EP1346047A2 - Yeasts transformed by genes enhancing their cold stress tolerance - Google Patents

Yeasts transformed by genes enhancing their cold stress tolerance

Info

Publication number
EP1346047A2
EP1346047A2 EP01995796A EP01995796A EP1346047A2 EP 1346047 A2 EP1346047 A2 EP 1346047A2 EP 01995796 A EP01995796 A EP 01995796A EP 01995796 A EP01995796 A EP 01995796A EP 1346047 A2 EP1346047 A2 EP 1346047A2
Authority
EP
European Patent Office
Prior art keywords
gly
ala
ser
leu
val
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01995796A
Other languages
German (de)
French (fr)
Inventor
Emmanuelle Bourgeois
Marie-Françoise Gautier
Philippe Joudrier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut National de la Recherche Agronomique INRA
Original Assignee
Institut National de la Recherche Agronomique INRA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut National de la Recherche Agronomique INRA filed Critical Institut National de la Recherche Agronomique INRA
Publication of EP1346047A2 publication Critical patent/EP1346047A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy

Definitions

  • the invention relates to obtaining yeasts that are resistant to stress, and in particular to cold stress.
  • cold stress caused by freezing and storage at negative temperatures, causes a significant loss of the fermentative power of the yeast in these dough pieces.
  • All living cells naturally have systems for adapting to different stresses, which aim to ensure the protection of the cell, its survival under stress, and the repair of damage caused by stress. These systems depend on a set of complex mechanisms, which sometimes act separately, sometimes jointly, to allow adaptation to one or more types of stress.
  • Yeasts thus have a set of complex mechanisms (for review cf. ATTFIELD, Nature Biotech, 15, 1351-1357, 1997) which sometimes act separately, sometimes jointly, to allow adaptation to different types of stress.
  • Cold stress involves several components: an osmotic component and an ionic component, linked to the dehydration which occurs during freezing, and a component linked to the lowering of the temperature, which slows down the whole metabolism and in particular the transmembrane exchanges , and by the formation of ice crystals, can damage cellular structures.
  • genes coding for proteins of the LEA family which are strongly expressed in plants during the maturation of the embryo. These genes are said to play a role in the tolerance of the embryo to desiccation.
  • LEAs Different groups of LEAs have been distinguished, according to their structure, and according to their potential function (BRAY, Plant Physiology, 103, 1035-1040, 1993): - the LEAs of group 1 could by their strong capacity for binding water, prevent it from leaking during drying; group 2 LEAs, also known as dehydrins, play a role as chaperone proteins, contributing to the maintenance of the structural integrity of other proteins;
  • the LEA of group 3 and group 5 would ensure the sequestration of the ions; LEA group 4 would have an osmoprotective role, and would contribute to maintaining the integrity of the membranes.
  • IMAI et al. (Gene, 170, 243-248, 1996) report that the expression of the LE25 protein (group 4 LEA) of tomato improves tolerance of S. cerevisiae to ionic stress and cold stress (freezing).
  • the same team ZHANG et al. J. Biochem., 127, 611-616, 2000), also report that expression in S. cerevisiae protein LE4 from tomato (group 2) and HVAl from barley (group 3) also confers protection against cold stress, but to a lesser degree than LE25.
  • SWIRE-CLARK et al. (Plant Mol. Biol., 39, 117-128, 1999) observed that the expression of the wheat protein Em (LEA of group 1) improves the resistance of S. cerevisiae to osmotic stress, but has no effect on resistance to cold stress.
  • the inventors have isolated and cloned different cDNAs corresponding to genes induced in durum wheat (Tri ticum durum) under conditions of abiotic stress (ionic, osmotic, cold or thermal stress).
  • pTd38 a cDNA, called pTd38, coding for a LEA protein of group 2, described previously as being induced in durum wheat by desiccation (LABHILLI et al., Plant Sci., 112 , 219-230, 1995);
  • the nucleotide sequence of the pTd38 cDNA is represented in the annexed sequence list under the number SEQ ID NO: 1, the corresponding peptide sequence is represented under the number SEQ ID NO: 2.
  • pTd64 coding for a WALI protein for: “Wheat Aluminum Induced”
  • WALI7 protein of common wheat Tri ticum aestivum
  • RICHARDS et al. Plant Physiol., 105, 1455-1456, 1994
  • GenBank GenBank
  • expression of the wali genes was initially observed in the roots of common wheat in response to stress from aluminum. Their potential role in responding to other types of stress are not known.
  • the nucleotide sequence of the durum wheat pTd64 cDNA is represented in the annexed sequence list under the number SEQ ID NO: 3, the corresponding peptide sequence is represented under the number SEQ ID NO: 4.
  • lipid transfer protein a lipid transfer protein of the LTPs family (for: “lipid transfer protein”) of 9 Da.
  • 9 kDa LTPs have the property of transferring charged lipids between two membranes in vitro. Their role in vivo is still poorly understood. It was observed that their expression was induced under stress conditions (abiotic or biotic); they inhibit the growth of different pathogenic microorganisms, and could thus play a role in the response to biotic stress (microbial attack). They could also intervene in the formation of the waxy cuticle of plants.
  • the nucleotide sequence of the durum wheat pTd6.48 cDNA is represented in the sequence list in the appendix under the number SEQ ID NO: 5; the peptide sequences of the protein precursor, encoded by this cDNA, and of mature LTP6.48 are represented under the numbers SEQ ID NO: 6, and SEQ ID NO: 7.
  • the subject of the present invention is the use of at least one nucleic acid molecule chosen from: a) a nucleic acid molecule coding for a group 2 LEA protein whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ ID NO: 2; b) a nucleic acid molecule coding for a WALI protein whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90 % identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ ID NO: 4; c) a nucleic acid molecule coding for an LTP precursor or for a mature LTP, the polypeptide sequence of which has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity
  • the percentages of identity or similarity between two polypeptide sequences can be determined according to methods known in themselves to those skilled in the art; in particular, they can be determined using the BLASTP program (ALTSCHUL et al., Nucleic Acids Res., 25, 3389-3402, 1997).
  • nucleic acid molecules can be used separately. They can also be combined in the same yeast cell, to further increase its tolerance to cold stress, by combining different mechanisms participating in this tolerance; they can also be associated with nucleic acid molecules coding for proteins involved in mechanisms of tolerance to stresses other than cold stress. For example, to improve the tolerance of a yeast cell to ionic stress, it is possible to express in this cell a nucleic acid molecule coding for a LEA of group 2 whose polypeptide sequence has at least 70% identity or 75 % similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ TD NO: 9.
  • Td27e which is represented by the sequence SEQ ID NO: 9
  • SEQ ID NO: 9 the LEA of group 2, called Td27e, which is represented by the sequence SEQ ID NO: 9
  • nucleic acid molecule coding for a WALI protein whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ ID NO: 11;
  • nucleic acid molecule encoding an LTP precursor or a mature LTP whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and very preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 13 or the sequence SEQ ID NO: 14.
  • the inventors have indeed found that the WALI1 protein of durum wheat, which is represented by the sequence SEQ ID NO: 11, as well as the LTP called TdD2 which is represented by the sequence SEQ ID NO: 14, or its precursor, represented by the sequence SEQ ID NO: 13 have no effect on the tolerance of yeasts to cold stress, but increase their tolerance to osmotic stress.
  • the present invention also relates to a yeast transformed with at least one nucleic acid molecule as defined above.
  • Transformed yeasts in accordance with the invention can be obtained from yeast strains of different species.
  • yeast strains of different species By way of nonlimiting examples, mention will be made of species of the genera Saccharomyces, 'Schi zosaccharomyces, Kl uyveromyces, Torulaspora, Pichia, Hansenula, Yarrowia, Candida, Geotrichum, etc.
  • said yeast belongs to a species which can be used in baking or in pastry making for the production of leavened dough. This is usually a species of the genus Saccharomyces, such as Saccharomyces cerevisiae.
  • Said yeast can thus be transformed with a nucleic acid molecule a) and / or a nucleic acid molecule b) and / or a nucleic acid molecule c) as defined above, optionally combined, as indicated below. above, to one or more other nucleic acid molecules allowing it to confer resistance to stresses other than cold stress.
  • Transformed yeasts in accordance with the invention can be obtained by the usual methods, known in themselves to those skilled in the art.
  • the DNA sequence coding for the protein which it is desired to express is inserted into an appropriate expression vector, under transcriptional control of an active promoter in a yeast cell.
  • the vector thus loaded is then introduced into the yeast cell, by any suitable method, for example by electroporation or transformation with lithium acetate.
  • Extrachromosomal replicating vectors can be used; by way of nonlimiting examples, mention will be made of the vectors of the Yep series (MYERS et al., Gene, 45, 299-310, 1986) which have the origin of replication of the endogenous 2 ⁇ plasmid, the Yrp vectors which have as origin of replication a chromosomal ARS sequence, etc.
  • integrative vectors such as the vectors Yip, (MYERS et al., 1986), or Yiplac (GIETZ and SUGINO, Gene 74, 527-534, 1988), which do not have an origin of functional replication in the yeast.
  • expression systems such as those described by BITTER et al.
  • the chosen gene can for example be placed under the control of elements for regulating transcription in yeast such as those of the alcohol dehydrogenase ADH1 genes.
  • yeast such as those of the alcohol dehydrogenase ADH1 genes.
  • phosphoglycerate kinase PGK1 HITZEMAN et al., Nucl. Acids Res., 10, 7791-7808, 1982
  • glyceraldehyde-3-phosphate dehydrogenase TDH1 BITTER and EGAN, Gene, 32, 263-274, 1984
  • actin ACT1 GALLWITZ et al., Nucl. Acids Res., 8, 1043-1059, 1980
  • the transformed yeasts according to the invention have better tolerance to cold stress, which results in a survival rate after freezing and storage at -20 ° C., higher than that of the wild strain from which they come.
  • their survival rate after freezing and storage at -20 ° C. is at least double that of the wild strain from which they come.
  • transformed yeasts expressing a group 2 LEA as defined in a) above also exhibit better tolerance to ionic stress as well as to thermal stress, than the wild strain from which they originate; transformed yeasts expressing a WALI7 protein as defined in b) above also exhibit better tolerance to thermal stress than the wild strain from which they originate; transformed yeasts expressing an LTP of 9 kDa as defined in c) above also exhibit better tolerance to ionic stress, as well as to thermal stress, than the wild strain from which they originate.
  • Processed yeasts in accordance with the invention can be used in particular for the manufacture of bread leavening agents.
  • the present invention also relates to baking leavens comprising said yeasts.
  • the present invention also includes bakery or pastry products, and in particular baking or pastry doughs comprising said yeasts.
  • the present invention further relates to a lipid transfer protein chosen from: - an LTP precursor or a mature LTP whose polypeptide sequence has at least 90% identity or 95% similarity, and preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 6 or the sequence SEQ ID NO: 7
  • an LTP precursor or a mature LTP whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 13 or the sequence SEQ ID NO: 14.
  • the present invention also encompasses any nucleic acid sequence encoding one of said lipid transfer proteins.
  • a lipid transfer protein according to the invention can, as indicated above, be expressed in yeasts in order to increase their tolerance to cold shock.
  • the present invention will be better understood with the aid of the additional description which follows, which refers to examples describing the production of transformed yeast strains in accordance with the invention.
  • EXAMPLE 1 CONSTRUCTION OF EXPRESSION VECTORS AND SELECTION OF RECOMBINANT YEASTS.
  • the cDNAs coding for group 2 LEA Td38, the durum wheat protein WALI7, and the LTP Td6.48 were isolated from a cDNA library of roots of durum wheat seedlings, obtained after induction by desiccation.
  • the sequences of these cDNAs are respectively represented in the sequence list in the appendix under the numbers SEQ ID NO: 1, SEQ ID NO: 3, and SEQ ID NO: 5.
  • Vectors allowing the expression of these genes in S. cerevisiae were constructed from the E. coli / S shuttle expression vector.
  • Td27e (SEQ ID NO: 8) coding for another LEA protein of group 2, called Td27e (SEQ ID NO: 9) whose expression in the roots of seedlings of durum wheat is also induced by desiccation, and whose peptide sequence has 58.1% and 66.7% similarity to the sequence of the Td38 protein, was also cloned between the NotI and KpnI sites of pYES2. Construction of a WALI protein expression vector
  • pTd79b The complete coding sequence of the cDNA called pTd79b (SEQ ID NO: 10), coding for a WALI1 protein, identical to the WALI1 protein of common wheat (SNOWDEN and GARDNER, Plant Physiol., 103, 855-861, 1993), and whose expression in the roots of durum wheat seedlings is also induced by desiccation, has been cloned in pYES2 between the NotI and KpnI sites.
  • pTdD2 SEQ ID NO: 12
  • LTPD2 SEQ ID NO: 13
  • the vectors thus obtained were used to transform the strain of Saccharomyces cerevisiae INVScl (haploid strain of genotype MAT ⁇ , his3- ⁇ l, leu2, trpl-289, ura3-52).
  • This strain is cultivated on YNB-Gal medium composed of 1.7 g of YNB-AA / AS (DIFCO LABORATORIES), 5 g of (NH 4 ) 2 SO 4 , 20 g of galactose, 20 mg of uracil, 20 mg L-histidine, 60 mg L-leucine, 40 mg L-tryptophan per 1 liter.
  • YNB-Gal medium composed of 1.7 g of YNB-AA / AS (DIFCO LABORATORIES), 5 g of (NH 4 ) 2 SO 4 , 20 g of galactose, 20 mg of uracil, 20 mg L-histidine, 60 mg L-leucine, 40 mg L-tryptophan per 1 liter.
  • EXAMPLE 2 STRESS TOLERANCE OF RECOMBINANT YEASTS.
  • Tolerance to cold stress is evaluated by measuring the survival of yeasts after application of cold stress (freezing at -20 ° C, storage at this temperature for 24 hours, and thawing). The conditions described by IMAI et al. (1996, publication cited above) were used.
  • the untreated cells or the thawed cells are then diluted in complete YPD medium (dilution 1/10000 and 1/20000 for the controls, and 1/400 and 1/2000 for the cells having undergone cold stress).
  • the dilutions thus obtained are spread on complete agar medium (YPD agar) and the dishes incubated at 30 ° C for 48 h. The colonies formed on each dish are counted, and the number of CFUs (colony forming units) is calculated taking into account the dilution.
  • the survival of each strain is evaluated by the percentage of surviving CFUs, that is to say the number of CFUs after stress divided by the number of control CFUs. For each experiment, the number of PDUs corresponds to the average of 4 spreads.
  • the survival rate is 5.5%; the INVScl-pYES2 recombinant strain has a similar survival rate of 6.8%.
  • the recombinant yeast INVScl-pYES2-r 27e has a cold stress survival rate of 6%, which is therefore similar to those observed with the wild strain INVScl or the strain INVScl-pYES2.
  • the recombinant yeast INVScl-pYES2-Td38 has a cold stress survival rate of 20%.
  • Recombinant yeasts expressing a WALI protein have a cold stress survival rate of 20%.
  • the recombinant yeast INVScl-pYES2-Td79 J has a cold stress survival rate of 3.5%, comparable to that of the wild strain INVScl or of the strain INVScl-pYES2.
  • the recombinant yeast INVScl-pYES2- Tdt 64 has a cold stress survival rate of 27%.
  • the recombinant yeast INVScl-pYES2-1 tpD2 has a cold stress survival rate of 1.8%. The expression of this LTP therefore does not induce any improvement in survival from cold stress.
  • the recombinant yeast INVScl-pYES2-ltp6.48 has a cold stress survival rate of 28%.
  • Tolerance to thermal stress is evaluated according to the same protocol as for cold stress: instead of freezing stress, the cells are incubated for 10 minutes at 50 ° C. The cells having undergone thermal stress are diluted to 1/4000 and to 1/10000 before spreading. The survival rate is calculated as described above for cold stress. The results are illustrated in Table II below.
  • the survival rate is 27.5%; it is 24% for the recombinant strain INVScl-pYES2. All the proteins expressed induce an increase in the survival rate. This increase is particularly significant in the case of Td38 and LTP6.48. It is also important in the case of Td27e. Ionic stress and osmotic stress:
  • Tolerance to ionic stress or to osmotic stress is evaluated by comparing the growth kinetics at 30 ° C. under normal conditions (YNB-galactose medium), and under ionic stress conditions (YNB-galactose medium + 1.5 M Nacl), or osmotic stress (YNB-galactose medium + 2.5 M sorbitol).
  • the duration of the latency phase (defined here as the time between the cultivation and the time when the absorbance at 600 nm reaches a value of 0.2), is 3 h under normal culture conditions.
  • the duration of the lag phase is 87 h.
  • the lag phase is 182 h.
  • the latency phase of the growth kinetics of the yeast INVScl-pYES2-Td27e is 70 h less than that of the control yeasts (wild strain INVScl, or recombinant strain INVScl-pYES2) in same conditions.
  • the latency phase of the transformed yeast is 48 h longer than that of the control yeasts.
  • the latency phase of the growth kinetics of the yeast INVScl-pYES2-TdJS is 44 h less than that of the control yeasts.
  • the latency phase of the growth kinetics of the yeast INVScl-pYES2-TdJS is 44 h less than that of the control yeasts.
  • the latency phase of the growth kinetics of the yeast INVScl-pYES2-TdJS is 44 h less than that of the control yeasts.
  • no reduction in the lag phase is observed compared with the control yeasts.
  • yeast INVScl-pYES2-Td27e and to a lesser extent the yeast INVScl-pYES2-Td38, have an increased tolerance to ionic stress.
  • the latency phase of the transformed yeast INVScl-pYES2-Td79 J is reduced by 10 h in YNB-Galactose medium supplemented with
  • Td79b (WALI1), confers increased tolerance to osmotic stress, and a small increase in tolerance to ionic stress.
  • the expression of the protein (WALI7) only confers a slight increase in tolerance to ionic stress.
  • the latency phase of the yeast INVScl-pYES2-2tpD2 is shortened for 50 h in YNB-Galactose medium supplemented with 1.5 M NaCl, and 25 h in the presence of 2.5 sorbitol Mr. • INVScl-pYES2-ltp6.48
  • the latency phase of the yeast INVScl-pYES2- l tp6. 48 is shortened by 50 h, compared to that of the control yeasts, in the presence of 1.5 M NaCl. It does not differ from those of the control yeasts in the presence of 2.5 M sorbitol.
  • Saccharomyces cerevisiae CLIB 320 (cellobiose-, D-galactose +, D-glucose +, lactose-, maltose +, melezitose +, melibiose-, raffinose +, sucrose +, trehalose-).
  • CLIB collection of strains of biotechnological interest from Grignon.
  • PVT100-U-ZEO is derived from the vector pVTU (VERNET et al., Gene, 52, 2325-2333, 1987). The characteristics of this vector are as follows:
  • the vector PVT100-U-ZEO is digested by the enzymes Xbal and Xhol and dephosphorylated.
  • the same Xbal and Xhol sites are created, by PCR, at the ends of the sequences encoding the LEA of group 2 Td38 (SEQ ID NO: 2), the protein WALI7 of durum wheat Tdt64 (SEQ ID NO: 4), the LTP Td6. 48 (SEQ ID NO: 6), and LTP Td6.48 without the signal peptide (SEQ ID NO: 7), in order to allow the oriented cloning of these cDNAs.
  • the constructions obtained were verified by sequencing.
  • Each of the recombinant vectors as well as the empty vector are used for the transformation of the CLIB320 strain.
  • the yeast culture is done on YEPD medium (10 g of yeast extract, 20 g of peptone (DIFCO laboratories), 20 g of D (+) glucose for 1 1).
  • An agar medium is obtained by adding 20 g of bactero-agar to the preceding composition.
  • the selection of transformants is based on resistance to phleomycin. For this, 100 ⁇ g / ml of phleomycin (CAYLA) are added to the YEPD medium. Stress tolerance of recombinant yeasts:
  • the tolerance to cold stress of each strain of yeast is evaluated by the survival rate after application of the stress. Two types of stress were applied: rapid freezing at -20 ° C and storage at -20 ° C for variable periods of time, then thawing at room temperature or thawing by passing at 4 ° C for 24 h.
  • a preculture of each recombinant strain as well as the wild strain is carried out by seeding, with an isolated colony, of 50 ml of YEPD medium + 100 ⁇ g / ml of phleomycin and culture at 28 ° C., 220 rpm, 48 h. 100 ml of YEPD medium + 100 ⁇ g / ml of phleomycin are seeded with
  • YEPD YEPD supplemented with 100 ⁇ g / ml of phleomycin, then incubated in an oven at 30 ° C for 48 h.
  • Aliquots of 500 ⁇ l of culture are frozen at -20 ° C. by placing them in a tank of cold absolute ethanol. Every 24 h, an aliquot of each sample is thawed at temperature room temperature and another is placed at 4 ° C for 24 h for gentle thawing. Spreads at serial dilutions are made and then incubated in an oven at 30 ° C for 48 h. For each duration of freezing, the number of colony forming units (cfu) relative to the number of cfu developing at time 0 makes it possible to determine the survival rate (expressed in%).
  • the number of cfu corresponds to the average of the results obtained for two clones and for two spreads per clone.
  • the results expressed by the survival rate (%) are summarized in Tables III and IV below.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Toxicology (AREA)
  • Botany (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Bakery Products And Manufacturing Methods Therefor (AREA)

