EP1349009B1 - Lithographic apparatus and device manufacturing method - Google Patents

Lithographic apparatus and device manufacturing method Download PDF

Info

Publication number
EP1349009B1
EP1349009B1 EP20030251611 EP03251611A EP1349009B1 EP 1349009 B1 EP1349009 B1 EP 1349009B1 EP 20030251611 EP20030251611 EP 20030251611 EP 03251611 A EP03251611 A EP 03251611A EP 1349009 B1 EP1349009 B1 EP 1349009B1
Authority
EP
European Patent Office
Prior art keywords
masking
facet
facets
radiation
opaque
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP20030251611
Other languages
German (de)
French (fr)
Other versions
EP1349009A2 (en
EP1349009A3 (en
Inventor
Marcel Mathijs Theodore Marie Dierichs
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASML Netherlands BV
Original Assignee
ASML Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASML Netherlands BV filed Critical ASML Netherlands BV
Priority to EP20030251611 priority Critical patent/EP1349009B1/en
Priority to EP07018092.2A priority patent/EP1870772B1/en
Publication of EP1349009A2 publication Critical patent/EP1349009A2/en
Publication of EP1349009A3 publication Critical patent/EP1349009A3/en
Application granted granted Critical
Publication of EP1349009B1 publication Critical patent/EP1349009B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70091Illumination settings, i.e. intensity distribution in the pupil plane or angular distribution in the field plane; On-axis or off-axis settings, e.g. annular, dipole or quadrupole settings; Partial coherence control, i.e. sigma or numerical aperture [NA]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70066Size and form of the illuminated area in the mask plane, e.g. reticle masking blades or blinds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70075Homogenization of illumination intensity in the mask plane by using an integrator, e.g. fly's eye lens, facet mirror or glass rod, by using a diffusing optical element or by beam deflection
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose

