EP1344086A1 - Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree - Google Patents

Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree

Info

Publication number
EP1344086A1
EP1344086A1 EP01270783A EP01270783A EP1344086A1 EP 1344086 A1 EP1344086 A1 EP 1344086A1 EP 01270783 A EP01270783 A EP 01270783A EP 01270783 A EP01270783 A EP 01270783A EP 1344086 A1 EP1344086 A1 EP 1344086A1
Authority
EP
European Patent Office
Prior art keywords
mixer
microwave
radar
radar according
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01270783A
Other languages
German (de)
English (en)
Inventor
Pascal Thales Intellectual Property CORNIC
Philippe Thales Intellectual Property LAVIEC
Bernard Thales Intellectual Property LIABEUF
Francisco Thales Intellectual Property MELERO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of EP1344086A1 publication Critical patent/EP1344086A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/28Details of pulse systems
    • G01S7/282Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9314Parking operations

Definitions

  • Broadband radar and modulator in particular for switching microwave waves over a very short time
  • the present invention relates to an ultra wideband radar. It also relates to a modulator, in particular for switching microwave waves over a very short duration. It applies in particular to aid in the parking of motor vehicles. More generally, it is applicable for all applications which require high-resolution radar detection at a distance at low cost.
  • Parking assistance typically requires detection ranges of the order of a few meters, two meters for example, and a resolution of a few centimeters, five to ten centimeters for example.
  • a known solution consists in using acoustic sensors. Several acoustic sensors are thus placed at the rear of the vehicle, four for example, and the distance from an obstacle is then conventionally determined by a triangularization method from the measurements produced by each of the sensors.
  • a first drawback is that an acoustic sensor does not work, or works very badly, if the wearer's movements are sudden or rapid, because of the turbulence produced.
  • Another drawback comes from the limited scope, which can prevent in particular a multifunctional use.
  • the acoustic sensors must always be mounted in an apparent manner so as to be directly opposite the obstacle to be detected. This results in a change in the exterior appearance of vehicles, often deemed undesirable by car manufacturers.
  • these sensors are subject to external degradation caused by weather conditions, rain for example, but also by acts of vandalism. In addition, they do not work in all weathers and are particularly disturbed by the impact of water drops on the sensor in the presence of rain.
  • Radar sensors make it possible to overcome all these drawbacks. However, a cost problem remains to be overcome, compatible with the use of mass consumption such as the automobile sector for example.
  • these radars pose interference problems with other microwave systems in service, such as GPS for example.
  • the radar must transmit by means of a carrier wave of sufficiently high frequency.
  • This carrier can for example have a frequency of the order of 24 Ghz or even being in the millimeter range.
  • the sensor must have a wide operating frequency band, in particular because of the short distance from the radar to the target, which is typically only one to two meters, and the discrimination power necessary for the intended application. It is then possible to carry out frequency or phase modulation over a very wide frequency band.
  • An object of the invention is to allow the realization of a broadband radar at very low cost.
  • the subject of the invention is a radar comprising a modulator modulating a microwave carrier wave, this modulator comprising:
  • the microwave wave enters on one input of the mixer and the modulation signal enters on the other input of the mixer, the output signal of the mixer being supplied to the radar transmission means.
  • the modulation signal may be impulse and of very short duration.
  • a local oscillator operating as a free oscillator, provides the microwave wave to be modulated.
  • the invention also relates to a microwave modulator, capable in particular of supplying pulses of very short duration economically.
  • the invention has in particular the other main advantages that it makes it possible to obtain a radar of very high level of integration, having moreover the possibility of being multifunctional.
  • a microwave switch or modulator according to the invention can carry out all types of modulation and can in particular modulate optical waves.
  • FIG. 1 illustrates by a block diagram a known embodiment, according to the prior art, of a pulse radar. It includes a local oscillator 1 providing the carrier wave. This carrier wave passes through a switch 2 before being transmitted by a transmitting antenna 3. When the switch 2 is open, no signal is transmitted. The duration of a transmitted pulse 4 is determined by the closing time of the switch. This pulse 4 modulates the carrier wave. Still in a conventional manner, the reception signals are received by a reception antenna 5. The received signal attacks the input of a microwave mixer 6, the other input of this mixer being attacked by a signal from the local oscillator via a coupler 7 to obtain a demodulated signal at the output of the mixer, where the carrier is suppressed.
  • Switch 2 is for example a PIN diode or an FET transistor. These components do not make it possible to obtain a pulse 4 of width less than about 10 nanoseconds, and are therefore far from allowing widths less than one nanosecond. Furthermore, at such pulse durations, the shape of the pulse is of very poor quality. It is far from being perfectly square and therefore does not pass the entire desired frequency band. In addition, the switching edges must be steep. However, too steep fronts disturb the local oscillator 1 upstream. A radar as illustrated in FIG. 1 can therefore only with difficulty operate over a wide frequency band and not economically.
  • FIG. 2 illustrates by a block diagram an exemplary embodiment of a radar according to the invention. It is for example a radar with modulation amplitude or phase.
  • the modulation pulse 4 is not produced by a switch, but by means of a microwave mixer 21 and a reference pulse 22.
  • the latter is for example supplied by a digital circuit 23.
  • Current digital circuits are indeed capable of providing very short pulses, less than a nanosecond in particular, for example of the order of 500 picoseconds.
  • the shape of the pulses supplied is for example square.
  • the radar also comprises at least one local oscillator 1, which functions as a free oscillator, that is to say an uncontrolled one. It also includes a transmitting antenna 3 and reception circuits 5, 6.
  • a first input of the mixer 21 receives the signal supplied by the oscillator 1.
  • the second input of this mixer receives the reference pulse 22.
  • the mixture of the latter with the carrier creates at the output of the mixer a signal modulated by a pulse which is the image of this reference pulse. That is to say that the modulation pulse 4 has a pulse width and rising and falling edges substantially identical to the width and to the edges of the reference pulse.
  • the mixer 21 can have a conventional structure. It can in particular be produced on the basis of diodes or microwave transistors. Given the frequencies involved, it may be necessary to provide an adaptation of the line 24 between the circuit 23 for generating the reference pulse 22 and the mixer 21 to allow in particular the passage of the entire frequency band. In particular, it is preferable that this line 24 is as short as possible.
  • the mixer and the pulse generation circuit 23 are produced on the same chip, the same integrated circuit, for example of the MMIC type.
  • the signal at the output of the mixer 21 is amplified on transmission by amplification means 25 before attacking the transmission antenna 3.
  • the power transmitted is for example of the order of 10 mW, even lower .
  • the reception can for example be done as in the case of the radar of FIG. 1, that is to say with a reception antenna 5 connected to an input of a mixer 6 whose other input receives the carrier wave supplied by the local oscillator 1 via a coupler 7.
  • This mixer 6 then supplies as output a demodulated signal, image of the pulse emitted and intended for the processing circuits.
  • FIGS. 3a and 3b illustrate examples of modulation codes used by a radar according to the invention. It is possible to provide a single pulse transmission, transmitted periodically. However, there may be interference or compatibility issues with other microwave systems in the radar environment. To overcome these problems, the radar according to the invention works, for example, on several pulses during each recurrence period, and in particular on a large number of pulses.
