EP1348221B1 - Electromagnet with a magnet armature - Google Patents

Electromagnet with a magnet armature Download PDF

Info

Publication number
EP1348221B1
EP1348221B1 EP01990347A EP01990347A EP1348221B1 EP 1348221 B1 EP1348221 B1 EP 1348221B1 EP 01990347 A EP01990347 A EP 01990347A EP 01990347 A EP01990347 A EP 01990347A EP 1348221 B1 EP1348221 B1 EP 1348221B1
Authority
EP
European Patent Office
Prior art keywords
armature
magnet
electromagnet
recess
recesses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01990347A
Other languages
German (de)
French (fr)
Other versions
EP1348221A1 (en
Inventor
Hermann Koch-Groeber
Rainer Stoehr
Michele De Cosmo
Nicola Pacucci
Petr Vosahlo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1348221A1 publication Critical patent/EP1348221A1/en
Application granted granted Critical
Publication of EP1348221B1 publication Critical patent/EP1348221B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0031Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
    • F02M63/005Pressure relief valves
    • F02M63/0052Pressure relief valves with means for adjusting the opening pressure, e.g. electrically controlled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0017Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
    • F02M63/0021Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means characterised by the arrangement of mobile armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1638Armatures not entering the winding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/14Pivoting armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • H01F7/1623Armatures having T-form

Definitions

  • the invention relates to an electromagnet with magnet armature with the features mentioned in the preamble of the independent claim 1.
  • Known electromagnets with a magnet armature are used for example in solenoid valves of pressure control valves for injection systems of internal combustion engines.
  • Such solenoid valves have electrical connection elements which are performed by a side facing away from the electromagnet side of the magnet armature through a recess of the armature plate and contacted with the magnetic coil.
  • the known electromagnets have mechanical alignment means in the form of a fixing pin and cooperating with the fixing pin notch in the Anchor plate, which alignment means cause alignment of the armature plate to a predetermined angle of rotation and prevent the armature plate rubs against the electrical connection elements of the magnetic coil.
  • the disadvantage is that the mechanical alignment means can affect the movement of the armature.
  • the electromagnet with magnet armature according to the invention according to the independent claim 1 of the application avoids the disadvantages associated with the use of mechanical alignment means.
  • at least one recess in the armature plate and a recess associated with this second recess in the pole face of the magnetic core is achieved that the armature plate is aligned with a current applied to the magnetic coil by magnetic forces to a predetermined rotational position in which then, for example, the connection elements contact a recess of Penetrate anchor plate.
  • Advantageously, therefore, can be dispensed with the training of consuming to be manufactured mechanical alignment means.
  • the magnetic leakage flux in the region between the inner wall sections of the at least one first recess and the at least one second recess advantageously brings about friction-free alignment of the armature plate and of the magnet armature.
  • the inhomogeneity of the magnetic field in the event of a minimal rotation of the armature plate about the anchor bolt results in restoring forces acting on the armature plate which drive the armature back into its predetermined rotational position.
  • the invention presented here can for example be advantageously used in pressure control valves in order to avoid friction losses of the armature and an impairment of the closing operation of the solenoid valve.
  • the invention can also be used in solenoid valves for injection valves of internal combustion engines, in which an orientation of the magnet armature is required, for example, to save by recesses of the magnet armature fuel drainage channels before a narrowing of the channel cross-section in a rotation of the armature.
  • the invention is by no means limited to use in solenoid valves and can be applied to all electromagnets with magnetic armature, in which an alignment a slidably and rotatably mounted armature plate is required to a preferred angular position rotation.
  • FIG. 1 a known in the art pressure control valve with an electromagnet and a magnet armature
  • Fig. 2 and Fig. 3 a magnet armature according to the invention
  • 4 and FIG. 5 a magnetic core of the electromagnet according to the invention, which at the same time forms a housing part of a pressure regulating valve
  • Fig. 6 the magnetic core and magnet armature off Fig. 3 and Fig. 5 in assembled condition
  • Fig. 7 a cut through Fig. 6 along the line AA at a small deflection of the armature.
  • Fig. 1 shows a well-known in the art pressure control valve, which is used for example in fuel injection systems of internal combustion engines to adjust the pressure in a high-pressure fuel storage depending on the load state of the internal combustion engine.
  • the pressure control valve has a flange 12 for connection to a high-pressure fuel pump or a high-pressure fuel storage.
  • An inserted into the flange portion 12 of the pressure control valve member 13 has a connected to the high pressure side fuel inlet channel 8, which opens with its one end into a valve seat 7 of the valve member 13.
  • Side openings 9 of the valve member 13 are connected in a manner not shown with a fuel return.
  • An electromagnet controls the opening and closing of the pressure control valve.
  • the electromagnet has a plan view in approximately cylindrical magnetic core 2, which also forms a housing part of the pressure control valve. In an annular recess 11 of the magnetic core, a magnetic coil 1 is arranged. Furthermore, the electromagnet has a magnet armature 3 with anchor plate 31 and anchor bolt 32, which engages anchor bolt in a cylindrical through-hole of the magnetic core 2 slidably and rotatably. The end remote from the anchor plate 31 of the anchor bolt 32 cooperates with a valve member 6 designed as a ball. The anchor bolt 31 with the valve member 6 is acted upon by a spring 4, which is supported with its one end to a housing part 14 of the pressure regulating valve and with its other end to the armature plate 31.
  • the pressure regulating valve has electrical connection elements 5, which connect an electrical connection part 10 of the pressure regulating valve with the magnetic coil 1. Since the armature plate 31 is disposed between the terminal part 10 and the solenoid coil 1, the electrical connection elements 5 have a in Fig. 1 not shown recess in the anchor plate 31 penetrate. On a turn the anchor plate 31 about the axis of the anchor bolt 32 rub the provided with a plastic sheath connecting elements disadvantageously on the inner wall of the recess of the anchor plate. For this reason, known in the prior art electromagnets use mechanical alignment means, which align the anchor plate in a predetermined rotational position, but allow a displacement of the armature plate perpendicular to the pole face 22 of the electromagnet.
  • FIGS. 2 to 7 an embodiment of the invention is shown.
  • the invention is not limited to use in pressure control valves or solenoid valves, but can be used in all solenoids with magnetic armature, in which an orientation of the armature to a predetermined rotational position is desirable.
  • the in the FIGS. 2 and 3 illustrated armature 3 comprises a substantially circular armature plate 31 and a vertically projecting from the anchor plate anchor bolt 32 with a circular cross-section.
  • a recess 35 in the armature plate is used to carry out electrical connection elements of a magnetic coil.
  • the anchor plate has two approximately U-shaped continuous first recesses 33, whose open sides are arranged on the circumference of the anchor plate and which are diametrically opposed with respect to the anchor bolt 32.
  • FIG. 4 a cup-shaped housing part of a pressure control valve is shown.
  • Fig. 4 shows a cross section through Fig. 5 along the line II.
  • the housing part has a the magnetic core 2 forming, cylindrical central part and lateral fastening tongues 15 for fixing the pressure control valve to, for example, a high-pressure fuel pump.
  • the magnetic core is made of soft iron or other material of high permeability.
  • a flange portion 12 of the housing part serves as in FIG Fig. 1 shown, for receiving a valve piece and for connection to the high-pressure outlet of a high-pressure fuel pump.
  • the cylindrical central part has a central cylindrical passage opening 26 and a concentric annular recess 11 which is adapted to receive a in Fig.
  • Fig. 5 is the electrical connection 28 of the solenoid 1 indicated schematically.
  • the recess 11 is bounded in the radial direction inwardly by a first cylinder jacket-shaped wall 23 and outwardly by a second cylinder jacket-shaped wall 24.
  • the ends of the first wall 21 and the second wall 24 facing away from the flange region 12 form two concentric annular surfaces 21 and 22 arranged in one plane.
  • a circumferential collar 16 protruding from the surface 22 serves to receive a second housing part 14, as in FIG Fig. 1 shown.
  • the inner wall 23 When inserted into the recess 11 magnetic coil, the inner wall 23 forms a coil penetrating portion of the magnetic core 2, which is connected via a bottom plate 25 with a coil surrounding the outer wall portion 24 of the magnetic core.
  • the two surfaces 21,22 thereby form two pole faces of the magnetic core 2, so that would be closed by an applied to the two pole faces 21,22 anchor plate 31 of the magnetic circuit.
  • second recesses 27 are arranged in the outer pole face 22 of the magnetic core, which are associated with the first recesses 33 in the anchor plate 31 and with respect to the passage opening 26 diametrically opposite.
  • Fig. 6 shows the magnetic core without magnetic coil but with inserted magnet armature.
  • the magnet armature is slidably slidable by means of the anchor bolt 32 and initially inserted in a rotatable manner into the cylindrical passage opening 26.
  • a preferred rotational position of the armature plate 31 is the terminal 28 of the solenoid from Fig. 5 in the projection of the recess 35 of the armature plate 31 in the sliding direction of the armature 3.
  • Electrical connection element can pass straight through the anchor plate 31 in this rotational position parallel to the anchor bolt 32, without rubbing against the inner edges of the recess 35.
  • the first recesses 33 and the second recesses 27 serve.
  • the distances a and b not exactly the same.
  • a first recess and a second recess may be provided instead of the first two recesses and the two second recesses.
  • more than two recesses in the anchor plate and the pole face of the magnetic core are possible. It is essential that at least one first recess, the radial to Is offset axis of the anchor bolt, a second recess in the pole face of the magnetic core is assigned.
  • Fig. 7 shows a section of a cross section along the line AA in Fig. 6 in which the anchor plate 31 has been intentionally rotated from the predetermined rotational position about the axis of the anchor bolt 31 so that the pole face 36 of the anchor plate 31 facing the magnetic core 31 and the first recess 33 and the pole face 22 of the magnetic core 2 and the second recess 27 partially overlap.
  • Fig. 6 can be seen results in this rotational position in a current application of the magnetic coil 1 from the then inhomogeneous stray magnetic field (dashed lines in Fig.
  • the armature plate is constantly aligned by the leakage magnetic field to the predetermined rotational position.
  • the armature plate is quasi fixed with the electromagnet turned on to the smallest, barely detectable torsional vibrations in its rotational position.
  • the rotational movements of the armature plate are so small that the inner edges of the recess 35, the terminal elements 5 of the solenoid coil 1 when the solenoid is not or only minimally touch and the sliding movement of the armature is not affected when closing or opening the pressure control valve.
  • Electromagnet prevent the electrical connection elements of the solenoid coil, which pass through the recess 35, a strong deflection of the armature plate, so that the armature plate aligns with renewed actuation of the electromagnet immediately back to the predetermined rotational position.
  • the armature plate and the pole face of the magnetic core each have two recesses.
  • it may be provided to increase the number of first recesses in the armature plate and the second recesses in the pole face of the magnetic core to the extent that regardless of the starting position of the armature plate when switching on the electromagnet by the magnetic alignment always sets a preferred rotational position in which the first recesses and the second recesses associated therewith lie opposite one another.
  • the number and circumferential length a of the first recesses 33 of the anchor plate 31 may be equal to the number and circumferential length of the first recesses of each other separating pole surface segments of the anchor plate 31.
  • Such an embodiment of the anchor plate and the magnetic core is particularly suitable for such solenoid valves, in which no terminal elements engage through the anchor plate.
  • the number of mutually opposite recesses is proportional to the aligning force F of the anchor plate. This number can therefore be designed in the individual case to the size of the required restoring force F.
  • the invention has been illustrated by the example of a pressure control valve, it can also be used in other solenoid valves. It is conceivable, for example, the use in solenoid valves of injection valves for injection systems to to prevent that in the anchor plate provided drain passages for outflowing fuel can be reduced by a rotation of the anchor plate in cross-section.
  • the principle of operation of the electromagnet with anchor plate presented here is not limited to use in solenoid valves, but can be advantageously applied to all electromagnets in which it is advisable to align a slidably mounted and rotatably mounted armature plate in a preferred rotational position.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetically Actuated Valves (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electromagnets (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft einen Elektromagneten mit Magnetanker mit den im Oberbegriff des unabhängigen Anspruchs 1 genannten Merkmalen.The invention relates to an electromagnet with magnet armature with the features mentioned in the preamble of the independent claim 1.