Abstract

The invention concerns yeasts whereof the cold stress tolerance is enhanced by transformation with at least one gene coding for a protein selected among a group 2 LEA protein, a WALI protein, or a LTP.

Description

LEVURES TRANSFORMEES PAR DES GENES AUGMENTANT LEUR TOLERANCE AU STRESS FROIDYEAS TRANSFORMED BY GENES INCREASING TOLERANCE TO COLD STRESS
L'invention est relative à l'obtention de levures résistantes au stress, et notamment à un stress froid. On utilise de plus en plus fréquemment, en boulangerie ou en pâtisserie, des pâtons qui sont préalablement ensemencés par des levures vivantes et subissent généralement un début de fermentation. Ils sont ensuite congelés et stockés sous cette forme jusqu'à leur utilisation. Or, le stress froid, provoqué par la congélation et la conservation à des températures négatives, entraine une importante perte du pouvoir fermentatif de la levure dans ces pâtons. Dans le cas de pâtes contenant des levures vivantes, il est important de disposer de levures capables de s'adapter au stress froid, provoqué par la congélation et la conservation à des températures négatives.The invention relates to obtaining yeasts that are resistant to stress, and in particular to cold stress. We use more and more frequently, in bakery or pastry, dough pieces which are previously sown with live yeasts and generally undergo a beginning of fermentation. They are then frozen and stored in this form until needed. However, cold stress, caused by freezing and storage at negative temperatures, causes a significant loss of the fermentative power of the yeast in these dough pieces. In the case of doughs containing live yeasts, it is important to have yeasts capable of adapting to cold stress, caused by freezing and storage at negative temperatures.
Toutes les cellules vivantes disposent naturellement de systèmes d'adaptation aux différents stress, qui ont pour but d'assurer la protection de la cellule, sa survie en condition de stress, et la réparation des dégâts causés par le stress. Ces systèmes dépendent d'un ensemble de mécanismes complexes, qui agissent parfois séparément, parfois conjointement, pour permettre l'adaptation à un ou plusieurs types de stress. Les levures possèdent ainsi un ensemble de mécanismes complexes (pour revue cf. ATTFIELD, Nature Biotech , 15, 1351-1357, 1997) qui agissent parfois séparément, parfois conjointement, pour permettre l'adaptation aux différents types de stress. Le stress froid implique plusieurs composantes : une composante osmotique et une composante ionique, liées à la déshydratation qui intervient lors de la congélation, et une composante liée à l'abaissement de la température, qui ralentit l'ensemble du métabolisme et notamment les échanges transmembranaires, et par la formation de cristaux de glace, peut endommager les structures cellulaires.All living cells naturally have systems for adapting to different stresses, which aim to ensure the protection of the cell, its survival under stress, and the repair of damage caused by stress. These systems depend on a set of complex mechanisms, which sometimes act separately, sometimes jointly, to allow adaptation to one or more types of stress. Yeasts thus have a set of complex mechanisms (for review cf. ATTFIELD, Nature Biotech, 15, 1351-1357, 1997) which sometimes act separately, sometimes jointly, to allow adaptation to different types of stress. Cold stress involves several components: an osmotic component and an ionic component, linked to the dehydration which occurs during freezing, and a component linked to the lowering of the temperature, which slows down the whole metabolism and in particular the transmembrane exchanges , and by the formation of ice crystals, can damage cellular structures.
Les facteurs impliqués dans la tolérance au stress froid chez la levure sont encore mal connus. La plupart des recherches effectuées pour augmenter la tolérance des levures au stress, et en particulier au stress froid, ont visé à l'augmentation de leur teneur en tréhalose. Il a ainsi été proposé d'augmenter la synthèse du tréhalose en surexprimant dans des souches de levure des gènes codant des tréhalose synthases (LONDESBOROUGH et al . , BrevetThe factors involved in cold stress tolerance in yeast are still poorly understood. The most of the research carried out to increase the tolerance of yeasts to stress, and in particular to cold stress, has aimed at increasing their trehalose content. It has thus been proposed to increase the synthesis of trehalose by overexpressing in yeast strains genes coding for trehalose synthases (LONDESBOROUGH et al., Patent
US 5 422 254), ou bien de limiter son catabolisme en inactivant le gène ATH1 qui code une tréhalase (KLIONSKY et al . , Brevet US 5 587 290 ; KIM et al . , Appl. Environ. Microbiol., 62, 1563-1569, 1996).US 5,422,254), or else limit its catabolism by inactivating the ATH1 gene which codes for a trehalase (KLIONSKY et al., Patent US 5,587,290; KIM et al., Appl. Environ. Microbiol., 62, 1563-1569 , 1996).
De nombreux gènes potentiellement impliqués dans la résistance au stress ont été mis en évidence chez les végétaux supérieurs, et il a été proposé de les utiliser pour transformer des levures afin d'augmenter leur tolérance au stress.Many genes potentially involved in stress resistance have been identified in higher plants, and it has been proposed to use them to transform yeasts in order to increase their tolerance to stress.
Parmi ces gènes on citera notamment les gènes codant pour les protéines de la famille des LEA (Late Embryogenesis Abundant) qui sont fortement exprimés chez les végétaux au cours de la maturation de l'embryon. Ces gènes joueraient notamment un rôle dans la tolérance de l'embryon à la dessiccation.Among these genes, mention will be made in particular of the genes coding for proteins of the LEA family (Late Embryogenesis Abundant) which are strongly expressed in plants during the maturation of the embryo. These genes are said to play a role in the tolerance of the embryo to desiccation.
Différents groupes de LEA ont été distingués, selon leur structure, et selon leur fonction potentielle (BRAY, Plant Physiology, 103, 1035-1040, 1993) : - les LEA du groupe 1 pourraient par leur forte capacité de liaison de l'eau, prévenir la fuite de celle-ci lors de la dessiccation ; les LEA du groupe 2, également dénommées déhydrines, joueraient un rôle de protéines chaperonnes, contribuant au maintien de l'intégrité de la structure d'autres protéines ;Different groups of LEAs have been distinguished, according to their structure, and according to their potential function (BRAY, Plant Physiology, 103, 1035-1040, 1993): - the LEAs of group 1 could by their strong capacity for binding water, prevent it from leaking during drying; group 2 LEAs, also known as dehydrins, play a role as chaperone proteins, contributing to the maintenance of the structural integrity of other proteins;
- les LEA du groupe 3 et du groupe 5 assureraient la séquestration des ions ; les LEA du groupe 4 auraient un rôle osmoprotecteur, et contribueraient au maintien de l'intégrité des membranes.- the LEA of group 3 and group 5 would ensure the sequestration of the ions; LEA group 4 would have an osmoprotective role, and would contribute to maintaining the integrity of the membranes.
IMAI et al . (Gène, 170, 243-248, 1996) rapportent que l'expression de la protéine LE25 (LEA du groupe 4) de tomate améliore la tolérance de S . cerevisiae au stress ionique et au stress froid (congélation) . La même équipe ZHANG et al . (J. Biochem., 127, 611-616, 2000), rapportent également que l'expression chez S . cerevisiae des protéines LE4 de tomate (groupe 2) et HVAl d'orge (groupe 3) confère également une protection vis-à-vis d'un stress froid, mais à un degré moindre que LE25.IMAI et al. (Gene, 170, 243-248, 1996) report that the expression of the LE25 protein (group 4 LEA) of tomato improves tolerance of S. cerevisiae to ionic stress and cold stress (freezing). The same team ZHANG et al. (J. Biochem., 127, 611-616, 2000), also report that expression in S. cerevisiae protein LE4 from tomato (group 2) and HVAl from barley (group 3) also confers protection against cold stress, but to a lesser degree than LE25.
SWIRE-CLARK et al . (Plant Mol. Biol., 39, 117- 128, 1999) ont observé que l'expression de la protéine Em (LEA du groupe 1) de blé améliore la résistance de S . cerevisiae au stress osmotique, mais n'a aucun effet sur la résistance au stress froid.SWIRE-CLARK et al. (Plant Mol. Biol., 39, 117-128, 1999) observed that the expression of the wheat protein Em (LEA of group 1) improves the resistance of S. cerevisiae to osmotic stress, but has no effect on resistance to cold stress.
Les Inventeurs ont isolé et clone différents ADNc correspondant à des gènes induits chez le blé dur { Tri ticum durum) en conditions de stress abiotique (stress ionique, osmotique, froid ou thermique) .The inventors have isolated and cloned different cDNAs corresponding to genes induced in durum wheat (Tri ticum durum) under conditions of abiotic stress (ionic, osmotic, cold or thermal stress).
Ils ont étudié l'expression de ces gènes chez S . cerevisiae et ont constaté que certains d'entre eux pouvaient améliorer la tolérance de S . cerevisiae à différents stress abiotiques. Parmi ceux-ci, certains apportaient en particulier une amélioration très significative de la tolérance au stress froid.They studied the expression of these genes in S. cerevisiae and found that some of them could improve the tolerance of S. cerevisiae to different abiotic stresses. Among these, some brought in particular a very significant improvement in tolerance to cold stress.
Ainsi, parmi les ADNc testés, ils ont sélectionné : - un ADNc, dénommé pTd38, codant pour une protéine LEA du groupe 2, décrite précédemment comme étant induite chez le blé dur par la dessiccation (LABHILLI et al . , Plant Sci., 112, 219-230, 1995) ; la séquence nucléotidique de l'ADNc pTd38 est représentée dans la liste de séquence en annexe sous le numéro SEQ ID NO: 1, la séquence peptidique correspondante est représentée sous le numéro SEQ ID NO: 2.Thus, among the cDNAs tested, they selected: - a cDNA, called pTd38, coding for a LEA protein of group 2, described previously as being induced in durum wheat by desiccation (LABHILLI et al., Plant Sci., 112 , 219-230, 1995); the nucleotide sequence of the pTd38 cDNA is represented in the annexed sequence list under the number SEQ ID NO: 1, the corresponding peptide sequence is represented under the number SEQ ID NO: 2.
- un ADNc dénommé pTd64 codant pour une protéine WALI (pour : « Wheat ALuminum Induced ») , très proche de la protéine WALI7 de blé tendre { Tri ticum aestivum) , décrite par RICHARDS et al . , (Plant Physiol., 105, 1455-1456, 1994 ; GenBank) ; l'expression des gènes wali a été initialement observée dans les racines de blé tendre en réponse à un stress à l'aluminium. Leur rôle potentiel dans la réponse à d'autres types de stress n'est pas connu. La séquence nucléotidique de l'ADNc pTd64 de blé dur est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 3, la séquence peptidique correspondante est représentée sous le numéro SEQ ID NO: 4.- a cDNA called pTd64 coding for a WALI protein (for: “Wheat Aluminum Induced”), very close to the WALI7 protein of common wheat (Tri ticum aestivum), described by RICHARDS et al. , (Plant Physiol., 105, 1455-1456, 1994; GenBank); expression of the wali genes was initially observed in the roots of common wheat in response to stress from aluminum. Their potential role in responding to other types of stress are not known. The nucleotide sequence of the durum wheat pTd64 cDNA is represented in the annexed sequence list under the number SEQ ID NO: 3, the corresponding peptide sequence is represented under the number SEQ ID NO: 4.
- un ADNc dénommé pTd6.48, codant une protéine de transfert de lipides de la famille des LTPs (pour : « lipid transfer protein ») de 9 Da . Les LTP de 9 kDa ont la propriété de transférer in vi tro des lipides chargés entre deux membranes. Leur rôle in vivo est encore mal connu. Il a été observé que leur expression était induite en conditions de stress (abiotique ou biotique) ; elles inhibent la croissance de différents microorganismes pathogènes, et pourraient ainsi jouer un rôle dans la réponse au stress biotique (attaque microbiennes) . Elles pourraient également intervenir dans la formation de la cuticule cireuse des végétaux. La séquence nucléotidique de l'ADNc pTd6.48 de blé dur est représentée dans la liste de séquences en annexe sous le numéro SEQ ID NO: 5 ; les séquences peptidiques du précurseur de la protéine, codé par cet ADNc, et de la LTP6.48 mature sont représentées sous les numéros SEQ ID NO: 6, et SEQ ID NO: 7.- a cDNA called pTd6.48, coding for a lipid transfer protein of the LTPs family (for: “lipid transfer protein”) of 9 Da. 9 kDa LTPs have the property of transferring charged lipids between two membranes in vitro. Their role in vivo is still poorly understood. It was observed that their expression was induced under stress conditions (abiotic or biotic); they inhibit the growth of different pathogenic microorganisms, and could thus play a role in the response to biotic stress (microbial attack). They could also intervene in the formation of the waxy cuticle of plants. The nucleotide sequence of the durum wheat pTd6.48 cDNA is represented in the sequence list in the appendix under the number SEQ ID NO: 5; the peptide sequences of the protein precursor, encoded by this cDNA, and of mature LTP6.48 are represented under the numbers SEQ ID NO: 6, and SEQ ID NO: 7.
La présente invention a pour objet l'utilisation d' au moins une molécule d' acide nucléique choisie parmi : a) une molécule d'acide nucléique codant pour une protéine LEA du groupe 2 dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec la séquence SEQ ID NO: 2 ; b) une molécule d'acide nucléique codant pour une protéine WALI dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec la séquence SEQ ID NO: 4 ; c) une molécule d'acide nucléique codant pour un précurseur de LTP ou pour une LTP mature, dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec, respectivement, la séquence SEQ ID NO: 6 ou la séquence SEQ ID NO: 7 ; pour transformer une levure afin d'améliorer sa tolérance au stress froid.The subject of the present invention is the use of at least one nucleic acid molecule chosen from: a) a nucleic acid molecule coding for a group 2 LEA protein whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ ID NO: 2; b) a nucleic acid molecule coding for a WALI protein whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90 % identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ ID NO: 4; c) a nucleic acid molecule coding for an LTP precursor or for a mature LTP, the polypeptide sequence of which has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 6 or the sequence SEQ ID NO: 7; to transform a yeast to improve its tolerance to cold stress.