  • Figures 3a and 3b illustrate two examples of sequences of pulses used. These sequences are for example pseudo-random, for example according to a Barker code.
  • FIG. 3a presents a code varying between 0 and 1.
  • this code comprises a series of elementary moments taking the value 0 or 1, the duration of an elementary moment being for example equal to 1ns, or less, for example 500ps .
  • the output of the latter does not provide any signal.
  • the output of the mixer supplies the product of the carrier by a constant signal, of infinite bandwidth, therefore equal to the carrier.
  • the radar does not emit, the signal being zero at the output of the mixer 21.
  • Figure 3b presents a code varying between -1 and +1, more precisely taking the values -1 or +1.
  • the control of the mixer 21 is offset from the level 0 of the code 0-1 in FIG. 3a.
  • the carrier is multiplied by -1, which corresponds to undergoing an offset of ⁇ .
  • the carrier is multiplied by 1. In these cases, there is continuous transmission and the average value of the signal transmitted is zero. This can bring an advantage.
  • FIG. 4 indeed shows a correlation result with secondary lobes 41 which are approximately 50 dB lower than the correlation peaks 42, and this regardless of the relative position of the sequences of pulses, whether or not there is overlap.
  • the code can be a looped polynomial whose periodicity is greater than the round-trip propagation time for a target of maximum range, which in particular avoids ambiguity problems.
  • the code used comprises for example 32,768 moments. If we suppose a continuous emission where each moment lasts a nanosecond, 1 ns, by taking the value -1 or 1 in a pseudo-random way, the total duration of the complete emission of the code is 32768 times 1 ns, that is to say approximately 32 ⁇ s , which corresponds to the repetition frequency.
  • the ambiguity distance here is of the order of 4.9 km, very largely sufficient for the applications in question, which have a maximum range of a few meters to a few tens of meters.
  • a long code makes it possible to work at lower peak power, which brings a better output and can also make it possible to save the amplification of the transmitted power. This makes it possible, for example, to save the amplifier 25 at the output of the mixer 21.
  • FIG. 5 shows an embodiment comprising two reception mixers 61, 62.
  • a circuit 63 placed on the input channel of one of the two mixers 61 dephases by ⁇ / 2 the signal coming from the oscillator 1.
  • the signal reception drives each of these two mixers, their outputs are connected to the processing circuits.
  • a mixer I, Q is thus obtained.
  • This embodiment is particularly suitable for coding the pulses transmitted according to FIG. 3b, that is to say varying between -1 and +1.
  • the modulation mixer 21 is off-center with respect to level 0 as indicated above.
  • the control of the receiving mixer 6 must also be shifted. There is then the risk of the presence of uncontrolled microwave leaks. Using two mixers can help prevent these leaks.
  • FIG. 6 shows an embodiment of a radar according to the invention in which the circuit 23 which generates the modulation pulses also comprises the circuits for processing the reception signals after demodulation, that is to say the code received .
  • the output of the mixer 6, or the outputs of the mixers 61, 62 are connected to the input of this circuit 23.
  • the circuit 23 is therefore a digital modulation and correlation circuit which generates coded pulses 22 intended for the mixer of modulation 21 on transmission and which includes the processing circuits, in particular for the detection of a target.
  • FIG. 7 presents, by a block diagram, the functions of the modulation and correlation circuit 23.
  • This circuit therefore generates the code pulses 22 in a conventional manner, for example by means of a shift register. These pulses are directed at output S to supply the mixer 21 on transmission and to supply an internal circuit 71 which is for example a programmable delay line. The output of this delay line is connected to the input of a multiplier 72 which multiplies the code shifted by the code received, supplied by the mixers 61, 62. The multiplier 72 multiplies these binary values with each other.
  • the result of the multiplication is integrated by integration means 73. The latter sum the bits of the multiplication result.
  • the integration means add this bit to the previous ones.
  • the output of the integration means is connected to the input of a comparator 74 to be compared to a threshold.
  • the result of the comparison defines the correlation between the code received and the code shifted, that is to say determines the presence or not of the target in the monitored distance box.
  • the delay made by the delay line 71 on the transmitted code corresponds to this given distance box. If the result of the integration is greater than the threshold, the circuit 23 deduces therefrom the presence of the target in the distance box.
  • the radar according to the invention does not examine all the distance boxes simultaneously. For example, if we consider a maximum range of two meters for a distance resolution of 10 cm, or 20 distance boxes, examining the 20 distance boxes requires performing 20 correlations like the one described above. Due to the short range, all distance boxes are not monitored simultaneously but periodically.
  • the radar starts for example by treating the 20 th range bin and the 19 th and so on. When a target is detected in a distance box, the radar tracks this target.
  • a processor not shown, integrated in the modulation and correlation circuit 23, processes the results of the comparison, and also manages the order of processing of the distance boxes, in particular by programming the delays effected by the delay line.
  • FIG. 6 shows a radar comprising, in addition to the antennas 3, 5, four components in integrated circuit.
  • a first component is the local oscillator 1.
  • a second component 100 contains the modulation mixer 21 and for example the transmission amplifier 25.
  • a third component 101 comprises the two mixer (s) 61, 62 as well as for example that amplifier 26.
  • a fourth component is the modulation and correlation circuit 23.
  • the latter is for example in technology known under the name of ECL Fast or in technology known under the name of BICMOS.
  • the other components are, for example, in Asga (Gallium Arsenide) technology.
  • Asga Gallium Arsenide
  • the antennas 3, 5 are for example made up of printed networks of the patch or "patch" type.
  • these antennas are not very directive and can therefore radiate over a wide space.
  • the antennas can also, for example, be of the resonant dipole type.
  • a radar according to FIG. 6 is very compact and compact. Furthermore, it can be produced at very low cost and in particular in large series. Indeed, the components used are economical. In particular, they can be produced at very low cost in the form of specific integrated circuits of the ASIC type.
  • the modulation pulses 4 can be very narrow, less than 1 ns, or even reach 500 ps or less. Thus a pulse radar according to the invention can work up to frequency bands which reach 2 GHz.
  • a radar according to the invention can also do Doppler detection.
  • Other types of modulation than pulses can also be produced, thanks to the mixer 21 placed in the transmission circuit, coupled to the circuit 23 generating modulation signals.
  • a microwave switch as produced by the association of the mixer 21 and the circuit 23, as a pulse generator 22, can of course be used for radar applications, but also for applications involving optical waves.
  • this switch can modulate optical waves, associated with opto-electronic coupling means.
  • opto-electronic component At the input, the component ensures a transition from the optics to the microwave, and the output component does the opposite.
  • the other input of the mixer is of course always coupled to the output of the means 23 for generating pulses 22.
  • These same means can supply other modulation signals than pulse signals.
  • the switch then functions as a modulator which can carry out all types of modulations.
  • the means 23 for generating pulses or modulation signals can be integrated in the same circuit, for example of the MMIC type.
  • a radar according to the invention can be applied for all fields requiring a very large operating frequency band. It is very economical and has a very high level of integration. It also has the possibility of being multifunctional. Finally, the microwave switch or modulator that it uses can carry out all types of modulations and can in particular modulate optical waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

