EP1341915A1 - Use of cells derived from embryonic stem cells for increasing transplantation tolerance and for repairing damaged tissue - Google Patents

Use of cells derived from embryonic stem cells for increasing transplantation tolerance and for repairing damaged tissue

Info

Publication number
EP1341915A1
EP1341915A1 EP01995556A EP01995556A EP1341915A1 EP 1341915 A1 EP1341915 A1 EP 1341915A1 EP 01995556 A EP01995556 A EP 01995556A EP 01995556 A EP01995556 A EP 01995556A EP 1341915 A1 EP1341915 A1 EP 1341915A1
Authority
EP
European Patent Office
Prior art keywords
cells
ecl
specific
donor
cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01995556A
Other languages
German (de)
French (fr)
Inventor
Michael Bader
Bert Binas
Giuxuan Chai
Fred FÄNDRICH
Detlev Ganten
Xiongbin Lin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Original Assignee
Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft filed Critical Max Delbrueck Centrum fuer Molekulare in der Helmholtz Gemeinschaft
Publication of EP1341915A1 publication Critical patent/EP1341915A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/8509Vectors or expression systems specially adapted for eukaryotic hosts for animal cells for producing genetically modified animals, e.g. transgenic
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0271Chimeric vertebrates, e.g. comprising exogenous cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/001Preparations to induce tolerance to non-self, e.g. prior to transplantation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/06Immunosuppressants, e.g. drugs for graft rejection
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0603Embryonic cells ; Embryoid bodies
    • C12N5/0606Pluripotent embryonic cells, e.g. embryonic stem cells [ES]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2217/00Genetically modified animals
    • A01K2217/05Animals comprising random inserted nucleic acids (transgenic)
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2227/00Animals characterised by species
    • A01K2227/10Mammal
    • A01K2227/105Murine
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/02Animal zootechnically ameliorated
    • A01K2267/025Animal producing cells or organs for transplantation
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2267/00Animals characterised by purpose
    • A01K2267/03Animal model, e.g. for test or diseases
    • A01K2267/035Animal model for multifactorial diseases
    • A01K2267/0381Animal model for diseases of the hematopoietic system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K2035/122Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells for inducing tolerance or supression of immune responses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5156Animal cells expressing foreign proteins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2510/00Genetically modified cells

Definitions

  • the invention relates to the use of cells from cell lines, which are derived from early embryonic stages, for the donor-specific increase of the transplant tolerance and for the restoration of destroyed tissue. Areas of application of the invention are medicine and the pharmaceutical industry.
  • tolerance immune tolerance
  • AG specific antigen
  • tolerance can be defined as persistent tissue persistence in the absence of a deleterious immune response that can be achieved without ongoing therapeutic intervention.
  • tolerance is not an innate characteristic of an individual, but is acquired (Owen, Science 102: 400-401, 1945; Billingham et al., Nature 172: 603-606, 1953). It is also known that the tolerant state that exists at birth changes constantly, especially when the body is confronted with new antigens in the course of life.
  • the immune system must be able to tolerate certain "foreign" antigens, such as physiological hormones released during puberty and pregnancy (Fowlkes and Ramsdell, Curr. Opin. Immunol. 5: 873-879, 1993).
  • fetal life can develop and survive in a host that is not adapted to major histocompatibility complex (MHC) is another example of nature's ability to distinguish not only between foreign and non-foreign, but also between dangerous and harmless can (Vacchio and Jiang, Grit. Rev. Immunol. 19: 461-480, 1999).
  • the invention is based on the object of generating a donor-specific immune tolerance in order to prevent rejection of the transplanted tissue by an immune reaction and thus to be able to restrict the administration of immunosuppressive agents.
  • ECL embryonic stem cell-like cell lines
  • the use of the cells from the ECLs as "tolerance vectors" is opened by a lack of MHC antigen expression and the associated immunogenic inactivity of the ECL.
  • Research has shown that cells from ECLs can be transplanted and survive in the long term, producing hematopoietic cells of different origins.