Les pourcentages d'identité ou de similitude entre deux séquences polypeptidique peuvent être déterminés selon des méthodes connues en elles-mêmes de l'homme de l'art ; notamment, ils peuvent être déterminés à l'aide du programme BLASTP (ALTSCHUL et al . , Nucleic Acids Res., 25, 3389-3402, 1997).The percentages of identity or similarity between two polypeptide sequences can be determined according to methods known in themselves to those skilled in the art; in particular, they can be determined using the BLASTP program (ALTSCHUL et al., Nucleic Acids Res., 25, 3389-3402, 1997).
Ces molécules d'acide nucléique peuvent être utilisées séparément. Elles peuvent également être associées dans une même cellule de levure, pour augmenter encore sa tolérance au stress froid, en combinant différents mécanismes participant à cette tolérance ; elles peuvent également être associées à des molécules d'acide nucléique codant pour des protéines impliquées dans des mécanismes de tolérance à des stress autres que le stress froid. Par exemple, pour améliorer la tolérance d'une cellule de levure au stress ionique, on peut exprimer dans cette cellule une molécule d'acide nucléique codant pour une LEA du groupe 2 dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec la séquence SEQ TD NO: 9. Les Inventeurs ont en effet constaté que la LEA du groupe 2, dénommée Td27e, qui est représentée par la séquence SEQ ID NO: 9, n'a pas d'effet sur la tolérance des levures au stress froid, mais augmente leur tolérance au stress ionique. De même, pour améliorer la tolérance d'une cellule de levure au stress osmotique, on peut exprimer dans ladite cellule une molécule d'acide nucléique choisie parmi :These nucleic acid molecules can be used separately. They can also be combined in the same yeast cell, to further increase its tolerance to cold stress, by combining different mechanisms participating in this tolerance; they can also be associated with nucleic acid molecules coding for proteins involved in mechanisms of tolerance to stresses other than cold stress. For example, to improve the tolerance of a yeast cell to ionic stress, it is possible to express in this cell a nucleic acid molecule coding for a LEA of group 2 whose polypeptide sequence has at least 70% identity or 75 % similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ TD NO: 9. The Inventors have in fact observed that the LEA of group 2, called Td27e, which is represented by the sequence SEQ ID NO: 9, has no effect on the tolerance yeasts with cold stress, but increases their tolerance to ionic stress. Likewise, to improve the tolerance of a yeast cell to osmotic stress, it is possible to express in said cell a nucleic acid molecule chosen from:
- une molécule d'acide nucléique codant pour une protéine WALI dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec la séquence SEQ ID NO: 11 ;a nucleic acid molecule coding for a WALI protein whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with the sequence SEQ ID NO: 11;
- une molécule d'acide nucléique codant pour un précurseur de LTP ou une LTP mature dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec, respectivement, la séquence SEQ ID NO: 13 ou la séquence SEQ ID NO: 14.a nucleic acid molecule encoding an LTP precursor or a mature LTP whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and very preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 13 or the sequence SEQ ID NO: 14.
Les Inventeurs ont en effet constaté que la protéine WALI1 de blé dur, qui est représentée par la séquence SEQ ID NO: 11, ainsi que la LTP dénommée TdD2 qui est représentée par la séquence SEQ ID NO: 14, ou son précurseur, représenté par la séquence SEQ ID NO: 13 n'ont aucun effet sur la tolérance des levures au stress froid, mais augmentent leur tolérance au stress osmotique.The inventors have indeed found that the WALI1 protein of durum wheat, which is represented by the sequence SEQ ID NO: 11, as well as the LTP called TdD2 which is represented by the sequence SEQ ID NO: 14, or its precursor, represented by the sequence SEQ ID NO: 13 have no effect on the tolerance of yeasts to cold stress, but increase their tolerance to osmotic stress.
La présente invention a également pour objet une levure transformée par au moins une molécule d'acide nucléique telle que définie ci-dessus.The present invention also relates to a yeast transformed with at least one nucleic acid molecule as defined above.
Des levures transformées conformes à l'invention peuvent être obtenues à partir de souches de levures de différentes espèces. A titre d'exemples non limitatifs, on citera des espèces des genres Saccharomyces , ' Schi zosaccharomyces, Kl uyveromyces, Torulaspora , Pichia , Hansenula , Yarrowia, Candida , Geotrichum, etc. Avantageusement, ladite levure appartient à une espèce utilisable en boulangerie ou en pâtisserie pour la fabrication de pâtes levées. Il s'agit en général d'une espèce du genre Saccharomyces, telle que Saccharomyces cerevisiae .Transformed yeasts in accordance with the invention can be obtained from yeast strains of different species. By way of nonlimiting examples, mention will be made of species of the genera Saccharomyces, 'Schi zosaccharomyces, Kl uyveromyces, Torulaspora, Pichia, Hansenula, Yarrowia, Candida, Geotrichum, etc. Advantageously, said yeast belongs to a species which can be used in baking or in pastry making for the production of leavened dough. This is usually a species of the genus Saccharomyces, such as Saccharomyces cerevisiae.
Ladite levure peut ainsi être transformée par une molécule d'acide nucléique a) et/ou une molécule d'acide nucléique b) et/ou une molécule d'acide nucléique c) telles que définies ci-dessus, éventuellement associées, comme indiqué ci-dessus, à une ou plusieurs autres molécules d'acides nucléique permettant de lui conférer une résistance à des stress autres que le stress froid. Des levures transformées conformes à l'invention peuvent être obtenues par les méthodes habituelles, connues en elles-mêmes de l'homme du métier. De manière classique, la séquence d'ADN codant pour la protéine que l'on souhaite exprimer est insérée dans un vecteur d'expression approprié, sous contrôle transcriptionnel d'un promoteur actif dans une cellule de levure. Le vecteur ainsi chargé est ensuite introduit dans la cellule de levure, par toute méthode appropriée, par exemple par électroporation ou transformation à l'acétate de lithium. On peut utiliser des vecteurs réplicatifs extrachromosomiques ; à titre d'exemples non limitatifs on citera les vecteurs de la série Yep (MYERS et al., Gène, 45, 299-310, 1986) qui possèdent l'origine de replication du plasmide 2 μ endogène, les vecteurs Yrp qui possèdent comme origine de replication une séquence ARS chromosomique, etc. On peut également utiliser des vecteurs intégratifs tels que les vecteurs Yip, (MYERS et al . , 1986), ou Yiplac (GIETZ et SUGINO, Gène 74, 527-534, 1988), qui ne possèdent pas d'origine de replication fonctionnelle dans la levure. A titre d'exemple, on citera des systèmes d'expression tels que ceux décrits par BITTER et al . (Methods Enzymol., 153, 516-544, 1989) ou TUITE (Expression of heterologous gènes, 169-212, In M. F. TUITE, and S. G. OLIVER (éd.), Biotechnology Handbooks, Vol. 4, Saccharomyces., Plénum Press, New York, 1991) .Said yeast can thus be transformed with a nucleic acid molecule a) and / or a nucleic acid molecule b) and / or a nucleic acid molecule c) as defined above, optionally combined, as indicated below. above, to one or more other nucleic acid molecules allowing it to confer resistance to stresses other than cold stress. Transformed yeasts in accordance with the invention can be obtained by the usual methods, known in themselves to those skilled in the art. Conventionally, the DNA sequence coding for the protein which it is desired to express is inserted into an appropriate expression vector, under transcriptional control of an active promoter in a yeast cell. The vector thus loaded is then introduced into the yeast cell, by any suitable method, for example by electroporation or transformation with lithium acetate. Extrachromosomal replicating vectors can be used; by way of nonlimiting examples, mention will be made of the vectors of the Yep series (MYERS et al., Gene, 45, 299-310, 1986) which have the origin of replication of the endogenous 2 μ plasmid, the Yrp vectors which have as origin of replication a chromosomal ARS sequence, etc. One can also use integrative vectors such as the vectors Yip, (MYERS et al., 1986), or Yiplac (GIETZ and SUGINO, Gene 74, 527-534, 1988), which do not have an origin of functional replication in the yeast. By way of example, mention will be made of expression systems such as those described by BITTER et al. (Methods Enzymol., 153, 516-544, 1989) or TUITE (Expression of heterologous genes, 169-212, In MF TUITE, and SG OLIVER (ed.), Biotechnology Handbooks, Vol. 4, Saccharomyces., Plenum Press, New York, 1991).
Le gène choisi peut par exemple être placé sous contrôle d'éléments de régulation de la transcription chez la levure tels que ceux des gènes alcool déhydrogénase ADH1 (RUOHONEN et al . , J. Biotechnol., 39, 193-203, 1995), phosphoglycérate kinase PGK1 (HITZEMAN et al . , Nucl. Acids Res., 10, 7791-7808, 1982), glyceraldéhyde-3-phosphate déhydrogénase TDH1 (BITTER et EGAN, Gène, 32, 263-274, 1984), actine ACT1 (GALLWITZ et al . , Nucl. Acids Res., 8, 1043-1059, 1980), etc.The chosen gene can for example be placed under the control of elements for regulating transcription in yeast such as those of the alcohol dehydrogenase ADH1 genes. (RUOHONEN et al., J. Biotechnol., 39, 193-203, 1995), phosphoglycerate kinase PGK1 (HITZEMAN et al., Nucl. Acids Res., 10, 7791-7808, 1982), glyceraldehyde-3-phosphate dehydrogenase TDH1 (BITTER and EGAN, Gene, 32, 263-274, 1984), actin ACT1 (GALLWITZ et al., Nucl. Acids Res., 8, 1043-1059, 1980), etc.
Les levures transformées conformes à l'invention présentent une meilleure tolérance au stress froid, qui se traduit par un taux de survie après congélation et stockage à -20°C, supérieur à celui de la souche sauvage dont elles sont issues. Avantageusement, leur taux de survie après congélation et stockage à -20°C, est au moins double de celui de la souche sauvage dont elles sont issues.The transformed yeasts according to the invention have better tolerance to cold stress, which results in a survival rate after freezing and storage at -20 ° C., higher than that of the wild strain from which they come. Advantageously, their survival rate after freezing and storage at -20 ° C. is at least double that of the wild strain from which they come.
Les levures transformées exprimant une LEA du groupe 2 telle que définie en a) ci-dessus présentent en outre une meilleure tolérance au stress ionique ainsi qu'au stress thermique, que la souche sauvage dont elles sont issues ; les levures transformées exprimant une protéine WALI7 telle que définie en b) ci-dessus présentent en outre une meilleure tolérance au stress thermique, que la souche sauvage dont elles sont issues ; les levures transformées exprimant une LTP de 9 kDa telle que définie en c) ci-dessus présentent en outre une meilleure tolérance au stress ionique, ainsi qu'au stress thermique, que la souche sauvage dont elles sont issues.The transformed yeasts expressing a group 2 LEA as defined in a) above also exhibit better tolerance to ionic stress as well as to thermal stress, than the wild strain from which they originate; transformed yeasts expressing a WALI7 protein as defined in b) above also exhibit better tolerance to thermal stress than the wild strain from which they originate; transformed yeasts expressing an LTP of 9 kDa as defined in c) above also exhibit better tolerance to ionic stress, as well as to thermal stress, than the wild strain from which they originate.
Des levures transformées conformes à l'invention sont utilisables notamment pour la fabrication de levains de panification. La présente invention a également pour objet des levains de panification comprenant lesdites levures. La présente invention englobe également les produits de boulangerie ou de pâtisserie, et notamment les pâtes boulangères ou pâtissières comprenant lesdites levures.Processed yeasts in accordance with the invention can be used in particular for the manufacture of bread leavening agents. The present invention also relates to baking leavens comprising said yeasts. The present invention also includes bakery or pastry products, and in particular baking or pastry doughs comprising said yeasts.
La présente invention a en outre pour objet une protéine de transfert de lipides choisie parmi : - un précurseur de LTP ou une LTP mature dont la séquence polypeptidique possède au moins 90% d'identité ou 95% de similitude, et de manière préférée au moins 95% d'identité ou 98% de similitude, avec , respectivement, la séquence SEQ ID NO: 6 ou la séquence SEQ ID NO: 7The present invention further relates to a lipid transfer protein chosen from: - an LTP precursor or a mature LTP whose polypeptide sequence has at least 90% identity or 95% similarity, and preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 6 or the sequence SEQ ID NO: 7
- un précurseur de LTP ou une LTP mature dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude, de préférence au moins 80% d'identité ou 85% de similitude, avantageusement au moins 90% d'identité ou 95% de similitude, et de manière tout à fait préférée au moins 95% d'identité ou 98% de similitude, avec, respectivement, la séquence SEQ ID NO: 13 ou la séquence SEQ ID NO: 14.- an LTP precursor or a mature LTP whose polypeptide sequence has at least 70% identity or 75% similarity, preferably at least 80% identity or 85% similarity, advantageously at least 90% identity or 95% similarity, and most preferably at least 95% identity or 98% similarity, with, respectively, the sequence SEQ ID NO: 13 or the sequence SEQ ID NO: 14.
La présente invention englobe également toute séquence d'acide nucléique codant pour l'une desdites protéines de transfert de lipides.The present invention also encompasses any nucleic acid sequence encoding one of said lipid transfer proteins.
