EP 0793 402 B1,
Figur 3
eine erfindungsgemäße LED-Matrix gemäß einer ersten Ausführungsform,
Figur 4
eine erfindungsgemäße LED-Matrix gemäß einer zweiten Ausführungsform,
Figur 5
eine erfindungsgemäße LED-Matrix gemäß einer dritten Ausführungsform,
Figur 6
eine Widerstandssternschaltung, wie sie gemäß Ausführungsform von Figur 5 verwendet wird,
Figur 7
den Kennlinienverlauf zweier LEDs mit unterschiedlichen Flußspannungen,
Figur 8
den Einfluß des Querwiderstands auf eine gleichmäßige Stromverteilung.
Reference to the accompanying drawings, the invention will be explained in more detail below. It shows:
FIG. 1
an LED matrix according to the prior art according to EP 0896 899A2,
FIG. 2
an LED matrix according to the prior art according to EP 0793 402 B1,
FIG. 3
an LED matrix according to the invention according to a first embodiment,
FIG. 4
an LED matrix according to the invention according to a second embodiment,
FIG. 5
an LED matrix according to the invention according to a third embodiment,
FIG. 6
a resistance star circuit as used according to the embodiment of FIG. 5,
FIG. 7
the characteristic curve of two LEDs with different forward voltages,
FIG. 8
the influence of the transverse resistance on a uniform current distribution.

In Figur 1 ist eine LED-Matrix nach dem Stand der Technik gemäß EP 0896 899A2 dargestellt. Sie besteht aus einer kombinierten Reihen-/Parallelschaltung mit 2 Reihen, die jeweils 3 Stränge aufweisen. In jedem Strang ist eine LED angeordnet. Zwischen den Strängen jeweils einer Reihe ist eine elektrisch leitende Verbindung angeordnet, deren ohmscher Widerstand praktisch gleich Null ist. Die LED-Matrix ist über einen Vorwiderstand (Rv) mit der Versorgungsspannung verbunden. Eine Schutzdiode dient als Verpolungsschutz.FIG. 1 shows an LED matrix according to the prior art according to EP 0896 899A2. It consists of a combined series / parallel circuit with 2 rows, each having 3 strands. In each strand an LED is arranged. Between the strands of each row an electrically conductive connection is arranged, the ohmic resistance is virtually equal to zero. The LED matrix is connected to the supply voltage via a series resistor (Rv). A protective diode serves as reverse polarity protection.

In Figur 2 ist eine LED-Matrix nach dem Stand der Technik gemäß EP 0793 402 B1 dargestellt. Dort ist in jedem Strang ein Vorwiderstand einer LED in Reihe zugeschaltet.FIG. 2 shows an LED matrix according to the prior art according to EP 0793 402 B1. There, a series resistor of a LED is connected in series in each strand.