La présente invention concerne un radar ultra large bande. Elle concerne également un modulateur, notamment pour commuter des ondes hyperfréquence sur une très courte durée. Le radar comporte un modulateur modulant une onde porteuse hyperfréquence, ce modulateur comportant: -un mélangeur hyperfréquence (21) -des moyens pour générer un signal de modulation (23). L'onde hyperfréquence entre sur une entrée du mélangeur et le signal de modulation (22) sur l'autre entrée du mélangeur, le signal de sortie du mélangeur étant fourni aux moyens d'émission du radar. Avantageusement, le signal de modulation peut-être impulsionnel et de très courte durée. Un oscillateur local (1), fonctionnant en oscillateur libre, fournit l'onde hyperfréquence à moduler. L'invention s'applique en particulier pour l'aide au parking des véhicules automobiles. Plus généralement, elle s'applique pour toutes les applications qui nécessitent une détection radar à haute résolution en distance à faible coût.

Description

Radar large bande et modulateur, notamment pour commuter des ondes hyperfréquence sur une très courte durée
La présente invention concerne un radar ultra large bande. Elle concerne également un modulateur, notamment pour commuter des ondes hyperfréquence sur une très courte durée. Elle s'applique en particulier pour l'aide au parking des véhicules automobiles. Plus généralement, elle s'applique pour toutes les applications qui nécessitent une détection radar à haute résolution en distance à faible coût.
Les besoins croissants de sécurité et de confort exprimés par les automobilistes entraînent une augmentation des équipements automobiles, notamment des capteurs de toutes sortes. Un besoin particulier est l'aide au parking. On sait que garer un véhicule n'est pas sans risques matériels et corporels. Une mauvaise appréciation des distances à un obstacle arrière, un mur ou un autre véhicule, peut causer un choc et donc des dégâts matériels tels que par exemple un feu arrière cassé ou un pare-chocs endommagé. Le coût des réparations, non négligeables même lorsque les dégâts matériels sont mineurs, peut rendre rentable une aide à la détection des obstacles. A côté de ces risques matériels, il existe des risques corporels certains, en particulier pour les piétons circulant au voisinage d'un véhicule en train de se garer. On pense notamment à un enfant qui sortirait ainsi du champ de vision du conducteur.
L'aide au parking nécessite typiquement des portées de détection de l'ordre de quelques mètres, deux mètres par exemple, et une résolution de quelques centimètres, cinq à dix centimètres par exemple. Une solution connue consiste à utiliser des capteurs acoustiques. Plusieurs capteurs acoustiques sont ainsi disposés à l'arrière du véhicule, quatre par exemple, et la distance par rapport à un obstacle est alors déterminée classiquement par une méthode de triangularisation à partir des mesures produites par chacun des capteurs.
Les capteurs acoustiques présentent cependant plusieurs inconvénients. Un premier inconvénient est qu'un capteur acoustique ne fonctionne pas, ou fonctionne très mal, si les mouvements du porteur sont brusques ou rapides, à cause des turbulences produites. Un autre inconvénient provient de la portée limitée, ce qui peut empêcher notamment un usage multifonctions. Par ailleurs pour détecter correctement, les capteurs acoustiques doivent toujours être montés de façon apparente pour être directement en regard de l'obstacle à détecter. Ceci a pour conséquence une modification de l'aspect extérieur des véhicules, souvent jugée indésirable par les constructeurs automobiles. D'autre part, ces capteurs sont soumis aux dégradations extérieures provoquées par les conditions météorologiques, pluies par exemple, mais aussi par les actes de vandalisme. De plus, ils ne fonctionnent pas par tous temps et sont en particulier perturbés par l'impact des gouttes d'eau sur le capteur en présence de pluie.
Des capteurs radar permettent de s'affranchir de tous ces inconvénients. Il reste néanmoins à surmonter un problème de coût, compatible d'une utilisation de grande consommation comme le domaine de l'automobile par exemple. On connaît des radars sans porteuse économiques. Cependant, ces radars posent des problèmes d'interférence avec d'autres systèmes hyperfréquence en service, tels que le GPS par exemple. Pour éviter ces interférences, il faut que le radar émette au moyen d'une onde porteuse de fréquence suffisamment haute. Cette porteuse peut par exemple avoir une fréquence de l'ordre de 24 Ghz ou encore se situant dans le domaine millimétrique. En particulier, le capteur doit présenter une large bande de fréquence de fonctionnement à cause notamment de la faible distance du radar à la cible qui est typiquement de un à deux mètres seulement, et du pouvoir de discrimination nécessaire pour l'application envisagée. On peut alors réaliser une modulation de fréquence ou de phase sur une bande de fréquence très large. Cette solution est néanmoins coûteuse à mettre en œuvre à cause notamment des problèmes de stabilisation et de linéarité de l'oscillateur local. En effet, aux très hautes fréquences, la stabilité de l'oscillateur ne peut être maintenue que par une boucle de stabilisation complexe à mettre en œuvre. Une autre solution consiste alors à émettre des impulsions de très faible largeur de telle sorte qu'elles présentent une durée inférieure au parcours du trajet aller-retour à la cible la plus proche et que deux cibles très proches soient séparées. A cet effet, ces impulsions doivent présenter une largeur inférieure à une nanoseconde, de l'ordre de 500 picosecondes par exemple. De telles impulsions sont très difficiles à réaliser, du moins de façon économique.
Un but de l'invention est de permettre la réalisation d'un radar à large bande à très faible coût. A cet effet, l'invention a pour objet un radar comprenant un modulateur modulant une onde porteuse hyperfréquence, ce modulateur comportant :
- un mélangeur hyperfréquence ; - des moyens pour générer un signal de modulation.
