EP1342112A2 - Waveguide comprising a channel on an optical substrate - Google Patents

Waveguide comprising a channel on an optical substrate

Info

Publication number
EP1342112A2
EP1342112A2 EP01270789A EP01270789A EP1342112A2 EP 1342112 A2 EP1342112 A2 EP 1342112A2 EP 01270789 A EP01270789 A EP 01270789A EP 01270789 A EP01270789 A EP 01270789A EP 1342112 A2 EP1342112 A2 EP 1342112A2
Authority
EP
European Patent Office
Prior art keywords
substrate
channel
waveguide
layer
index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP01270789A
Other languages
German (de)
French (fr)
Inventor
Stéphane TISSERAND
Laurent Roux
Frank Torregrossa
François FLORY
Ludovic Escoubas
Emmanuel Drouard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ion Beam Services SA
Original Assignee
Ion Beam Services SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ion Beam Services SA filed Critical Ion Beam Services SA
Publication of EP1342112A2 publication Critical patent/EP1342112A2/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/134Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms
    • G02B6/1347Integrated optical circuits characterised by the manufacturing method by substitution by dopant atoms using ion implantation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/121Channel; buried or the like

Definitions

  • the present invention relates to a waveguide comprising a channel on an optical substrate.
  • the field of the invention is that of integrated optics on a substrate, a field in which an essential element is the waveguide which performs the function of transporting light energy.
  • a guide is produced by creating a channel on the substrate whose refractive index is higher than that of the surrounding medium.
  • a first method implements the thin film technology.
  • the substrate is either silica or silicon on which a thermal oxide has been grown, so that its upper face, the optical substrate, is made of silicon dioxide.
  • a first layer is deposited on the optical substrate using any known technique such as flame hydrolysis deposition ("Flame Hydrolysis Deposition in English terminology) chemical vapor deposition high or low pressure and assisted or not by plasma, evaporation under vacuum, sputtering or deposition by centrifugation. This layer is here etched to define a passive guiding layer.
  • a second layer is deposited which is often made of doped silicon dioxide, made of silicon oxy-nitride, silicon nitride and polymers or solids are also encountered.
  • a mask defining a channel is then applied to this layer by means of a photolithography technique. produced by a chemical or dry etching process such as plasma etching, reactive ion etching or ion beam etching.
  • the mask is removed after s engraving and, commonly, a covering layer is deposited on the substrate to bury the channel.
  • This covering layer the refractive index of which is lower than that of the channel, is provided to limit the disturbances exerted by the surrounding environment, in particular those due to humidity. According to a variant of this method proposed by the document GB
  • the channel is produced directly on the optical substrate by deposition and etching, then the guide layer is deposited.
  • this method requires at least one etching operation which is difficult to control both in terms of spatial resolution and in terms of the surface condition of the flanks of the channel.
  • these characteristics directly condition the losses to the propagation of the waveguide.
  • a second method uses ion exchange technology.
  • the substrate is a glass containing mobile ions at relatively low temperature, a glass of silicates containing sodium oxide for example.
  • the substrate is again provided with a mask and it is then immersed in a bath containing polarizable ions such as silver or potassium.
  • the channel is thus produced by increasing the refractive index following the exchange of polarizable ions with the mobile ions of the substrate.
  • the channel is buried by application of an electric field perpendicular to the face of the substrate.
  • This method is very simple. However, it requires the selection of a particular substrate which does not necessarily have all the desired characteristics. In addition, due to a large lateral diffusion of the ions, the spatial resolution here is also seriously limited.
  • a third method uses ion implantation technology.
  • the top side of the substrate is often made of silicon dioxide.
  • a mask is again applied to the optical substrate and the channel is produced by ion implantation of the masked substrate.
  • an annealing operation is performed to eliminate the defects of the crystal structure and the absorbent colored centers, to stabilize the new chemical compounds and to restore the stoichiometry of the canal, this in order to limit the losses in the guide 'wave.
  • This method makes it possible to obtain a high channel refractive index, by implanting nitrogen for example, as mentioned in the article by AP Webb and PD Townsend "Refractive index profiles induced by ion implantation into silica", Journal of Physics D: Applied Physics, 1976, p. 1343-1354.
  • the value of the index can be further increased by implanting titanium, following the article by S. Tisserand, F. Flory, A. Gatto, L. Roux, M. Adamik, I. Kovacs, Journal of Applied Physics, 1998 , flight. 83, n ° 10, 5150. It also makes it possible to obtain guides having low propagation losses, as indicated in the American patent US 4521 443.
  • the third method is satisfactory as regards the geometrical specifications of the channel.
  • the implantation energy being between a few tens and a few hundred KeV
  • the penetration depth of the implanted ions hardly exceeds a few hundred nanometers.
  • This thickness of the channel is too small to obtain a coupling coefficient acceptable with optical fiber.
  • the single-mode fibers used in particular in telecommunications to convey an infrared signal typically wavelength of 1.3 or 1.55 microns
  • the present invention thus relates to an optical waveguide provided with a suitable spatial resolution and a good coupling coefficient with current optical fibers.
  • a waveguide comprises a channel on an optical substrate, the refractive index of this channel being greater than that of the substrate, and it comprises at least one guiding layer arranged on this channel, the index of the guide layer being higher than that of the substrate; in this waveguide, the channel is integrated into the substrate.