Figur 3 zeigt einen Beleuchtungsschaltkreis mit einer 6er LED-Matrix, wie in Figur 1, jedoch ist erfindungsgemäß in den Querverbindungen zwischen den Strängen ein Querwiderstand eingebaut. Die erfindungsgemäß erzielte Wirkung, die mit den Querwiderständen erreicht wird, wird anhand der Figuren 7 und 8 erläutert. In Figur 7 sind die Kennlinien für die LED mit der Nr. 4 und die LED mit der Nr. 3 dargestellt. Dabei soll die LED mit der Nr. 4 eine Flußspannung aufweisen, die am unteren Rand des Toleranzbereiches einer Spannungsklasse liegt, während die Flußspannung der LED mit der Nr. 3 am oberen Rand liegt. Die Flußspannungen der übrigen LEDs (1,2, 5, 6) seien gleich und liegen in der Mitte des Toleranzbandes. Der Nennstrom der LEDs betrage 50 m Ampere. Ohne den erfindungsgemäßen Querwiderstand, d.h. bei einer kurzgeschlossenen Querverbindung (Rq = 0) gemäß Stand der Technik (vgl. Figur 1) sind die LED-Ströme durch die LEDs 3 und 4 sehr unterschiedlich. Bei Rq = 0 beträgt der Strom durch die LED mit der Nr. 3 nur 39 m Ampere, während de Strom durch die LED mit der Nr. 4 mit 61 m Ampere über dem Nennstrom liegt. Dieser Stromunterschied verursacht eine unterschiedliche Helligkeit der LEDs und bewirkt dauerhaft eine Degradation der LEDs. Mit zunehmendem Querwiderstand nimmt dann der Stromunterschied ab, wobei die Ströme sich dem Nennstrom annähern. Ab ca. 80 Ω haben die Ströme sich dann maximal dem Nennstrom angenähert. Falls die Flußspannungen der LEDs identisch sind, fließt über die Querwiderstände kein Strom, somit wird dann auch keine Verlustleistung erzeugt. Die LED-Matrix wird über Vorwiderstände mit der Versorgungsspannung (Vcc) verbunden. Dabei kann die Anzahl der in einer Reihe hintereinander geschalteten LEDs entsprechend der Flußspannung (ca. 2 bis 3V) so gewählt werden, daß der Spannungsabfall an allen in Reihe geschalteten LEDs (Funktionsspannungsgrenze) möglichst nah an die schwankungsbedingt untere Grenze der Versorgungsspannung herankommt. In einem Kraftfahrzeug kann die Versorgungsspannung durchaus kurzfristig von normalerweise 14 Volt auf 9 Volt sinken. Dabei dient der Vorwiderstand dazu, den Strom, der in die LED-Matrix fließt, einzustellen. Um die Verlustleistung gleichmäßig zu verteilen, sind vorzugsweise zwei oder mehr parallel geschaltete Vorwiderstände (Rv) vorgesehen.FIG. 3 shows a lighting circuit with a 6-LED matrix, as in FIG. 1, but according to the invention, a transverse resistance is incorporated in the cross-connections between the strands. The effect achieved according to the invention, which is achieved with the transverse resistances, will be explained with reference to FIGS. 7 and 8. FIG. 7 shows the characteristics for the LED with the number 4 and the LED with the number 3. The LED with the No. 4 should have a forward voltage at the lower edge of the tolerance range of a voltage class while the forward voltage of the # 3 LED is at the top. The forward voltages of the remaining LEDs (1, 2, 5, 6) are the same and lie in the middle of the tolerance band. The rated current of the LEDs is 50 m amperes. Without the transverse resistance according to the invention, ie with a short-circuited cross connection (Rq = 0) according to the prior art (see FIG. 1), the LED currents through the LEDs 3 and 4 are very different. At Rq = 0, the current through the # 3 LED is only 39m amperes, while the current through the # 4 LED at 61m amps is above the rated current. This current difference causes a different brightness of the LEDs and permanently causes a degradation of the LEDs. With increasing transverse resistance then decreases the current difference, the currents approach the rated current. From approx. 80 Ω, the currents have then approximated to a maximum of the nominal current. If the forward voltages of the LEDs are identical, no current flows through the cross resistances, thus no power dissipation is generated. The LED matrix is connected via series resistors to the supply voltage (Vcc). In this case, the number of LEDs connected in series in accordance with the forward voltage (approximately 2 to 3V) can be selected such that the voltage drop across all LEDs connected in series (functional voltage limit) approaches as close as possible to the lower limit of the supply voltage due to fluctuation. In a motor vehicle, the supply voltage can drop in the short term from normally 14 volts to 9 volts. The series resistor is used to adjust the current flowing into the LED matrix. In order to evenly distribute the power loss, two or more series-connected series resistors (Rv) are preferably provided.