Definitions

  • the present invention relates to a lithographic projection apparatus comprising:
  • patterning means as here employed should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term “light valve” can also be used in this context.
  • the said pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such patterning means include:
  • the said support structure may be embodied as a frame or table, for example, which may be fixed or movable as required.
  • Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs).
  • the patterning means may generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e . g . comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist).
  • a target portion e . g . comprising one or more dies
  • a substrate silicon wafer
  • a layer of radiation-sensitive material resist
  • a single wafer will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time.
  • employing patterning by a mask on a mask table a distinction can be made between two different types of machine.
  • each target portion is irradiated by exposing the entire mask pattern onto the target portion in one go; such an apparatus is commonly referred to as a wafer stepper.
  • each target portion is irradiated by progressively scanning the mask pattern under the projection beam in a given reference direction (the "scanning" direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally ⁇ 1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned.
  • M magnification factor
  • a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist).
  • the substrate Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features.
  • PEB post-exposure bake
  • This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC.
  • Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemo-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book " Microchip Fabrication: A Practical Guide to Semiconductor Processing", Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4 .
  • the projection system may hereinafter be referred to as the "lens"; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example.
  • the radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly; as a "lens”.
  • the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such "multiple stage" devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in US 5,969,441 and WO 98/40791 .
  • an integrator is provided in the illumination system.
  • the integrator may take the form of a quartz rod or a so-called fly's eye lens.
  • a fly's eye lens is a lens built up of a large number of smaller lenses in an array which creates a correspondingly large number of images of the source in a pupil plane of the illumination system. These images act as a virtual, or secondary, source.
  • the illumination system when using EUV exposure radiation the illumination system must be constructed from mirrors because there is no known material suitable for forming a refractive optical element for EUV radiation.
  • a functional equivalent to a fly's eye lens can be provided using faceted mirrors, for instance as described in US 6,195,201 , US 6,198,793 and EP-A-0 939 341 .
  • These documents describe a first, or field, faceted mirror which focuses a plurality of images, one per facet, on a second, or pupil, faceted mirror which directs the light to appropriately fill the pupil of the projection system. It is known from UV and DUV lithography that imaging of different types of mask pattern can be improved by controlling the illumination settings, e . g .
  • illumination settings can be obtained from EP-A- 0 949 541 and EP-A-1 109 067 , for example.
  • these illumination settings can be controlled by selectively blocking certain of the pupil facets.
  • the source position and size on each facet is not exactly known and not stable, it is necessary to block off whole facetws at a time, rather than partial facets.
  • only relatively coarse control of illumination settings is possible.
  • to provide an annular illumination setting it is necessary to obscure the innermost pupil facets and when positioning a masking blade over an inner facet it is difficult to avoid partially obscuring one or more of the outer facets.
  • DE 199 35 968 A1 discloses an illumination system for a lithographic apparatus using EUV radiation and suggests control of the illumination mode by selective masking of pupil or field facets.
  • the pitch should be small relative to the source image, so that the proportion of radiation blocked is independent of the source position, but not sufficiently small to cause diffraction of the projection beam.
  • the pitch is in the range of from 1mm to 500nm, dependent on the size of the facets and the illuminated area.
  • the facet masking means preferably further comprises means for adjusting the proportion of the area of a facet that is obscured, for example by having a plurality of partially-opaque blades selectively interposable into said projection beams. This enables multiple intermediate illumination settings, providing further versatility.
  • the facet masking means are arranged proximate the second (pupil) faceted mirror as this provides the most homogeneous illumination of the patterning means.
  • the facets may be arranged so that field facets illuminate pupil facets in different positions, for example facets near the periphery of the field facet mirror may direct radiation to more centrally positioned facets of the pupil facet mirror.
  • annular illumination modes may be set more easily, without partial obscuration of the outer pupil facets and illumination modes that would require masking of inaccessible pupil faces can be set.
  • two facet masking means may be provided to have selective masking of both field and pupil facets.
  • independent control of the inner and outer radii ( ⁇ inner and ⁇ outer ) of an annular illumination mode can be achieved.
  • the terms "radiation” and “beam” are used to encompass all types of electromagnetic radiation, including ultraviolet radiation (e.g. with a wavelength of 365, 248, 193, 157 or 126 nm) and extreme ultra-violet radiation (EUV), e . g . having a wavelength in the range 5-20 nm, especially around 13nm.
  • ultraviolet radiation e.g. with a wavelength of 365, 248, 193, 157 or 126 nm
  • EUV extreme ultra-violet radiation
  • Figure 1 schematically depicts a lithographic projection apparatus according to a particular embodiment of the invention.
  • the apparatus comprises:
  • the source LA (e.g . a laser-produced or discharge plasma source) produces a beam of radiation.
  • This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed conditioning means, such as a beam expander Ex, for example.
  • the illuminator IL may comprise adjusting means AM for setting the outer and/or inner radial extent (commonly referred to as ⁇ -outer and ⁇ -inner, respectively) of the intensity distribution in the beam.
  • ⁇ -outer and ⁇ -inner commonly referred to as ⁇ -outer and ⁇ -inner, respectively
  • it will generally comprise various other components, such as an integrator IN and a condenser CO.
  • the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.
  • the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser.
  • the current invention and Claims encompass both of these scenarios.