  • the guide no longer being limited to the single channel but rather constituted by the association of this channel and the guiding layer, it then has dimensions in adequacy with that of the core of an optical fiber.
  • the guide comprises at least one covering layer disposed on the guiding layer, the index of this covering layer being lower than that of the guiding layer and that of the channel.
  • the index of the guiding layer is equal to that of the substrate multiplied by a factor greater than 1.001.
  • the thickness of all of the guiding layers is between 1 and 20 microns.
  • the channel results from an ion implantation in the substrate.
  • the face of the substrate on which the ion implantation is carried out is made of silicon dioxide.
  • the invention also relates to a method of manufacturing a waveguide on an optical substrate.
  • this method comprises the following steps:
  • the method comprises the following steps:
  • the method comprises a step of annealing the substrate which follows the step of ion implantation.
  • FIG. 1 a diagram of a waveguide
  • the substrate is made of silica or else it is made of silicon on which either a thermal oxide has been grown or a layer of silicon dioxide or of another material has been deposited. It thus has an upper face or optical substrate 11, commonly made of silicon dioxide, with a thickness of 5 to 20 microns, for example.
  • the channel 12 produced by ion implantation is here integrated into the optical substrate which is itself covered with a guiding layer 13.
  • the refractive index of the channel is naturally higher than that of silicon dioxide.
  • the guide layer 5 microns thick for example, is made of doped silicon dioxide and has a higher refractive index than that of the optical substrate, for example 0.3%. It can possibly result from a stack of thin layers.
  • a covering layer 14 which may also consist of a stack of thin layers is provided on the guiding layer 13.
  • This covering layer also 5 microns thick, has a lower index than that of the guiding layer and to that of the canal; in this case it is made of undoped silicon dioxide.
  • the waveguide formed by the association of the channel 12 and the guiding layer 13 can support one or more propagation modes, the properties of which depend on the optical and geometric characteristics adopted. With reference to FIG. 1b, when the refractive index of the channel is relatively low, 1.56 for example, the extended propagation mode GM extends in the guiding layer 13.
  • the width of the channel, 7.5 microns per example, and the thickness of this guiding layer are chosen so that the propagation mode GM is as close as possible to that of the optical fibers. We can then obtain a fiber coupling coefficient of a value of 90%.
  • the effective index of the guided mode is lower than the refractive index of the guiding layer and that of the channel; it is greater than the refractive index of the upper face 11 and that of the covering layer 14.
  • the waveguide can also support a reduced propagation mode PM, close to that which is encountered on the guides implanted without a guiding layer.
  • the channel index should therefore be relatively high, 1.90 for example.
  • the width of the channel can be significantly reduced.
  • the effective index of the guided mode is here higher than that of the guiding layer and lower than that of the channel.
  • the lateral confinement of the reduced PM mode is very important. It will be recalled that the ion implantation is now carried out with very great precision on the doses of implanted ions, typically 1%.
  • the silicon dioxide optical substrate has a refractive index which exhibits little or no variation, it follows that very high accuracy can be obtained on the index of the channel. For example, for an implanted dose of titanium of 10 16 / cm 2 or 10 / cm 2 respectively , the precision on the refractive index reached
  • a first method of manufacturing the waveguide comprises a first step which consists in producing a mask 16 on the optical substrate 15, this by means of a conventional photolithography method.
  • the mask 16 is made of resin, metal or any other material capable of constituting an impassable barrier for ions during implantation.
  • the mask can be obtained by a direct writing process.
  • the channel 17 is produced by ion implantation of the masked substrate.
  • the implantation dose is between 10 / cm 2 and 10 18 / cm 2 and the energy is between a few tens and a few hundred KeV.
  • the mask is removed, for example by means of a chemical etching process.
  • the substrate is then subjected to an annealing in order to reduce the propagation losses within the channel 17.
  • the temperature is between 400 and 500 ° C.
  • the atmosphere is controlled or else it is a question of the open air, while the duration is of the order of a few tens of hours.
  • the guiding layer 18 is then deposited on the substrate 15 by means of any of the known techniques provided that this leads to a low loss material whose refractive index can be easily controlled .
  • the covering layer 19 is optionally deposited on the guiding layer 18.
  • a second method of manufacturing the waveguide comprises a first step which consists in implanting the entire optical substrate 20.
  • the dose and the implantation energy can be identical to the values mentioned in relation to the first method.
  • the next step consists in making a mask 21 on the substrate 20. This mask has the same pattern as that used during the first method, but it must not undergo the implantation step.
  • the channel 25 is obtained by etching the optical substrate to a depth at least equal to the implantation depth. Any of the known etching techniques is suitable provided that this leads to acceptable geometrical characteristics of the channel, in particular the profile and the surface condition of its sides.
  • the first method has the advantage of defining a waveguide whose structure is perfectly planar since it does not include an etching step.
  • the implantation depth being so small, the drawbacks inherent in etching are very significantly limited.
  • the mask is removed and then the substrate is here also subjected to annealing.
  • the guiding layer 22 and possibly the covering layer 23 are then deposited according to the first method.
  • the embodiments of the invention presented above have been chosen for their specific nature. However, it would not be possible to exhaustively list all the embodiments covered by this invention. In particular, any step or any means described may be replaced by a step or equivalent means without departing from the scope of the present invention.