Im Unterschied zum Beleuchtungsschaltkreis gemäß EP 0 793 402 B1, wo die Vorwiderstände auch in der LED-Matrix in Reihenschaltung zu den LEDs angeordnet sind, kann beim erfindungsgemäßen Beleuchtungsschaltkreis die LED-Matrix mit den thermisch gering belasteten Querwiderständen in dem Gehäuse eines Leuchtkörpers (z.B. Scheinwerfer oder Heckleuchte) untergebracht sein, während der oder die Vorwiderstände außerhalb des Gehäuse angeordnet sein können. Damit wird die störende Verlustwärme von dem Inneren des Gehäuse ferngehalten. Beim Stand der Technik gemäß EP 0 793 402 B1 sind die Vorwiderstände als Bestandteil der LED-Matrix in dem Gehäuse mitenthalten. Darüber hinaus können erfindungsgemäß im Unterschied zur EP 0 793 402 B1 die Ausgleichsströme unabhängig vom Laststrom durch die LEDs eingestellt werden.In contrast to the lighting circuit according to EP 0 793 402 B1, where the series resistors are also arranged in the LED matrix in series with the LEDs, in the lighting circuit according to the invention, the LED matrix with the thermally low-loaded transverse resistances in the housing of a filament (eg headlights or tail lamp), while the or the series resistors can be arranged outside the housing. Thus, the disturbing heat loss is kept away from the interior of the housing. In the prior art according to EP 0 793 402 B1, the series resistors are included as part of the LED matrix in the housing. In addition, according to the invention, in contrast to EP 0 793 402 B1, the equalizing currents can be adjusted independently of the load current through the LEDs.

In einer nicht dargestellten Ausführungsform wird die LED-Matrix von einer Konstantstromquelle gespeist, die unabhängig von Spannungsschwankungen einen konstanten Strom bereitstellt. In diesem Fall kann eine niedrige, optimal an die Funktionsspannungsgrenze angepasste Versorgungsspannung gewählt werden, da der Spannungsabfall an den Vorwiderständen in den Strängen gemäß EP 0 793 402 B1 entfällt.In an embodiment not shown, the LED matrix is powered by a constant current source that provides a constant current independent of voltage fluctuations. In this case, a low, optimally adapted to the functional voltage limit supply voltage can be selected because the voltage drop across the series resistors in the strands according to EP 0 793 402 B1 is omitted.

In Figur 4 ist die Ausführungsform eines Beleuchtungsschaltkreises mit einer 9er LED-Matrix bestehend aus 3 parallel geschalteten Reihen mit jeweils drei Strängen dargestellt. Dabei ist zwischen dem ersten und dem zweiten Strang der ersten Reihe und zwischen dem ersten und dem zweiten Strang der zweiten Reihe ein Querwiderstand angeordnet. Ebenso ist zwischen dem ersten und dem zweiten Strang der zweiten Reihe und zwischen dem ersten und dem zweiten Strang der dritten Reihe ein Querwiderstand angeordnet. Entsprechende Querwiderstände finden sich auch zwischen den zweiten und dritten Strängen der jeweils benachbarten Reihen. Insofern ist der Beleuchtungsschaltkreis gemäß Figur 4 analog zum Beleuchtungsstromkreis gemäß Figur 3. Im Unterschied zu Figur 3 kommt jedoch ergänzend hinzu, daß auch zwischen dem ersten und dem zweiten Strang der ersten Reihe und zwischen dem ersten und dem zweiten Strang der dritten Reihe sowie zwischen dem zweiten und dem dritten Strang der ersten Reihe und zwischen dem zweiten und dem dritten Strang der dritten Reihe ein Querwiderstand angeordnet ist. Damit sind nicht nur die benachbarten Reihen über Querwiderstände miteinander verbunden, sondern auch die äußeren Reihen. Durch die quasi ringförmige Vernetzung auch der äußeren Reihen durch Querwiderstände wird eine bessere Symmetrie der LED-Matrix erreicht, die sicherstellt, daß auch beim Ausfall einer LED in einer "äußeren" Reihe eine möglichst gleichmäßige Stromverteilung erfolgt. Durch die ringförmige Vernetzung macht es keinen Unterschied, ob in einer inneren oder einer äußeren Reihe eine LED ausfällt oder eine unterschiedliche Kennlinie aufweist. Eine Unterscheidung von inneren Reihen und äußeren Reihen ist somit eigentlich gar nicht mehr vorhanden.FIG. 4 shows the embodiment of a lighting circuit with a 9-LED matrix consisting of 3 rows connected in parallel, each having three strings. In this case, a transverse resistance is arranged between the first and the second strand of the first row and between the first and the second strand of the second row. Likewise, a transverse resistance is arranged between the first and the second strand of the second row and between the first and the second strand of the third row. Corresponding transverse resistances can also be found between the second and third strands of the respective adjacent rows. In this respect, the lighting circuit according to Figure 4 is analogous to the lighting circuit of Figure 3. In contrast to Figure 3, however, is added that also between the first and second strand of the first row and between the first and second strand of the third row and between the second and third strand of the first row and between the second and third strand of the third row, a transverse resistance is arranged. Thus, not only the adjacent rows are connected via transverse resistances, but also the outer rows. Due to the quasi-annular networking and the outer rows by cross resistances a better symmetry of the LED matrix is achieved, which ensures that even if one LED fails in an "outer" row as uniform as possible power distribution. Due to the annular cross-linking, it makes no difference whether an LED fails in an inner or an outer row or has a different characteristic. A distinction between inner rows and outer rows is thus actually no longer present.