Bekannte Elektromagnete mit einem Magnetanker werden beispielsweise in Magnetventilen von Druckregelventilen für Einspritzanlagen von Brennkraftmaschinen eingesetzt. Derartige Magnetventile weisen elektrische Anschlußelemente auf, die von einer dem Elektromagneten abgewandten Seite des Magnetankers aus durch eine Aussparung der Ankerplatte durchgeführt und mit der Magnetspule kontaktiert werden. Um zu verhindern, daß bei einer Betätigung des Elektromagneten die Anschlußelemente mit der Innenwandung der Aussparung der Ankerplatte in Kontakt gelangen und durch Reibung die Bewegung der Ankerplatte beeinträchtigen, weisen die bekannten Elektromagnete mechanische Ausrichtemittel in Form eines Fixierstiftes und einer mit dem Fixierstift zusammenwirkenden Kerbe in der Ankerplatte auf, welche Ausrichtemittel eine Ausrichtung der Ankerplatte auf einen vorbestimmten Drehwinkel bewirken und verhindern, daß die Ankerplatte an den elektrischen Anschlußelementen der Magnetspule reibt. Nachteilig ist jedoch, daß die mechanischen Ausrichtemittel die Bewegung des Magnetankers beeinträchtigen können.Known electromagnets with a magnet armature are used for example in solenoid valves of pressure control valves for injection systems of internal combustion engines. Such solenoid valves have electrical connection elements which are performed by a side facing away from the electromagnet side of the magnet armature through a recess of the armature plate and contacted with the magnetic coil. In order to prevent that upon actuation of the electromagnet, the connecting elements with the inner wall of the recess of the anchor plate come into contact and affect the movement of the armature plate by friction, the known electromagnets have mechanical alignment means in the form of a fixing pin and cooperating with the fixing pin notch in the Anchor plate, which alignment means cause alignment of the armature plate to a predetermined angle of rotation and prevent the armature plate rubs against the electrical connection elements of the magnetic coil. The disadvantage, however, is that the mechanical alignment means can affect the movement of the armature.