Abstract

The invention concerns a waveguide comprising a channel (12) on an optical substrate (11), the refractive index of said channel being higher than that of the substrate. Said waveguide comprises at least a guide layer (13) provided on the channel, the index of said guide layer being higher than that of the substrate. In addition, the channel (12) is integrated in the substrate (11). Advantageously, the guide further comprises a covering layer (14) arranged on the guide layer (13), the index of said covering layer being less than that of the guide layer and that of the channel. The invention also concerns a method for making said waveguide.

Description

Guide d'onde comportant un canal sur un substrat optique La présente invention concerne un guide d'onde comportant un canal sur un substrat optique. The present invention relates to a waveguide comprising a channel on an optical substrate.
Le domaine de l'invention est celui de l'optique intégrée sur substrat, domaine dans lequel un élément essentiel est le guide d'onde qui assure la fonction de transport de l'énergie lumineuse. Un tel guide est réalisé en créant sur le substrat un canal dont l'indice de réfraction est plus élevé que celui du milieu environnant.The field of the invention is that of integrated optics on a substrate, a field in which an essential element is the waveguide which performs the function of transporting light energy. Such a guide is produced by creating a channel on the substrate whose refractive index is higher than that of the surrounding medium.
Plusieurs méthodes ont été proposées pour fabriquer un guide d'onde. Une première méthode met en œuvre la technologie des couches minces. Généralement, le substrat est soit en silice soit en silicium sur lequel on a fait croître un oxyde thermique, si bien que sa face supérieure, le substrat optique, est en dioxyde de silicium. Comme dans le document EP 0 510 883, une première couche est déposée sur le substrat optique au moyen d'une quelconque technique connue telle que dépôt par hydrolyse à la flamme ("Flame Hydrolysis Déposition en terminologie anglo-saxonne) dépôt chimique en phase vapeur haute ou basse pression et assisté ou non par plasma, évaporation sous vide, pulvérisation cathodique ou dépôt par centrifugation. Cette couche est ici gravée pour définir une couche guidante passive. Ensuite, une deuxième couche est déposée qui est souvent en dioxyde de silicium dopé, en oxy-nitrure de silicium, en nitrure de silicium et l'on rencontre aussi des polymères ou des sols- gels. Un masque définissant un canal est alors appliqué sur cette couche au moyen d'une technique de photolithographie. Ensuite, le canal est réalisé par un procédé de gravure chimique ou de gravure sèche tel que gravure plasma, gravure ionique réactive ou gravure par faisceau d'ions. Le masque est retiré après la gravure et, couramment, une couche de recouvrement est déposée sur le substrat pour enterrer le canal. Cette couche de recouvrement dont l'indice de réfraction est inférieur à celui du canal est prévue pour limiter les perturbations exercées par le milieu environnant, notamment celles dues à l'humidité. Selon une variante de cette méthode proposée par le document GBSeveral methods have been proposed for manufacturing a waveguide. A first method implements the thin film technology. Generally, the substrate is either silica or silicon on which a thermal oxide has been grown, so that its upper face, the optical substrate, is made of silicon dioxide. As in document EP 0 510 883, a first layer is deposited on the optical substrate using any known technique such as flame hydrolysis deposition ("Flame Hydrolysis Deposition in English terminology) chemical vapor deposition high or low pressure and assisted or not by plasma, evaporation under vacuum, sputtering or deposition by centrifugation. This layer is here etched to define a passive guiding layer. Then, a second layer is deposited which is often made of doped silicon dioxide, made of silicon oxy-nitride, silicon nitride and polymers or solids are also encountered. A mask defining a channel is then applied to this layer by means of a photolithography technique. produced by a chemical or dry etching process such as plasma etching, reactive ion etching or ion beam etching. The mask is removed after s engraving and, commonly, a covering layer is deposited on the substrate to bury the channel. This covering layer, the refractive index of which is lower than that of the channel, is provided to limit the disturbances exerted by the surrounding environment, in particular those due to humidity. According to a variant of this method proposed by the document GB
2 306694, le canal est réalisé directement sur le substrat optique par dépôt et gravure puis la couche guidante est déposée.2 306694, the channel is produced directly on the optical substrate by deposition and etching, then the guide layer is deposited.
En tout état de cause, cette méthode requiert au moins une opération de gravure qu'il est difficile de maîtriser tant sur le plan de la résolution spatiale que sur l'état de surface des flancs du canal. Or ces caractéristiques conditionnent directement les pertes à la propagation du guide d'onde. Une deuxième méthode met en œuvre la technologie d'échange d'ions. Dans ce cas, le substrat est un verre contenant des ions mobiles à température relativement basse, un verre de silicates contenant de l'oxyde de sodium par exemple. Le substrat est là aussi pourvu d'un masque et il est ensuite immergé dans un bain contenant des ions polarisables tel que argent ou potassium. Le canal est ainsi réalisé par augmentation de l'indice de réfraction consécutive à l'échange des ions polarisables avec les ions mobiles du substrat. Puis, généralement, le canal est enterré par application d'un champ électrique perpendiculaire à la face du substrat. Cette méthode présente une grande simplicité. Cependant, elle impose la sélection d'un substrat particulier qui n'a pas nécessairement toutes les caractéristiques souhaitées. De plus, du fait d'une diffusion latérale importante des ions, la résolution spatiale est ici aussi sérieusement limitée.In any event, this method requires at least one etching operation which is difficult to control both in terms of spatial resolution and in terms of the surface condition of the flanks of the channel. However, these characteristics directly condition the losses to the propagation of the waveguide. A second method uses ion exchange technology. In this case, the substrate is a glass containing mobile ions at relatively low temperature, a glass of silicates containing sodium oxide for example. The substrate is again provided with a mask and it is then immersed in a bath containing polarizable ions such as silver or potassium. The channel is thus produced by increasing the refractive index following the exchange of polarizable ions with the mobile ions of the substrate. Then, generally, the channel is buried by application of an electric field perpendicular to the face of the substrate. This method is very simple. However, it requires the selection of a particular substrate which does not necessarily have all the desired characteristics. In addition, due to a large lateral diffusion of the ions, the spatial resolution here is also seriously limited.