  • the beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having been selectively reflected by the mask MA, the beam PB passes through the lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning means (and interferometric measuring means IF), the substrate table WT can be moved accurately, e.g . so as to position different target portions C in the path of the beam PB. Similarly, the first positioning means can be used to accurately position the mask MA with respect to the path of the beam PB, e.g . after mechanical retrieval of the mask MA from a mask library, or during a scan.
  • the depicted apparatus can be used in two different modes:
  • the illumination system includes a field faceted mirror 10, having a plurality of facets 11, which receive radiation from the radiation source LA and form a plurality of images of the source LA on corresponding facets of pupil faceted mirror 22.
  • the shape of the field facets 11 largely define the shape of the illumination field on the patterning means.
  • Facet masking means 22-25 comprise a partially-opaque masking blade 22 and a solid masking blade 24 connected to respective actuators 23, 25 so as to be selectively and incrementally closeable into the projection beam PB in front of respective facets of the pupil facet mirrors. Because the image in the pupil of the projection system PL is an image of the pupil faceted mirror 20 (they are in conjugate planes), selectively obscuring the outermost ones of the pupil facets 21 allows control over ⁇ , the ratio of the amount of the projection system pupil that is filled, if no diffraction (at the mask) were present. Obscuring the outermost facets reduces ⁇ .
  • the facet masking means 22,23,24,25 and their operation, are shown in greater detail in Figures 3 to 7 .
  • the partially-opaque masking blade 22 is shown as solid, it will comprise as large a number of apertures and opaque areas as possible subject to the constraint that the size and spacing of the apertures and opaque areas must be large compared to the wavelength of the projection beam so that diffraction does not occur and to practical considerations of manufacture.
  • the opaque areas preferably have a total area sufficient to reduce by a predetermined fraction, preferably 50%, the radiation reflected by the pupil facet.
  • the total opaque area of the partially-opaque masking blade 22 as a fraction of the area of one of the facets will be a little less than the predetermined fraction of the projection beam that is to be absorbed.
  • the pupil facets 21 are square and arranged in columns. Accordingly, the partially-opaque and solid masking blades 22, 24 are constructed as a plurality of fingers 26, 27, one of each per column of pupil facets, that are selectively and incrementally extendible to cover ones of the pupil facets. Preferably, independent control of each of the fingers 26, 27 is provided to enable greater flexibility of the illumination settings, however in some circumstances pairs or groups of fingers may be ganged together.
  • the partially-opaque masking blades 27 may be constructed, for example, as a grid of rods, bars or wires or by forming apertures in a suitable pattern in a solid plate.
  • a partially opaque masking blade 27 formed with a plurality of rods 29 is shown in Figure 7 .
  • the masking blades 22, 24 may be arranged differently.
  • the masking blades may take the form of iris diaphragms.
  • adjustable blades it is possible to provide a plurality of blades, opaque and partially opaque, corresponding to the desired illumination settings and selectively interpose these into the beam as desired.
  • Such fixed blades may be formed as plates with appropriate openings and partially opaque (apertured) areas and may be held in a magazine or carousel to be inserted into the beam.
  • Figure 3 shows the facet masking means in its neutral position, with both masking blades 22,24 (fingers 26,27) open leaving the pupil facets 21 clear.
  • This setting provides the greatest ⁇ .
  • the partially-opaque fingers 26 are extended one step so that the outermost ring of pupil facets 21a is covered, as shown in Figure 4 .
  • the solid fingers 27 remain fully retracted and the inner pupil facets 21b are uncovered.
  • the solid fingers 27 are extended one step, fully obscuring the outermost ring of pupil facets 21a, as shown in Figure 5 . Again, the inner pupil facets 21b remain uncovered.
  • an elliptical pupil configuration may be created by covering facets in one direction only and multipole configurations may be created by covering the appropriate facets only.
  • four sets of facet marking blades are used, arranged around four sides of the facet mirror. This is shown in Figure 6 and can provide circular illumination modes with shorter movements of the fingers when the facets are arranged on a square grid.
  • FIG. 8 A second embodiment of the invention, which is the same as the first embodiment save as described below, is shown in Figures 8 and 9 .
  • the second embodiment has facet masking means 12, 13 proximate the field facet mirror 10.
  • the facet masking means 12, 13 may comprise a partially-opaque masking blade and a solid masking blade as in the first embodiment or simply a solid masking blade.
  • Placing the facet masking means at the field faceted mirror rather than the pupil faceted mirror can be advantageous in that the field facets are generally larger in one direction than the pupil facets so that there is additional room to provide the necessary mechanisms and it is easier to construct the partially-opaque masking blades at a larger scale.
  • additional advantages can be obtained if the field facets are arranged to fill pupil facets other than those in the corresponding location in the pupil mirror.
  • the outermost field facets 11a may be arranged to fill the innermost pupil facets 21b and vice versa, as shown in Figure 8 .
  • closing the facet masking means 12, 13 to obscure the outermost field facets 11a removes the illumination from the innermost pupil facets 21b, providing an annular illumination mode.
  • Figure 9 shows the field facet mirror 10, which is the same as in the first embodiment.
  • the field facet mirror 10 comprises a plurality of field facets 11 which are rectangular with a high aspect ratio and arranged in rows and columns.
  • the facet masking means 12 can be embodied as a plurality of selectively extendible fingers as in the pupil facet masking means of the first embodiment or as simple blades for masking a whole block of field facets 11 at a time.
  • the correspondence between the various pupil facets and field facets can be chosen such that an area of adjacent field facets 11 on field facet mirror 10 corresponds to a specific set of pupil facets 21 on pupil facet mirror 20.
  • area I of field facets 11 may be chosen to correspond to a ring of pupil facets 21, area II to correspond to another ring of pupil facets and area III to an inner circular area of pupil facets 21.
  • Areas I, II and III are easily blocked by respective masking blades, whereas it might be much harder to block only the corresponding pupil facets, enabling the selection of different ⁇ values or annular illumination.
  • Different arrangements of the correspondence between field and pupil facets can be used to provide other illumination modes, such as dipole and quadrupole configurations and configurations that are complementary to the above configurations.
  • the facet masking means of the first embodiment may be combined with that of the second embodiment to provide independent control of the inner and outer radii of an annular illumination mode ( ⁇ inner and ⁇ outer ).