Vorteile der ErfindungAdvantages of the invention

Der erfindungsgemäße Elektromagnet mit Magnetanker nach dem unabhängigen Anspruch 1 der Anmeldung vermeidet die mit der Verwendung von mechanischen Ausrichtemitteln verbundenen Nachteile. Durch wenigstens eine Ausnehmung in der Ankerplatte und eine dieser Ausnehmung zugeordnete zweite Ausnehmung in der Polfläche des Magnetkerns wird erreicht, daß die Ankerplatte bei einer Strombeaufschlagung der Magnetspule durch magnetische Kräfte auf eine vorbestimmten Drehstellung ausgerichtet wird, in der dann beispielsweise die Anschlußelemente berührungslos eine Aussparung der Ankerplatte durchdringen. Vorteilhaft kann daher auf die Ausbildung von aufwendig zu fertigenden mechanischen Ausrichtemitteln verzichtet werden. Der magnetische Streufluß im Bereich zwischen den Innenwandungsabschnitten der wenigsten einen ersten Ausnehmung und der wenigstens einen zweiten Ausnehmung bewirkt vorteilhaft eine reibungsfreie Ausrichtung der Ankerplatte und des Magnetankers. Aus der Inhomogenität des Magnetfeldes im Falle einer minimalen Verdrehung der Ankerplatte um den Ankerbolzen resultieren auf die Ankerplatte einwirkende Rückstellkräfte, welche den Magnetanker in seine vorbestimmte Drehstellung zurücktreiben.The electromagnet with magnet armature according to the invention according to the independent claim 1 of the application avoids the disadvantages associated with the use of mechanical alignment means. By at least one recess in the armature plate and a recess associated with this second recess in the pole face of the magnetic core is achieved that the armature plate is aligned with a current applied to the magnetic coil by magnetic forces to a predetermined rotational position in which then, for example, the connection elements contact a recess of Penetrate anchor plate. Advantageously, therefore, can be dispensed with the training of consuming to be manufactured mechanical alignment means. The magnetic leakage flux in the region between the inner wall sections of the at least one first recess and the at least one second recess advantageously brings about friction-free alignment of the armature plate and of the magnet armature. The inhomogeneity of the magnetic field in the event of a minimal rotation of the armature plate about the anchor bolt results in restoring forces acting on the armature plate which drive the armature back into its predetermined rotational position.

Die hier vorgestellte Erfindung kann beispielsweise vorteilhaft in Druckregelventilen eingesetzt werden, um Reibungsverluste des Magnetankers und ein Beeinträchtigung des Schließvorgangs des Magnetventils zu vermeiden. Darüber hinaus kann die Erfindung aber auch in Magnetventilen für Einspritzventile von Brennkraftmaschinen eingesetzt werden, bei denen eine Ausrichtung des Magnetankers erforderlich ist, um beispielsweise durch Aussparungen des Magnetankers verlaufende Kraftstoffablaufkanäle vor einer Verengung des Kanalquerschnitts bei einer Verdrehung des Ankers zu bewahren. Die Erfindung ist aber keinesfalls auf die Verwendung in Magnetventilen beschränkt und kann bei allen Elektromagneten mit Magnetanker angewandt werden, bei denen eine Ausrichtung einer gleit- und drehbeweglich gelagerten Ankerplatte auf eine bevorzugte Drehwinkelstellung erforderlich ist.The invention presented here can for example be advantageously used in pressure control valves in order to avoid friction losses of the armature and an impairment of the closing operation of the solenoid valve. In addition, however, the invention can also be used in solenoid valves for injection valves of internal combustion engines, in which an orientation of the magnet armature is required, for example, to save by recesses of the magnet armature fuel drainage channels before a narrowing of the channel cross-section in a rotation of the armature. However, the invention is by no means limited to use in solenoid valves and can be applied to all electromagnets with magnetic armature, in which an alignment a slidably and rotatably mounted armature plate is required to a preferred angular position rotation.

Vorteilhafte Ausführungsbeispiele und Weiterbildungen der Erfindung werden durch die in den Unteransprüchen enthaltenen Merkmale ermöglicht.Advantageous embodiments and further developments of the invention are made possible by the features contained in the subclaims.

Zeichnungendrawings

Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird in der nachfolgenden Beschreibung erläutert. Es zeigt
Fig. 1 ein im Stand der Technik bekanntes Druckregelventil mit einem Elektromagneten und einem Magnetanker,
Fig. 2 und Fig. 3 einen erfindungsgemäßen Magnetanker,
Fig. 4 und Fig. 5 einen Magnetkern des erfindungsgemäßen Elektromagneten, welcher zugleich ein Gehäuseteil eines Druckregelventils bildet,
Fig. 6 den Magnetkern und Magnetanker aus Fig. 3 und Fig. 5 im zusammengebauten Zustand,
Fig. 7 einen Schnitt durch Fig. 6 längs der Linie A-A bei einer kleinen Auslenkung des Magnetankers.
An embodiment of the invention is illustrated in the drawings and will be explained in the following description. It shows
Fig. 1 a known in the art pressure control valve with an electromagnet and a magnet armature,
Fig. 2 and Fig. 3 a magnet armature according to the invention,
4 and FIG. 5 a magnetic core of the electromagnet according to the invention, which at the same time forms a housing part of a pressure regulating valve,
Fig. 6 the magnetic core and magnet armature off Fig. 3 and Fig. 5 in assembled condition,
Fig. 7 a cut through Fig. 6 along the line AA at a small deflection of the armature.