Une protéine de transfert de lipides conforme à l'invention peut, comme indiqué ci-dessus, être exprimée dans des levures afin d'augmenter leur tolérance au choc froid. La présente invention sera mieux comprise à l'aide du complément de description qui va suivre, qui se réfère à des exemples décrivant l'obtention de souches de levures transformées conformes à l'invention.A lipid transfer protein according to the invention can, as indicated above, be expressed in yeasts in order to increase their tolerance to cold shock. The present invention will be better understood with the aid of the additional description which follows, which refers to examples describing the production of transformed yeast strains in accordance with the invention.
EXEMPLE 1 : CONSTRUCTION DES VECTEURS D'EXPRESSION ET SELECTION DES LEVURES RECOMBINANTES.EXAMPLE 1: CONSTRUCTION OF EXPRESSION VECTORS AND SELECTION OF RECOMBINANT YEASTS.
Les ADNc codant pour la LEA du groupe 2 Td38, la protéine WALI7 de blé dur, et la LTP Td6.48 ont été isolés à partir d'une banque d'ADNc de racines de plantules de blé dur, obtenue après induction par dessiccation. Les séquences de ces ADNc sont respectivement représentées dans la liste de séquences en annexe sous les numéros SEQ ID NO: 1, SEQ ID NO: 3, et SEQ ID NO: 5. Des vecteurs permettant l'expression de ces gènes chez S. cerevisiae ont été construits à partir du vecteur d'expression navette E. coli/S . cerevisiae pYES2 (InVitrogen) possédant le gène ura3, et l'origine de replication 2μ, par insertion sous contrôle transcriptionnel du promoteur gal l inductible par le galactose et réprimé par le glucose, et de la séquence de terminaison de transcription cycl . Construction d'un vecteur d'expression d'une LEA du groupe 2The cDNAs coding for group 2 LEA Td38, the durum wheat protein WALI7, and the LTP Td6.48 were isolated from a cDNA library of roots of durum wheat seedlings, obtained after induction by desiccation. The sequences of these cDNAs are respectively represented in the sequence list in the appendix under the numbers SEQ ID NO: 1, SEQ ID NO: 3, and SEQ ID NO: 5. Vectors allowing the expression of these genes in S. cerevisiae were constructed from the E. coli / S shuttle expression vector. cerevisiae pYES2 (InVitrogen) having the ura3 gene, and the origin of replication 2μ, by insertion under transcriptional control of the gal l promoter inducible by galactose and repressed by glucose, and the cyclic transcription termination sequence. Construction of a Group 2 LEA expression vector
La séquence complète de l'ADNc pTd38 (SEQ ID NO: 1) codant la protéine Td38 (SEQ ID NO: 2) a été insérée dans le vecteur pYES2, préalablement digéré avec les enzymes No tl et Kpnï et déphosphorylé .The complete sequence of the cDNA pTd38 (SEQ ID NO: 1) encoding the protein Td38 (SEQ ID NO: 2) was inserted into the vector pYES2, previously digested with the enzymes No tl and KpnI and dephosphorylated.
La séquence complète de l'ADNc dénommé pTd27e (SEQ ID NO: 8) codant pour une autre protéine LEA du groupe 2, dénommée Td27e (SEQ ID NO: 9) dont l'expression dans les racines de plantules de blé dur est également induite par dessiccation, et dont la séquence peptidique possède 58,1% et 66,7% de similitude avec la séquence de la protéine Td38, a également été clone entre les sites Notl et Kpnï de pYES2. Construction d'un vecteur d'expression d'une protéine WALIThe complete sequence of the cDNA called pTd27e (SEQ ID NO: 8) coding for another LEA protein of group 2, called Td27e (SEQ ID NO: 9) whose expression in the roots of seedlings of durum wheat is also induced by desiccation, and whose peptide sequence has 58.1% and 66.7% similarity to the sequence of the Td38 protein, was also cloned between the NotI and KpnI sites of pYES2. Construction of a WALI protein expression vector
La séquence codante complète de l'ADNc pTdt64 (SEQ ID NO: 3) codant pour une protéine similaire à la protéine WALI7 de blé tendre a été insérée dans le vecteur pYES2, préalablement digéré avec les enzymes Sacl et SphI et déphosphorylé .The complete coding sequence of the pTdt64 cDNA (SEQ ID NO: 3) coding for a protein similar to the WALI7 protein of common wheat was inserted into the vector pYES2, previously digested with the enzymes Sac1 and SphI and dephosphorylated.
La séquence codante complète de l'ADNc dénommé pTd79b (SEQ ID NO: 10), codant pour une protéine WALI1, identique à la protéine WALI1 de blé tendre (SNOWDEN et GARDNER, Plant Physiol . , 103, 855-861, 1993), et dont l'expression dans les racines de plantules de blé dur est également induite par la dessiccation, a été clone dans pYES2 entre les sites Notl et Kpnï .The complete coding sequence of the cDNA called pTd79b (SEQ ID NO: 10), coding for a WALI1 protein, identical to the WALI1 protein of common wheat (SNOWDEN and GARDNER, Plant Physiol., 103, 855-861, 1993), and whose expression in the roots of durum wheat seedlings is also induced by desiccation, has been cloned in pYES2 between the NotI and KpnI sites.
Construction d'un vecteur d'expression d'une LTP de 9kDaConstruction of an expression vector for a 9kDa LTP
La séquence codante complète de l'ADNc pTd6.48(SEQ ID NO: 5 ) codant pour le précurseur de la LTP6.48 (SEQ ID NO: 6 ) a été insérée dans le vecteur pYES2, préalablement digéré avec les enzymes £coRI et SphI et déphosphorylé .The complete coding sequence of the cDNA pTd6.48 (SEQ ID NO: 5) coding for the precursor of LTP6.48 (SEQ ID NO: 6) was inserted into the vector pYES2, previously digested with the enzymes £ coRI and SphI and dephosphorylated.
A titre de comparaison, un ADNc dénommé pTdD2 (SEQ ID NO: 12), codant pour le précurseur de la LTPD2 (SEQ ID NO: 13), qui présente 50% d'identité et 69% de similarité avec le précurseur de la LTP6.48, et dont l'expression dans les racines de plantules de blé dur est également induite par la dessiccation, a été clone dans pYES2 entre les sites Λfotl et Kpnï .For comparison, a cDNA called pTdD2 (SEQ ID NO: 12), coding for the precursor of LTPD2 (SEQ ID NO: 13), which has 50% identity and 69% similarity with the precursor of LTP6 .48, and whose expression in the roots of seedlings of durum wheat is also induced by desiccation, was cloned into pYES2 between the Λfotl and Kpnï sites.
Les vecteurs ainsi obtenus ont été utilisés pour transformer la souche de Saccharomyces cerevisiae INVScl (souche haploïde de génotype MATα, his3-Δl, leu2, trpl-289, ura3-52). Cette souche est cultivée sur milieu YNB-Gal composé de 1,7 g de YNB-AA/AS (DIFCO LABORATORIES), 5 g de (NH4)2S04, 20 g de galactose, 20 mg d'uracile, 20 mg de L- histidine, 60 mg de L-leucine, 40 mg de L-tryptophane pour 1 litre. Pour la sélection des levures recombinantes on utilise le même milieu sans uracile. Après sélection des levures, la présence des transcrits correspondant aux ADNc est vérifiée par hybridation avec des sondes spécifiques après induction par le galactose. EXEMPLE 2 : TOLERANCE AU STRESS DES LEVURES RECOMBINANTES.The vectors thus obtained were used to transform the strain of Saccharomyces cerevisiae INVScl (haploid strain of genotype MATα, his3-Δl, leu2, trpl-289, ura3-52). This strain is cultivated on YNB-Gal medium composed of 1.7 g of YNB-AA / AS (DIFCO LABORATORIES), 5 g of (NH 4 ) 2 SO 4 , 20 g of galactose, 20 mg of uracil, 20 mg L-histidine, 60 mg L-leucine, 40 mg L-tryptophan per 1 liter. For the selection of recombinant yeasts, the same medium is used without uracil. After selection of the yeasts, the presence of the transcripts corresponding to the cDNAs is verified by hybridization with specific probes after induction by galactose. EXAMPLE 2: STRESS TOLERANCE OF RECOMBINANT YEASTS.
La tolérance au stress froid a été étudiée chez la souche sauvage INVScl, chez la souche INVScl transformée avec le plasmide pYES vide, et chez les souches recombinantes exprimant une LEA de type 2, une protéine WALI, ou une LTP de 9kDa obtenues comme décrit à l'exemple 1 ci-dessus.Tolerance to cold stress has been studied in the wild strain INVScl, in the strain INVScl transformed with the empty plasmid pYES, and in the recombinant strains expressing a type 2 LEA, a WALI protein, or a 9kDa LTP obtained as described in Example 1 above.
Stress froid :Cold stress:
Conditions de stressStress conditions
La tolérance au stress froid est évaluée en mesurant la survie des levures après application du stress froid (congélation à -20°C, conservation à cette température pendant 24 heures, et décongélation) . Les conditions décrites par IMAI et al . (1996, publication précitée) ont été utilisées.Tolerance to cold stress is evaluated by measuring the survival of yeasts after application of cold stress (freezing at -20 ° C, storage at this temperature for 24 hours, and thawing). The conditions described by IMAI et al. (1996, publication cited above) were used.
Chacune des souches est cultivée en milieu YNB- Galactose (50 ml) . Au milieu de la phase exponentielle de croissance (Absorbance à 600 nm = 1) , on prélève 1 ml de culture. Après centrifugation. (3500 g, 3 min, 4°C) le culot cellulaire est remis en suspension dans 1 ml de milieu complet YPD. Des aliquotes de 100 μl sont séparées dans des microtubes. Une partie des aliquotes est conservée sans traitement, et l'autre est congelée dans un bain d'éthanol absolu préalablement refroidi et conservée à -20 °C pendant 24 h. Les cellules sont décongelées rapidement en plaçant les tubes à 30°C quelques secondes avant étalement.Each of the strains is cultured in YNB-Galactose medium (50 ml). In the middle of the exponential growth phase (Absorbance at 600 nm = 1), 1 ml of culture is taken. After centrifugation. (3500 g, 3 min, 4 ° C.) the cell pellet is resuspended in 1 ml of complete YPD medium. 100 μl aliquots are separated in microtubes. Part of the aliquots is stored without treatment, and the other part is frozen in an absolute ethanol bath previously cooled and stored at -20 ° C. for 24h. The cells are thawed quickly by placing the tubes at 30 ° C a few seconds before spreading.
Les cellules non-traitées ou les cellules décongelées sont ensuite diluées dans du milieu complet YPD (dilution 1/10000 et 1/20000 pour les témoins, et 1/400 et 1/2000 pour les cellules ayant subi le stress froid) . Les dilutions ainsi obtenues sont étalées sur milieu complet gélose (YPD agar) et les boîtes incubées à 30°C pendant 48 h. Les colonies formées sur chaque boîte sont comptées, et le nombre d'UFC (unités formant colonies) est calculé en tenant compte de la dilution.The untreated cells or the thawed cells are then diluted in complete YPD medium (dilution 1/10000 and 1/20000 for the controls, and 1/400 and 1/2000 for the cells having undergone cold stress). The dilutions thus obtained are spread on complete agar medium (YPD agar) and the dishes incubated at 30 ° C for 48 h. The colonies formed on each dish are counted, and the number of CFUs (colony forming units) is calculated taking into account the dilution.
La survie de chaque souche est évaluée par le pourcentage d'UFC survivantes, c'est-à-dire le nombre d'UFC après stress divisé par le nombre d'UFC témoins. Pour chaque expérimentation, le nombre d'UFC correspond à la moyenne de 4 étalements .The survival of each strain is evaluated by the percentage of surviving CFUs, that is to say the number of CFUs after stress divided by the number of control CFUs. For each experiment, the number of PDUs corresponds to the average of 4 spreads.
Les résultats sont résumés dans le Tableau I ci- après :The results are summarized in Table I below:
Tableau ITable I
Dans le cas de la souche sauvage INVScl, le taux de survie est de 5,5% ; la souche recombinante INVScl-pYES2 présente un taux de survie similaire de 6,8%.In the case of the wild strain INVScl, the survival rate is 5.5%; the INVScl-pYES2 recombinant strain has a similar survival rate of 6.8%.
Levures recombinantes exprimant une protéine LEA du groupe 2Recombinant yeasts expressing a group 2 LEA protein
La levure recombinante INVScl-pYES2-r 27e présente un taux de survie au stress froid de 6%, qui est donc similaire à ceux observés avec la souche sauvage INVScl ou la souche INVScl-pYES2.The recombinant yeast INVScl-pYES2-r 27e has a cold stress survival rate of 6%, which is therefore similar to those observed with the wild strain INVScl or the strain INVScl-pYES2.
En revanche, la levure recombinante INVScl-pYES2- Td38 présente un taux de survie au stress froid de 20%. Levures recombinantes exprimant une protéine WALIIn contrast, the recombinant yeast INVScl-pYES2-Td38 has a cold stress survival rate of 20%. Recombinant yeasts expressing a WALI protein
La levure recombinante INVScl-pYES2-Td79J présente un taux de survie au stress froid de 3,5%, comparable à ceux de la souche sauvage INVScl ou de la souche INVScl-pYES2.The recombinant yeast INVScl-pYES2-Td79 J has a cold stress survival rate of 3.5%, comparable to that of the wild strain INVScl or of the strain INVScl-pYES2.
En revanche, la levure recombinante INVScl-pYES2- Tdt 64 présente un taux de survie au stress froid de 27%.In contrast, the recombinant yeast INVScl-pYES2- Tdt 64 has a cold stress survival rate of 27%.
Levures recombinantes exprimant une LTPRecombinant yeasts expressing LTP
La levure recombinante INVScl-pYES2-l tpD2 présente un taux de survie au stress froid de 1,8%. L'expression de cette LTP n'induit donc aucune amélioration de la survie au stress froid.The recombinant yeast INVScl-pYES2-1 tpD2 has a cold stress survival rate of 1.8%. The expression of this LTP therefore does not induce any improvement in survival from cold stress.
La levure recombinante INVScl-pYES2-ltp6.48 présente en revanche un taux de survie au stress froid de 28%.On the other hand, the recombinant yeast INVScl-pYES2-ltp6.48 has a cold stress survival rate of 28%.
Stress thermique :Thermal stress :
Conditions de stressStress conditions
La tolérance au stress thermique est évaluée selon le même protocole que pour le stress froid : au lieu d'un stress par congélation, les cellules subissent une incubation pendant 10 minutes à 50°C. Les cellules ayant subi le stress thermique sont diluées au 1/4000 et au 1/10000 avant étalement. Le taux de survie est calculé comme décrit ci-dessus pour le stress froid. Les résultats sont illustrés dans le Tableau II ci-après .Tolerance to thermal stress is evaluated according to the same protocol as for cold stress: instead of freezing stress, the cells are incubated for 10 minutes at 50 ° C. The cells having undergone thermal stress are diluted to 1/4000 and to 1/10000 before spreading. The survival rate is calculated as described above for cold stress. The results are illustrated in Table II below.
Tableau IITable II