L'onde hyperfréquence entre sur une entrée du mélangeur et le signal de modulation entre sur l'autre entrée du mélangeur, le signal de sortie du mélangeur étant fourni aux moyens d'émission du radar.
Avantageusement, le signal de modulation peut-être impulsionnel et de très courte durée. Un oscillateur local, fonctionnant en oscillateur libre, fournit l'onde hyperfréquence à moduler.
L'invention a également pour objet un modulateur hyperfréquence, capable notamment de fournir des impulsions de très courtes durées de façon économique.
L'invention a notamment pour autres principaux avantages qu'elle permet d'obtenir un radar de très haut niveau d'intégration, ayant de plus la possibilité d'être multifonctions. Enfin, un commutateur ou modulateur hyperfréquence selon l'invention peut réaliser tous types de modulation et peut notamment moduler des ondes optiques.
D'autres caractéristiques et avantages de l'invention apparaîtront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent : - la figure 1 , une illustration d'un radar à impulsions selon l'art antérieur ;
- la figure 2, par un synoptique un premier exemple de réalisation d'un radar selon l'invention ;
- les figures 3a et 3b, deux exemples de codes de modulation utilisés par un radar selon l'invention ; - la figure 4, un exemple de résultat de corrélation obtenu avec un code de modulation variant entre -1 et +1 ;
- la figure 5, un exemple de réalisation d'un radar selon l'invention comportant un double mélangeur hyperfréquence en réception ; - la figure 6, un exemple de réalisation d'un radar selon l'invention où un même circuit numérique fournit les codes de modulation et traite les signaux de réception ;
- la figure 7, une illustration synoptique du circuit numérique précité.
La figure 1 illustre par un synoptique un mode de réalisation connu, selon l'art antérieur, d'un radar à impulsions. Il comporte un oscillateur local 1 fournissant l'onde porteuse. Cette onde porteuse passe dans un commutateur 2 avant d'être émise par une antenne d'émission 3. Lorsque le commutateur 2 est ouvert, aucun signal n'est émis. La durée d'une impulsion émise 4 est déterminée par le temps de fermeture du commutateur. Cette impulsion 4 module l'onde porteuse. Toujours de façon classique, les signaux de réception sont reçus par une antenne de réception 5. Le signal reçu attaque l'entrée d'un mélangeur hyperfréquence 6, l'autre entrée de ce mélangeur étant attaquée par un signal issu de l'oscillateur local via un coupleur 7 pour obtenir en sortie du mélangeur un signal démodulé, où la porteuse est supprimée. On obtient ainsi un signal image de l'impulsion émise, ou de la suite d'impulsions émises par suite de son trajet aller-retour à la cible. Le commutateur 2 est par exemple une diode PIN ou un transistor FET. Ces composants ne permettent pas d'obtenir une impulsion 4 de largeur inférieure à environ 10 nanosecondes, et sont donc loin de permettre des largeurs inférieures à une nanoseconde. Par ailleurs, à de telles durées d'impulsions, la forme de l'impulsion est de très médiocre qualité. Elle est loin d'être parfaitement carrée et ne passe donc pas toute la bande de fréquence voulue. De plus, les fronts de commutation doivent impérativement être raides. Or, des fronts trop raides perturbent en amont l'oscillateur local 1. Un radar tel qu'illustré par la figure 1 ne peut donc que difficilement fonctionner sur une large bande de fréquences et pas de façon économique.
La figure 2 illustre par un synoptique un exemple de réalisation d'un radar selon l'invention. Il s'agit par exemple d'un radar à modulation d'amplitude ou de phase. L'impulsion de modulation 4 n'est pas réalisée par un interrupteur, mais au moyen d'un mélangeur hyperfréquence 21 et d'une impulsion de référence 22. Cette dernière est par exemple fournie par un circuit numérique 23. Les circuits numériques actuels sont en effet capables de fournir des impulsions très courtes, inférieures à une nanoseconde notamment, par exemple de l'ordre de 500 picosecondes. La forme des impulsions fournies est par exemple carrée. Le radar comporte par ailleurs au moins un oscillateur local 1 , qui fonctionne en oscillateur libre, c'est-à-dire non commandé. Il comporte aussi une antenne d'émission 3 et des circuits de réception 5, 6. Une première entrée du mélangeur 21 reçoit le signal fourni par l'oscillateur 1. La deuxième entrée de ce mélangeur reçoit l'impulsion de référence 22. Le mélange de cette dernière avec la porteuse crée en sortie du mélangeur un signal modulé par une impulsion qui est l'image de cette impulsion de référence. C'est-à-dire que l'impulsion de modulation 4 a une largeur d'impulsion et des fronts de montée et de descente sensiblement identiques à la largeur et aux fronts de l'impulsion de référence. Le mélangeur 21 peut avoir une structure classique. Il peut notamment être réalisé à base de diodes ou de transistors hyperfréquence. Etant données les fréquences en jeu, il peut être nécessaire de prévoir une adaptation de la ligne 24 comprise entre le circuit 23 de génération de l'impulsion de référence 22 et le mélangeur 21 pour permettre notamment le passage de toute la bande de fréquence. En particulier, il est préférable que cette ligne 24 soit la plus courte possible. Idéalement, le mélangeur et le circuit de génération d'impulsions 23 sont réalisés sur une même puce, un même circuit intégré, par exemple du type MMIC. Si nécessaire, le signal en sortie du mélangeur 21 est amplifié à l'émission par des moyens d'amplification 25 avant d'attaquer l'antenne d'émission 3. La puissance émise est par exemple de l'ordre de 10mW, même inférieure. La réception peut par exemple se faire comme dans le cas du radar de la figure 1 , c'est-à- dire avec une antenne de réception 5 reliée à une entrée d'un mélangeur 6 dont l'autre entrée reçoit l'onde porteuse fournie par l'oscillateur local 1 via un coupleur 7. Ce mélangeur 6 fournit alors en sortie un signal démodulé, image de l'impulsion émise et destinée aux circuits de traitement. Un amplificateur 26 est par exemple placé entre l'antenne de réception 5 et le mélangeur 6 pour amplifier le signal reçu. Les