Une troisième méthode met en œuvre la technologie d'implantation ionique. Tout comme dans la technologie des couches minces, la face supérieure du substrat est souvent en dioxyde de silicium. Un masque est à nouveau appliqué sur le substrat optique et le canal est réalisé par implantation ionique du substrat masqué. Suite au retrait du masque, une opération de recuit est pratiquée pour éliminer les défauts de la structure cristalline et les centres colorés absorbants, pour stabiliser les nouveaux composés chimiques et pour restituer la stœchiométrie du canal, ceci afin de limiter les pertes dans le guide d'onde.A third method uses ion implantation technology. As in thin film technology, the top side of the substrate is often made of silicon dioxide. A mask is again applied to the optical substrate and the channel is produced by ion implantation of the masked substrate. Following the removal of the mask, an annealing operation is performed to eliminate the defects of the crystal structure and the absorbent colored centers, to stabilize the new chemical compounds and to restore the stoichiometry of the canal, this in order to limit the losses in the guide 'wave.
Cette méthode permet d'obtenir un indice de réfraction du canal élevé, en implantant de l'azote par exemple, comme mentionné dans l'article de A. P. Webb et P.D. Townsend "Refractive index profiles induced by ion implantation into silica", Journal of Physics D : Applied Physics, 1976, p. 1343-1354. La valeur de l'indice peut être encore augmentée en implantant du titane, suivant l'article de S. Tisserand, F. Flory, A. Gatto, L. Roux, M. Adamik, I. Kovacs, Journal of Applied Physics, 1998, vol. 83, n° 10, 5150. Elle permet également d'obtenir des guides présentant de faibles pertes à la propagation, comme indiqué dans le brevet américain US 4521 443.This method makes it possible to obtain a high channel refractive index, by implanting nitrogen for example, as mentioned in the article by AP Webb and PD Townsend "Refractive index profiles induced by ion implantation into silica", Journal of Physics D: Applied Physics, 1976, p. 1343-1354. The value of the index can be further increased by implanting titanium, following the article by S. Tisserand, F. Flory, A. Gatto, L. Roux, M. Adamik, I. Kovacs, Journal of Applied Physics, 1998 , flight. 83, n ° 10, 5150. It also makes it possible to obtain guides having low propagation losses, as indicated in the American patent US 4521 443.
La troisième méthode est satisfaisante quant aux spécifications géométriques du canal. Toutefois, l'énergie d'implantation étant comprise entre quelques dizaines et quelques centaines de KeV, la profondeur de pénétration des ions implantés n'excède guère quelques centaines de nanomètres. Cette épaisseur du canal est trop faible pour obtenir un coefficient de couplage acceptable avec une fibre optique. En effet, les fibres monomodes utilisées notamment dans les télécommunications pour véhiculer un signal infrarouge (longueur d'onde typique de 1,3 ou 1,55 microns) ont un cœur dont le diamètre fait environ 10 microns. La présente invention a ainsi pour objet un guide d'onde optique pourvu d'une résolution spatiale convenable et d'un bon coefficient de couplage avec les fibres optiques courantes.The third method is satisfactory as regards the geometrical specifications of the channel. However, the implantation energy being between a few tens and a few hundred KeV, the penetration depth of the implanted ions hardly exceeds a few hundred nanometers. This thickness of the channel is too small to obtain a coupling coefficient acceptable with optical fiber. Indeed, the single-mode fibers used in particular in telecommunications to convey an infrared signal (typical wavelength of 1.3 or 1.55 microns) have a core whose diameter is about 10 microns. The present invention thus relates to an optical waveguide provided with a suitable spatial resolution and a good coupling coefficient with current optical fibers.
Selon l'invention, un guide d'onde comporte un canal sur un substrat optique, l'indice de réfraction de ce canal étant supérieur à celui du substrat, et il comporte au moins une couche guidante agencée sur ce canal, l'indice de la couche guidante étant supérieur à celui du substrat ; dans ce guide d'onde, le canal est intégré dans le substrat.According to the invention, a waveguide comprises a channel on an optical substrate, the refractive index of this channel being greater than that of the substrate, and it comprises at least one guiding layer arranged on this channel, the index of the guide layer being higher than that of the substrate; in this waveguide, the channel is integrated into the substrate.
Le guide n'étant plus limité au seul canal mais plutôt constitué par l'association de ce canal et de la couche guidante, il présente alors des dimensions en adéquation avec celle du cœur d'une fibre optique.The guide no longer being limited to the single channel but rather constituted by the association of this channel and the guiding layer, it then has dimensions in adequacy with that of the core of an optical fiber.
De préférence, le guide comporte au moins une couche de recouvrement disposée sur la couche guidante, l'indice de cette couche de recouvrement étant inférieur à celui de la couche guidante et à celui du canal.Preferably, the guide comprises at least one covering layer disposed on the guiding layer, the index of this covering layer being lower than that of the guiding layer and that of the channel.
Avantageusement, l'indice de la couche guidante vaut celui du substrat multiplié par un facteur supérieur à 1 ,001.Advantageously, the index of the guiding layer is equal to that of the substrate multiplied by a factor greater than 1.001.
A titre d'exemple, l'épaisseur de l'ensemble des couches guidantes est comprise entre 1 et 20 microns.For example, the thickness of all of the guiding layers is between 1 and 20 microns.
Selon une caractéristique privilégiée, le canal résulte d'une implantation ionique dans le substrat. Par ailleurs, il est conseillé que la face du substrat sur laquelle est réalisée l'implantation ionique soit en dioxyde de silicium.According to a privileged characteristic, the channel results from an ion implantation in the substrate. In addition, it is recommended that the face of the substrate on which the ion implantation is carried out is made of silicon dioxide.
L'invention vise également une méthode de fabrication d'un guide d'onde sur un substrat optique.The invention also relates to a method of manufacturing a waveguide on an optical substrate.
Selon une première variante, cette méthode comprend les étapes suivantes :According to a first variant, this method comprises the following steps:
- réalisation d'un masque sur le substrat optique pour définir le motif d'un canal,- production of a mask on the optical substrate to define the pattern of a channel,
- implantation ionique du substrat masqué,- ion implantation of the masked substrate,
- retrait du masque, et elle comprend de plus une étape de dépôt d'au moins une couche guidante sur le substrat, l'indice de réfraction de cette couche guidante étant supérieur à celui du substrat. Selon une deuxième variante, la méthode comprend les étapes suivantes :- Removal of the mask, and it further comprises a step of depositing at least one guiding layer on the substrate, the refractive index of this guiding layer being greater than that of the substrate. According to a second variant, the method comprises the following steps:
- implantation ionique du substrat ,- ion implantation of the substrate,
- réalisation d'un masque sur le substrat pour définir le motif d'un canal, - gravure du substrat sur une profondeur au moins égale à la profondeur d'implantation,- production of a mask on the substrate to define the pattern of a channel, - etching of the substrate to a depth at least equal to the implantation depth,
- retrait du masque, et elle comprend de plus une étape de dépôt d'au moins une couche guidante sur le substrat, l'indice de réfraction de cette couche guidante étant supérieur à celui du substrat.- Removal of the mask, and it further comprises a step of depositing at least one guiding layer on the substrate, the refractive index of this guiding layer being greater than that of the substrate.
Avantageusement, la méthode comprend une étape de recuit du substrat qui fait suite à l'étape d'implantation ionique.Advantageously, the method comprises a step of annealing the substrate which follows the step of ion implantation.
Cette méthode est d'autre part adaptée à la réalisation des différentes caractéristiques du guide d'onde mentionnées ci-dessus. La présente invention apparaîtra maintenant avec plus de détails dans le cadre de la description qui suit d'exemples de réalisation donnés à titre illustratif en se référant aux figures annexées qui représentent :This method is also adapted to the realization of the various characteristics of the waveguide mentioned above. The present invention will now appear in more detail in the context of the following description of exemplary embodiments given by way of illustration with reference to the appended figures which represent:
- la figure 1 , un schéma d'un guide d'onde,FIG. 1, a diagram of a waveguide,
- la figure 2, la fabrication d'un guide d'onde selon une première variante, et - la figure 3, la fabrication d'un guide d'onde selon une deuxième variante.- Figure 2, the manufacture of a waveguide according to a first variant, and - Figure 3, the manufacture of a waveguide according to a second variant.
En référence à la figure 1a, le substrat est en silice ou bien il est en silicium sur lequel, soit on a fait croître un oxyde thermique, soit on a déposé une couche de dioxyde de silicium ou d'un autre matériau. Il présente ainsi une face supérieure ou substrat optique 11, couramment en dioxyde de silicium, d'une épaisseur de 5 à 20 microns, par exemple. Le canal 12 réalisé par implantation ionique est ici intégré dans le substrat optique qui est lui-même recouvert d'une couche guidante 13. L'indice de réfraction du canal est naturellement plus élevé que celui du dioxyde de silicium. La couche guidante de 5 microns d'épaisseur, par exemple, est en dioxyde de silicium dopé et présente un indice de réfraction supérieur à celui du substrat optique, de 0,3% par exemple. Elle peut éventuellement résulter d'un empilement de couches minces. De préférence, une couche de recouvrement 14 qui peut également consister en un empilement de couches minces est prévue sur la couche guidante 13. Cette couche de recouvrement, de 5 microns d'épaisseur également, a un indice inférieur à celui de la couche guidante et à celui du canal ; dans le cas présent elle est en dioxyde de silicium non dopé. Le guide d'onde formé par l'association du canal 12 et de la couche guidante 13 peut supporter un ou plusieurs modes de propagation dont les propriétés sont fonction des caractéristiques optiques et géométriques adoptées. En référence à la figure 1b, lorsque l'indice de réfraction du canal est relativement faible, 1,56 par exemple, le mode de propagation étendu GM s'étend dans la couche guidante 13. La largeur du canal, 7,5 microns par exemple, et l'épaisseur de cette couche guidante sont choisies de sorte que le mode de propagation GM soit aussi voisin que possible de celui des fibres optiques. On peut alors obtenir un coefficient de couplage aux fibres d'une valeur de 90%. L'indice effectif du mode guidé est inférieur à l'indice de réfraction de la couche guidante et à celui du canal ; il est supérieur à l'indice de réfraction de la face supérieure 11 et à celui de la couche de recouvrement 14.With reference to FIG. 1a, the substrate is made of silica or else it is made of silicon on which either a thermal oxide has been grown or a layer of silicon dioxide or of another material has been deposited. It thus has an upper face or optical substrate 11, commonly made of silicon dioxide, with a thickness of 5 to 20 microns, for example. The channel 12 produced by ion implantation is here integrated into the optical substrate which is itself covered with a guiding layer 13. The refractive index of the channel is naturally higher than that of silicon dioxide. The guide layer 5 microns thick, for example, is made of doped silicon dioxide and has a higher refractive index than that of the optical substrate, for example 0.3%. It can possibly result from a stack of thin layers. Preferably, a covering layer 14 which may also consist of a stack of thin layers is provided on the guiding layer 13. This covering layer, also 5 microns thick, has a lower index than that of the guiding layer and to that of the canal; in this case it is made of undoped silicon dioxide. The waveguide formed by the association of the channel 12 and the guiding layer 13 can support one or more propagation modes, the properties of which depend on the optical and geometric characteristics adopted. With reference to FIG. 1b, when the refractive index of the channel is relatively low, 1.56 for example, the extended propagation mode GM extends in the guiding layer 13. The width of the channel, 7.5 microns per example, and the thickness of this guiding layer are chosen so that the propagation mode GM is as close as possible to that of the optical fibers. We can then obtain a fiber coupling coefficient of a value of 90%. The effective index of the guided mode is lower than the refractive index of the guiding layer and that of the channel; it is greater than the refractive index of the upper face 11 and that of the covering layer 14.
En référence à la figure 1c, il faut noter que le guide d'onde peut également supporter un mode de propagation réduit PM, proche de celui que l'on rencontre sur les guides implantés sans couche guidante. Il convient alors que l'indice du canal soit relativement élevé, 1,90 par exemple. La largeur du canal peut être sensiblement réduite. L'indice effectif du mode guidé est ici supérieur à celui de la couche guidante et inférieur à celui du canal. Le confinement latéral du mode réduit PM est très important. On rappellera que l'implantation ionique se fait maintenant avec une très grande précision sur les doses d'ions implantés, typiquement 1%. Le substrat optique en dioxyde de silicium a un indice de réfraction qui ne présente pas ou peu de variations, il s'ensuit que l'on peut obtenir une très grande précision sur l'indice du canal. A titre d'exemple, pour une dose implantée de titane de 1016/cm2 respectivement 10 /cm2, la précision sur l'indice de réfraction atteintWith reference to FIG. 1c, it should be noted that the waveguide can also support a reduced propagation mode PM, close to that which is encountered on the guides implanted without a guiding layer. The channel index should therefore be relatively high, 1.90 for example. The width of the channel can be significantly reduced. The effective index of the guided mode is here higher than that of the guiding layer and lower than that of the channel. The lateral confinement of the reduced PM mode is very important. It will be recalled that the ion implantation is now carried out with very great precision on the doses of implanted ions, typically 1%. The silicon dioxide optical substrate has a refractive index which exhibits little or no variation, it follows that very high accuracy can be obtained on the index of the channel. For example, for an implanted dose of titanium of 10 16 / cm 2 or 10 / cm 2 respectively , the precision on the refractive index reached