Bei der Ausführungsform gemäß Figur 5 sind die Querwiderstände jeweils in einer Sternschaltung aus m (= Reihenzahl der LED-Matrix) Querwiderständen angeordnet. Dabei sind die Querwiderstände mit ihrem einen Ende jeweils mit einem gemeinsamen Sternkontenpunkt verbunden und mit ihrem jeweils anderen Ende jeweils mit einer Reihe im Bereich zwischen zwei Strängen verbunden. In Figur 6 ist diese Sternschaltung für sich allein zur Verdeutlichung noch einmal dargestellt. Die Verwendung einer solchen Sternschaltung ermöglicht beim Layout der Leiterplatte, auf der die LED-Matrix angeordnet wird, größere Gestaltungsfreiheit.In the embodiment according to FIG. 5, the transverse resistances are each arranged in a star connection of m (= row number of the LED matrix) transverse resistances. In this case, the transverse resistances are each with their one end with a common Sternkontenpunkt connected and connected at their other end in each case with a row in the area between two strands. In FIG. 6, this star connection is represented once more for the sake of clarity. The use of such a star connection allows greater freedom in the layout of the printed circuit board on which the LED matrix is arranged.

Claims (5)

  1. Lighting circuit, specifically for motor vehicles, featuring a matrix of light-emitting diodes (LED matrix) in a combined series/parallel connection that direct current and/or a constant current is supplied to by a power supply circuit, where the LED matrix is made up of n rows connected in parallel, each row containing m bead chains connected in series, where every chain has a light emitting diode (bead) and where the beads on every row have a conductive cross connection to each of the neighboring rows,
    wherein
    at least one shunt resistor is contained in at least one of the aforementioned cross connections.
  2. Lighting circuit as in claim 1,
    wherein,
    if three or more rows are connected in parallel, there is a cross connection containing at least one resistor between at least one first chain and a second chain of the first row and between the same first and second chains of the last row.
  3. Lighting circuit as in claim 2,
    wherein
    the design contains at least one star connection between m shunt resistors, where one end of each shunt resistor connects to a shared star node and each other end separately connects to a row somewhere along the stretch between two chains.
  4. Lighting circuit as in one of the above claims,
    wherein
    at least one ballast resistor in connected in series with the LED matrix.
  5. Lighting circuit as in claim 4,
    wherein
    the LED matrix with the shunt resistors resides in the housing of a luminous element whereas the at least one ballast resistor is located outside the housing.
EP03100572A 2002-03-30 2003-03-07 Lighting circuit, especially for cars Expired - Lifetime EP1349434B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10214423A DE10214423A1 (en) 2002-03-30 2002-03-30 Lighting circuit, in particular for motor vehicles
DE10214423 2002-03-30

Publications (3)

Publication Number Publication Date
EP1349434A2 EP1349434A2 (en) 2003-10-01
EP1349434A3 EP1349434A3 (en) 2005-08-17
EP1349434B1 true EP1349434B1 (en) 2007-04-25

Family

ID=27798266

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03100572A Expired - Lifetime EP1349434B1 (en) 2002-03-30 2003-03-07 Lighting circuit, especially for cars

Country Status (2)