Description

  • The present invention relates to a lithographic projection apparatus comprising:
    • a radiation system comprising reflective optical elements for supplying a projection beam of radiation, said reflective optical elements including a first faceted mirror for generating a plurality of source images on a second faceted mirror;
    • a support structure for supporting patterning means, the patterning means serving to pattern the projection beam according to a desired pattern;
    • a substrate table for holding a substrate; and
    • a projection system for projecting the patterned beam onto a target portion of the substrate.
  • The term "patterning means" as here employed should be broadly interpreted as referring to means that can be used to endow an incoming radiation beam with a patterned cross-section, corresponding to a pattern that is to be created in a target portion of the substrate; the term "light valve" can also be used in this context. Generally, the said pattern will correspond to a particular functional layer in a device being created in the target portion, such as an integrated circuit or other device (see below). Examples of such patterning means include:
    • A mask. The concept of a mask is well known in lithography, and it includes mask types such as binary, alternating phase-shift, and attenuated phase-shift, as well as various hybrid mask types. Placement of such a mask in the radiation beam causes selective transmission (in the case of a transmissive mask) or reflection (in the case of a reflective mask) of the radiation impinging on the mask, according to the pattern on the mask. In the case of a mask, the support structure will generally be a mask table, which ensures that the mask can be held at a desired position in the incoming radiation beam, and that it can be moved relative to the beam if so desired.
    • A programmable mirror array. One example of such a device is a matrix-addressable surface having a viscoelastic control layer and a reflective surface. The basic principle behind such an apparatus is that (for example) addressed areas of the reflective surface reflect incident light as diffracted light, whereas unaddressed areas reflect incident light as undiffracted light. Using an appropriate filter, the said undiffracted light can be filtered out of the reflected beam, leaving only the diffracted light behind; in this manner, the beam becomes patterned according to the addressing pattern of the matrix-addressable surface. An alternative embodiment of a programmable mirror array employs a matrix arrangement of tiny mirrors, each of which can be individually tilted about an axis by applying a suitable localized electric field, or by employing piezoelectric actuation means. Once again, the mirrors are matrix-addressable, such that addressed mirrors will reflect an incoming radiation beam in a different direction to unaddressed mirrors; in this manner, the reflected beam is patterned according to the addressing pattern of the matrix-addressable mirrors. The required matrix addressing can be performed using suitable electronic means. In both of the situations described hereabove, the patterning means can comprise one or more programmable mirror arrays. More information on mirror arrays as here referred to can be gleaned, for example, from United States Patents US 5,296,891 and US 5,523,193 , and PCT patent applications WO 98/38597 and WO 98/33096 .
  • In the case of a programmable mirror array, the said support structure may be embodied as a frame or table, for example, which may be fixed or movable as required.
    • A programmable LCD array. An example of such a construction is given in United States Patent US 5,229,872 . As above,
      the support structure in this case may be embodied as a frame or table, for example, which may be fixed or movable as required.
    For purposes of simplicity, the rest of this text may, at certain locations, specifically direct itself to examples involving a mask and mask table; however, the general principles discussed in such instances should be seen in the broader context of the patterning means as hereabove set forth.
  • Lithographic projection apparatus can be used, for example, in the manufacture of integrated circuits (ICs). In such a case, the patterning means may generate a circuit pattern corresponding to an individual layer of the IC, and this pattern can be imaged onto a target portion (e.g. comprising one or more dies) on a substrate (silicon wafer) that has been coated with a layer of radiation-sensitive material (resist). In general, a single wafer will contain a whole network of adjacent target portions that are successively irradiated via the projection system, one at a time. In current apparatus, employing patterning by a mask on a mask table, a distinction can be made between two different types of machine. In one type of lithographic projection apparatus, each target portion is irradiated by exposing the entire mask pattern onto the target portion in one go; such an apparatus is commonly referred to as a wafer stepper. In an alternative apparatus - commonly referred to as a step-and-scan apparatus - each target portion is irradiated by progressively scanning the mask pattern under the projection beam in a given reference direction (the "scanning" direction) while synchronously scanning the substrate table parallel or anti-parallel to this direction; since, in general, the projection system will have a magnification factor M (generally < 1), the speed V at which the substrate table is scanned will be a factor M times that at which the mask table is scanned. More information with regard to lithographic devices as here described can be gleaned, for example, from US 6,046,792 .
  • In a manufacturing process using a lithographic projection apparatus, a pattern (e.g. in a mask) is imaged onto a substrate that is at least partially covered by a layer of radiation-sensitive material (resist). Prior to this imaging step, the substrate may undergo various procedures, such as priming, resist coating and a soft bake. After exposure, the substrate may be subjected to other procedures, such as a post-exposure bake (PEB), development, a hard bake and measurement/inspection of the imaged features. This array of procedures is used as a basis to pattern an individual layer of a device, e.g. an IC. Such a patterned layer may then undergo various processes such as etching, ion-implantation (doping), metallization, oxidation, chemo-mechanical polishing, etc., all intended to finish off an individual layer. If several layers are required, then the whole procedure, or a variant thereof, will have to be repeated for each new layer. Eventually, an array of devices will be present on the substrate (wafer). These devices are then separated from one another by a technique such as dicing or sawing, whence the individual devices can be mounted on a carrier, connected to pins, etc. Further information regarding such processes can be obtained, for example, from the book "Microchip Fabrication: A Practical Guide to Semiconductor Processing", Third Edition, by Peter van Zant, McGraw Hill Publishing Co., 1997, ISBN 0-07-067250-4.
  • For the sake of simplicity, the projection system may hereinafter be referred to as the "lens"; however, this term should be broadly interpreted as encompassing various types of projection system, including refractive optics, reflective optics, and catadioptric systems, for example. The radiation system may also include components operating according to any of these design types for directing, shaping or controlling the projection beam of radiation, and such components may also be referred to below, collectively or singularly; as a "lens". Further, the lithographic apparatus may be of a type having two or more substrate tables (and/or two or more mask tables). In such "multiple stage" devices the additional tables may be used in parallel, or preparatory steps may be carried out on one or more tables while one or more other tables are being used for exposures. Dual stage lithographic apparatus are described, for example, in US 5,969,441 and WO 98/40791 .
  • In a lithographic apparatus, it is very important that illumination of the patterning means is uniform in field and angle distribution and, for illumination modes such as dipole and quadrupole illumination, all poles are equal. To achieve this, an integrator is provided in the illumination system. In a lithographic apparatus using UV or DUV exposure radiation the integrator may take the form of a quartz rod or a so-called fly's eye lens. A fly's eye lens is a lens built up of a large number of smaller lenses in an array which creates a correspondingly large number of images of the source in a pupil plane of the illumination system. These images act as a virtual, or secondary, source. However, when using EUV exposure radiation the illumination system must be constructed from mirrors because there is no known material suitable for forming a refractive optical element for EUV radiation. In such an illumination system, a functional equivalent to a fly's eye lens can be provided using faceted mirrors, for instance as described in US 6,195,201 , US 6,198,793 and EP-A-0 939 341 .