Beschreibung eines AusführungsbeispielsDescription of an embodiment

Fig. 1 zeigt ein im Stand der Technik bekanntes Druckregelventil, welches beispielsweise in Kraftstoffeinspritzanlagen von Brennkraftmaschinen eingesetzt wird, um den Druck in einem Kraftstoffhochdruckspeicher abhängig vom Lastzustand der Brennkraftmaschine einzustellen. Das Druckregelventil weist einen Flanschbereich 12 zum Anschluß an eine Kraftstoffhochdruckpumpe oder einen Kraftstoffhochdruckspeicher auf. Ein in den Flanschbereich 12 des Druckregelventils eingesetztes Ventilstück 13 weist einen mit der Hochdruckseite verbundenen Kraftstoffzulaufkanal 8 auf, welcher mit seinem einen Ende in einen Ventilsitz 7 des Ventilstücks 13 mündet. Seitliche Öffnungen 9 des Ventilstücks 13 sind in nicht näher dargestellter Weise mit einem Kraftstoffrücklauf verbunden. Ein Elektromagnet steuert das Öffnen und Schließen des Druckregelventils. Wie in Fig. 1 zu erkennen ist, weist der Elektromagnet einen im Grundriß in etwa zylinderförmigen Magnetkern 2 auf, der zugleich ein Gehäuseteil des Druckregelventils ausbildet. In einer ringförmigen Ausnehmung 11 des Magnetkerns ist eine Magnetspule 1 angeordnet. Weiterhin weist der Elektromagnet einen Magnetanker 3 mit Ankerplatte 31 und Ankerbolzen 32 auf, welcher Ankerbolzen in eine zylindrische Durchgangsausnehmung des Magnetkerns 2 gleitverschiebbar und drehbeweglich eingreift. Das von der Ankerplatte 31 abgewandte Ende des Ankerbolzens 32 wirkt mit einem als Kugel ausgebildeten Ventilglied 6 zusammen. Der Ankerbolzen 31 mit dem Ventilglied 6 wird von einer Feder 4 beaufschlagt, die sich mit ihrem einen Ende an einem Gehäuseteil 14 des Druckregelventils abstützt und mit ihrem anderen Ende an der Ankerplatte 31. Der Spannkraft der Feder 4, welche den Ankerbolzen in Richtung des Ventilsitzes 7 beaufschlagt, wirkt die Hochdruckkraft im Kraftstoffzulaufkanal 8 derart entgegen, daß das Druckregelventil bei nicht eingeschaltetem Elektromagneten bei geringem Systemdruck geöffnet ist und der Kraftstoff durch die Öffnungen 9 abströmt. Bei einer Strombeaufschlagung des Elektromagneten wird die Ankerplatte vom Elektromagneten angezogen und der Ankerbolzen 32 preßt das Ventilglied 6 in den Ventilsitz 7, so daß der Kraftstoffzulaufkanal 8 geschlossen wird, bis zwischen Hochdruckkraft einerseits und Magnet- und Federkraft andererseits ein Kräftegleichgewicht erreicht ist. Fig. 1 shows a well-known in the art pressure control valve, which is used for example in fuel injection systems of internal combustion engines to adjust the pressure in a high-pressure fuel storage depending on the load state of the internal combustion engine. The pressure control valve has a flange 12 for connection to a high-pressure fuel pump or a high-pressure fuel storage. An inserted into the flange portion 12 of the pressure control valve member 13 has a connected to the high pressure side fuel inlet channel 8, which opens with its one end into a valve seat 7 of the valve member 13. Side openings 9 of the valve member 13 are connected in a manner not shown with a fuel return. An electromagnet controls the opening and closing of the pressure control valve. As in Fig. 1 can be seen, the electromagnet has a plan view in approximately cylindrical magnetic core 2, which also forms a housing part of the pressure control valve. In an annular recess 11 of the magnetic core, a magnetic coil 1 is arranged. Furthermore, the electromagnet has a magnet armature 3 with anchor plate 31 and anchor bolt 32, which engages anchor bolt in a cylindrical through-hole of the magnetic core 2 slidably and rotatably. The end remote from the anchor plate 31 of the anchor bolt 32 cooperates with a valve member 6 designed as a ball. The anchor bolt 31 with the valve member 6 is acted upon by a spring 4, which is supported with its one end to a housing part 14 of the pressure regulating valve and with its other end to the armature plate 31. The clamping force of the spring 4, which the anchor bolt in the direction of the valve seat 7 acted upon, the high-pressure force in the fuel inlet channel 8 counteracts such that the pressure control valve is open at low system pressure when the solenoid is not switched on and the fuel flows through the openings 9. When a current is applied to the electromagnet, the armature plate is attracted by the electromagnet and the anchor bolt 32 presses the valve member 6 in the valve seat 7, so that the fuel inlet channel 8 is closed until between high-pressure force on the one hand and magnetic and spring force on the other hand a balance of power is achieved.

Wie in Fig. 1 zu erkennen ist, weist das Druckregelventil elektrische Anschlußelemente 5 auf, welche ein elektrisches Anschlußteil 10 des Druckregelventils mit der Magnetspule 1 verbinden. Da die Ankerplatte 31 zwischen dem Anschlußteil 10 und der Magnetspule 1 angeordnet ist, müssen die elektrischen Anschlußelemente 5 eine in Fig. 1 nicht dargestellte Aussparung in der Ankerplatte 31 durchdringen. Bei einer Drehung der Ankerplatte 31 um die Achse des Ankerbolzens 32 reiben die mit einer Kunststoffumhüllung versehenen Anschlußelemente in nachteiliger Weise an der Innenwandung der Aussparung der Ankerplatte. Aus diesem Grund verwenden die im Stand der Technik bekannten Elektromagnete mechanische Ausrichtemittel, welche die Ankerplatte in eine vorbestimmte Drehstellung ausrichten, aber eine Verschiebung der Ankerplatte senkrecht zur Polfläche 22 des Elektromagneten zulassen. So ist beispielsweise bekannt, zur Ausrichtung der Ankerplatte auf eine vorbestimmte Drehstellung einen von der Polfläche 22 des Magnetkerns abstehenden Stift vorzusehen, der mit leichtem Spiel in eine Kerbe der Ankerplatte 31 eingreift. In der vorbestimmten Drehstellung der Ankerplatte greifen die Anschlußelemente durch die Ankerplatte hindurch, ohne mit dieser in Kontakt zu gelangen.As in Fig. 1 can be seen, the pressure regulating valve has electrical connection elements 5, which connect an electrical connection part 10 of the pressure regulating valve with the magnetic coil 1. Since the armature plate 31 is disposed between the terminal part 10 and the solenoid coil 1, the electrical connection elements 5 have a in Fig. 1 not shown recess in the anchor plate 31 penetrate. On a turn the anchor plate 31 about the axis of the anchor bolt 32 rub the provided with a plastic sheath connecting elements disadvantageously on the inner wall of the recess of the anchor plate. For this reason, known in the prior art electromagnets use mechanical alignment means, which align the anchor plate in a predetermined rotational position, but allow a displacement of the armature plate perpendicular to the pole face 22 of the electromagnet. For example, it is known to provide for aligning the armature plate to a predetermined rotational position protruding from the pole face 22 of the magnetic core pin which engages with slight play in a notch of the anchor plate 31. In the predetermined rotational position of the anchor plate, the connecting elements engage through the anchor plate without coming into contact therewith.