  • these hematopoietic cells derived from ECL have generated a constant mixed chimerism (donor and recipient hematopoietic cells coexist in the same host) and thus create the basis for long-term allograft acceptance. As a result, they can either be used as an ideal means of creating tolerance, or alternatively they can be used in a situation in which the parenchymal injury of a particular organ has to be remedied.
  • WKY Wistar Kyoto
  • SD Sprague Dawley
  • ACI ACI
  • WKY blastocysts grew very rapidly, showed strong primary growth, and more than 10% of the embryos achieved permanent cell lines (Table 1).
  • SD blastocysts grew with some delay, achieved a moderate number of primary clumps, and the effectiveness of cell line generation was poor.
  • ACI blastocysts took the longest time to grow, produced a very small number of primary clumps, and no cell line could be generated by this breed.
  • the use of the cells from the cell lines, which were generated from the embryonic stem cells, as "tolerance vectors" to bring about donor-specific immune tolerance also requires the expression of the donor-specific MHC antigens.
  • This property is achieved according to the invention in that cells of the ECLs are transfected with the genes of the donor which code for the MHC antigens.
  • the administration of the transfected cells e.g. via the portal vein, by intraperitoneal, subcutaneous or intravenous injection.
  • Mouse embryo fibroblasts (MEF) or rat embryo fibroblasts (REF) are prepared from 13-14 day pregnant animals that have been mitotically inactivated by 3-5 treatments with mitomycin C (10 ⁇ g / ml) for 2 or 1 hours, washed with phosphate buffered saline ( PBS) and planted in Nunc 4-wells.
  • mitomycin C 10 ⁇ g / ml
  • PBS phosphate buffered saline
  • the blastocysts are flushed with PBS / 20% FCS (fetal calf serum) or a culture medium from the uterus of rats 4.5 days pregnant, planted on inactivated embryo fibroblasts and 3-4 days in DMEM / 15% FCS / 2,500 ⁇ / ml LIF ( "Leukemia inhibiting factor", ESGRO, Life Technologies) with additives (Iannaccone et al, Dev. Biol. 1994; 163: 288-292) left untreated in a medium of 6% CO 2 / air.
  • the blastocysts develop and tie themselves to the supplier, and the ICM begins to grow, with the Efficiency depends on the genetic background.
  • Outgrowths with an ES-cell-like appearance are picked up and broken up into several lumps by suction in drawn glass capillaries with a somewhat smaller diameter than the outgrowths and applied to fresh supply plates. Picking up and breaking up occurs either daily or every other day. Crumbled colonies are reset in rows until a small number of clean, steadily growing ES-like clumps are obtained. The clump population is then expanded to several dozen, stored in 35 mm dishes and slightly trypsinized into a mixture of individual cells and small aggregates. The rat ES cells produced were passaged every or every other day by trypsinization (0.05% trypsin, 0.02% EDTA-4Na, 1% chicken serum, in Ca / Mg-free PBS). The species identity of the resulting cell lines is checked by PCR using Renin gene primers (Brenin et al., Transplant. Proc. 1997; 29: 1761-1765) in order to rule out contamination by mouse ES cells.
  • a first series of experiments examined the fate of a single intraportal injection of WKY-derived 1.0 x 10 6 ECL into allogeneic DA (RTl. Avl ) host rats that had received no immunosuppressive or myeloablative treatment.
  • the investigations show that these cells can survive long-term (> 150 days) in DA host rats. It was found that the ECL and its descendants can produce a state of constantly mixed chimerism (hematopoietic cells of the donor and the recipient coexist in the same host). It was also found that these cells differentiate into hematopoietic cells that express class II MHC antigens (Ox-3) and B cell lineage markers (Ox-45).
  • the monoclonal antibody (mAb) Ox-3 is a specific antibody of a (WKY) MHC class II donor that binds to class II MHC epitopes that are expressed on WKY but not to DA MHC positive cells class II.
  • WB double-stained leukocytes
  • Ox-3 + cells were detected histomorphologically (10-15%) in the interstitial space of the recipient (DA) hearts, which were selectively destroyed 100 days after a single intraportal injection of 1.0 x 10 6 ECL derived from WKY (see Fig.l).
  • the stable chimeric state of these animals provides the basis for examining the fate of the WKY cardiac allograft transplanted in DA rats seven days after the intraportal ECL injection.