    These documents describe a first, or field, faceted mirror which focuses a plurality of images, one per facet, on a second, or pupil, faceted mirror which directs the light to appropriately fill the pupil of the projection system. It is known from UV and DUV lithography that imaging of different types of mask pattern can be improved by controlling the illumination settings, e.g. the filling ratio of the pupil of the projection system (commonly referred to as σ) or the provision of special illumination modes such as annular, dipole or quadrupole illumination. More information on illumination settings can be obtained from EP-A- 0 949 541 and EP-A-1 109 067 , for example. In an EUV lithographic apparatus with a fly's eye integrator, these illumination settings can be controlled by selectively blocking certain of the pupil facets. However, because the source position and size on each facet is not exactly known and not stable, it is necessary to block off whole facetws at a time, rather than partial facets. Thus, only relatively coarse control of illumination settings is possible. Also, to provide an annular illumination setting it is necessary to obscure the innermost pupil facets and when positioning a masking blade over an inner facet it is difficult to avoid partially obscuring one or more of the outer facets.
  • DE 199 35 968 A1 discloses an illumination system for a lithographic apparatus using EUV radiation and suggests control of the illumination mode by selective masking of pupil or field facets.
  • It is an object of the present invention to provide a lithographic apparatus with an illumination system comprising reflective optical elements that allows improved control over the illumination settings.
  • This and other objects are achieved according to the invention in a lithographic apparatus and a device manufacturing method as specified in the appended claims.
  • By using a partially-opaque masking blade to selectively mask one or more facets, part of the radiation from that facet can be blocked without causing unacceptable inhomogeneity in the illumination of the patterning means, irrespective of the fact that the exact location of the source image on the pupil facet is not known. In this way, intermediate illumination settings, between masking and not masking whole facets or rings of facets, can be provided.
  • The pitch should be small relative to the source image, so that the proportion of radiation blocked is independent of the source position, but not sufficiently small to cause diffraction of the projection beam. Preferably, for an apparatus using EUV as the exposure radiation, the pitch is in the range of from 1mm to 500nm, dependent on the size of the facets and the illuminated area.
  • The facet masking means preferably further comprises means for adjusting the proportion of the area of a facet that is obscured, for example by having a plurality of partially-opaque blades selectively interposable into said projection beams. This enables multiple intermediate illumination settings, providing further versatility.
  • Preferably, the facet masking means are arranged proximate the second (pupil) faceted mirror as this provides the most homogeneous illumination of the patterning means.
  • The facets may be arranged so that field facets illuminate pupil facets in different positions, for example facets near the periphery of the field facet mirror may direct radiation to more centrally positioned facets of the pupil facet mirror. Thus annular illumination modes may be set more easily, without partial obscuration of the outer pupil facets and illumination modes that would require masking of inaccessible pupil faces can be set.
  • Of course, two facet masking means may be provided to have selective masking of both field and pupil facets. Thereby, independent control of the inner and outer radii (σinnerand σouter) of an annular illumination mode can be achieved.
  • Although specific reference may be made in this text to the use of the apparatus according to the invention in the manufacture of ICs, it should be explicitly understood that such an apparatus has many other possible applications. For example, it may be employed in the manufacture of integrated optical systems, guidance and detection patterns for magnetic domain memories, liquid-crystal display panels, thin-film magnetic heads, etc. The skilled artisan will appreciate that, in the context of such alternative applications, any use of the terms "reticle", "wafer" or "die" in this text should be considered as being replaced by the more general terms "mask", "substrate" and "target portion", respectively.
  • In the present document, the terms "radiation" and "beam" are used to encompass all types of electromagnetic radiation, including ultraviolet radiation (e.g. with a wavelength of 365, 248, 193, 157 or 126 nm) and extreme ultra-violet radiation (EUV), e.g. having a wavelength in the range 5-20 nm, especially around 13nm.
  • Embodiments of the invention will now be described, by way of example only, with reference to the accompanying schematic drawings in which:
    • Figure 1 depicts a lithographic projection apparatus according to an embodiment of the invention;
    • Figure 2 depicts certain components of the illumination system of the apparatus of Figure 1;
    • Figures 3 to 6 depict the facet masking means of the first embodiment of the invention in various positions;
    • Figure 7 depicts a partially opaque masking blade used in the first embodiment of the invention;
    • Figure 8 depicts certain components of the illumination system of a second embodiment of the invention; and
    • Figure 9 depicts the field facet mirror of the second embodiment of the invention.
  • In the Figures, corresponding reference symbols indicate corresponding parts.
  • Embodiment 1
  • Figure 1 schematically depicts a lithographic projection apparatus according to a particular embodiment of the invention. The apparatus comprises:
    • a radiation system Ex, IL, for supplying a projection beam PB of radiation (e.g. EUV radiation), which in this particular case also comprises a radiation source LA;
    • a first object table (mask table) MT provided with a mask holder for holding a mask MA (e.g. a reticle), and connected to first positioning means PM for accurately positioning the mask with respect to item PL;
    • a second object table (substrate table) WT provided with a substrate holder for holding a substrate W (e.g. a resist-coated silicon wafer), and connected to second positioning means PW for accurately positioning the substrate with respect to item PL;
    • a projection system ("lens") PL (e.g. a mirror group) for imaging an irradiated portion of the mask MA onto a target portion C (e.g. comprising one or more dies) of the substrate W.
    As here depicted, the apparatus is of a reflective type (e.g. has a reflective mask). However, in general, it may also be of a transmissive type, for example (e.g. with a transmissive mask). Alternatively, the apparatus may employ another kind of patterning means, such as a programmable mirror array of a type as referred to above.
  • The source LA (e.g. a laser-produced or discharge plasma source) produces a beam of radiation. This beam is fed into an illumination system (illuminator) IL, either directly or after having traversed conditioning means, such as a beam expander Ex, for example. The illuminator IL may comprise adjusting means AM for setting the outer and/or inner radial extent (commonly referred to as σ-outer and σ-inner, respectively) of the intensity distribution in the beam. In addition, it will generally comprise various other components, such as an integrator IN and a condenser CO. In this way, the beam PB impinging on the mask MA has a desired uniformity and intensity distribution in its cross-section.
  • It should be noted with regard to Figure 1 that the source LA may be within the housing of the lithographic projection apparatus (as is often the case when the source LA is a mercury lamp, for example), but that it may also be remote from the lithographic projection apparatus, the radiation beam which it produces being led into the apparatus (e.g. with the aid of suitable directing mirrors); this latter scenario is often the case when the source LA is an excimer laser. The current invention and Claims encompass both of these scenarios.
  • The beam PB subsequently intercepts the mask MA, which is held on a mask table MT. Having been selectively reflected by the mask MA, the beam PB passes through the lens PL, which focuses the beam PB onto a target portion C of the substrate W. With the aid of the second positioning means (and interferometric measuring means IF), the substrate table WT can be moved accurately, e.g. so as to position different target portions C in the path of the beam PB. Similarly, the first positioning means can be used to accurately position the mask MA with respect to the path of the beam PB, e.g. after mechanical retrieval of the mask MA from a mask library, or during a scan. In general, movement of the object tables MT, WT will be realized with the aid of a long-stroke module (course positioning) and a short-stroke module (fine positioning), which are not explicitly depicted in Figure 1. However, in the case of a wafer stepper (as opposed to a step-and-scan apparatus) the mask table MT may just be connected to a short stroke actuator, or may be fixed.
  • The depicted apparatus can be used in two different modes:
    1. 1. In step mode, the mask table MT is kept essentially stationary, and an entire mask image is projected in one go (i.e. a single "flash") onto a target portion C. The substrate table WT is then shifted in the x and/or y directions so that a different target portion C can be irradiated by the beam PB;
    2. 2. In scan mode, essentially the same scenario applies, except that a given target portion C is not exposed in a single "flash". Instead, the mask table MT is movable in a given direction (the so-called "scan direction", e.g. the y direction) with a speed ν, so that the projection beam PB is caused to scan over a mask image; concurrently, the substrate table WT is simultaneously moved in the same or opposite direction at a speed V = , in which M is the magnification of the lens PL (typically, M = 1/4 or 1/5). In this manner, a relatively large target portion C can be exposed, without having to compromise on resolution.