Dans le cas de la souche sauvage INVScl, le taux de survie est de 27,5% ; il est de 24% pour la souche recombinante INVScl-pYES2. Toutes les protéines exprimées induisent une augmentation du taux de survie. Cette augmentation est particulièrement importante dans le cas de Td38 et de LTP6.48. Elle est également importante dans le cas de Td27e. Stress ionique et stress osmotique :In the case of the wild strain INVScl, the survival rate is 27.5%; it is 24% for the recombinant strain INVScl-pYES2. All the proteins expressed induce an increase in the survival rate. This increase is particularly significant in the case of Td38 and LTP6.48. It is also important in the case of Td27e. Ionic stress and osmotic stress:
Conditions de stressStress conditions
La tolérance au stress ionique ou au stress osmotique est évaluée en comparant les cinétiques de croissance à 30°C en conditions normales (milieu YNB- galactose) , et en conditions de stress ionique (milieu YNB- galactose + 1,5 M Nacl), ou de stress osmotique (milieu YNB- galactose + 2,5 M sorbitol) .Tolerance to ionic stress or to osmotic stress is evaluated by comparing the growth kinetics at 30 ° C. under normal conditions (YNB-galactose medium), and under ionic stress conditions (YNB-galactose medium + 1.5 M Nacl), or osmotic stress (YNB-galactose medium + 2.5 M sorbitol).
Dans le cas de la souche sauvage INVScl, ou de la souche recombinante INVScl-pYES2, la durée de la phase de latence (définie ici comme le temps entre la mise en culture et le moment où l'absorbance à 600 nm atteint une valeur de 0,2), est de 3 h en conditions normales de culture. En présence de 1,5 M de NaCl, la durée de la phase de latence est de 87 h. En présence de 2,5 M de sorbitol, la phase de latence est de 182 h.In the case of the wild strain INVScl, or of the recombinant strain INVScl-pYES2, the duration of the latency phase (defined here as the time between the cultivation and the time when the absorbance at 600 nm reaches a value of 0.2), is 3 h under normal culture conditions. In the presence of 1.5 M NaCl, the duration of the lag phase is 87 h. In the presence of 2.5 M of sorbitol, the lag phase is 182 h.
Levures recombinantes exprimant une protéine LEA du groupe 2Recombinant yeasts expressing a group 2 LEA protein
• INVScl-pYES2-Td27e• INVScl-pYES2-Td27e
En présence de NaCl 1,5 M, la phase de latence de la cinétique de croissance de la levure INVScl-pYES2-Td27e est inférieure de 70 h à celle des levures témoin (souche sauvage INVScl, ou souche recombinante INVScl-pYES2) dans les mêmes conditions.In the presence of 1.5 M NaCl, the latency phase of the growth kinetics of the yeast INVScl-pYES2-Td27e is 70 h less than that of the control yeasts (wild strain INVScl, or recombinant strain INVScl-pYES2) in same conditions.
En revanche, en présence de sorbitol 2,5 M, la phase de latence de la levure transformée est supérieure de 48 h à celle des levures témoins.On the other hand, in the presence of 2.5 M sorbitol, the latency phase of the transformed yeast is 48 h longer than that of the control yeasts.
• INVScl-pYES2-Td38• INVScl-pYES2-Td38
En présence de NaCl 1,5 M, la phase de latence de la cinétique de croissance de la levure INVScl-pYES2-TdJS est inférieure de 44 h à celle des levures témoin. En présence de sorbitol 2,5 M, on n'observe aucune diminution de la phase de latence par rapport aux levures témoins.In the presence of 1.5 M NaCl, the latency phase of the growth kinetics of the yeast INVScl-pYES2-TdJS is 44 h less than that of the control yeasts. In the presence of 2.5 M sorbitol, no reduction in the lag phase is observed compared with the control yeasts.
Il apparaît donc que la levure INVScl-pYES2- Td27e, et dans une moindre mesure la levure INVScl-pYES2- Td38, présentent une tolérance accrue à un stress ionique.It therefore appears that the yeast INVScl-pYES2-Td27e, and to a lesser extent the yeast INVScl-pYES2-Td38, have an increased tolerance to ionic stress.
En revanche, aucune de ces levures transformées ne présente d'amélioration de la tolérance à un stress osmotique. La levure INVScl-pYES2-Td27e apparaît même plus sensible que les souches témoins.On the other hand, none of these transformed yeasts shows improvement in tolerance to osmotic stress. The yeast INVScl-pYES2-Td27e appears even more sensitive than the control strains.
Levures recombinantes exprimant une protéine WALIRecombinant yeasts expressing a WALI protein
• INVScl-pYES2-Tdt64• INVScl-pYES2-Tdt64
En conditions de stress osmotique la cinétique de croissance de la levure INVScl-pYES2-Tdt 4 n'est pas modifiée. On n'observe qu'une légère diminution (10 h) de la phase de latence en présence de NaCl 1,5 M.Under osmotic stress conditions, the growth kinetics of the yeast INVScl-pYES2-Tdt 4 are not modified. Only a slight decrease (10 h) in the latency phase is observed in the presence of 1.5 M NaCl.
• INVScl-pYES2-rd79b• INVScl-pYES2-rd79b
Par rapport aux levures témoins, la phase de latence de la levure transformée INVScl-pYES2-Td79J est diminuée de 10 h dans le milieu YNB-Galactose additionné deCompared to the control yeasts, the latency phase of the transformed yeast INVScl-pYES2-Td79 J is reduced by 10 h in YNB-Galactose medium supplemented with
NaCl 1,5 M et de 107 h dans le milieu YNB-Galactose additionné de sorbitol 2,5 M.1.5 M NaCl and 107 h in YNB-Galactose medium supplemented with 2.5 M sorbitol
Il apparaît donc que l'expression de la protéineIt therefore appears that the expression of the protein
Td79b (WALI1) , confère une tolérance accrue à un stress osmotique, et une faible augmentation de la tolérance à un stress ionique. L'expression de la protéine (WALI7) ne confère qu'une légère augmentation de la tolérance à un stress ionique.Td79b (WALI1), confers increased tolerance to osmotic stress, and a small increase in tolerance to ionic stress. The expression of the protein (WALI7) only confers a slight increase in tolerance to ionic stress.
Levures recombinantes exprimant une LTP • INVScl-pYES2-ltpD2Recombinant yeasts expressing LTP • INVScl-pYES2-ltpD2
Par rapport à celle des levures témoins, la phase de latence de la levure INVScl-pYES2-2tpD2 est écourtée de 50 h dans le milieu YNB-Galactose additionné de NaCl 1,5 M, et de 25 h en présence de sorbitol 2,5 M. • INVScl-pYES2-ltp6.48Compared to that of control yeasts, the latency phase of the yeast INVScl-pYES2-2tpD2 is shortened for 50 h in YNB-Galactose medium supplemented with 1.5 M NaCl, and 25 h in the presence of 2.5 sorbitol Mr. • INVScl-pYES2-ltp6.48
La phase de latence de la levure INVScl-pYES2- l tp6. 48 est écourtée de 50 h, par rapport à celle des levures témoins, en présence de NaCl 1,5 M. Elle ne diffère pas de celles des levures témoin en présence de sorbitol 2,5 M.The latency phase of the yeast INVScl-pYES2- l tp6. 48 is shortened by 50 h, compared to that of the control yeasts, in the presence of 1.5 M NaCl. It does not differ from those of the control yeasts in the presence of 2.5 M sorbitol.
Il apparaît donc que la tolérance au stress ionique est améliorée par l'expression de la protéine LTPD2 ou de la protéine LTP6.48. En revanche, seule l'expression de la LTPD2 confère une tolérance accrue à un stress osmotique. EXEMPLE 3 : TOLERANCE AU STRESS FROID DE LEVURES RECOMBINANTES OBTENUES A PARTIR D'UNE SOUCHE INDUSTRIELLEIt therefore appears that tolerance to ionic stress is improved by the expression of the LTPD2 protein or the LTP6.48 protein. On the other hand, only the expression of LTPD2 confers increased tolerance to osmotic stress. EXAMPLE 3 COLD STRESS TOLERANCE OF RECOMBINANT YEASTS OBTAINED FROM AN INDUSTRIAL STRAIN
Souche de levure hôte :Host yeast strain:
Souche industrielle utilisée en panification = Saccharomyces cerevisiae CLIB 320 (cellobiose-, D-galactose+, D-glucose+, lactose-, maltose+, mélézitose+, mélibiose-, raffinose+, saccharose+, tréhalose-) .Industrial strain used in bread-making = Saccharomyces cerevisiae CLIB 320 (cellobiose-, D-galactose +, D-glucose +, lactose-, maltose +, melezitose +, melibiose-, raffinose +, sucrose +, trehalose-).
CLIB = collection de souches d'intérêt biotechnologique de Grignon.CLIB = collection of strains of biotechnological interest from Grignon.
Vecteur d'expression : PVT100-U-ZEO PVT100-U-ZEO est dérivé du vecteur pVTU (VERNET et al . , Gène, 52, 2325-2333, 1987). Les caractéristiques de ce vecteur sont les suivantes :Expression vector: PVT100-U-ZEO PVT100-U-ZEO is derived from the vector pVTU (VERNET et al., Gene, 52, 2325-2333, 1987). The characteristics of this vector are as follows:
- vecteur navette avec origine de replication 2 μ pour la levure et ori pour E. coli ; - résistance ampicilline (AmpR) pour sélection dans E. coli et résistance phleomycine (ZEO) pour sélection dans la levure ;- shuttle vector with origin of replication 2 μ for yeast and ori for E. coli; - ampicillin resistance (AmpR) for selection in E. coli and phleomycin resistance (ZEO) for selection in yeast;
- promoteur Adh et terminateur Adh.- Adh promoter and Adh terminator.
Construction des vecteurs d' expression et sélection des levures recombinantes :Construction of expression vectors and selection of recombinant yeasts:
Le vecteur PVT100-U-ZEO est digéré par les enzymes Xbal et Xhol et déphosphorylé. Les mêmes sites Xbal et Xhol sont créés, par PCR, aux extrémités des séquences codant la LEA du groupe 2 Td38 (SEQ ID NO: 2), la protéine WALI7 de blé dur Tdt64 (SEQ ID NO: 4), la LTP Td6.48 (SEQ ID NO: 6), et la LTP Td6.48 sans le peptide signal (SEQ ID NO: 7), afin de permettre le clonage orienté de ces ADNc. Les constructions obtenues ont été vérifiées par séquençage.The vector PVT100-U-ZEO is digested by the enzymes Xbal and Xhol and dephosphorylated. The same Xbal and Xhol sites are created, by PCR, at the ends of the sequences encoding the LEA of group 2 Td38 (SEQ ID NO: 2), the protein WALI7 of durum wheat Tdt64 (SEQ ID NO: 4), the LTP Td6. 48 (SEQ ID NO: 6), and LTP Td6.48 without the signal peptide (SEQ ID NO: 7), in order to allow the oriented cloning of these cDNAs. The constructions obtained were verified by sequencing.
Chacun des vecteurs recombinants ainsi que le vecteur vide sont utilisés pour la transformation de la souche CLIB320. La méthode de transformation à l'acétate de lithium décrite par GRISHIN et KORSHUNOVA (Yeast Genetics andEach of the recombinant vectors as well as the empty vector are used for the transformation of the CLIB320 strain. The lithium acetate transformation method described by GRISHIN and KORSHUNOVA (Yeast Genetics and
Molecular Biology, The Hague, 1990) a été utilisée.Molecular Biology, The Hague, 1990) was used.
La culture des levures se fait sur milieu YEPD (10 g d'extrait de levure, 20 g de peptone (DIFCO laboratoires), 20 g de D(+)glucose pour 1 1). Un milieu gélose est obtenu par addition de 20 g de bacto-agar à la composition précédente. La sélection des transformants se fait sur la résistance à la phleomycine. Pour cela, 100 μg/ml de phleomycine (CAYLA) sont ajoutés au milieu YEPD. Tolérance au stress des levures recombinantes :The yeast culture is done on YEPD medium (10 g of yeast extract, 20 g of peptone (DIFCO laboratories), 20 g of D (+) glucose for 1 1). An agar medium is obtained by adding 20 g of bactero-agar to the preceding composition. The selection of transformants is based on resistance to phleomycin. For this, 100 μg / ml of phleomycin (CAYLA) are added to the YEPD medium. Stress tolerance of recombinant yeasts:
Conditions de stress :Stress conditions:
La tolérance au stress froid de chaque souche de levure est évaluée par le taux de survie après application du stress. Deux types de stress ont été appliqués : congélation rapide à -20°C et conservation à -20°C pendant des durées de temps variables, puis décongélation à température ambiante ou décongélation par passage à 4°C pendant 24 h.The tolerance to cold stress of each strain of yeast is evaluated by the survival rate after application of the stress. Two types of stress were applied: rapid freezing at -20 ° C and storage at -20 ° C for variable periods of time, then thawing at room temperature or thawing by passing at 4 ° C for 24 h.
Expérimentations' :Experiments ' :
Une préculture de chaque souche recombinante ainsi que la souche sauvage est réalisée par ensemencement, avec une colonie isolée, de 50 ml de milieu YEPD + 100 μg/ml de phleomycine et culture à 28°C, 220 rpm, 48 h. 100 ml de milieu YEPD + 100 μg/ml de phleomycine sont ensemencés parA preculture of each recombinant strain as well as the wild strain is carried out by seeding, with an isolated colony, of 50 ml of YEPD medium + 100 μg / ml of phleomycin and culture at 28 ° C., 220 rpm, 48 h. 100 ml of YEPD medium + 100 μg / ml of phleomycin are seeded with
1/20 de volume de la préculture et cultivés dans les mêmes conditions jusqu'à atteindre une absorbance à 660 nm de 4, phase de plateau de la cinétique de croissance. Des étalements après dilution sont réalisés au temps 0 sur milieu1/20 of the volume of the preculture and cultivated under the same conditions until reaching an absorbance at 660 nm of 4, plateau phase of the growth kinetics. Spreads after dilution are carried out at time 0 on medium
YEPD additionné de 100 μg/ml de phleomycine, puis incubés dans une étuve à 30°C pendant 48 h. Des parties aliquotes de 500 μl de culture sont congelées à -20°C en les plaçant dans un bac d'éthanol absolu froid. Chaque 24 h, une partie aliquote de chaque échantillon est décongelée à température ambiante et une autre est placée à 4°C pendant 24 h pour une décongélation douce. Des étalements à des dilutions sériées sont réalisés puis incubés dans une étuve à 30 °C pendant 48 h. Pour chaque durée de congélation, le nombre d'unités formant colonies (cfu) rapporté au nombre de cfu se développant au temps 0 permet de déterminer le taux de survie (exprimé en %) .YEPD supplemented with 100 μg / ml of phleomycin, then incubated in an oven at 30 ° C for 48 h. Aliquots of 500 μl of culture are frozen at -20 ° C. by placing them in a tank of cold absolute ethanol. Every 24 h, an aliquot of each sample is thawed at temperature room temperature and another is placed at 4 ° C for 24 h for gentle thawing. Spreads at serial dilutions are made and then incubated in an oven at 30 ° C for 48 h. For each duration of freezing, the number of colony forming units (cfu) relative to the number of cfu developing at time 0 makes it possible to determine the survival rate (expressed in%).
Pour chaque durée de congélation et chaque condition de stress, le nombre de cfu correspond à la moyenne des résultats obtenus pour deux clones et pour deux étalements par clone. Les résultats exprimés par le taux de survie (%) sont résumés dans les Tableaux III et IV suivants.For each freezing time and each stress condition, the number of cfu corresponds to the average of the results obtained for two clones and for two spreads per clone. The results expressed by the survival rate (%) are summarized in Tables III and IV below.