Country Link
EP (1) EP1349434B1 (en)
DE (2) DE10214423A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4094477B2 (en) 2003-04-28 2008-06-04 株式会社小糸製作所 Vehicle lighting
JP4442690B2 (en) * 2005-02-25 2010-03-31 株式会社村田製作所 LED lighting device
WO2006114832A1 (en) 2005-04-06 2006-11-02 Murata Manufacturing Co., Ltd. Acceleration sensor
DE102005053298B4 (en) * 2005-11-09 2012-08-16 Kromberg & Schubert Kg lighting device
DE102006029957A1 (en) * 2006-06-29 2008-01-03 Osram Opto Semiconductors Gmbh lighting device
TWI413453B (en) * 2008-11-20 2013-10-21 Epistar Corp Alternating current light emitting diode device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5457450A (en) * 1993-04-29 1995-10-10 R & M Deese Inc. LED traffic signal light with automatic low-line voltage compensating circuit
FR2745459B1 (en) * 1996-02-28 1998-04-10 Valeo Electronique LIGHTING CIRCUIT WITH LIGHT EMITTING DIODES, ESPECIALLY FOR MOTOR VEHICLES, SIGNAL LIGHT, AND CONTROL PANEL INCORPORATING THE SAME
DE19734750C2 (en) * 1997-08-12 2003-04-30 Reitter & Schefenacker Gmbh Rear lights of motor vehicles
DE19835159C2 (en) * 1998-08-04 2001-08-02 Agfa Gevaert Ag Device for exposing photographic material
US6288497B1 (en) * 2000-03-24 2001-09-11 Philips Electronics North America Corporation Matrix structure based LED array for illumination

Also Published As

Publication number Publication date
DE50307113D1 (en) 2007-06-06
EP1349434A2 (en) 2003-10-01
DE10214423A1 (en) 2003-10-09
EP1349434A3 (en) 2005-08-17

Similar Documents

Publication Publication Date Title
DE60008855T2 (en) THREE-DIMENSIONAL LED MATRIX FOR LIGHTING
DE102004020691B4 (en) vehicle light
DE10341022A1 (en) Circuit for a lighting device
DE10347743A1 (en) lighting circuit
DE102009018428A1 (en) Circuit for a light-emitting diode arrangement and light-emitting diode module
EP0992961B1 (en) Circuit for operating an illuminated sign
EP1349434B1 (en) Lighting circuit, especially for cars
DE202007011973U1 (en) LED cluster arrangement with constant current switch
DE102007043862A1 (en) Luminous chain with distributed driver circuit
DE10329367B4 (en) LED array, LED module and use of the LED module in a signaling system
EP2473777B1 (en) Light signal
EP2744302A1 (en) Method and device for operating a lighting device of a motor vehicle
DE10230105B4 (en) White LED light source
EP2302982A2 (en) Dimmable chain of lights and switch for same
EP1945006A2 (en) LED switching device
EP1395091B1 (en) Lamp with a switching arrangement for controlling light-emitting diodes and method for adjusting such an arrangement
DE10221573B4 (en) Circuit arrangement for operating a light sign
DE10131845B4 (en) Circuit device for the power supply of LEDs in a motor vehicle
DE10321588A1 (en) Light especially for a pocket torch, has light diodes in a socket with a fastening compatible with low voltage incandescent lamps and an electronic dc converter
EP3193563A1 (en) Illumination device intended for a vehicle light comprising multiple semiconductor light sources and method for operating the same
DE102006029957A1 (en) lighting device
DE19910142A1 (en) Illuminated road sign drive circuit
EP3170368B1 (en) Circuit arrangement and method for addressing leds in a matrix configuration
AT517122A1 (en) Lighting device for vehicles
AT517629B1 (en) LED current coding by extended shunt resistor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HELLA KGAA HUECK & CO.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20060202

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50307113

Country of ref document: DE

Date of ref document: 20070606

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070805

ET Fr: translation filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20070425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070425

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140311

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50307113

Country of ref document: DE

Owner name: HELLA GMBH & CO. KGAA, DE

Free format text: FORMER OWNER: HELLA KG HUECK & CO., 59557 LIPPSTADT, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50307113

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H05B0033080000

Ipc: H05B0045000000

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200225

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50307113

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211001