In den Figuren 2 bis 7 ist ein Ausführungsbeispiel der Erfindung dargestellt. Die Erfindung ist aber nicht auf die Verwendung in Druckregelventilen oder Magnetventilen beschränkt, sondern kann bei allen Elektromagneten mit Magnetanker eingesetzt werden, bei denen eine Ausrichtung des Magnetankers auf eine vorbestimmte Drehstellung wünschenswert ist. Der in den Figuren 2 und 3 dargestellte Magnetanker 3 umfaßt eine im wesentlichen kreisförmige Ankerplatte 31 und einen von der Ankerplatte senkrecht abstehenden Ankerbolzen 32 mit kreisförmigen Querschnitt. Eine Aussparung 35 in der Ankerplatte dient der Durchführung von elektrischen Anschlußelementen einer Magnetspule. Wie weiterhin in Fig. 2 und Fig. 3 zu erkennen ist, weist die Ankerplatte zwei in etwa U-förmige durchgehende erste Ausnehmungen 33 auf, deren offene Seiten auf dem Umfang der Ankerplatte angeordnet sind und die sich in bezug auf den Ankerbolzen 32 diametral gegenüberliegen.In the FIGS. 2 to 7 an embodiment of the invention is shown. The invention is not limited to use in pressure control valves or solenoid valves, but can be used in all solenoids with magnetic armature, in which an orientation of the armature to a predetermined rotational position is desirable. The in the FIGS. 2 and 3 illustrated armature 3 comprises a substantially circular armature plate 31 and a vertically projecting from the anchor plate anchor bolt 32 with a circular cross-section. A recess 35 in the armature plate is used to carry out electrical connection elements of a magnetic coil. As continues in Fig. 2 and Fig. 3 can be seen, the anchor plate has two approximately U-shaped continuous first recesses 33, whose open sides are arranged on the circumference of the anchor plate and which are diametrically opposed with respect to the anchor bolt 32.

In Fig. 4 und Fig. 5 ist ein topfförmiges Gehäuseteil eines Druckregelventils dargestellt. Fig. 4 zeigt einen Querschnitt durch Fig. 5 längs der Linie I-I. Das Gehäuseteil weist einen den Magnetkern 2 bildenden, zylindrischen Mittelteil und seitliche Befestigungszungen 15 zur Festlegung des Druckregelventils an beispielsweise einer Kraftstoffhochdruckpumpe auf. Vorzugsweise besteht der Magnetkern aus Weicheisen oder einem anderen Material mit großer Permeabilität. Ein Flanschbereich 12 des Gehäuseteils dient, wie in Fig. 1 gezeigt, zur Aufnahme eines Ventilstücks und zum Anschluß an den Hochdruckausgang einer Kraftstoffhochdruckpumpe. Der zylindrische Mittelteil weist eine zentrale zylindrische Durchgangsöffnung 26 und eine dazu konzentrische ringförmige Ausnehmung 11 auf, welche zur Aufnahme einer in Fig. 4 nicht dargestellten Magnetspule dient. In Fig. 5 ist der elektrische Anschluß 28 der Magnetspule 1 schematisch angedeutet. Die Ausnehmung 11 wird in radialer Richtung nach innen durch eine erste zylindermantelförmige Wand 23 und nach außen durch eine zweite zylindermantelförmige Wand 24 begrenzt. Die von dem Flanschbereich 12 abgewandten Enden der ersten Wand 21 und der zweiten Wand 24 bilden zwei konzentrische, in einer Ebene angeordnete, kreisringförmige Flächen 21 und 22. Ein von der Fläche 22 abstehender umlaufender Kragen 16 dient der Aufnahme eines zweiten Gehäuseteils 14, wie in Fig. 1 gezeigt.In 4 and FIG. 5 a cup-shaped housing part of a pressure control valve is shown. Fig. 4 shows a cross section through Fig. 5 along the line II. The housing part has a the magnetic core 2 forming, cylindrical central part and lateral fastening tongues 15 for fixing the pressure control valve to, for example, a high-pressure fuel pump. Preferably, the magnetic core is made of soft iron or other material of high permeability. A flange portion 12 of the housing part serves as in FIG Fig. 1 shown, for receiving a valve piece and for connection to the high-pressure outlet of a high-pressure fuel pump. The cylindrical central part has a central cylindrical passage opening 26 and a concentric annular recess 11 which is adapted to receive a in Fig. 4 Solenoid not shown is used. In Fig. 5 is the electrical connection 28 of the solenoid 1 indicated schematically. The recess 11 is bounded in the radial direction inwardly by a first cylinder jacket-shaped wall 23 and outwardly by a second cylinder jacket-shaped wall 24. The ends of the first wall 21 and the second wall 24 facing away from the flange region 12 form two concentric annular surfaces 21 and 22 arranged in one plane. A circumferential collar 16 protruding from the surface 22 serves to receive a second housing part 14, as in FIG Fig. 1 shown.

Bei in die Ausnehmung 11 eingesetzter Magnetspule bildet die innere Wand 23 einen die Spule durchdringenden Abschnitt des Magnetkerns 2 aus, der über eine Bodenplatte 25 mit einem die Spule umgebenden äußeren Wandabschnitt 24 des Magnetkerns verbunden ist. Die beiden Flächen 21,22 bilden dabei zwei Polflächen des Magnetkerns 2, so daß durch eine auf die beiden Polflächen 21,22 aufgelegte Ankerplatte 31 der magnetische Kreis geschlossen würde. Wie am besten in Fig. 5 zu erkennen ist, sind in der äußeren Polfläche 22 des Magnetkerns zweite Ausnehmungen 27 angeordnet, die den ersten Ausnehmungen 33 in der Ankerplatte 31 zugeordnet sind und sich in bezug auf die Durchgangsöffnung 26 diametral gegenüberliegen.When inserted into the recess 11 magnetic coil, the inner wall 23 forms a coil penetrating portion of the magnetic core 2, which is connected via a bottom plate 25 with a coil surrounding the outer wall portion 24 of the magnetic core. The two surfaces 21,22 thereby form two pole faces of the magnetic core 2, so that would be closed by an applied to the two pole faces 21,22 anchor plate 31 of the magnetic circuit. How best in Fig. 5 can be seen, second recesses 27 are arranged in the outer pole face 22 of the magnetic core, which are associated with the first recesses 33 in the anchor plate 31 and with respect to the passage opening 26 diametrically opposite.

Fig. 6 zeigt den Magnetkern ohne Magnetspule aber mit eingesetztem Magnetanker. Der Magnetanker ist mittels des Ankerbolzens 32 gleitverschiebbar und zunächst drehbeweglich in die zylindrische Durchgangsöffnung 26 eingesetzt. In einer bevorzugten Drehstellung der Ankerplatte 31 liegt der Anschluß 28 der Magnetspule aus Fig. 5 in der Projektion der Aussparung 35 der Ankerplatte 31 in Gleitrichtung des Magnetankers 3. Elektrische Anschlußelement können in dieser Drehstellung parallel zum Ankerbolzen 32 die Ankerplatte 31 geradlinig durchgreifen, ohne an den Innenrändern der Aussparung 35 zu reiben. Zur Ausrichtung der Drehstellung im Betrieb des Elektromagneten dienen die ersten Ausnehmungen 33 und die zweiten Ausnehmungen 27. Fig. 6 shows the magnetic core without magnetic coil but with inserted magnet armature. The magnet armature is slidably slidable by means of the anchor bolt 32 and initially inserted in a rotatable manner into the cylindrical passage opening 26. In a preferred rotational position of the armature plate 31 is the terminal 28 of the solenoid from Fig. 5 in the projection of the recess 35 of the armature plate 31 in the sliding direction of the armature 3. Electrical connection element can pass straight through the anchor plate 31 in this rotational position parallel to the anchor bolt 32, without rubbing against the inner edges of the recess 35. To align the rotational position during operation of the electromagnet, the first recesses 33 and the second recesses 27 serve.