  • As shown in Figure 2, the illumination system includes a field faceted mirror 10, having a plurality of facets 11, which receive radiation from the radiation source LA and form a plurality of images of the source LA on corresponding facets of pupil faceted mirror 22. The pupil facets 21, with the remainder of the illumination system, redirect the radiation such that the images of the field facets overlap on the patterning means. The shape of the field facets 11 largely define the shape of the illumination field on the patterning means.
  • To control the illumination settings for illuminating the mask, facet masking means 22-25 are provided. Facet masking means 22-25 comprise a partially-opaque masking blade 22 and a solid masking blade 24 connected to respective actuators 23, 25 so as to be selectively and incrementally closeable into the projection beam PB in front of respective facets of the pupil facet mirrors. Because the image in the pupil of the projection system PL is an image of the pupil faceted mirror 20 (they are in conjugate planes), selectively obscuring the outermost ones of the pupil facets 21 allows control over σ, the ratio of the amount of the projection system pupil that is filled, if no diffraction (at the mask) were present. Obscuring the outermost facets reduces σ.
  • The facet masking means 22,23,24,25 and their operation, are shown in greater detail in Figures 3 to 7. Although in these figures the partially-opaque masking blade 22 is shown as solid, it will comprise as large a number of apertures and opaque areas as possible subject to the constraint that the size and spacing of the apertures and opaque areas must be large compared to the wavelength of the projection beam so that diffraction does not occur and to practical considerations of manufacture. The opaque areas preferably have a total area sufficient to reduce by a predetermined fraction, preferably 50%, the radiation reflected by the pupil facet. It will be appreciated that since the projection beam is not incident on the pupil mirror 20 exactly normally, if the facet masking means are at all spaced from the pupil mirror 20, the total opaque area of the partially-opaque masking blade 22 as a fraction of the area of one of the facets will be a little less than the predetermined fraction of the projection beam that is to be absorbed.
  • As can be seen in Figure 3, the pupil facets 21 are square and arranged in columns. Accordingly, the partially-opaque and solid masking blades 22, 24 are constructed as a plurality of fingers 26, 27, one of each per column of pupil facets, that are selectively and incrementally extendible to cover ones of the pupil facets. Preferably, independent control of each of the fingers 26, 27 is provided to enable greater flexibility of the illumination settings, however in some circumstances pairs or groups of fingers may be ganged together.
  • The partially-opaque masking blades 27 may be constructed, for example, as a grid of rods, bars or wires or by forming apertures in a suitable pattern in a solid plate. A partially opaque masking blade 27 formed with a plurality of rods 29 is shown in Figure 7.
  • In general, for other shapes and arrangements of pupil facets, the masking blades 22, 24 may be arranged differently. For example, for pupil facets arranged in concentric rings, the masking blades may take the form of iris diaphragms. As an alternative to adjustable blades, it is possible to provide a plurality of blades, opaque and partially opaque, corresponding to the desired illumination settings and selectively interpose these into the beam as desired. Such fixed blades may be formed as plates with appropriate openings and partially opaque (apertured) areas and may be held in a magazine or carousel to be inserted into the beam.
  • Figure 3 shows the facet masking means in its neutral position, with both masking blades 22,24 (fingers 26,27) open leaving the pupil facets 21 clear. This setting provides the greatest σ. To reduce σ by the smallest amount, effectively a half step, the partially-opaque fingers 26 are extended one step so that the outermost ring of pupil facets 21a is covered, as shown in Figure 4. The solid fingers 27 remain fully retracted and the inner pupil facets 21b are uncovered. To reduce σ further, the solid fingers 27 are extended one step, fully obscuring the outermost ring of pupil facets 21a, as shown in Figure 5. Again, the inner pupil facets 21b remain uncovered. Further reductions in σ are achieved by further extending the fingers 26, 27 - extending the solid fingers 27 reduces σ in whole steps, whilst extending the partially-opaque fingers 26 one step more provides a half step reduction in σ. Extending the partially-opaque fingers 26 more than one step more than the solid fingers 27 provides an illumination intensity distribution with a more gradual decrease towards the edge of the pupil. Note that to provide circular illumination modes, the outermost fingers will move to obscure a whole column of facets whilst the central fingers advance only one facet width. When the central fingers move a further facet inwards the next outermost column will be obscured and so on. The aim being that the area of unobscured facets is as close to circular as possible.
  • By providing multiple partially-opaque masking blades with different blocking ratios, smaller increments in σ can be provided. For example, with two appropriately aligned partially-opaque masking blades, one blocking 25% of the radiation and one blocking 50%, quarter steps can be provided - the 25% masking blade extended one step more that the solid masking blade provides a quarter step, the 50% masking blade extended one step more gives a half step and both extended one step more gives a three quarter step.
  • Although the configurations illustrated are rotationally-symmetrical this is not always required or desired. For example, an elliptical pupil configuration may be created by covering facets in one direction only and multipole configurations may be created by covering the appropriate facets only.
  • In a variant of the first embodiment, four sets of facet marking blades are used, arranged around four sides of the facet mirror. This is shown in Figure 6 and can provide circular illumination modes with shorter movements of the fingers when the facets are arranged on a square grid.
  • Embodiment 2
  • A second embodiment of the invention, which is the same as the first embodiment save as described below, is shown in Figures 8 and 9.
  • As shown in Figure 8, the second embodiment has facet masking means 12, 13 proximate the field facet mirror 10. The facet masking means 12, 13 may comprise a partially-opaque masking blade and a solid masking blade as in the first embodiment or simply a solid masking blade. Placing the facet masking means at the field faceted mirror rather than the pupil faceted mirror can be advantageous in that the field facets are generally larger in one direction than the pupil facets so that there is additional room to provide the necessary mechanisms and it is easier to construct the partially-opaque masking blades at a larger scale. However, additional advantages can be obtained if the field facets are arranged to fill pupil facets other than those in the corresponding location in the pupil mirror. For example, the outermost field facets 11a may be arranged to fill the innermost pupil facets 21b and vice versa, as shown in Figure 8. In that case, closing the facet masking means 12, 13 to obscure the outermost field facets 11a removes the illumination from the innermost pupil facets 21b, providing an annular illumination mode.
  • Figure 9 shows the field facet mirror 10, which is the same as in the first embodiment. The field facet mirror 10 comprises a plurality of field facets 11 which are rectangular with a high aspect ratio and arranged in rows and columns. The facet masking means 12 can be embodied as a plurality of selectively extendible fingers as in the pupil facet masking means of the first embodiment or as simple blades for masking a whole block of field facets 11 at a time.
  • The correspondence between the various pupil facets and field facets can be chosen such that an area of adjacent field facets 11 on field facet mirror 10 corresponds to a specific set of pupil facets 21 on pupil facet mirror 20. For instance, area I of field facets 11 may be chosen to correspond to a ring of pupil facets 21, area II to correspond to another ring of pupil facets and area III to an inner circular area of pupil facets 21. Areas I, II and III are easily blocked by respective masking blades, whereas it might be much harder to block only the corresponding pupil facets, enabling the selection of different σ values or annular illumination. Different arrangements of the correspondence between field and pupil facets can be used to provide other illumination modes, such as dipole and quadrupole configurations and configurations that are complementary to the above configurations.
  • Of course, the facet masking means of the first embodiment may be combined with that of the second embodiment to provide independent control of the inner and outer radii of an annular illumination mode (σinner and σouter).
  • Whilst specific embodiments of the invention have been described above, it will be appreciated that the invention may be practiced otherwise than as described. The description is not intended to limit the invention.