AAT
10 respectivement 10 . Cette précision est particulièrement importante lorsque l'on recherche le mode de propagation étendu GM car l'indice du canal est un paramètre qui affecte de manière très sensible le couplage aux fibres optiques. En référence à la figure 2a, une première méthode de fabrication du guide d'onde comporte une première étape qui consiste à réaliser un masque 16 sur le substrat optique 15, ceci au moyen d'un procédé classique de photolithographie. Le masque 16 est en résine, en métal ou en tout autre matériau susceptible de constituer une barrière infranchissable pour les ions lors de l'implantation. Eventuellement, le masque peut être obtenu par un procédé d'écriture directe. En référence à la figure 2b, le canal 17 est produit par implantation ionique du substrat masqué. A titre d'exemple, pour une implantation de titane, la dose d'implantation est comprise entre 10 /cm2 et 1018/cm2 et l'énergie est comprise entre quelques dizaines et quelques centaines de KeV. En référence à la figure 2c, le masque est retiré, par exemple au moyen d'un procédé de gravure chimique. Le substrat est ensuite soumis à un recuit pour réduire les pertes à la propagation au sein du canal 17. A titre d'exemple, la température est comprise entre 400 et 500°C, l'atmosphère est contrôlée ou bien il s'agit de l'air libre, tandis que la durée est de l'ordre de quelques dizaines d'heures.10 respectively 10. This precision is particularly important when looking for the GM extended propagation mode because the channel index is a parameter which very significantly affects the coupling to optical fibers. With reference to FIG. 2a, a first method of manufacturing the waveguide comprises a first step which consists in producing a mask 16 on the optical substrate 15, this by means of a conventional photolithography method. The mask 16 is made of resin, metal or any other material capable of constituting an impassable barrier for ions during implantation. Optionally, the mask can be obtained by a direct writing process. With reference to FIG. 2b, the channel 17 is produced by ion implantation of the masked substrate. For example, for an implantation of titanium, the implantation dose is between 10 / cm 2 and 10 18 / cm 2 and the energy is between a few tens and a few hundred KeV. Referring to Figure 2c, the mask is removed, for example by means of a chemical etching process. The substrate is then subjected to an annealing in order to reduce the propagation losses within the channel 17. For example, the temperature is between 400 and 500 ° C., the atmosphere is controlled or else it is a question of the open air, while the duration is of the order of a few tens of hours.
En référence à la figure 2d, la couche guidante 18 est alors déposée sur le substrat 15 au moyen de l'une quelconque des techniques connues pourvu que celle-ci conduise à un matériau à faibles pertes dont l'indice de réfraction peut être aisément contrôlé. Enfin, la couche de recouvrement 19 est éventuellement déposée sur la couche guidante 18.With reference to FIG. 2d, the guiding layer 18 is then deposited on the substrate 15 by means of any of the known techniques provided that this leads to a low loss material whose refractive index can be easily controlled . Finally, the covering layer 19 is optionally deposited on the guiding layer 18.
En référence à la figure 3a, une deuxième méthode de fabrication du guide d'onde comporte une première étape qui consiste à implanter la totalité du substrat optique 20. La dose et l'énergie d'implantation peuvent être identiques aux valeurs mentionnées en rapport avec la première méthode. En référence à la figure 3b, l'étape suivante consiste à réaliser un masque 21 sur le substrat 20. Ce masque a le même motif que celui employé au cours de la première méthode mais il ne doit pas subir l'étape d'implantation.Referring to FIG. 3a, a second method of manufacturing the waveguide comprises a first step which consists in implanting the entire optical substrate 20. The dose and the implantation energy can be identical to the values mentioned in relation to the first method. With reference to FIG. 3b, the next step consists in making a mask 21 on the substrate 20. This mask has the same pattern as that used during the first method, but it must not undergo the implantation step.
En référence à la figure 3c, le canal 25 est obtenu par gravure du substrat optique sur une profondeur au moins égale à la profondeur d'implantation. L'une quelconque des techniques connues de gravure convient pourvu que celle-ci conduise à des caractéristiques géométriques acceptables du canal, notamment le profil et l'état de surface de ses flancs. On remarque ici que la première méthode présente l'avantage de définir un guide d'onde dont la structure est parfaitement plane puisqu'elle ne comprend pas d'étape de gravure. Cependant, la profondeur d'implantation étant tellement faible, les inconvénients inhérents à la gravure sont très sensiblement limités.Referring to Figure 3c, the channel 25 is obtained by etching the optical substrate to a depth at least equal to the implantation depth. Any of the known etching techniques is suitable provided that this leads to acceptable geometrical characteristics of the channel, in particular the profile and the surface condition of its sides. We note here that the first method has the advantage of defining a waveguide whose structure is perfectly planar since it does not include an etching step. However, the implantation depth being so small, the drawbacks inherent in etching are very significantly limited.
En référence à la figure 3d, le masque est retiré puis le substrat est ici aussi soumis à un recuit. La couche guidante 22 et éventuellement la couche de recouvrement 23 sont alors déposées conformément à la première méthode. Les exemples de réalisation de l'invention présentés ci-dessus ont été choisis pour leur caractère concret. Il ne serait cependant pas possible de répertorier de manière exhaustive tous les modes de réalisation que recouvre cette invention. En particulier, toute étape ou tout moyen décrit peut-être remplacé par une étape ou un moyen équivalent sans sortir du cadre de la présente invention. With reference to FIG. 3d, the mask is removed and then the substrate is here also subjected to annealing. The guiding layer 22 and possibly the covering layer 23 are then deposited according to the first method. The embodiments of the invention presented above have been chosen for their specific nature. However, it would not be possible to exhaustively list all the embodiments covered by this invention. In particular, any step or any means described may be replaced by a step or equivalent means without departing from the scope of the present invention.