Wie in Fig. 6 und Fig. 7 in Verbindung mit Fig. 3 und Fig. 5 gut zu erkennen ist, entspricht der Abstand a zweier sich in Umfangsrichtung einander gegenüberliegender Innenwandungsabschnitte 33a,33b der ersten Ausnehmung 33 vorzugsweise dem Abstand b zweier sich einander in der gleichen Richtung gegenüberliegender Innenwandungsabschnitte 27a,27b der zweiten Ausnehmung 27. Weiterhin ist in Fig. 6 zu erkennen, daß die zweite Ausnehmung 27 vorzugsweise wenigstens teilweise innerhalb der Projektion der ersten Ausnehmung 33 in der Gleitrichtung des Magnetankers 3 angeordnet ist. Mit anderen Worten, jede der beiden ersten Ausnehmungen 23 überlappt sich ein Stück mit der jeweils zugeordneten zweiten Ausnehmung 27, die in einer parallelen Ebene angeordnet ist. Es kann jedoch abweichend von dem hier dargestellten Ausführungsbeispiel auch vorgesehen sein, die Abstände a und b nicht genau gleich zu wählen. Weiterhin kann anstelle der beiden ersten Ausnehmungen und der beiden zweiten Ausnehmungen auch nur eine erste Ausnehmung und eine zweite Ausnehmung vorgesehen sein. Auch mehr als jeweils zwei Ausnehmungen in der Ankerplatte und der Polfläche des Magnetkerns sind möglich. Wesentlich ist, daß wenigstens eine erste Ausnehmung, die radial zur Achse des Ankerbolzens versetzt ist, einer zweiten Ausnehmung in der Polfläche des Magnetkerns zugeordnet ist.As in Fig. 6 and Fig. 7 combined with Fig. 3 and Fig. 5 can be clearly seen, corresponds to the distance a of two circumferentially opposed inner wall sections 33a, 33b of the first recess 33 preferably the distance b of two mutually opposite in the same direction Innenwandungsabschnitte 27a, 27b of the second recess 27. Furthermore, in Fig. 6 to recognize that the second recess 27 is preferably at least partially disposed within the projection of the first recess 33 in the sliding direction of the armature 3. In other words, each of the first two recesses 23 overlaps one piece with the respectively associated second recess 27, which is arranged in a parallel plane. However, it may also be provided deviating from the embodiment shown here, the distances a and b not exactly the same. Furthermore, instead of the first two recesses and the two second recesses, only a first recess and a second recess may be provided. Also more than two recesses in the anchor plate and the pole face of the magnetic core are possible. It is essential that at least one first recess, the radial to Is offset axis of the anchor bolt, a second recess in the pole face of the magnetic core is assigned.

Fig. 7 zeigt einen Ausschnitt aus einem Querschnitt entlang der Linie A-A in Fig. 6, bei dem die Ankerplatte 31 absichtlich aus der vorbestimmten Drehstellung um die Achse des Ankerbolzens 31 verdreht wurde, so daß sich die dem Magnetkern zugewandte Polfläche 36 der Ankerplatte 31 und die erste Ausnehmung 33, sowie die Polfläche 22 des Magnetkerns 2 und die zweite Ausnehmung 27 teilweise überlappen. Wie in Fig. 6 zu erkennen ist, resultiert in dieser Drehstellung bei einer Strombeaufschlagung der Magnetspule 1 aus dem dann inhomogenen Streumagnetfeld (gestrichelte Linien in Fig. 6) im Bereich zwischen den Innenwandungsabschnitten 33a,33b der ersten Ausnehmung 33 und den Innenwandungsabschnitten 27a,27b der zweiten Ausnehmung 27 eine die Ankerplatte 31 in die vorbestimmte Drehstellung rücktreibende, magnetostatische Kraft F. Dies gilt auch bei einer geringen Abweichung der Maße a und b. Die rücktreibende Kraft richtet die Ankerplatte 31 wieder in die vorbestimmte Drehstellung aus, in der sich die ersten Ausnehmungen 33 und die zweiten Ausnehmungen 27 einander gegenüberliegen. Erst in dieser Drehstellung ist die rücktreibende Kraft gleich Null. Da die rücktreibende magnetostatische Kraft F folglich selbst bei kleinsten Drehbewegungen der Ankerplatte auftritt, wird die Ankerplatte ständig durch das Streumagnetfeld auf die vorbestimmte Drehstellung ausgerichtet. Unter einer Ausrichtung der Ankerplatte wird in diesem Zusammenhang verstanden, daß die Ankerplatte bei eingeschaltetem Elektromagneten bis auf kleinste, kaum nachweisbare Drehschwingungen in ihrer Drehstellung quasi fixiert ist. In jedem Fall sind die Drehbewegungen der Ankerplatte dermaßen klein, daß die Innenränder der Aussparung 35 die Anschlußelemente 5 der Magnetspule 1 bei eingeschalteten Elektromagneten nicht oder nur minimal berühren und die Gleitbewegung des Magnetankers beim Schließen oder Öffnen des Druckregelventils nicht beeinträchtigt wird. Bei abgeschaltetem Elektromagneten verhindern die elektrischen Anschlußelemente der Magnetspule, welche die Aussparung 35 durchgreifen, eine starke Auslenkung der Ankerplatte, so daß sich die Ankerplatte bei erneuter Betätigung des Elektromagneten sofort wieder in die vorbestimmte Drehstellung ausrichtet. Fig. 7 shows a section of a cross section along the line AA in Fig. 6 in which the anchor plate 31 has been intentionally rotated from the predetermined rotational position about the axis of the anchor bolt 31 so that the pole face 36 of the anchor plate 31 facing the magnetic core 31 and the first recess 33 and the pole face 22 of the magnetic core 2 and the second recess 27 partially overlap. As in Fig. 6 can be seen results in this rotational position in a current application of the magnetic coil 1 from the then inhomogeneous stray magnetic field (dashed lines in Fig. 6 ) in the region between the Innenwandungsabschnitten 33a, 33b of the first recess 33 and the Innenwandungsabschnitten 27a, 27b of the second recess 27, the armature plate 31 in the predetermined rotational position driving back, magnetostatic force F. This also applies to a small deviation of the dimensions a and b. The restoring force aligns the armature plate 31 again in the predetermined rotational position, in which the first recesses 33 and the second recesses 27 are opposite to each other. Only in this rotational position is the restoring force equal to zero. As a result, since the restoring magnetostatic force F occurs even with minute rotations of the armature plate, the armature plate is constantly aligned by the leakage magnetic field to the predetermined rotational position. Under an orientation of the anchor plate is understood in this context that the armature plate is quasi fixed with the electromagnet turned on to the smallest, barely detectable torsional vibrations in its rotational position. In any case, the rotational movements of the armature plate are so small that the inner edges of the recess 35, the terminal elements 5 of the solenoid coil 1 when the solenoid is not or only minimally touch and the sliding movement of the armature is not affected when closing or opening the pressure control valve. When switched off Electromagnet prevent the electrical connection elements of the solenoid coil, which pass through the recess 35, a strong deflection of the armature plate, so that the armature plate aligns with renewed actuation of the electromagnet immediately back to the predetermined rotational position.