figures 3a et 3b illustrent des exemples de codes de modulation utilisés par un radar selon l'invention. Il est possible de prévoir une émission à une seule impulsion, émise périodiquement. Cependant, il peut y avoir des problèmes d'interférence ou de compatibilité avec d'autres systèmes hyperfréquence présents dans l'environnement du radar. Pour pallier ces problèmes, le radar selon l'invention travaille par exemple sur plusieurs impulsions à chaque période de récurrence, et notamment sur un grand nombre d'impulsions. Les figures 3a et 3b illustrent deux exemples de suites d'impulsions utilisées. Ces suites sont par exemple pseudo-aléatoires, selon par exemple un code de Barker. La figure 3a présente un code variant entre 0 et 1. Plus particulièrement, ce code comporte une suite de moments élémentaires prenant la valeur 0 ou 1, la durée d'un moment élémentaire étant par exemple égale à 1ns, ou moins, par exemple 500ps. Ce qui revient à multiplier la porteuse, fournie par l'oscillateur local, successivement par 0 et par 1 selon le code. Lorsque la tension de l'impulsion de référence 22 est nulle en entrée du mélangeur 21, correspondant au bas 31 de la suite d'impulsions, la sortie de ce dernier ne fournit aucun signal. Lorsque la tension est non nulle, correspondant à un haut 32 de la suite d'impulsions, la sortie du mélangeur fournit le produit de la porteuse par un signal constant, de largeur de bande infinie, donc égal à la porteuse. Ainsi, lorsqu'une impulsion de la suite est à 0, le radar n'émet pas, le signal étant nul en sortie du mélangeur 21. Lorsque le signal est à 1, le radar émet le signal fourni par l'oscillateur local, éventuellement amplifié. La figure 3b présente un code variant entre -1 et +1, plus précisément prenant les valeurs -1 ou +1. A cet effet, on décentre la commande du mélangeur 21 par rapport au niveau 0 du code 0-1 de la figure 3a. De la sorte, lorsque la tension de la suite d'impulsions, à l'entrée du mélangeur 21 , est au niveau bas 33, la porteuse est multipliée par -1 , ce qui correspond à subir un décalage de π. Lorsque la tension est au niveau haut 34, la porteuse est multipliée par 1. Dans ces cas, il y a émission continue et la valeur moyenne du signal émis est nulle. Cela peut apporter un avantage. En effet, en cas de chevauchement des suites d'impulsions émises, typiquement une deuxième suite pseudo-aléatoire est émise avant la fin de l'émission de la suite précédente. A la réception, ce chevauchement donne un résultat de corrélation non nul, et par conséquent des niveaux de lobes secondaires importants de chaque côté du pic de corrélation. Avec une valeur moyenne nulle de signal émis, il est alors toujours possible de définir un code tel que quelle que soit la position d'une suite d'impulsions par rapport à la précédente, le résultat de corrélation lié au chevauchement soit proche de zéro, et par conséquent les lobes secondaires très faibles par rapport au pic de corrélation comme l'illustre par exemple la figure 4.
La figure 4 montre en effet un résultat de corrélation avec des lobes secondaires 41 inférieurs d'environ 50 dB par rapport aux pics de corrélation 42, et cela quelle que soit la position relative des suites d'impulsions, qu'il y ait ou non chevauchement. Par ailleurs, le code peut être un polynôme rebouclé dont la périodicité est supérieure au temps de propagation aller-retour pour une cible de portée maximale, ce qui évite notamment les problèmes d'ambiguïté. Ainsi, le code utilisé comporte par exemple 32768 moments. Si on suppose une émission continue où chaque moment dure une nanoseconde, 1 ns, en prenant la valeur -1 ou 1 de façon pseudo-aléatoire, la durée totale de l'émission complet du code est 32768 fois 1 ns, soit environ 32 μs, ce qui correspond à la fréquence de répétition. Etant donné qu'une microseconde correspond à environ 150 mètres en distance, il en résulte que la distance d'ambiguïté est ici de l'ordre de 4,9 km, très largement suffisant pour les applications en cause, qui ont une portée maximum de quelques mètres à quelques dizaines de mètres. Outre l'intérêt propre à l'ambiguïté, un code long permet de travailler à puissance crête plus faible, ce qui apporte un meilleur rendement et peut aussi permettre de faire l'économie de l'amplification de la puissance émise. Cela permet par exemple d'économiser l'amplificateur 25 à la sortie du mélangeur 21.
La figure 5 présente un mode de réalisation comportant deux mélangeurs de réception 61 , 62. Un circuit 63 placé sur la voie d'entrée d'un des deux mélangeurs 61 déphase de π/2 le signal provenant de l'oscillateur 1. Le signal de réception attaque chacun de ces deux mélangeurs, leurs sorties sont reliés aux circuits de traitement. Un mélangeur I, Q est ainsi obtenu. Ce mode de réalisation est particulièrement adapté pour un codage des impulsions émises selon la figure 3b, c'est-à-dire variant entre -1 et +1. En effet, dans ce cas le mélangeur de modulation 21 est décentré par rapport au niveau 0 comme cela a été indiqué précédemment. En particulier, la commande du mélangeur de réception 6 doit aussi être décalée. Il y a alors le risque de la présence de fuites hyperfréquence non maîtrisées. L'utilisation de deux mélangeurs peut permettre d'éviter ces fuites.
La figure 6 présente un mode de réalisation d'un radar selon l'invention où le circuit 23 qui génère les impulsions de modulation comporte par ailleurs les circuits de traitement des signaux de réception après démodulation, c'est-à-dire du code reçu. Dans ce cas, la sortie du mélangeur 6, ou les sorties des mélangeurs 61, 62 sont connectées en entrée de ce circuit 23. Le circuit 23 est donc un circuit numérique de modulation et de corrélation qui génère des impulsions codées 22 destinées au mélangeur de modulation 21 à l'émission et qui comporte les circuits de traitement, notamment pour la détection d'une cible.