Claims

REVENDICATIONS
1) Guide d'onde comportant un canal (12, 17, 25) sur un substrat optique (11, 15, 20), l'indice de réfraction de ce canal étant supérieur à celui du substrat, au moins une couche guidante (13, 18, 22) étant agencée sur ledit canal, l'indice1) Waveguide comprising a channel (12, 17, 25) on an optical substrate (11, 15, 20), the refractive index of this channel being greater than that of the substrate, at least one guiding layer (13 , 18, 22) being arranged on said channel, the index
5 de cette couche guidante étant supérieur à celui du substrat, guide d'onde caractérisé en ce que ledit canal (12, 17) est intégré dans ledit substrat (11, 15).5 of this guiding layer being greater than that of the substrate, a waveguide characterized in that said channel (12, 17) is integrated in said substrate (11, 15).
2) Guide d'onde selon la revendication 1, caractérisé en ce qu'il comporte au moins une couche de recouvrement (14, 19, 23) disposée sur ladite couche 0 guidante (13, 18, 22), l'indice de cette couche de recouvrement étant inférieur à celui de la couche guidante et à celui du canal (12, 17, 25).2) waveguide according to claim 1, characterized in that it comprises at least one covering layer (14, 19, 23) disposed on said guiding layer 0 (13, 18, 22), the index of this covering layer being lower than that of the guiding layer and that of the channel (12, 17, 25).
3) Guide d'onde selon l'une quelconque des revendications précédentes, caractérisé en ce que l'indice de ladite couche guidante (13, 18, 22) vaut celui du substrat (11, 15, 20) multiplié par un facteur supérieur à 1 ,001. 5 4) Guide d'onde selon l'une quelconque des revendications précédentes, caractérisé en ce que l'épaisseur de l'ensemble des couches guidantes (13, 18, 22) est comprise entre 1 et 20 microns.3) Waveguide according to any one of the preceding claims, characterized in that the index of said guiding layer (13, 18, 22) is that of the substrate (11, 15, 20) multiplied by a factor greater than 1, 001. 5 4) Waveguide according to any one of the preceding claims, characterized in that the thickness of all of the guiding layers (13, 18, 22) is between 1 and 20 microns.
5) Guide d'onde selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit canal (12, 17, 25) résulte d'une implantation ionique o dans ledit substrat (11, 15, 20).5) Waveguide according to any one of the preceding claims, characterized in that said channel (12, 17, 25) results from an ion implantation o in said substrate (11, 15, 20).
6) Guide d'onde selon l'une quelconque des revendications précédentes, caractérisé en ce que la face du substrat (11, 15, 20) sur laquelle est réalisée l'implantation ionique est en dioxyde de silicium.6) Waveguide according to any one of the preceding claims, characterized in that the face of the substrate (11, 15, 20) on which the ion implantation is carried out is made of silicon dioxide.
7) Méthode de fabrication d'un guide d'onde sur un substrat optique 5 comprenant les étapes suivantes :7) Method for manufacturing a waveguide on an optical substrate 5 comprising the following steps:
- réalisation d'un masque (16) sur ledit substrat (15) pour définir le motif d'un canal (17),- production of a mask (16) on said substrate (15) to define the pattern of a channel (17),
- implantation ionique du substrat masqué,- ion implantation of the masked substrate,
- retrait dudit masque, 0 caractérisé en ce qu'elle comprend de plus une étape de dépôt d'au moins une couche guidante (18) sur le substrat, l'indice de réfraction de cette couche guidante étant supérieur à celui du substrat.- Removal of said mask, 0 characterized in that it further comprises a step of depositing at least one guide layer (18) on the substrate, the refractive index of this guide layer being higher than that of the substrate.
8) Méthode de fabrication d'un guide d'onde sur un substrat optique comprenant les étapes suivantes : 5 - implantation ionique du substrat (20), - réalisation d'un masque (21) sur ledit substrat pour définir le motif d'un canal (25),8) Method for manufacturing a waveguide on an optical substrate comprising the following steps: 5 - ion implantation of the substrate (20), - production of a mask (21) on said substrate to define the pattern of a channel (25),
- gravure du substrat sur une profondeur au moins égale à la profondeur d'implantation, - retrait dudit masque, caractérisé en ce qu'elle comprend de plus une étape de dépôt d'au moins une couche guidante (22) sur le substrat, l'indice de réfraction de cette couche guidante étant supérieur à celui du substrat.- etching of the substrate to a depth at least equal to the implantation depth, - removal of said mask, characterized in that it further comprises a step of depositing at least one guiding layer (22) on the substrate, l the refractive index of this guiding layer being greater than that of the substrate.
9) Méthode selon l'une quelconque des revendications 7 ou 8, caractérisée en ce qu'elle comprend une étape de recuit du substrat (15, 20) qui fait suite à l'étape d'implantation ionique.9) Method according to any one of claims 7 or 8, characterized in that it comprises a step of annealing the substrate (15, 20) which follows the step of ion implantation.
10) Méthode selon l'une quelconque des revendications 7 ou 8, caractérisée en ce qu'elle comprend une étape de dépôt d'une couche de recouvrement (19, 23) sur ladite couche guidante (18, 22), l'indice de cette couche de recouvrement étant inférieur à celui de la couche guidante et à celui du canal10) Method according to any one of claims 7 or 8, characterized in that it comprises a step of depositing a covering layer (19, 23) on said guiding layer (18, 22), the index of this covering layer being lower than that of the guiding layer and that of the channel
(17, 25).(17, 25).
11 ) Méthode selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que l'indice de ladite couche guidante (18, 22) vaut celui du substrat11) Method according to any one of claims 7 or 8, characterized in that the index of said guide layer (18, 22) is that of the substrate
(15, 20) multiplié par un facteur supérieur à 1 ,001. 12) Méthode selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que l'épaisseur de l'ensemble des couches guidantes (18, 22) est comprise entre 1 et 20 microns.(15, 20) multiplied by a factor greater than 1.001. 12) Method according to any one of claims 7 or 8, characterized in that the thickness of all of the guiding layers (18, 22) is between 1 and 20 microns.
13) Méthode selon l'une quelconque des revendications 7 ou 8, caractérisée en ce que la face (15, 20) du substrat sur laquelle est réalisée l'implantation ionique est en dioxyde de silicium. 13) Method according to any one of claims 7 or 8, characterized in that the face (15, 20) of the substrate on which the ion implantation is carried out is made of silicon dioxide.
EP01270789A 2000-12-15 2001-12-14 Waveguide comprising a channel on an optical substrate Ceased EP1342112A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0016549 2000-12-15
FR0016549A FR2818390B1 (en) 2000-12-15 2000-12-15 WAVEGUIDE HAVING A CHANNEL ON AN OPTICAL SUBSTRATE
PCT/FR2001/004014 WO2002048747A2 (en) 2000-12-15 2001-12-14 Waveguide comprising a channel on an optical substrate

Publications (1)

Publication Number Publication Date
EP1342112A2 true EP1342112A2 (en) 2003-09-10

Family

ID=8857837

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01270789A Ceased EP1342112A2 (en) 2000-12-15 2001-12-14 Waveguide comprising a channel on an optical substrate

Country Status (8)