In dem bisher dargestellten Ausführungsbeispiel weist die Ankerplatte und die Polfläche des Magnetkerns jeweils zwei Ausnehmungen auf. In einem anderen Ausführungsbeispiel kann vorgesehen sein, die Anzahl der ersten Ausnehmungen in der Ankerplatte und der zweiten Ausnehmungen in der Polfläche des Magnetkerns soweit zu erhöhen, daß sich unabhängig von der Ausgangsposition der Ankerplatte beim Einschalten des Elektromagneten durch die magnetische Ausrichtung immer eine bevorzugte Drehstellung einstellt, in der sich die ersten Ausnehmungen und die diesen zugeordneten zweiten Ausnehmungen einander gegenüberliegen. Insbesondere kann die Anzahl und Umfangslänge a der ersten Ausnehmungen 33 der Ankerplatte 31 gleich der Anzahl und Umfangslänge der die ersten Ausnehmungen voneinander trennenden Polflächensegmente der Ankerplatte 31 sein. Im Magnetkern ist dann eine entsprechende Anzahl von zweiten Ausnehmungen 27 mit gleicher Umfangslänge (b = a) vorgesehen. Eine derartige Ausführung der Ankerplatte und des Magnetkerns ist insbesondere für solche Magnetventile geeignet, bei denen keine Anschlußelemente durch die Ankerplatte greifen.In the embodiment shown so far, the armature plate and the pole face of the magnetic core each have two recesses. In another embodiment, it may be provided to increase the number of first recesses in the armature plate and the second recesses in the pole face of the magnetic core to the extent that regardless of the starting position of the armature plate when switching on the electromagnet by the magnetic alignment always sets a preferred rotational position in which the first recesses and the second recesses associated therewith lie opposite one another. In particular, the number and circumferential length a of the first recesses 33 of the anchor plate 31 may be equal to the number and circumferential length of the first recesses of each other separating pole surface segments of the anchor plate 31. In the magnetic core, a corresponding number of second recesses 27 with the same circumferential length (b = a) is then provided. Such an embodiment of the anchor plate and the magnetic core is particularly suitable for such solenoid valves, in which no terminal elements engage through the anchor plate.

Die Anzahl der sich einander gegenüberliegenden Ausnehmungen ist proportional der ausrichtenden Kraft F der Ankerplatte. Diese Anzahl kann folglich im Einzelfall auf die Größe der benötigten Rückstellungskraft F ausgelegt werden.The number of mutually opposite recesses is proportional to the aligning force F of the anchor plate. This number can therefore be designed in the individual case to the size of the required restoring force F.

Obwohl die Erfindung hier am Beispiel eines Druckregelventils dargestellt wurde, kann sie auch bei anderen Magnetventilen verwandt werden. Denkbar ist beispielsweise der Einsatz in Magnetventilen von Einspritzventilen für Einspritzanlagen, um zu verhindern, daß in der Ankerplatte vorgesehene Ablaufdurchgänge für abfließenden Kraftstoff durch eine Drehung der Ankerplatte im Querschnitt verkleinert werden. Das hier vorgestellte Wirkungsprinzip des Elektromagneten mit Ankerplatte ist aber nicht auf die Verwendung in Magnetventilen beschränkt, sondern kann vorteilhaft bei allen Elektromagneten angewandt werden, bei denen es empfehlenswert ist, eine gleitverschiebbar und drehbeweglich gelagerte Ankerplatte in einer bevorzugten Drehstellung auszurichten.Although the invention has been illustrated by the example of a pressure control valve, it can also be used in other solenoid valves. It is conceivable, for example, the use in solenoid valves of injection valves for injection systems to to prevent that in the anchor plate provided drain passages for outflowing fuel can be reduced by a rotation of the anchor plate in cross-section. The principle of operation of the electromagnet with anchor plate presented here is not limited to use in solenoid valves, but can be advantageously applied to all electromagnets in which it is advisable to align a slidably mounted and rotatably mounted armature plate in a preferred rotational position.

Claims (8)

  1. Electromagnet with a magnet armature, in particular for use in a solenoid valve, comprising a magnet coil (1), a magnet core (2) which passes through the magnet coil (1) and has at least one pole face (22), a magnet armature (3) which is mounted such that it can be displaced perpendicular to the at least one pole face (22) of the magnet core (2) and has an armature plate (31) which faces the pole face (22) and has an armature bolt (32) which is mounted such that it protrudes from the armature plate (31) and can be displaced in a sliding manner and can rotate, and alignment means which are formed on the electromagnet and/or the magnet armature and align the armature plate (31) with a predetermined rotation position, characterized in that the alignment means comprise at least one first recess (33) which is radially offset in relation to the armature bolt (32) and is formed in the armature plate (31), and at least one second recess (27) which is arranged in the at least one pole face (22) of the magnet core (2) and is associated with the first recess (33), which second recess (27), in the event of current being applied to the magnet coil (1), magnetically interacts with the first recess (33) in such a way that the armature plate (31) is aligned with the predetermined rotation position.
  2. Electromagnet with a magnet armature according to Claim 1, characterized in that the distance (a) between two inner wall sections (33a, 33b) of the first recess (33), which wall sections are situated opposite one another in the circumferential direction, corresponds to the distance (b) between two inner wall sections (27a, 27b) of the second recess (27), which wall sections are situated opposite one another in the same direction.
  3. Electromagnet with a magnet armature according to Claim 1 or 2, characterized in that the second recess (27) is arranged at least partially within the projection of the first recess (33) in the sliding direction of the magnet armature (3).
  4. Electromagnet with a magnet armature according to one of the preceding claims, characterized in that the alignment means comprise two first recesses (33) which are situated diametrically opposite with respect to the shaft (37) of the armature bolt (32), and two second recesses (27) which are associated with the said first recesses and are likewise situated diametrically opposite with respect to the shaft (37) of the armature bolt (32).
  5. Electromagnet with a magnet armature according to one of Claims 1 to 4, characterized in that, in the predetermined rotation position of the armature plate (31), electrical connection elements (5) of the magnet coil (1) reach through a cutout (35) in the armature plate (31) from a side of the armature plate (31) which is averted from the magnet coil (1), without touching the armature plate.
  6. Electromagnet with a magnet armature according to one of Claims 1 to 3, characterized in that the number and the circumferential length (a) of the first recesses (33) in the armature plate (31) are equal to the number and circumferential length of the pole face segments (36) of the armature plate (31) which separate the first recesses from one another, and in that the magnet core (2) has a corresponding number of second recesses (27) with the same circumferential length.
  7. Electromagnet with a magnet armature according to one of Claims 1 to 3, characterized in that the number and circumferential length of the first recesses (33) and of the second recesses (27) are matched to the size of the required restoring force (F).
  8. Solenoid valve, in particular solenoid valve for a fuel injection system, having an electromagnet and an electromagnet and a magnet armature according to one of Claims 1 to 7.
EP01990347A 2000-12-23 2001-12-20 Electromagnet with a magnet armature Expired - Lifetime EP1348221B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10065016A DE10065016A1 (en) 2000-12-23 2000-12-23 Electromagnet with magnetic armature
DE10065016 2000-12-23
PCT/DE2001/004833 WO2002052587A1 (en) 2000-12-23 2001-12-20 Electromagnet with a magnet armature