La figure 7 présente par un synoptique les fonctions du circuit de modulation et de corrélation 23. Ce circuit génère donc les impulsions de code 22 de façon classique, par exemple au moyen d'un registre à décalage. Ces impulsions sont dirigées en sortie S pour alimenter le mélangeur 21 à l'émission et pour alimenter un circuit interne 71 qui est par exemple une ligne à retard programmable. La sortie de cette ligne à retard est connectée à l'entrée d'un multiplieur 72 qui multiplie le code décalé par le code reçu, fourni par les mélangeurs 61 , 62. Le multiplieur 72 multiplie entre elles ces valeurs binaires. Le résultat de la multiplication est intégré par des moyens d'intégration 73. Ces derniers somment les bits du résultat de multiplication. En d'autres termes, si un 1 ou un -1 du code reçu tombe en coïncidence respectivement avec un 1 ou un -1 du code décalé, fourni par la ligne à retard, les moyens d'intégration somment ce bit aux précédents. La sortie des moyens d'intégration est reliée à l'entrée d'un comparateur 74 pour être comparée à un seuil. Le résultat de la comparaison définit la corrélation entre le code reçu et le code décalé, c'est-à-dire détermine la présence ou non de la cible dans la case distance surveillée. Le retard opéré par la ligne à retard 71 sur le code émis correspond à cette case distance donnée. Si le résultat de l'intégration est supérieur au seuil, le circuit 23 en déduit la présence de la cible dans la case distance.
Avantageusement, le radar selon l'invention n'examine pas toutes les cases distance simultanément. A titre d'exemple, si on considère une portée maximale de deux mètres pour une résolution en distance de 10 cm, soit 20 cases distance, l'examen des 20 cases distance impose d'effectuer 20 corrélations comme celle décrite précédemment. En raison de la courte portée, toutes les cases distances ne sont pas surveillées simultanément mais de façon périodique. Le radar commence par exemple par traiter la 20ème case distance, puis la 19ème et ainsi de suite. Lorsqu'une cible est détectée dans une case distance, le radar piste cette cible. Un processeur non représenté, intégré dans le circuit de modulation et de corrélation 23, traite les résultats de la comparaison, et gère par ailleurs l'ordre de traitement des cases distance, notamment par la programmation des retards effectués par la ligne à retard.
La figure 6 montre un radar comportant, outre les antennes 3, 5, quatre composants en circuit intégré. Un premier composant est l'oscillateur local 1. Un deuxième composant 100 contient le mélangeur de modulation 21 et par exemple l'amplificateur d'émission 25. Un troisième composant 101 comporte le ou les deux mélangeurs 61 , 62 de réception ainsi par exemple que l'amplificateur 26. Un quatrième composant est le circuit de modulation et de corrélation 23. Ce dernier est par exemple en technologie connue sous le nom d'ECL Fast ou encore en technologie connue sous le nom de BICMOS. Les autres composants sont par exemple en technologie Asga (Arséniure de Gallium). L'exemple de la figure 6 présente un mode de réalisation où les fonctions essentielles du radar sont réparties sur quatre composants, en dehors des antennes. Il est possible de prévoir de disposer toutes ces fonctions dans deux composants, notamment avec un composant comportant l'oscillateur 1 , les mélangeurs 21 , 61, 62 et les amplificateurs, le coupleur 7 étant réalisé en fait classiquement par le couplage de deux lignes hyperfréquence. Si les technologies sont compatibles, il est encore possible d'intégrer toutes les fonctions, y compris le circuit de modulation et de corrélation 23 sur un même composant. Les antennes 3, 5 sont par exemple constituées de réseaux imprimés du type pastille ou "patch". Avantageusement, ces antennes sont très peu directives et peuvent donc rayonner sur un espace large. Les antennes peuvent aussi par exemple être du type à dipôles résonnant.
Un radar selon la figure 6 est très compact et peu encombrant. Par ailleurs, il peut être réalisé à très faible coût et notamment en grande série. En effet, les composants utilisés sont économiques. En particulier, ils peuvent être réalisés à très bas coût sous forme de circuits intégrés spécifiques de type ASIC. Les impulsions de modulation 4 peuvent être de très faible largeur, inférieure à 1 ns, voire atteindre 500 ps ou moins. Ainsi un radar à impulsions selon l'invention peut travailler jusqu'à des bandes de fréquences qui atteignent 2 GHz.
D'autres fonctions peuvent aussi être effectuées par ces mêmes circuits. En particulier, un radar selon l'invention peut aussi faire de la détection Doppler. D'autres types de modulation que des impulsions peuvent par ailleurs être produites, grâce au mélangeur 21 disposé dans le circuit d'émission, couplé au circuit 23 générant des signaux de modulation.
Un commutateur hyperfréquence tel que réalisé par l'association du mélangeur 21 et du circuit 23, en tant que générateur d'impulsions 22, peut bien sûr être utilisé pour des applications radars, mais aussi pour des applications faisant intervenir des ondes optiques. En particulier ce commutateur peut moduler des ondes optiques, associé à des moyens de couplage opto-électronique. Dans ce cas, il suffit de placer en entrée et en sortie du mélangeur 21 un composant opto-électronique. En entrée, le composant assure une transition de l'optique vers Phyperfréquence, et le composant de sortie fait l'inverse. L'autre entrée du mélangeur est bien entendu toujours couplée à la sortie des moyens 23 de génération d'impulsions 22. Ces mêmes moyens peuvent fournir d'autres signaux de modulations que des signaux impulsionnels. De cette façon, le commutateur fonctionne alors comme un modulateur pouvant réaliser tous types de modulations. Avantageusement, les moyens 23 de génération d'impulsions ou de signaux de modulation peuvent être intégrés dans un même circuit, par exemple du type MMIC.
Un radar selon l'invention peut s'appliquer pour tous domaines nécessitant une très grande bande de fréquences de fonctionnement. Il est très économique et présente un très haut niveau d'intégration. Il a par ailleurs la possibilité d'être multifonctions. Enfin, le commutateur ou modulateur hyperfréquence qu'il utilise peut réaliser tous types de modulations et peut notamment moduler des ondes optiques.