Claims

REVENDICATIONS
1) Utilisation d'au moins une molécule d'acide nucléique choisie parmi : a) une molécule d'acide nucléique codant pour un précurseur de LTP ou une LTP mature dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude avec, respectivement, la séquence SEQ ID NO: 6 ou la séquence SEQ ID NO: 7 ; b) une molécule d'acide nucléique codant pour une protéine WALI dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude avec la séquence SEQ ID NO: 4 ; c) une molécule d'acide nucléique codant pour une protéine LEA du groupe 2 dont la séquence polypeptidique possède au moins 70% d' identité ou 75% de similitude avec la séquence SEQ ID NO: 2 ; pour transformer une levure afin d'améliorer sa tolérance au stress froid.1) Use of at least one nucleic acid molecule chosen from: a) a nucleic acid molecule coding for an LTP precursor or a mature LTP whose polypeptide sequence has at least 70% identity or 75% of similarity with, respectively, the sequence SEQ ID NO: 6 or the sequence SEQ ID NO: 7; b) a nucleic acid molecule coding for a WALI protein whose polypeptide sequence has at least 70% identity or 75% similarity to the sequence SEQ ID NO: 4; c) a nucleic acid molecule coding for a group 2 LEA protein whose polypeptide sequence has at least 70% identity or 75% similarity to the sequence SEQ ID NO: 2; to transform a yeast to improve its tolerance to cold stress.
2) Levure transformée par au moins une molécule d'acide nucléique telle que définie dans la revendication 1.2) Yeast transformed with at least one nucleic acid molecule as defined in claim 1.
3) Levure transformée selon la revendication 2, caractérisée en ce qu'elle est en outre transformée par au moins une molécule d' acide nucléique choisie parmi :3) transformed yeast according to claim 2, characterized in that it is further transformed by at least one molecule of nucleic acid chosen from:
- une molécule d'acide nucléique codant pour une LEA du groupe 2 dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude avec la séquence SEQ ID NO: 9 ;- a nucleic acid molecule coding for a group 2 LEA whose polypeptide sequence has at least 70% identity or 75% similarity to the sequence SEQ ID NO: 9;
- une molécule d'acide nucléique codant pour une protéine WALI dont la séquence polypeptidique possède au moins 70% d' identité ou 75% de similitude avec la séquence . SEQ ID NO: 11 ;- A nucleic acid molecule coding for a WALI protein whose polypeptide sequence has at least 70% identity or 75% similarity to the sequence. SEQ ID NO: 11;
- une molécule d'acide nucléique codant pour un précurseur de LTP ou une LTP mature dont la séquence polypeptidique possède au moins 70% d'identité ou 75% de similitude avec, respectivement, la séquence SEQ ID NO: 13 ou la séquence SEQ ID NO: 14. 4) Levure transformée selon une quelconque des revendications 2 ou 3, caractérisée en ce que ladite levure appartient au genre Sa ccha romyces .- a nucleic acid molecule coding for an LTP precursor or a mature LTP whose polypeptide sequence has at least 70% identity or 75% similarity with, respectively, the sequence SEQ ID NO: 13 or the sequence SEQ ID NO: 14. 4) transformed yeast according to any one of claims 2 or 3, characterized in that said yeast belongs to the genus Sa ccha romyces.
5) Levure transformée selon la revendication 4, caractérisée en ce que ladite levure appartient à l'espèce5) transformed yeast according to claim 4, characterized in that said yeast belongs to the species
Saccharomyces cerevisiae .Saccharomyces cerevisiae.
6) Levain de panification, comprenant une levure transformée selon une quelconque des revendications 2 à 5.6) Baking leaven, comprising a yeast transformed according to any one of claims 2 to 5.
7) Produit de boulangerie ou de pâtisserie comprenant des levures transformées selon une quelconque des revendications 2 à 5. 7) Bakery or pastry product comprising transformed yeasts according to any one of claims 2 to 5.
LISTE DE SEQUENCESLIST OF SEQUENCES
<110> INRA<110> INRA
BOURGEOIS, Emmanuelle GAUTIER, Marie-Françoise JOUDRIER, PhilippeBOURGEOIS, Emmanuelle GAUTIER, Marie-Françoise JOUDRIER, Philippe
<120> LEVURES TRANSFORMEES PAR DES GENES AUGMENTANT LEUR TOLERANCE AU STRESS FROID<120> YEAS TRANSFORMED BY GENES INCREASING TOLERANCE TO COLD STRESS
<130> MJPcb539-93<130> MJPcb539-93
<140> <141><140> <141>
<150> 00 17104 <151> 2000-12-27<150> 00 17 104 <151> 2000-12-27
<160> 14<160> 14
<170> Patentln Ver. 2.1<170> Patentln Ver. 2.1
<210> 1<210> 1
<211> 555<211> 555
<212> ADN<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 1 acacaaccaa gacaagtaaa cagcagcact agtagatttc ccgagtgaca agttcagcgc 60 aacatggagc accagggaca cggcaccggc gagaagaagg gcatcatgga gaacatcaag 120 gagaagctcc ccggtggcca aggtgaccac cagcagaccg ctggcaccca cgggcagcat 180 ggacacactg gaatgacagg cacggagatg catgacacca cggccaccgg cggcacccat 240 gggcagcagg ggcttaccgg aacgactggc actgggacac acggcaccgg tgagaagaag 300 agcctcatgg acaaggtgaa ggagaagctg cctggacagc actaagctcg gtctgcccac 360 ggccgccacc tttgcagaat aatactccac cgtatatgaa ttgatctgag tctagttcac 420 ctagctcact tggtcgttgg aggagcaaat gtatctctgg tttaagtttt cacggacaac 480 agtgtgttca cagttttcgt ctatttacac tccgtcatgc aaatttcctt tttgttccaa 540 aaaaaaaaaa aaaaa 555<400> 1 acacaaccaa gacaagtaaa cagcagcact agtagatttc ccgagtgaca agttcagcgc 60 aacatggagc accagggaca cggcaccggc gagaagaagg gcatcatgga gaacatcaag 120 gagaagctcc ccggtggcca aggtgaccac cagcagaccg ctggcaccca cgggcagcat 180 ggacacactg gaatgacagg cacggagatg catgacacca cggccaccgg cggcacccat 240 gggcagcagg ggcttaccgg aacgactggc actgggacac acggcaccgg tgagaagaag 300 agcctcatgg acaaggtgaa ggagaagctg cctggacagc actaagctcg gtctgcccac 360 ggccgccacc tttgcagaat aatactccac cgtatatgaa ttgatctgag tctagttcac 420 ctagctcact tggtcgttgg aggagcaaat gtatctctgg tttaagtttt cacggacaac 480 agtgtgttca cagttttcgt ctatttacac tccgtcatgc aaatttcctt tttgttccaa 540aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaing
<210> 2<210> 2
<211> 93<211> 93
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 2<400> 2
Met Glu His Gin Gly His Gly Thr Gly Glu Lys Lys Gly Ile Met Glu 1 5 10 15Met Glu His Gin Gly His Gly Thr Gly Glu Lys Lys Gly Ile Met Glu 1 5 10 15
Asn Ile Lys Glu Lys Leu Pro Gly Gly Gin Gly Asp His Gin Gin Thr 20 25 30Asn Ile Lys Glu Lys Leu Pro Gly Gly Gin Gly Asp His Gin Gin Thr 20 25 30
Ala Gly Thr His Gly Gin His Gly His Thr Gly Met Thr Gly Thr Glu 35 40 45Ala Gly Thr His Gly Gin His Gly His Thr Gly Met Thr Gly Thr Glu 35 40 45
Met His Asp Thr Thr Ala Thr Gly Gly Thr His Gly Gin Gin Gly Leu 50 55 60Met His Asp Thr Thr Ala Thr Gly Gly Thr His Gly Gin Gin Gly Leu 50 55 60
Thr Gly Thr Thr Gly Thr Gly Thr His Gly Thr Gly Glu Lys Lys Ser 65 70 75 80 Leu Met Asp Lys Val Lys Glu Lys Leu Pro Gly Gin His 85 90Thr Gly Thr Thr Gly Thr Gly Thr His Gly Thr Gly Glu Lys Lys Ser 65 70 75 80 Leu Met Asp Lys Val Lys Glu Lys Leu Pro Gly Gin His 85 90
<210> 3<210> 3
<211> 891<211> 891
<212> ADN<212> DNA
<213> Trit icum durum<213> Trit icum durum
<400> 3 agtgaggaag. gccacaatca gcaactgacc tgtaatacct tacctagcta ggtgtactat 60 gtttgagcca agatgttggg ggtgttcagc ggcgaggtgg tggaggtgcc ggcggagctg 120 gtggcggccg ggagccggac gccatcgccc aagacacggg cgtcggagct ggtgaagcgc 180 ttcctcgccg gcaacgacct ggccgtgtcc gtggagctgg gatcactggg caacctcgcc 240 tactcccacg ccaaccagtc cctcctcctc ccaaggtctt tcgctgcaaa ggatgagatc 300 ttctgcctgt tcgagggagt cctggacaac ttggggcggt tgagccagca gtacggcctc 360 tccaagggcg gcaacgaggt gctcctcgtg atcgaggcct acaagacgct gagggacaga 420 gccccctatc ccgccagctt catgctctcc cagctcaccg gcagctacgc cttcgtgctc 480 ttcgacaagt ccacctcctc cctcctcgtc gcatccgacc cggagggcaa ggtgccgctc 540 ttctggggaa tcaccgccga cggctgcgtc gccttctccg acgacatcga cctgctgaaa 600 ggatcttgcg gcaagtcact ggcgcctttc ccgcaaggtt gcttctactg gaacgctctt 660 ggaggcctca agtcgtacga gaatcccaag aacaaggtca ccgctgtgcc tgcagatgag 720 gaggaaatct gtggtgcaac tttcatggtg gaaggatcta ccgttgtcgc ggcacttcag 780 taggagattc tcttgtctcc gtcgctgggc aaagcaggca aggccgttcg tgtgtagatg 840 gtggtggtgt aatataatgc aacaaggcgc gtgtgctact ctcttgtgat c 891<400> 3 agtgaggaag. gccacaatca gcaactgacc tgtaatacct tacctagcta ggtgtactat 60 gtttgagcca agatgttggg ggtgttcagc ggcgaggtgg tggaggtgcc ggcggagctg 120 gtggcggccg ggagccggac gccatcgccc aagacacggg cgtcggagct ggtgaagcgc 180 ttcctcgccg gcaacgacct ggccgtgtcc gtggagctgg gatcactggg caacctcgcc 240 tactcccacg ccaaccagtc cctcctcctc ccaaggtctt tcgctgcaaa ggatgagatc 300 ttctgcctgt tcgagggagt cctggacaac ttggggcggt tgagccagca gtacggcctc 360 tccaagggcg gcaacgaggt gctcctcgtg atcgaggcct acaagacgct gagggacaga 420 gccccctatc ccgccagctt catgctctcc cagctcaccg gcagctacgc cttcgtgctc 480 ttcgacaagt ccacctcctc cctcctcgtc gcatccgacc cggagggcaa ggtgccgctc 540 ttctggggaa tcaccgccga cggctgcgtc gccttctccg acgacatcga cctgctgaaa 600 ggatcttgcg gcaagtcact ggcgcctttc ccgcaaggtt gcttctactg gaacgctctt 660 ggaggcctca agtcgtacga gaatcccaag aacaaggtca ccgctgtgcc tgcagatgag 720 gaggaaatct gtggtgcaac tttcatggtg gaaggatcta ccgttgtcgc ggcacttcag 780 taggagattc tcttgtctcc gtcgctgggc aaagcaggca aggccgttcg tgtgtagatg 840 gtggtggtgt aatataatgc aacaaggcgc gtgtgctact ctcttgtgat c 891
<210> 4<210> 4
<211> 236<211> 236
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 4<400> 4
Met Leu Gly Val Phe Ser Gly Glu Val Val Glu Val Pro Ala Glu Leu 1 5 10 15Met Leu Gly Val Phe Ser Gly Glu Val Val Glu Val Pro Ala Glu Leu 1 5 10 15
Val Ala Ala Gly Ser Arg Thr Pro Ser Pro Lys Thr Arg Ala Ser Glu 20 25 30Val Ala Ala Gly Ser Arg Thr Pro Ser Pro Lys Thr Arg Ala Ser Glu 20 25 30
Leu Val Lys Arg Phe Leu Ala Gly Asn Asp Leu Ala Val Ser Val Glu 35 40 45Leu Val Lys Arg Phe Leu Ala Gly Asn Asp Leu Ala Val Ser Val Glu 35 40 45
Leu Gly Ser Leu Gly Asn Leu Ala Tyr Ser His Ala Asn Gin Ser Leu 50 55 60Leu Gly Ser Leu Gly Asn Leu Ala Tyr Ser His Ala Asn Gin Ser Leu 50 55 60
Leu Leu Pro Arg Ser Phe Ala Ala Lys Asp Glu Ile Phe Cys Leu Phe 65 70 75 80Leu Leu Pro Arg Ser Phe Ala Ala Lys Asp Glu Ile Phe Cys Leu Phe 65 70 75 80
Glu Gly Val Leu Asp Asn Leu Gly Arg Leu Ser Gin Gin Tyr Gly Leu 85 90 95Glu Gly Val Leu Asp Asn Leu Gly Arg Leu Ser Gin Gin Tyr Gly Leu 85 90 95
Ser Lys Gly Gly Asn Glu Val Leu Leu Val Ile Glu Ala Tyr Lys Thr 100 105 110Ser Lys Gly Gly Asn Glu Val Leu Leu Val Ile Glu Ala Tyr Lys Thr 100 105 110
Leu Arg Asp Arg Ala Pro Tyr Pro Ala Ser Phe Met Leu Ser Gin Leu 115 120 125Leu Arg Asp Arg Ala Pro Tyr Pro Ala Ser Phe Met Leu Ser Gin Leu 115 120 125
Thr Gly Ser Tyr Ala Phe Val Leu Phe Asp Lys Ser Thr Ser Ser Leu 130 135 140 Leu Val Ala Ser Asp Pro Glu Gly Lys Val Pro Leu Phe Trp Gly Ile 145 150 155 160Thr Gly Ser Tyr Ala Phe Val Leu Phe Asp Lys Ser Thr Ser Ser Leu 130 135 140 Leu Val Ala Ser Asp Pro Glu Gly Lys Val Pro Leu Phe Trp Gly Ile 145 150 155 160
Thr Ala Asp Gly Cys Val Ala Phe Ser Asp Asp Ile Asp Leu Leu Lys 165 170 175Thr Ala Asp Gly Cys Val Ala Phe Ser Asp Asp Ile Asp Leu Leu Lys 165 170 175
Gly Ser Cys Gly Lys Ser Leu Ala Pro Phe Pro Gin Gly Cys Phe Tyr 180 185 190Gly Ser Cys Gly Lys Ser Leu Ala Pro Phe Pro Gin Gly Cys Phe Tyr 180 185 190
Trp Asn Ala Leu Gly Gly Leu Lys Ser Tyr Glu Asn Pro Lys Asn Lys 195 200 205Trp Asn Ala Leu Gly Gly Leu Lys Ser Tyr Glu Asn Pro Lys Asn Lys 195 200 205
Val Thr Ala Val Pro Ala Asp Glu Glu Glu Ile Cys Gly Ala Thr Phe 210 215 220Val Thr Ala Val Pro Ala Asp Glu Glu Glu Ile Cys Gly Ala Thr Phe 210 215 220
Met Val Glu Gly Ser Thr Val Val Ala Ala Leu Gin 225 230 235Met Val Glu Gly Ser Thr Val Val Ala Ala Leu Gin 225 230 235
<210> 5<210> 5
<211> 782<211> 782
<212> ADN<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 5 aatacgactc actataggga aagctggtac gcctgcaggt accggtccgg aattcccggg 60 tcgacccacg cgtccggaaa atctagctat ctcatcatct ctgcctgagc tcactaccac 120 tactattgct agcttgatcg agatggcccg ttctgctgtt gctcaggtcg tgctcgtcgc 180 cgtggtggct gctatgctcc tcgcagtcac ggaggcggct gtatcgtgcg gtcaggtgag 240 ctctgccttg agcccctgca tctcctatgc acgcggcaac ggcgccagcc catctgcggc 300 ctgctgcagc ggcgttagga gtctagccag ctcagcccgg agcaccgctg acaagcaagc 360 ggcgtgcaag tgcatcaaga gcgctgctgc tgggctcaac gctggcaagg ccgccggcat 420 ccccacaaag tgcggcgtta gcgtccctta cgccatcagc tcttcggtcg actgctctaa 480 gattcgctga tcgagcactt gctgccatcg ctgttgccat cgtcccctac gccatcgttg 540 ctggatctac gcttagtacg ttgaggtcac acacacgcac acccacatat atatatgaat 600 aaatgctctc atattatctc actgcgtgag agagagagga gtacgtacgt ccaagcagct 660 ctgcatggcc ggccacactg ttgtatcgat gtttggttgt tcttccactc cccgagtttg 720 ctgtactttg taccatgtgt acttttgata tatggattgt gtactcagct gatcagctct 780 aa 782<400> 5 aatacgactc actataggga aagctggtac gcctgcaggt accggtccgg aattcccggg 60 tcgacccacg cgtccggaaa atctagctat ctcatcatct ctgcctgagc tcactaccac 120 tactattgct agcttgatcg agatggcccg ttctgctgtt gctcaggtcg tgctcgtcgc 180 cgtggtggct gctatgctcc tcgcagtcac ggaggcggct gtatcgtgcg gtcaggtgag 240 ctctgccttg agcccctgca tctcctatgc acgcggcaac ggcgccagcc catctgcggc 300 ctgctgcagc ggcgttagga gtctagccag ctcagcccgg agcaccgctg acaagcaagc 360 ggcgtgcaag tgcatcaaga gcgctgctgc tgggctcaac gctggcaagg ccgccggcat 420 ccccacaaag tgcggcgtta gcgtccctta cgccatcagc tcttcggtcg actgctctaa 480 gattcgctga tcgagcactt gctgccatcg ctgttgccat cgtcccctac gccatcgttg 540 ctggatctac gcttagtacg ttgaggtcac acacacgcac acccacatat atatatgaat 600 aaatgctctc atattatctc actgcgtgag agagagagga gtacgtacgt ccaagcagct 660 ctgcatggcc ggccacactg ttgtatcgat gtttggttgt tcttccactc cccgagtttg 720 ctgtactttg taccatgtgt acttttgata tatggattgt gtactcagct gatcagctct 780 aa 782