  • Kaplan Meier diagrams show that pretreatment of DA rats with 1.0 x 10 6 ECL intraportally and heart transplantation (HTx) seven days later led to long-term (> 150 days) non-rejection allograft acceptance, whereas untreated DA rats caused WKY Reject allografts acutely (see Fig. 2).
  • CAP rat heart transplants were rejected from DA rats injected with WKY-ECL within 12.4 ⁇ 1.4 days, demonstrating the immune competence of these rats.
  • ECL cells described above assume differentiation into astrocytes or cardiomyocytes and hepatocytes by co-cultivation with somatic cells of neuronal or entodermal origin.
  • the embryonic cell lines described are therefore also suitable for the treatment of organ-specific diseases of the central nervous system (e.g. as dopaminergic cells for the treatment of Parkinson's disease, as hepatocytes for the treatment of cirrhosis of the liver or as cardiomyocytes for the treatment of fresh heart attacks).
  • organ-specific diseases of the central nervous system e.g. as dopaminergic cells for the treatment of Parkinson's disease, as hepatocytes for the treatment of cirrhosis of the liver or as cardiomyocytes for the treatment of fresh heart attacks.
  • the forthcoming isolation of the signal proteins necessary for these specific forms of differentiation is of great clinical importance, since it could enable problem-free programming of the ECLs for the desired cell population.
  • the goal is therefore the exact sequencing of these functional proteins in order to enable their recombinant production.
  • the large sequence homology between rat and human protein would also provide information on the analog production of human functional proteins.
  • the associated therapeutic application possibilities include both the use of the ECL-derived somatic cell lines described above and the functional proteins derived therefrom for future clinical use on all indication levels of tissue engineering for organ replacement, for gene therapy and for the treatment of metabolic diseases in the area of the CNS, the liver and the heart.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Veterinary Medicine (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Cell Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Molecular Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Environmental Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Transplantation (AREA)
  • Cardiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Mycology (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Animal Husbandry (AREA)

Abstract

The invention relates to the use of cells from cell lines, which are derived from early embryonic stages, for the donor-specific increase in transplantation tolerance and for repairing damaged tissue. Areas of application of the invention include the field of medicine and the pharmaceutical industry. The aim of the invention is to produce a donor-specific immunotolerance in order to prevent a rejection of the transplanted tissue due to an immune response and thus to be able to limit the administration of immunosuppressives. In order to produce a donor-specific immunotolerance, embryonic stem cell-like cell lines (ECL) are obtained from blastocysts and are transfected with genetic material of the donor, which codes for the MHC haplotypes. The cells produced in such a manner are administered to the recipient before the transplantation for producing an immunotolerance against the tissue to be transplanted or for regenerating already damaged tissue.

Description

Verwendung von aus embryonalen Stammzellen hergeleiteteten Zellen zur Erhöhung der Transplantationstoleranz und zur Wiederherstellung zerstörten GewebesUse of cells derived from embryonic stem cells to increase transplant tolerance and to restore destroyed tissue
Beschreibung:Description:
Die Erfindung betrifft die Nerwendung von Zellen aus Zelllinien, die aus frühen Embryonalstadien abgeleitet werden, zur spenderspezifischen Erhöhung der Transplantationstoleranz und zur Wiederherstellung zerstörten Gewebes. Anwendungsgebiete der Erfindung sind die Medizin und die pharmazeutische Industrie.The invention relates to the use of cells from cell lines, which are derived from early embryonic stages, for the donor-specific increase of the transplant tolerance and for the restoration of destroyed tissue. Areas of application of the invention are medicine and the pharmaceutical industry.