Country Link
US (1) US7756377B2 (en)
EP (1) EP1342112A2 (en)
JP (1) JP2004515815A (en)
CN (1) CN1486440A (en)
AU (1) AU2002219315A1 (en)
CA (1) CA2431797C (en)
FR (1) FR2818390B1 (en)
WO (1) WO2002048747A2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818755B1 (en) * 2000-12-26 2004-06-11 Ion Beam Services OPTICALLY ACTIVE DEVICE HAVING A CHANNEL ON AN OPTICAL SUBSTRATE
FR2857104B1 (en) * 2003-07-03 2005-11-11 Silios Technologies WAVE LENGTH FILTER COMPRISING MULTIPLE CELLS COMPRISING THE SAME MATERIAL
FR2871812B1 (en) * 2004-06-16 2008-09-05 Ion Beam Services Sa IONIC IMPLANTER OPERATING IN PLASMA PULSE MODE
FR2902575B1 (en) * 2006-06-14 2008-09-05 Ion Beam Services Sa APPARATUS FOR OPTICALLY CHARACTERIZING THE DOPING OF A SUBSTRATE
GB201202128D0 (en) * 2012-02-08 2012-03-21 Univ Leeds Novel material
WO2021178331A1 (en) * 2020-03-03 2021-09-10 Psiquantum, Corp. Phase shifter employing electro-optic material sandwich

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2152464B1 (en) * 1971-09-16 1974-05-31 Thomson Csf
US5163118A (en) * 1986-11-10 1992-11-10 The United States Of America As Represented By The Secretary Of The Air Force Lattice mismatched hetrostructure optical waveguide
FR2613085B1 (en) * 1987-03-25 1989-06-09 Carenco Alain METHOD FOR LOCALLY INCREASING THE REFRACTION INDEXES OF AN ELECTRO-OPTICAL MATERIAL FOR USE IN GUIDED OPTICS AND MATERIAL OBTAINED BY THIS PROCESS
US4789642A (en) * 1987-03-26 1988-12-06 The United States Of America As Represented By The Secretary Of The Air Force Method for fabricating low loss crystalline silicon waveguides by dielectric implantation
JP2686764B2 (en) * 1988-03-11 1997-12-08 国際電信電話株式会社 Method for manufacturing optical semiconductor device
JP2598533B2 (en) * 1989-01-26 1997-04-09 日本板硝子株式会社 Method of forming optical waveguide
US5119460A (en) * 1991-04-25 1992-06-02 At&T Bell Laboratories Erbium-doped planar optical device
JPH06235833A (en) * 1993-02-09 1994-08-23 Nikon Corp Light waveguide
US5395793A (en) * 1993-12-23 1995-03-07 National Research Council Of Canada Method of bandgap tuning of semiconductor quantum well structures
US5911018A (en) * 1994-09-09 1999-06-08 Gemfire Corporation Low loss optical switch with inducible refractive index boundary and spaced output target
GB2306694A (en) * 1995-10-17 1997-05-07 Northern Telecom Ltd Strip-loaded planar optical waveguide
DE59809576D1 (en) * 1997-06-04 2003-10-16 Rainbow Photonics Ab Zuerich STRIP WAVE LADDER AND METHOD FOR THE PRODUCTION THEREOF
FR2818755B1 (en) 2000-12-26 2004-06-11 Ion Beam Services OPTICALLY ACTIVE DEVICE HAVING A CHANNEL ON AN OPTICAL SUBSTRATE
US20030077060A1 (en) * 2001-10-23 2003-04-24 Datong Chen Planar lightwave circuit optical waveguide having a circular cross section
FR2871812B1 (en) 2004-06-16 2008-09-05 Ion Beam Services Sa IONIC IMPLANTER OPERATING IN PLASMA PULSE MODE

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0248747A3 *

Also Published As

Publication number Publication date
AU2002219315A1 (en) 2002-06-24
US7756377B2 (en) 2010-07-13
WO2002048747A3 (en) 2002-08-22
FR2818390B1 (en) 2003-11-07
US20040071428A1 (en) 2004-04-15
JP2004515815A (en) 2004-05-27
FR2818390A1 (en) 2002-06-21
WO2002048747A8 (en) 2003-02-06
CA2431797A1 (en) 2002-06-20
CN1486440A (en) 2004-03-31
CA2431797C (en) 2011-06-14
WO2002048747A2 (en) 2002-06-20

Similar Documents

Publication Publication Date Title
EP0129463B1 (en) Integrated optical polarising device and process for its manufacture
EP0323317B1 (en) Method of manufacturing micro light guides having a low optical propagation loss by depositing multiple layers
EP0461991B1 (en) Spatial optical integrated monomode filter and method of manufacture
JPH09105965A (en) Optical device
EP0219401A1 (en) Differential-absorption polarizer, and method and device for its manufacture
EP0539298B1 (en) Integrated electro-optic modulator and method of making the same
CA2431797C (en) Wave guide with channel for optical substrate
WO2002052312A1 (en) Optically active waveguide device comprising a channel on an optical substrate
FR2726097A1 (en) ELECTRO-OPTICAL CELL WITH ELECTRIC TRANSVERSE MODE FOR A MODULATOR AND PROCESS FOR MAKING SUCH A CELL
EP0902306B1 (en) Fabrication process of an optical integrated componant comprising a thick waveguide coupled with a thin waveguide
EP0728318B1 (en) Manufacture of a waveguide embedded at several depths
EP0982606A1 (en) Fabrication method of a integrated optical circuit
EP0798768A1 (en) Method of fabrication of an optical component on a cristalline silicon substrate
WO2003075061A1 (en) Optical mode adapter provided with two separate channels
WO2003104865A2 (en) Waveguide comprising a channel and an adaptation layer
EP3417322A1 (en) Method for manufacturing at least one semiconducting structure comprising a stack of one or more aluminium gallium arsenide layers
FR2857104A1 (en) Wave length filter for e.g. optical mirror, has three cells consecutively juxtaposed on substrate, where one cell has two sections that are juxtaposed along propagation axis and differ by their refraction indexes and widths
FR2744531A1 (en) Forming structure comprising light guide with aligned cavity
EP1356323A1 (en) Optics-integrated structure comprising in a substrate at least a non-buried guide portion and method for making same
WO2006030148A1 (en) Optical structure provided with at least two elements assembled by molecular adhesion and method for assembling said two elements

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030620

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DROUARD, EMMANUEL

Inventor name: ESCOUBAS, LUDOVIC

Inventor name: FLORY, FRANEOIS

Inventor name: TORREGROSSA, FRANK

Inventor name: ROUX, LAURENT

Inventor name: TISSERAND, STEPHANE

17Q First examination report despatched

Effective date: 20041102

18D Application deemed to be withdrawn

Effective date: 20061229

R18D Application deemed to be withdrawn (corrected)

Effective date: 20061230

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18R Application refused

Effective date: 20101123