<210> 6<210> 6
<211> 116<211> 116
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 6<400> 6
Met Ala Arg Ser Ala Val Ala Gin Val Val Leu Val Ala Val Val Ala 1 5 10 15Met Ala Arg Ser Ala Val Ala Gin Val Val Leu Val Ala Val Val Ala 1 5 10 15
Ala Met Leu Leu Ala Val Thr Glu Ala Ala Ala Val Ser Cys Gly Gin 20 25 30Ala Met Leu Leu Ala Val Thr Glu Ala Ala Ala Val Ser Cys Gly Gin 20 25 30
Val Ser Ser Ala Leu Ser Pro Cys Ile Ser Tyr Ala Arg Gly Asn Gly 35 40 45Val Ser Ser Ala Leu Ser Pro Cys Ile Ser Tyr Ala Arg Gly Asn Gly 35 40 45
Ala Ser Pro Ser Ala Ala Cys Cys Ser Gly Val Arg Ser Leu Ala Ser 50 55 60 Ser Ala Arg Ser Thr Ala Asp Lys Gin Ala Ala Cys Lys Cys Ile LysAla Ser Pro Ser Ala Ala Cys Cys Ser Gly Val Arg Ser Leu Ala Ser 50 55 60 Ser Ala Arg Ser Thr Ala Asp Lys Gin Ala Ala Cys Lys Cys Ile Lys
65 70 75 8065 70 75 80
Ser Ala Ala Ala Gly Leu Asn Ala Gly Lys Ala Ala Gly Ile Pro ThrSer Ala Ala Ala Gly Leu Asn Ala Gly Lys Ala Ala Gly Ile Pro Thr
85 90 9585 90 95
Lys Cys Gly Val Ser Val Pro Tyr Ala Ile Ser Ser Ser Val Asp CysLys Cys Gly Val Ser Val Pro Tyr Ala Ile Ser Ser Ser Val Asp Cys
100 105 110100 105 110
Ser Lys Ile ArgSer Lys Ile Arg
115115
<210> 7<210> 7
<211> 90<211> 90
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 7<400> 7
Ala Val Ser Cys Gly Gin Val Ser Ser Ala Leu Ser Pro Cys Ile Ser 1 5 10 15Ala Val Ser Cys Gly Gin Val Ser Ser Ala Leu Ser Pro Cys Ile Ser 1 5 10 15
Tyr Ala Arg Gly Asn Gly Ala Ser Pro Ser Ala Ala Cys Cys Ser Gly 20 25 30Tyr Ala Arg Gly Asn Gly Ala Ser Pro Ser Ala Ala Cys Cys Ser Gly 20 25 30
Val Arg Ser Leu Ala Ser Ser Ala Arg Ser Thr Ala Asp Lys Gin Ala 35 40 45Val Arg Ser Leu Ala Ser Ser Ala Arg Ser Thr Ala Asp Lys Gin Ala 35 40 45
Ala Cys Lys Cys Ile Lys Ser Ala Ala Ala Gly Leu Asn Ala Gly Lys 50 55 60Ala Cys Lys Cys Ile Lys Ser Ala Ala Ala Gly Leu Asn Ala Gly Lys 50 55 60
Ala Ala Gly Ile Pro Thr Lys Cys Gly Val Ser Val Pro Tyr Ala Ile 65 70 75 80Ala Ala Gly Ile Pro Thr Lys Cys Gly Val Ser Val Pro Tyr Ala Ile 65 70 75 80
Ser Ser Ser Val Asp Cys Ser Lys Ile Arg 85 90Ser Ser Ser Val Asp Cys Ser Lys Ile Arg 85 90
<210> 8<210> 8
<211> 751<211> 751
<212> ADN<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 8 caaagagcaa aagctaaagc cacaaccaag tccagtttag gaagaggcag agatggagtt 60 ccaagggcag cacgacaacc ccgccaaccg cgtcgacgag tacggcaacc cgttcccgct 120 ggccggcggc gtggggggag gacacgccgc tcctggcacc ggcgggcagt tacaggcccg 180 caggggagag cacaagaccg gtgggatcct gcatcgctcc ggcagctcca gctccagctc 240 gtcttccgag gacgacggca tgggcgggag gaggaagaag ggcatgaaag agaagatcaa 300 ggagaagctc cccggcggcc acaaggacaa ccagcagcac atggcgactg gtacagggac 360 tggaggagcc tacgggccgg ggactggaac tggtggagcc tacgggcagc aaggccacgc 420 aggaatggcc ggcgccggca ctggcaccgg cgagaagaag gggatcatgg acaagattaa 480 ggagaagctg ccgggacagc actgagccga cggctccggc tggccgcttc ctttgcatag 540 ctacacgcgt caatgccttc tagttccacg tgatcttttt gttcaataat aataagatga 600 agcagaacga aaacttgtct ctgatctcgt ctgtgtcagg gacacttttc tgtatacagc 660 gtgcgtcgtg tttgttatgt tttgtgtgtt gtgtcttcat gttgaaacaa atttagtgta 720 caactgaaaa aaaaaaaaaa aaaaaaaaaa a 751<400> 8 caaagagcaa aagctaaagc cacaaccaag tccagtttag gaagaggcag agatggagtt 60 ccaagggcag cacgacaacc ccgccaaccg cgtcgacgag tacggcaacc cgttcccgct 120 ggccggcggc gtggggggag gacacgccgc tcctggcacc ggcgggcagt tacaggcccg 180 caggggagag cacaagaccg gtgggatcct gcatcgctcc ggcagctcca gctccagctc 240 gtcttccgag gacgacggca tgggcgggag gaggaagaag ggcatgaaag agaagatcaa 300 ggagaagctc cccggcggcc acaaggacaa ccagcagcac atggcgactg gtacagggac 360 tggaggagcc tacgggccgg ggactggaac tggtggagcc tacgggcagc aaggccacgc 420 aggaatggcc ggcgccggca ctggcaccgg cgagaagaag gggatcatgg acaagattaa 480 ggagaagctg ccgggacagc actgagccga cggctccggc tggccgcttc ctttgcatag 540 ctacacgcgt caatgccttc tagttccacg tgatcttttt gttcaataat aataagatga 600 agcagaacga aaacttgtct ctgatctcgt ctgtgtcagg gacacttttc tgtatacagc 660 gtgcgtcgtg tttgttatgt tttgtgtgtt gtgtcttcat gttgaaacaa atttagtgta 720 caactgaaaa aaaaaaaaaa aaaaaaaaaa a 751
<210> 9 <211> 150 <212> PRT <213> Triticum durum<210> 9 <211> 150 <212> PRT <213> Triticum durum
<400> 9<400> 9
Met Glu Phe Gin Gly Gin His Asp Asn Pro Ala Asn Arg Val Asp Glu 1 5 10 15Met Glu Phe Gin Gly Gin His Asp Asn Pro Ala Asn Arg Val Asp Glu 1 5 10 15
Tyr Gly Asn Pro Phe Pro Leu Ala Gly Gly Val Gly Gly Gly His Ala 20 25 30Tyr Gly Asn Pro Phe Pro Leu Ala Gly Gly Val Gly Gly Gly His Ala 20 25 30
Ala Pro Gly Thr Gly Gly Gin Leu Gin Ala Arg Arg Gly Glu His Lys 35 40 45Ala Pro Gly Thr Gly Gly Gin Leu Gin Ala Arg Arg Gly Glu His Lys 35 40 45
Thr Gly Gly Ile Leu His Arg Ser Gly Ser Ser Ser Ser Ser Ser Ser 50 55 60Thr Gly Gly Ile Leu His Arg Ser Gly Ser Ser Ser Ser Ser Ser Ser 50 55 60
Ser Glu Asp Asp Gly Met Gly Gly Arg Arg Lys Lys Gly Met Lys Glu 65 70 75 80Ser Glu Asp Asp Gly Met Gly Gly Arg Arg Lys Lys Gly Met Lys Glu 65 70 75 80
Lys Ile Lys Glu Lys Leu Pro Gly Gly His Lys Asp Asn Gin Gin His 85 90 95Lys Ile Lys Glu Lys Leu Pro Gly Gly His Lys Asp Asn Gin Gin His 85 90 95
Met Ala Thr Gly Thr Gly Thr Gly Gly Ala Tyr Gly Pro Gly Thr Gly 100 105 110Met Ala Thr Gly Thr Gly Thr Gly Gly Ala Tyr Gly Pro Gly Thr Gly 100 105 110
Thr Gly Gly Ala Tyr Gly Gin Gin Gly His Ala Gly Met Ala Gly Ala 115 120 125Thr Gly Gly Ala Tyr Gly Gin Gin Gly His Ala Gly Met Ala Gly Ala 115 120 125
Gly Thr Gly Thr Gly Glu Lys Lys Gly Ile Met Asp Lys Ile Lys Glu 130 135 140Gly Thr Gly Thr Gly Glu Lys Lys Gly Ile Met Asp Lys Ile Lys Glu 130 135 140
Lys Leu Pro Gly Gin His 145 150Lys Leu Pro Gly Gin His 145 150
<210> 10<210> 10
<211> 551<211> 551
<212> ADN<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 10 catcatcctc gacaccaaag ctcatcttct tctccttgaa atctttttgg gttcatcaga 60 tttggaggat gtcttgcaac tgtggatccg gttgcagctg cggctcagac tgcaagtgcg 120 ggaagatgta ccctgatctg acggagcagg gcagtgccgc ggcccaggtc gccgccgtgg 180 tcgtcctcgg cgtggcgcct gagaacaagg cggggcagtt cgaggtggcc gccggccagt 240 ccggcgaggg ctgcagctgc ggcgacaact gcaagtgcaa cccctgcaac tgttaagctg 300 catgcactcg tgtgatggtg tgagagtata cgtgaataac gagcgtccct ctgatctgat 360 ggagtcgagc aagggtgcgt gtgcgtgtgc gtgtggttta cttgctcgct ctccgcctat 420 gctctgccct tggtgtcctt gtgtgtatgt gtgtgcacgt gtccctgtaa ttgcttcatc 480 tatctccact atggatggag tgatgaatat gtaagaatga atgatttacc taaaaaaaaa 540 aaaaaaaaaa a 551<400> 10 catcatcctc gacaccaaag ctcatcttct tctccttgaa atctttttgg gttcatcaga 60 tttggaggat gtcttgcaac tgtggatccg gttgcagctg cggctcagac tgcaagtgcg 120 ggaagatgta ccctgatctg acggagcagg gcagtgccgc ggcccaggtc gccgccgtgg 180 tcgtcctcgg cgtggcgcct gagaacaagg cggggcagtt cgaggtggcc gccggccagt 240 ccggcgaggg ctgcagctgc ggcgacaact gcaagtgcaa cccctgcaac tgttaagctg 300 catgcactcg tgtgatggtg tgagagtata cgtgaataac gagcgtccct ctgatctgat 360 ggagtcgagc aagggtgcgt gtgcgtgtgc gtgtggttta cttgctcgct ctccgcctat 420 gctctgccct tggtgtcctt gtgtgtatgt gtgtgcacgt gtccctgtaa ttgcttcatc 480 tatctccact atggatggag tgatgaatat gtaagaatga atgatttacc taaaaaaaa 55a
<210> 11<210> 11
<211> 75<211> 75
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 11 Met Ser Cys Asn Cys Gly Ser Gly Cys Ser Cys Gly Ser Asp Cys Lys<400> 11 Met Ser Cys Asn Cys Gly Ser Gly Cys Ser Cys Gly Ser Asp Cys Lys
1 5 10 151 5 10 15
Cys Gly Lys Met Tyr Pro Asp Leu Thr Glu Gin Gly Ser Ala Ala Ala 20 25 30Cys Gly Lys Met Tyr Pro Asp Leu Thr Glu Gin Gly Ser Ala Ala Ala 20 25 30
Gin Val Ala Ala Val Val Val Leu Gly Val Ala Pro Glu Asn Lys Ala 35 40 45Gin Val Ala Ala Val Val Val Leu Gly Val Ala Pro Glu Asn Lys Ala 35 40 45
Gly Gin Phe Glu Val Ala Ala Gly Gin Ser Gly Glu Gly Cys Ser Cys 50 55 60Gly Gin Phe Glu Val Ala Ala Gly Gin Ser Gly Glu Gly Cys Ser Cys 50 55 60
Gly Asp Asn Cys Lys Cys Asn Pro Cys Asn Cys 65 70 75Gly Asp Asn Cys Lys Cys Asn Pro Cys Asn Cys 65 70 75
<210> 12<210> 12
<211> 591<211> 591
<212> ADN<212> DNA
<213> Triticum durum<213> Triticum durum
<400> 12 acatttccag caagcaagcc gaagcactag atcctcgatg gctcgcgtgg cactgctcgc 60 cgtgttcacc gtgctcgccg cactggcagt ggcggagatg gcgtctgggg cggtgacctg 120 cagcgacgtg acgtccgcca tcgcgccgtg catgtcctac gcaacggggc aagcgtcgtc 180 accctcggcg gggtgctgca gcggggtgag gaccctgaac ggcaaggcgt ccacctcggc 240 cgaccggcag gcggcgtgcc gctgcctcaa gaacctggcg gggtcgttca atggcatcag 300 catgggtaac gccgccaaca tccccggcaa gtgcggcgtc tccgtctctt tccccatcaa 360 caacagcgtc aactgcaaca accttcatta agttatctac gagcatcatc atcacaccag 420 gctagctagc ccactcggtg tctactgttg ctgctctctg cgtgtgttcg ttgttgtttt 480 ctgcatgtgt tccacctcca tctgttgtcc ttgttacaga tcgagcagat tactgatcga 540 atcatcaata aaataatgtg ttgagcggaa gtttttaaaa aaaaaaaaaa 591<400> 12 acatttccag caagcaagcc gaagcactag atcctcgatg gctcgcgtgg cactgctcgc 60 cgtgttcacc gtgctcgccg cactggcagt ggcggagatg gcgtctgggg cggtgacctg 120 cagcgacgtg acgtccgcca tcgcgccgtg catgtcctac gcaacggggc aagcgtcgtc 180 accctcggcg gggtgctgca gcggggtgag gaccctgaac ggcaaggcgt ccacctcggc 240 cgaccggcag gcggcgtgcc gctgcctcaa gaacctggcg gggtcgttca atggcatcag 300 catgggtaac gccgccaaca tccccggcaa gtgcggcgtc tccgtctctt tccccatcaa 360 caacagcgtc aactgcaaca accttcatta agttatctac gagcatcatc atcacaccag 420 gctagctagc ccactcggtg tctactgttg ctgctctctg cgtgtgttcg ttgttgtttt 480 ctgcatgtgt tccacctcca tctgttgtcc ttgttacaga tcgagcaatgggggggggggggg
<210> 13<210> 13
<211> 117<211> 117
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 13<400> 13
Met Ala Arg Val Ala Leu Leu Ala Val Phe Thr Val Leu Ala Ala Leu 1 5 10 15Met Ala Arg Val Ala Leu Leu Ala Val Phe Thr Val Leu Ala Ala Leu 1 5 10 15
Ala Val Ala Glu Met Ala Ser Gly Ala Val Thr Cys Ser Asp Val Thr 20 25 30Ala Val Ala Glu Met Ala Ser Gly Ala Val Thr Cys Ser Asp Val Thr 20 25 30
Ser Ala Ile Ala Pro Cys Met Ser Tyr Ala Thr Gly Gin Ala Ser Ser 35 40 45Ser Ala Ile Ala Pro Cys Met Ser Tyr Ala Thr Gly Gin Ala Ser Ser 35 40 45
Pro Ser Ala Gly Cys Cys Ser Gly Val Arg Thr Leu Asn Gly Lys Ala 50 55 60Pro Ser Ala Gly Cys Cys Ser Gly Val Arg Thr Leu Asn Gly Lys Ala 50 55 60
Ser Thr Ser Ala Asp Arg Gin Ala Ala Cys Arg Cys Leu Lys Asn Leu 65 70 75 80Ser Thr Ser Ala Asp Arg Gin Ala Ala Cys Arg Cys Leu Lys Asn Leu 65 70 75 80
Ala Gly Ser Phe Asn Gly Ile Ser Met Gly Asn Ala Ala Asn Ile Pro 85 90 95Ala Gly Ser Phe Asn Gly Ile Ser Met Gly Asn Ala Ala Asn Ile Pro 85 90 95
Gly Lys Cys Gly Val Ser Val Ser Phe Pro Ile Asn Asn Ser Val Asn 100 105 110 Cys Asn Asn Leu His 115Gly Lys Cys Gly Val Ser Val Ser Phe Pro Ile Asn Asn Ser Val Asn 100 105 110 Cys Asn Asn Leu His 115
<210> 14<210> 14
<211> 93<211> 93
<212> PRT<212> PRT
<213> Triticum durum<213> Triticum durum
<400> 14<400> 14
Ala Val Thr Cys Ser Asp Val Thr Ser Ala Ile Ala Pro Cys Met Ser 1 5 10 15Ala Val Thr Cys Ser Asp Val Thr Ser Ala Ile Ala Pro Cys Met Ser 1 5 10 15
Tyr Ala Thr Gly Gin Ala Ser Ser Pro Ser Ala Gly Cys Cys Ser Gly 20 25 30Tyr Ala Thr Gly Gin Ala Ser Ser Pro Ser Ala Gly Cys Cys Ser Gly 20 25 30
Val Arg Thr Leu Asn Gly Lys Ala Ser Thr Ser Ala Asp Arg Gin Ala 35 40 45Val Arg Thr Leu Asn Gly Lys Ala Ser Thr Ser Ala Asp Arg Gin Ala 35 40 45
Ala Cys Arg Cys Leu Lys Asn Leu Ala Gly Ser Phe Asn Gly Ile Ser 50 55 60Ala Cys Arg Cys Leu Lys Asn Leu Ala Gly Ser Phe Asn Gly Ile Ser 50 55 60
Met Gly Asn Ala Ala Asn Ile Pro Gly Lys Cys Gly Val Ser Val Ser 65 70 75 80Met Gly Asn Ala Ala Asn Ile Pro Gly Lys Cys Gly Val Ser Val Ser 65 70 75 80
Phe Pro Ile Asn Asn Ser Val Asn Cys Asn Asn Leu His 85 90 Phe Pro Ile Asn Asn Ser Val Asn Cys Asn Asn Leu His 85 90
EP01995796A 2000-12-27 2001-12-26 Yeasts transformed by genes enhancing their cold stress tolerance Withdrawn EP1346047A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0017104 2000-12-27
FR0017104A FR2818660B1 (en) 2000-12-27 2000-12-27 YEASTS TRANSFORMED BY GENES INCREASING COLD STRESS TOLERANCE
PCT/FR2001/004202 WO2002051978A2 (en) 2000-12-27 2001-12-26 Yeasts transformed by genes enhancing their cold stress tolerance