Publications (2)

Publication Number Publication Date
EP1348221A1 EP1348221A1 (en) 2003-10-01
EP1348221B1 true EP1348221B1 (en) 2008-02-27

Family

ID=7668983

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01990347A Expired - Lifetime EP1348221B1 (en) 2000-12-23 2001-12-20 Electromagnet with a magnet armature

Country Status (8)

Country Link
US (1) US6674351B2 (en)
EP (1) EP1348221B1 (en)
JP (1) JP4090032B2 (en)
CN (1) CN1270329C (en)
CZ (1) CZ298990B6 (en)
DE (2) DE10065016A1 (en)
ES (1) ES2298283T3 (en)
WO (1) WO2002052587A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4596890B2 (en) * 2004-11-11 2010-12-15 シナノケンシ株式会社 Actuator
JP4707443B2 (en) * 2005-04-21 2011-06-22 株式会社タカコ Electromagnetic solenoid, parts thereof and manufacturing method
JP2007078048A (en) * 2005-09-13 2007-03-29 Aisin Seiki Co Ltd Solenoid valve
DE102008003210B4 (en) * 2007-01-05 2015-06-11 Hilite Germany Gmbh Pressure valve, in particular with advantageous electrical contact management
FR2991727B1 (en) * 2012-06-08 2014-07-04 Bosch Gmbh Robert HIGH PRESSURE FUEL ACCUMULATOR PRESSURE CONTROL VALVE
CN102979943B (en) * 2012-12-04 2014-03-26 中国第一汽车股份有限公司无锡油泵油嘴研究所 Electromagnetic valve and manufacturing method thereof
FR2999658A1 (en) * 2012-12-18 2014-06-20 Delphi Technologies Holding HIGH PRESSURE VALVE
EP3222914B1 (en) * 2016-03-23 2019-01-09 Orkli, S. Coop. Gas safety valve
CN109973456A (en) * 2019-04-16 2019-07-05 武汉科技大学 A kind of automatically controlled high pressure check valve of combined type

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3142038B2 (en) * 1993-12-03 2001-03-07 株式会社デンソー solenoid valve
US6157277A (en) 1997-12-09 2000-12-05 Siemens Automotive Corporation Electromagnetic actuator with improved lamination core-housing connection

Also Published As

Publication number Publication date
JP2004516675A (en) 2004-06-03
WO2002052587A1 (en) 2002-07-04
ES2298283T3 (en) 2008-05-16
DE10065016A1 (en) 2002-07-04
US6674351B2 (en) 2004-01-06
CZ20022846A3 (en) 2003-04-16
CN1270329C (en) 2006-08-16
DE50113675D1 (en) 2008-04-10
JP4090032B2 (en) 2008-05-28
CN1406384A (en) 2003-03-26
CZ298990B6 (en) 2008-03-26
US20030160671A1 (en) 2003-08-28
EP1348221A1 (en) 2003-10-01

Similar Documents

Publication Publication Date Title
EP1270930B1 (en) Magnetic valve for controlling a fuel injection valve of a combustion engine
DE3334159C2 (en)
DE112006001605B4 (en) Electromagnetic actuator and method for controlling fluid flow
WO2010086058A1 (en) Proportional magnet for a hydraulic directional control valve and method for the production thereof
DE102008055015A1 (en) Fuel injection valve
DE102012003175B4 (en) magnetic valve
DE60217252T2 (en) Fuel injection valve of an internal combustion engine
EP1857720A2 (en) Solenoid valve
DE3335169C2 (en) Fuel injector
WO2007124826A1 (en) Valve with an electromagnetic drive
AT500185A2 (en) MECHANISM OF AN ELECTROMAGNETIC VALVE
WO2012123086A1 (en) Electromagnetic actuator
WO1993006360A1 (en) Electromagnetically operable injection valve
DE3527174C2 (en)
EP1348221B1 (en) Electromagnet with a magnet armature
EP1165960B1 (en) Fuel injection valve
DE102009021639A1 (en) Electromagnetic valve for liquid and gaseous mediums, has valve housing, in which valve chamber is arranged, where permanent magnets are arranged before ends of magnetic coil in area of valve seat
EP2795633B1 (en) Coil carrier and electromagnetic actuator having a coil carrier
DE102006000427A1 (en) Fuel injection valve
EP3583615B1 (en) Electromagnetic linear actuator
EP1760796A1 (en) Device comprising a shape memory element
EP0251075B1 (en) Solenoid valve for liquid and gaseous fluids
WO2018121901A1 (en) Electromagnetic hinged armature valve device
EP2543050A1 (en) Electromagnet valve
EP2164081A2 (en) Switching magnet

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030723

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VOSAHLO, PETR

Inventor name: STOEHR, RAINER

Inventor name: KOCH-GROEBER, HERMANN

Inventor name: PACUCCI, NICOLA

Inventor name: DE COSMO, MICHELE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PACUCCI, NICOLA

Inventor name: KOCH-GROEBER, HERMANN

Inventor name: STOEHR, RAINER

Inventor name: VOSAHLO, PETR

Inventor name: DE COSMO, MICHELE

RBV Designated contracting states (corrected)

Designated state(s): CH DE ES FR GB IT LI

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE ES FR GB IT LI

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50113675

Country of ref document: DE

Date of ref document: 20080410

Kind code of ref document: P

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2298283

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081128

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120221

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20121217

Year of fee payment: 12

Ref country code: GB

Payment date: 20121218

Year of fee payment: 12

Ref country code: IT

Payment date: 20121222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130123

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113675

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131220

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131220

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131220