Claims

REVENDICATIONS
1. Radar comprenant un modulateur modulant une onde porteuse hyperfréquence, ce modulateur comportant :
- un mélangeur hyperfréquence (21) ;
- des moyens (23) pour générer un signal de modulation (22) ; l'onde hyperfréquence entrant sur une entrée du mélangeur (21) et le signal de modulation (22) entrant sur l'autre entrée du mélangeur, le signal de sortie du mélangeur étant fourni aux moyens d'émission (25, 3) du radar.
2. Radar selon la revendication 1 , caractérisé en ce que le signal de modulation (22) est impulsionnel.
3. Radar selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un oscillateur local (1), fonctionnant en oscillateur libre, fournissant l'onde hyperfréquence à moduler.
4. Radar selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une antenne d'émission (3) est reliée à la sortie du mélangeur (21).
5. Radar selon la revendication 4, caractérisé en ce que l'antenne (3) est reliée au mélangeur (21) via des moyens d'amplification (25).
6. Radar selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte une antenne de réception (5) reliée à l'entrée d'au moins un mélangeur hyperfréquence (6, 61, 62) dont l'autre entrée reçoit l'onde porteuse, le signal démodulé obtenu en sortie du mélangeur étant destiné aux circuits de traitement (23, 72, 73, 74).
7. Radar selon la revendication 6, caractérisé en ce qu'il comporte un double mélangeur en réception (61 , 62), un circuit (63) placé sur la voie d'entrée d'un des deux mélangeurs déphasant de π/2 l'onde porteuse (1 ).
8. Radar selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (23) pour générer un signal de modulation, fournissent plusieurs impulsions par période de récurrence.
9. Radar selon la revendication 8, caractérisé en ce que les moyens (23) fournissent un code pseudo-aléatoire.
10. Radar selon la revendication 9, caractérisé en ce que les moyens (23) fournissent un code prenant les valeurs -1 ou +1.
11. Radar selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le code est un polynôme dont la périodicité est supérieure au temps de propagation aller-retour à une cible de portée maximale.
12. Radar selon l'une quelconque des revendications précédentes, caractérisé en ce que les moyens (23) pour générer les impulsions sont un circuit numérique comportant par ailleurs les circuits de traitement (71 , 72, 73, 74) des signaux de réception.
13. Radar selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il traite les cases distance de façon périodique.
14. Radar selon l'une quelconques des revendications précédentes, caractérisé en ce que les antennes (3, 5) sont constituées chacune d'un réseau de pastilles.
15. Modulateur hyperfréquence, caractérisé en ce qu'il comporte au moins
- un mélangeur hyperfréquence (21) ;
- des moyens (23) pour générer un signal de modulation (22), l'onde à moduler entrant dans une entrée du mélangeur, le signal de modulation (22) entrant sur l'autre entrée du mélangeur, le signal modulé étant fourni en sortie du mélangeur.
16. Modulateur selon la revendication 15, caractérisé en ce que le signal de modulation est impulsionnel.
17. Modulateur selon l'une quelconque des revendications 15 ou
16, caractérisé en ce qu'il comporte des moyens de couplage optoélectronique pour moduler une onde optique.
EP01270783A 2000-12-15 2001-12-11 Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree Withdrawn EP1344086A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0016414 2000-12-15
FR0016414A FR2818385B1 (fr) 2000-12-15 2000-12-15 Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree
PCT/FR2001/003927 WO2002048735A1 (fr) 2000-12-15 2001-12-11 Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree

Publications (1)

Publication Number Publication Date
EP1344086A1 true EP1344086A1 (fr) 2003-09-17

Family

ID=8857731

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01270783A Withdrawn EP1344086A1 (fr) 2000-12-15 2001-12-11 Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree

Country Status (6)

Country Link
US (1) US7161526B2 (fr)
EP (1) EP1344086A1 (fr)
JP (1) JP2004515789A (fr)
FR (1) FR2818385B1 (fr)
NO (1) NO20032672L (fr)
WO (1) WO2002048735A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10245799A1 (de) * 2002-10-01 2004-04-15 Robert Bosch Gmbh Treibervorrichtung für einen spannungsgesteuerten Oszillator
DE10350553A1 (de) * 2003-10-29 2005-06-02 Robert Bosch Gmbh Vorrichtung sowie Verfahren zum Erfassen, zum Detektieren und/oder zum Auswerten von mindestens einem Objekt
JP2006098167A (ja) * 2004-09-29 2006-04-13 Tdk Corp パルスレーダー装置
US8249500B2 (en) 2005-02-24 2012-08-21 Innovision Research & Technology Plc Tuneable NFC device
FR2882855B1 (fr) * 2005-03-01 2007-05-18 Thales Sa Module actif integre a une antenne a balayage electronique et radar comportant une telle antenne, notamment applique a la meteorologie
GB0505060D0 (en) * 2005-03-11 2005-04-20 Innovision Res & Tech Plc Gain controlled impedance
EP1744177A1 (fr) * 2005-07-12 2007-01-17 Rafael-Armament Development Authority Ltd. Procédé et système radar pour la localisation et l'identification des objets en utilisant leurs signaux d'echo non-lineaires
EP2009461A1 (fr) * 2006-04-20 2008-12-31 Anritsu Corporation Radar à impulsions brèves et procédé de contrôle dudit radar
US7573420B2 (en) * 2007-05-14 2009-08-11 Infineon Technologies Ag RF front-end for a radar system
DE102007029959A1 (de) * 2007-06-28 2009-01-02 Robert Bosch Gmbh Verfahren und Vorrichtung zur Erfassung einer Umgebung
DE102009000472A1 (de) * 2009-01-29 2010-08-05 Robert Bosch Gmbh Verfahren zur Detektion von Niederschlag mit einem Radarortungsgerät für Kraftfahrzeuge
JP4752932B2 (ja) * 2009-02-25 2011-08-17 株式会社デンソー 送信装置、受信装置、及び送受信装置
EP3819660A1 (fr) * 2019-11-05 2021-05-12 NXP USA, Inc. Modules, systèmes et procédés d'émetteur radar à modulation numérique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620192A (en) * 1983-09-29 1986-10-28 Raytheon Company Continuous wave radar with ranging capability
DE19902185A1 (de) * 1999-01-21 2000-08-10 Bosch Gmbh Robert Vorrichtung zur Abstandsermittlung und Datenübertragung in einem Kraftfahrzeug