Publications (1)

Publication Number Publication Date
EP1346047A2 true EP1346047A2 (en) 2003-09-24

Family

ID=8858259

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01995796A Withdrawn EP1346047A2 (en) 2000-12-27 2001-12-26 Yeasts transformed by genes enhancing their cold stress tolerance

Country Status (5)

Country Link
US (1) US20040132191A1 (en)
EP (1) EP1346047A2 (en)
AU (1) AU2002226511A1 (en)
FR (1) FR2818660B1 (en)
WO (1) WO2002051978A2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1912677T3 (en) * 2005-06-20 2014-01-13 Psma Dev Company L L C PSMA antibody-drug conjugates
CN106011145B (en) * 2015-09-14 2019-07-05 中国科学院烟台海岸带研究所 A kind of adversity gene and its coding albumen and application from jerusalem artichoke

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995004754A1 (en) * 1993-08-04 1995-02-16 Zeneca Limited Antimicrobial proteins

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO02051978A2 *

Also Published As

Publication number Publication date
AU2002226511A1 (en) 2002-07-08
FR2818660A1 (en) 2002-06-28
FR2818660B1 (en) 2005-03-11
WO2002051978A2 (en) 2002-07-04
WO2002051978A3 (en) 2003-02-20
US20040132191A1 (en) 2004-07-08

Similar Documents

Publication Publication Date Title
EP2561064B1 (en) Cell suitable for fermentation of a mixed sugar composition
EP0487878B1 (en) Baker&#39;s yeast
Tanghe et al. Determinants of freeze tolerance in microorganisms, physiological importance, and biotechnological applications
US20040152066A1 (en) Freeze-tolerant eukaryotic cells
Bärenstrauch et al. Molecular crosstalk between the endophyte Paraconiothyrium variabile and the phytopathogen Fusarium oxysporum–Modulation of lipoxygenase activity and beauvericin production during the interaction
Yamada et al. Preferential accumulation of betaine uncoupled to choline monooxygenase in young leaves of sugar beet–importance of long-distance translocation of betaine under normal and salt-stressed conditions
AU2002302595A1 (en) Freeze-tolerant eukaryotic cells
CN113512550A (en) Tea tree CsHAC1 gene and protein and application thereof
EP0651784B1 (en) Yeast strains expressing a lactic lacticodeshydrogenase gene and vectors useful in producing said strains
Chen et al. Glycerol, trehalose and vacuoles had relations to pullulan synthesis and osmotic tolerance by the whole genome duplicated strain Aureobasidium melanogenum TN3-1 isolated from natural honey
Ying et al. A conidial protein (CP15) of Beauveria bassiana contributes to the conidial tolerance of the entomopathogenic fungus to thermal and oxidative stresses
WO2002051978A2 (en) Yeasts transformed by genes enhancing their cold stress tolerance
CN1930292B (en) Proteins imparting boron-tolerance and genes thereof
Diezemann et al. Functional characterization of the Frt1 sugar transporter and of fructose uptake in Kluyveromyces lactis
Janisiewicz et al. Improved biocontrol of fruit decay fungi with Pichia pastoris recombinant strains expressing Psd1 antifungal peptide
WO1996041888A1 (en) Yeast strains having a modified alcoholic sugar fermentation balance, uses thereof, and vectors for producing said strains
US8772000B2 (en) Transformant for enhancing bioethanol production, and method for producing ethanol by using said strain
CN113005129B (en) Application of HrpZ _ K gene in regulation of plant hypersensitive response and disease resistance and prevention and treatment of grape downy mildew and method
EP0967280B1 (en) Yeast strains with fil phenotype, stress resistant under conditions of growth and/or fermentation
Motlhalamme et al. Origin and Evolution of Yeasts
Tulha et al. Yeast, the man’s best friend
Pech-Canul et al. Torulaspora delbrueckii: Towards Innovating in the Legendary Baking and Brewing Industries
KR101605872B1 (en) Acetic Acid-Tolerant Yeast Strains
CA2416203C (en) Dna sequences coding for a polyol carrier and use thereof, in particular for preparing transgenic plants
Hernandez‐Lopez et al. Isolation and characterization of the gene URA3 encoding the orotidine‐5′‐phosphate decarboxylase from Torulaspora delbrueckii

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030714

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20041223

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20060701