Stand der Technik:State of the art:
In der Transplantationsmedizin hat die Entwicklung zunehmend starker Immunosuppressiva wie Prednison, Cyclosporin, Tacrolimus, Mycophenolatmefetil und Antilymphozyt- Antikörper die Überlebensdauer der Patienten und die Verweildauer der Transplantate um durchschnittlich ein Jahr erhöht. Die routinemäßige Anwendung dieser Medikamente hat die klinische Transplantation zu einer Standardbehandlung gemacht, die für die meisten nichtmalignen terminalen Erkrankungen des Herzens, der Nieren und der Leber gewählt wird. Eine Verbesserung der frühen Überlebensdauer der Transplantate wurde jedoch nicht ohne eine beachtliche infektiöse Morbidität und nichtimmune Nebeneffekte (Gaber et al., Transplantation 66:29-37, 1998) erreicht. Darüber hinaus konnte eine bessere frühe Überlebensdauer nicht in eine bessere langfristige Überlebensdauer des Transplantates überfuhrt werden, da die chronische Abstoßung weiterhin die Transplantate nach dem ersten Jahr in einer Häufigkeit, die sich in den letzten 20 Jahren im wesentlichen nicht verändert hat (Cecka and Terasaki, Clinical Transplants 1997, Los Angeles, UCLA Tissue Typing Laboratory, 1998), funktionsunfähig gemacht hat. Außerdem zeigten sich bei längerem Verfolgen des klinischen Verlaufs von Transplantationen (Pirsch and Friedman, J. Gen. Intern. Med. 9:29-37, 1994) zunehmend eine späte Morbidität und Mortalität aufgrund der weiteren Notwendigkeit einer nichtspezifischen Immunsuppression.In transplant medicine, the development of increasingly powerful immunosuppressive drugs such as prednisone, cyclosporin, tacrolimus, mycophenolate mefetil and antilymphocyte antibodies has increased patient survival and the length of stay of the grafts by an average of one year. The routine use of these drugs has made clinical transplantation a standard treatment chosen for most non-malignant terminal diseases of the heart, kidneys and liver. However, an improvement in the early survival of the grafts was not achieved without significant infectious morbidity and non-immune side effects (Gaber et al., Transplantation 66: 29-37, 1998). In addition, a better early survival could not be translated into a better long-term survival of the graft, since chronic rejection continued to affect the grafts after the first year at a frequency that has not changed substantially in the past 20 years (Cecka and Terasaki, Clinical Transplants 1997, Los Angeles, UCLA Tissue Typing Laboratory, 1998). In addition, long-term monitoring of the clinical course of transplantations (Pirsch and Friedman, J. Gen. Intern. Med. 9: 29-37, 1994) increasingly showed late morbidity and mortality due to the further need for non-specific immunosuppression.
Der Begriff der Immuntoleranz (nachfolgend als Toleranz bezeichnet), der allgemein mit dem Ausbleiben einer Immunreaktion nach Verabreichung oder Aufnahme eines bestimmten Antigens (AG) beschrieben werden kann, besitzt in der Transplantationsmedizin eine zentrale Rolle. Vom Standpunkt des Transplantationsimmunologen kann die Toleranz als anhaltende Persistenz eines Gewebes in Abwesenheit einer schädlichen Immunreaktion definiert werden, die ohne andauernden therapeutischen Eingriff erreicht werden kann. In diesem Zusammenhang ist es wichtig festzustellen, daß die Toleranz keine angeborene Eigenschaft eines Individuums ist, sondern erworben wird (Owen, Science 102:400-401, 1945; Billingham et al., Nature 172:603-606, 1953). Es ist weiterhin bekannt, daß sich der tolerante Zustand, der bei der Geburt besteht, ständig verändert und zwar vor allem dann, wenn der Körper im Laufe des Lebens mit neuen Antigenen konfrontiert wird. Das Immunsystem muß z.B. in der Lage sein, bestimmte "fremde" Antigene, wie während der Pubertät und Schwangerschaft freigesetzte physiologische Hormone, zu tolerieren (Fowlkes and Ramsdell, Curr. Opin. Immunol. 5:873-879, 1993). Auch die Tatsache, daß sich fötales Leben entwickeln und in einem an major histocompatibility complex (MHC) nichtangepaßten Wirt überleben kann, ist ein weiteres Beispiel für die Fähigkeit der Natur, nicht nur zwischen fremd und nicht fremd, sondern auch zwischen gefährlich und ungefährlich unterscheiden zu können (Vacchio and Jiang, Grit. Rev. Immunol. 19:461-480, 1999).The term immune tolerance (hereinafter referred to as tolerance), which can generally be described as the absence of an immune response after administration or intake of a specific antigen (AG), has a central role in transplantation medicine. From a transplant immunologist's point of view, tolerance can be defined as persistent tissue persistence in the absence of a deleterious immune response that can be achieved without ongoing therapeutic intervention. In this In context, it is important to note that tolerance is not an innate characteristic of an individual, but is acquired (Owen, Science 102: 400-401, 1945; Billingham et al., Nature 172: 603-606, 1953). It is also known that the tolerant state that exists at birth changes constantly, especially when the body is confronted with new antigens in the course of life. For example, the immune system must be able to tolerate certain "foreign" antigens, such as physiological hormones released during puberty and pregnancy (Fowlkes and Ramsdell, Curr. Opin. Immunol. 5: 873-879, 1993). The fact that fetal life can develop and survive in a host that is not adapted to major histocompatibility complex (MHC) is another example of nature's ability to distinguish not only between foreign and non-foreign, but also between dangerous and harmless can (Vacchio and Jiang, Grit. Rev. Immunol. 19: 461-480, 1999).