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2666134A (en) * 1945-04-03 1954-01-12 Robert H Dicke Waveguide mixer
GB1469348A (en) * 1975-05-14 1977-04-06 Marconi Co Ltd Pulsed doppler radar systems
FR2599856B1 (fr) * 1979-09-07 1989-03-31 Thomson Csf Systeme d'emission reception pour radar doppler a frequence agile
US4325138A (en) * 1980-09-29 1982-04-13 Sperry Corporation Continuous wave adaptive signal processor system
US4357610A (en) * 1980-09-29 1982-11-02 Sperry Corporation Waveform encoded altitude sensor
FR2546630B1 (fr) * 1983-05-26 1986-01-17 Thomson Csf Recepteur pour systeme radar doppler a impulsions
FR2607769B1 (fr) * 1986-12-08 1989-02-03 Alsthom Systeme de transmission bidirectionnel d'informations entre une station au sol et une station sur un vehicule ferroviaire
US4937580A (en) * 1988-05-19 1990-06-26 Trustees Of Dartmouth College Geophysical radar apparatus and method
KR920000410B1 (ko) * 1989-10-04 1992-01-13 삼성전자 주식회사 연속된 위상변환을 가진 이중 위상 변조회로
US5265268A (en) * 1991-04-29 1993-11-23 Hughes Aircraft Company Image recovery mixer
GB2280558B (en) * 1993-07-31 1998-04-15 Plessey Semiconductors Ltd Doppler microwave sensor
FR2785110B1 (fr) * 1998-10-27 2000-12-15 Dassault Electronique Dispositif d'echange de signaux radioelectriques munis de marqueurs temporels, en particulier pour la synchronisation d'horloges

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4620192A (en) * 1983-09-29 1986-10-28 Raytheon Company Continuous wave radar with ranging capability
DE19902185A1 (de) * 1999-01-21 2000-08-10 Bosch Gmbh Robert Vorrichtung zur Abstandsermittlung und Datenübertragung in einem Kraftfahrzeug

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0248735A1 *

Also Published As

Publication number Publication date
US20040061640A1 (en) 2004-04-01
NO20032672D0 (no) 2003-06-12
NO20032672L (no) 2003-08-15
WO2002048735A1 (fr) 2002-06-20
US7161526B2 (en) 2007-01-09
FR2818385B1 (fr) 2004-06-04
JP2004515789A (ja) 2004-05-27
FR2818385A1 (fr) 2002-06-21

Similar Documents

Publication Publication Date Title
EP1344086A1 (fr) Radar large bande et modulateur, notamment pour commuter des ondes hyperfrequence sur une tres courte duree
CN109196373B (zh) 用于雷达系统的改进的近-远性能的功率控制系统
US11774591B2 (en) Lidar system that is configured to compute ranges with differing range resolutions
US6657704B2 (en) Distance measurement apparatus
US20220187458A1 (en) Lidar devices with frequency and time multiplexing of sensing signals
EP0676649A1 (fr) Procédé et dispositif radar de mesure de distance
EP0849607A1 (fr) Radar de détection d'obstacles notamment pour véhicules automobiles
EP2212713B1 (fr) Procédés et appareil pour générer et traiter des signaux d'émetteur
FR2761480A1 (fr) Procede et dispositif de levee d'ambiguite en distance appliquee notamment a un radar a onde continue et a saut de frequence
Serafino et al. Photonic approach for on‐board and ground radars in automotive applications
EP2159598A1 (fr) Méthode de géneration de faux échos vers un détecteur qui émet un signal puis qui détecte des échos du signal
EP2948790B1 (fr) Systeme d'aide a la conduite
CN110609263B (zh) 一种同时计算脉冲激光雷达目标回波时延和频偏的方法
EP0493141A1 (fr) Dispositif hyperfréquence de prévention de collisions entre véhicules, et procédé de transmission de données correspondant
EP3198299B1 (fr) Procédé de détection radar, et radar mettant en oeuvre le procédé
JP2002357658A (ja) 周波数信号に対する処理方法及びこの処理方法の使用及び距離測定機器
FR2682772A1 (fr) Procede et dispositif de mesure de courtes distances par analyse du retard de propagation d'une onde.
FR2519771A1 (fr) Lidar a compression d'impulsions
EP3458875A1 (fr) Système de télémétrie optique
EP0044235A1 (fr) Dispositif de détection de cibles mobiles dans un système radar et radar comportant un tel dispositif
EP1055940B1 (fr) Procédé et système de mesure de la distance entre deux objets mettant en oeuvre des séquences pseudo-aleatoires orthogonales
FR2637087A1 (fr) Dispositif radar
FR2887342A1 (fr) Procede et dispositif de telemetrie notamment pour vehicule automobile
CN114910885A (zh) 基于线性调频和巴克码复合调制编码的激光相干雷达测距解模糊方法及测距装置
Bashkansky et al. Phase-coded lidar

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030709

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20050502

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20060203