Claims (9)

  1. A lithographic projection apparatus comprising:
    - a radiation system (IL) comprising reflective optical elements (10, 20, 30) for supplying a projection beam of radiation, said reflective optical elements including a first faceted mirror (10) for generating a plurality of source images on a second faceted mirror (20);
    - a support structure (MT) for supporting patterning means (MA), the patterning means serving to pattern the projection beam according to a desired pattern;
    - a substrate table (WT) for holding a substrate (W);
    - a projection system (PL) for projecting the patterned beam onto a target portion of the substrate,
    characterized by:
    facet masking means (12, 13; 22, 23) for selectively masking one or more of the facets (11; 21) of one of said first and second faceted mirrors and comprising at least one partially-opaque masking blade (12; 22) selectively interposable into said projection beam, said partially-opaque masking blade having a regular periodic arrangement of opaque and transparent areas having a pitch sufficiently large so as to cause negligible diffraction of said projection beam and covering substantially an entire facet.
  2. Apparatus according to claim 1 wherein said pitch is small relative to said source images
  3. Apparatus according to claim 2 wherein said pitch is in the range of from 1mm to 500nm.
  4. Apparatus according to any one of the preceding claims wherein said facets (11; 21) are arranged in lines and said partially-opaque blade comprises a plurality of partially-opaque fingers (29) selectively extendible along respective lines of facets.
  5. Apparatus according to any one of the preceding claims wherein said facet masking means (22, 23) are arranged proximate the second faceted mirror (20).
  6. Apparatus according to any one of the preceding claims wherein said facet masking means further comprises solid masking means (24) selectively interposable into said projection beam to mask at least one of said facets substantially completely.
  7. Apparatus according to any one of the preceding claims wherein said facet masking means further comprises means for adjusting the proportion of the area of a facet that is obscured by said partially-opaque masking blade.
  8. Apparatus according to claim 7 wherein said facet masking means has a plurality of partially-opaque masking blades selectively interposable into said projection beam.
  9. A device manufacturing method comprising the steps of:
    - providing a substrate (W) that is at least partially covered by a layer of radiation-sensitive material;
    - providing a projection beam of radiation (P8) using a radiation system (IL) comprising reflective optical elements (10, 20, 30) for supplying a projection beam of radiation, said reflective optical elements including a first faceted mirror (10) for generating a plurality of source images on a second faceted mirror (20);
    - using patterning means (MA) to endow the projection beam with a pattern in its cross-section;
    - projecting the patterned beam of radiation onto a target portion of the layer of radiation-sensitive material,
    characterized by:
    selectively masking one or more facets (11; 21) of one of said first and second faceted mirrors (10; 20) by selectively interposing at least one partially-opaque masking blade (12; 22) into said projection beam, said partially-opaque masking blade (12; 22) having a regular periodic arrangement of transparent and opaque areas having a pitch sufficiently large so as to cause negligible diffraction of said projection beam, and covering substantially an entire facet.
EP20030251611 2002-03-18 2003-03-17 Lithographic apparatus and device manufacturing method Expired - Fee Related EP1349009B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20030251611 EP1349009B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus and device manufacturing method
EP07018092.2A EP1870772B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02251933 2002-03-18
EP02251933 2002-03-18
EP20030251611 EP1349009B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus and device manufacturing method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
EP07018092.2A Division EP1870772B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus

Publications (3)

Publication Number Publication Date
EP1349009A2 EP1349009A2 (en) 2003-10-01
EP1349009A3 EP1349009A3 (en) 2004-12-22
EP1349009B1 true EP1349009B1 (en) 2009-02-04

Family

ID=27806532

Family Applications (2)

Application Number Title Priority Date Filing Date
EP20030251611 Expired - Fee Related EP1349009B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus and device manufacturing method
EP07018092.2A Expired - Lifetime EP1870772B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07018092.2A Expired - Lifetime EP1870772B1 (en) 2002-03-18 2003-03-17 Lithographic apparatus

Country Status (1)

Country Link
EP (2) EP1349009B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407795B1 (en) * 2006-12-14 2014-07-02 칼 짜이스 에스엠티 게엠베하 Illuminating optical unit and projection exposure apparatus for microlithography
CN111213090A (en) * 2017-10-11 2020-05-29 Asml荷兰有限公司 Optimization flow of patterning process

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144458B1 (en) * 2003-07-30 2012-05-14 칼 짜이스 에스엠티 게엠베하 An illumination system for microlithography
WO2005040927A2 (en) 2003-10-18 2005-05-06 Carl Zeiss Smt Ag Device and method for illumination dose adjustments in microlithography
US7030958B2 (en) * 2003-12-31 2006-04-18 Asml Netherlands B.V. Optical attenuator device, radiation system and lithographic apparatus therewith and device manufacturing method
JP5159027B2 (en) * 2004-06-04 2013-03-06 キヤノン株式会社 Illumination optical system and exposure apparatus
DE102004063314A1 (en) 2004-12-23 2006-07-13 Carl Zeiss Smt Ag Filter device for compensating an asymmetrical pupil illumination
JP2008544531A (en) * 2005-06-21 2008-12-04 カール ツァイス エスエムテー アーゲー Double faceted illumination optical system with attenuating element on pupil facet mirror
JP4997756B2 (en) * 2005-12-20 2012-08-08 日新イオン機器株式会社 Ion beam irradiation apparatus and beam uniformity adjustment method
US8908151B2 (en) 2008-02-14 2014-12-09 Nikon Corporation Illumination optical system, exposure apparatus, device manufacturing method, compensation filter, and exposure optical system
DE102008001511A1 (en) 2008-04-30 2009-11-05 Carl Zeiss Smt Ag Illumination optics for EUV microlithography and illumination system and projection exposure apparatus with such illumination optics
KR101258344B1 (en) 2008-10-31 2013-04-30 칼 짜이스 에스엠티 게엠베하 Illuminating optic for euv microlithography
DE102009045491A1 (en) 2009-10-08 2010-11-25 Carl Zeiss Smt Ag Illumination lens for illumination of object field of projection lens of illumination system for extreme UV-projection microlithography during manufacturing e.g. nano structured component, has aperture shading distribution of facets
DE102011077234A1 (en) 2011-06-08 2012-12-13 Carl Zeiss Smt Gmbh Extreme UV mirror arrangement for use as e.g. pupil facet mirror arranged in region of pupil plane of e.g. illumination system, has multilayer arrangement including active layer arranged between entrance surface and substrate
CN103443863B (en) 2011-03-23 2017-03-08 卡尔蔡司Smt有限责任公司 The method that EUV mirror arrangement, the optical system of inclusion EUV mirror arrangement and operation include the optical system of EUV mirror arrangement
DE102011005940A1 (en) 2011-03-23 2012-09-27 Carl Zeiss Smt Gmbh Extreme ultraviolet mirror arrangement for optical system for extreme ultraviolet microlithography, comprises multiple mirror elements that are arranged side by side, such that mirror elements form mirror surface
DE102012208514A1 (en) * 2012-05-22 2013-11-28 Carl Zeiss Smt Gmbh Adjustment device and mask inspection device with such an adjustment device
DE102012212664A1 (en) 2012-07-19 2014-01-23 Carl Zeiss Smt Gmbh Method for adjusting a lighting setting
DE102017203246A1 (en) 2017-02-28 2018-08-30 Carl Zeiss Smt Gmbh Method for correcting a mirror for the wavelength range from 5 nm to 20 nm
DE102017207030A1 (en) 2017-04-26 2018-10-31 Carl Zeiss Smt Gmbh Method of cleaning optical elements for the ultraviolet wavelength range
WO2018208912A2 (en) * 2017-05-11 2018-11-15 Nikon Corporation Illumination system with curved 1d-patterned mask for use in euv-exposure tool