Bei einer allogenen hämatopoetischen Stammzellentransplantation (CD34+) wird eine erfolgreiche Transplantation in an MHC nichtangepaßten Wirten nur dann erreicht, wenn der Empfänger sublethal myeloablatiert oder bestrahlt wird.In allogeneic hematopoietic stem cell transplantation (CD34 + ), successful transplantation in hosts not adapted to MHC is only achieved if the recipient is sublethally myeloablated or irradiated.
Nachteile der bisherigen Organ- bzw. GewebetransplantationenDisadvantages of previous organ or tissue transplants
Um eine Abstoßung des Transplantats durch eine Immunreaktion zu verhindern, werden gegenwärtig starke Immunsuppressiva verabreicht, die jedoch wiederum eine gesteigerte Infektanfälligkeit hervorrufen. So können ubiquitäre Keime, die bei einem normal funktionierenden Immunsystem keinerlei Gefahr darstellen, in einem immunsuppressiven Zustand schwerwiegende Erkrankungen hervorrufen. Bei einer Blutstammzellen- transplantation (CD34+) wird zum Beispiel eine erfolgreiche Transplantation in einen an MHC nichtangepassten Empfänger nur dann erreicht, wenn das Knochenmark des Empfängers vorher entfernt bzw. durch Bestrahlung mit Röntgenstrahlen zerstört wurde.In order to prevent the graft from being rejected by an immune reaction, strong immunosuppressive agents are currently being administered which, however, in turn cause an increased susceptibility to infections. For example, ubiquitous germs, which pose no danger to a normally functioning immune system, can cause serious illnesses in an immunosuppressive state. With a blood stem cell transplant (CD34 + ), for example, a successful transplant into a recipient not adapted to MHC is only achieved if the recipient's bone marrow has been removed beforehand or destroyed by X-ray radiation.
Aufgabenstellung:Task:
Der Erfindung liegt die Aufgabe zugrunde, eine spenderspezifische Immuntoleranz zu erzeugen, um eine Abstoßung des transplantierten Gewebes durch eine Immunreaktion zu verhindern und so die Verabreichung von Immunsuppressiva einschränken zu können.The invention is based on the object of generating a donor-specific immune tolerance in order to prevent rejection of the transplanted tissue by an immune reaction and thus to be able to restrict the administration of immunosuppressive agents.
Beschreibung der Erfindung:Description of the invention:
Die Erfindung wird gemäß Anspruch 1 realisiert, die Unteransprüche sind Vorzugsvarianten. Für die Erzeugung einer spenderspezifischen Immuntoleranz werden embryonalen Stammzellen ähnliche Zelllinien (embryonic stem cell like cell lines, ECL) aus Blastozysten gewonnen und mit genetischem Material des Spenders, das für die MHC-Haplotypen kodiert, transfiziert. Die so erzeugten Zellen werden dem Empfänger schließlich vor der Transplantation zur Erzeugung der Lnmuntoleranz gegen das zu transplantierende Gewebe bzw. zur Erneuerung bereits geschädigten Gewebes verabreicht.The invention is implemented according to claim 1, the subclaims are preferred variants. To create a donor-specific immune tolerance, embryonic stem cell-like cell lines (ECL) are obtained from blastocysts and with the donor's genetic material that codes for the MHC haplotypes. transfected. The cells produced in this way are finally administered to the recipient prior to the transplantation in order to generate immune tolerance to the tissue to be transplanted or to renew already damaged tissue.