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0777191B2 (en) * 1993-04-06 1995-08-16 日本電気株式会社 Exposure light projection device
US5339346A (en) * 1993-05-20 1994-08-16 At&T Bell Laboratories Device fabrication entailing plasma-derived x-ray delineation
JP4238390B2 (en) * 1998-02-27 2009-03-18 株式会社ニコン LIGHTING APPARATUS, EXPOSURE APPARATUS PROVIDED WITH THE ILLUMINATION APPARATUS, AND METHOD FOR MANUFACTURING SEMICONDUCTOR DEVICE USING THE EXPOSURE APPARATUS
DE10053587A1 (en) * 2000-10-27 2002-05-02 Zeiss Carl Lighting system with variable adjustment of the illumination
US6225027B1 (en) * 1998-08-06 2001-05-01 Euv Llc Extreme-UV lithography system
US6195201B1 (en) * 1999-01-27 2001-02-27 Svg Lithography Systems, Inc. Reflective fly's eye condenser for EUV lithography
DE19935568A1 (en) * 1999-07-30 2001-02-15 Zeiss Carl Fa Illumination system for specified wavelengths used especially in EUV lithography includes raster-optical elements selected in number and form to predetermine uniformity of field illumination
EP1109067B1 (en) * 1999-12-13 2006-05-24 ASML Netherlands B.V. Illuminator
KR100576746B1 (en) * 2001-06-01 2006-05-03 에이에스엠엘 네델란즈 비.브이. Lithographic apparatus, device manufacturing method, device manufactured thereby, control system, computer program, and computer program product
EP1491959A1 (en) * 2001-09-07 2004-12-29 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101407795B1 (en) * 2006-12-14 2014-07-02 칼 짜이스 에스엠티 게엠베하 Illuminating optical unit and projection exposure apparatus for microlithography
CN111213090A (en) * 2017-10-11 2020-05-29 Asml荷兰有限公司 Optimization flow of patterning process
CN111213090B (en) * 2017-10-11 2024-04-09 Asml荷兰有限公司 Optimization flow of patterning process

Also Published As

Publication number Publication date
EP1870772A2 (en) 2007-12-26
EP1349009A2 (en) 2003-10-01
EP1349009A3 (en) 2004-12-22
EP1870772B1 (en) 2013-10-23
EP1870772A3 (en) 2010-10-06

Similar Documents

Publication Publication Date Title
US6771352B2 (en) Lithographic apparatus and device manufacturing method
EP1349009B1 (en) Lithographic apparatus and device manufacturing method
US8279405B2 (en) Lithographic apparatus and device manufacturing method
KR100778133B1 (en) Lithographic apparatus and device manufacturing method
US6671035B2 (en) Illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
US7317506B2 (en) Variable illumination source
US7038763B2 (en) Kit of parts for assembling an optical element, method of assembling an optical element, optical element, lithographic apparatus, and device manufacturing method
US20060072093A1 (en) Lithographic projection apparatus and device manufacturing method utilizing two arrays of focusing elements
EP1109067A2 (en) Illuminator
US6833907B2 (en) Illuminator for a lithography apparatus, a lithography apparatus comprising such an illuminator, and a manufacturing method employing such a lithography apparatus
EP1467253A1 (en) Lithographic apparatus and device manufacturing method
EP1467252A1 (en) Device manufacturing method and mask set for use in the method
EP1480080A1 (en) Lithographic apparatus and device manufacturing method
JP2006191119A (en) Method and device for minimizing scattered light of multi-slm maskless lithography
EP1324136A1 (en) Lithographic projection apparatus and device manufacturing method
EP1569034A1 (en) Lithographic apparatus and device manufacturing method
US6930755B2 (en) Lithographic apparatus and device manufacturing method
US6924885B2 (en) Lithographic apparatus and device manufacturing method
EP1469349B1 (en) Lithographic projection apparatus with collector including a concave mirror and a convex mirror
US20040263816A1 (en) Lithographic apparatus and device manufacturing method
EP1324137B1 (en) Device manufacturing method, device manufactured thereby and lithographic apparatus therefor
EP1429191B1 (en) Method for determining parameters for lithographic projection
EP1434097A2 (en) Lithographic apparatus and device manufacturing method

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ASML NETHERLANDS B.V.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

17P Request for examination filed

Effective date: 20050202

AKX Designation fees paid

Designated state(s): DE FR GB IT NL

17Q First examination report despatched

Effective date: 20050805

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60326063

Country of ref document: DE

Date of ref document: 20090319

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20091105

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090504

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090204

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160321

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160330

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60326063

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171003