Der Einsatz der Zellen aus den ECLs als "Toleranzvektoren" wird durch einen Mangel an MHC-Antigen-Expression und die damit verbundene immunogene Inaktivität der ECL eröffnet. Durch Untersuchungen wurde festgestellt, daß Zellen von ECLs transplantiert werden können und langfristig überleben, wobei sie hämatopoetische Zellen unterschiedlicher Abstammung erzeugen. Darüber hinaus haben diese aus ECL abgeleiteten hämatopoetischen Zellen einen ständigen gemischten Chimärismus erzeugt (hämatopoetische Zellen des Spenders und des Empfängers existieren nebeneinander im gleichen Wirt) und schaffen somit die Basis für eine langfristige Allo-Transplantatakzeptanz. Demzufolge können sie entweder als ideales Mittel für die Toleranzerzeugung eingesetzt werden oder alternativ in einer Situation Anwendung finden, in der die parenchymatöse Verletzung eines bestimmten Organs zu beheben ist.The use of the cells from the ECLs as "tolerance vectors" is opened by a lack of MHC antigen expression and the associated immunogenic inactivity of the ECL. Research has shown that cells from ECLs can be transplanted and survive in the long term, producing hematopoietic cells of different origins. In addition, these hematopoietic cells derived from ECL have generated a constant mixed chimerism (donor and recipient hematopoietic cells coexist in the same host) and thus create the basis for long-term allograft acceptance. As a result, they can either be used as an ideal means of creating tolerance, or alternatively they can be used in a situation in which the parenchymal injury of a particular organ has to be remedied.
Die Erfindung wird nachfolgend näher erläutert.The invention is explained in more detail below.
Für die ECL-Isolation wurden drei Rattenrassen gewählt, Wistar Kyoto (WKY), Sprague Dawley (SD) und ACI.Three rat breeds were chosen for ECL isolation, Wistar Kyoto (WKY), Sprague Dawley (SD) and ACI.
Aus diesen gewonnene Blastozysten wurden auf durch Mitomyzin inaktivierte Embryofibroblasten von Mäusen (MEF) oder Ratten (REF) als Versorger gepflanzt. Die MEF erwiesen sich als besser und beide, MEF und REF, waren eindeutig Gelatine überlegen. Wenn sich Auswüchse der inneren Zellmasse (ICM) nach dem Anwachsen der Blastozysten an die Versorgerschicht bildeten, konnten sie gewöhnlich leicht in Gruppen von ES-ähnlichen Zellklumpen (Primärklumpen) etwa 10 Tage lang erweitert werden (Primärwachstum). Danach differenzierten sich die Zellen weitgehend in ein Gemisch verschiedener Zelltypen und wurden bald von runden, locker angebundenen, endodermartigen Zellen überwachsen. Nur ein kleiner Teil der Zellen aus den Primärklumpen überlebte und wurde zu einer Zelllinie erweitert.Blastocysts obtained from these were planted on mitomycin-inactivated embryo fibroblasts from mice (MEF) or rats (REF) as providers. The MEF turned out to be better and both, MEF and REF, were clearly superior to gelatin. If inner cell mass (ICM) growths formed after the blastocysts had grown to the supply layer, they could usually be easily expanded in groups of ES-like cell clumps (primary clumps) for about 10 days (primary growth). After that, the cells largely differentiated into a mixture of different cell types and were soon overgrown by round, loosely attached, endoderm-like cells. Only a small part of the cells from the primary clump survived and was expanded to a cell line.
WKY-Blastozysten wuchsen sehr schnell an, zeigten ein starkes Primärwachstum und mehr als 10 % der Embryos erzielten ständige Zelllinien (Tabelle 1). SD-Blastozysten wuchsen mit etwas Verzögerung an, erzielten eine moderate Anzahl von Primärklumpen und die Effektivität der Zelllinienerzeugung war gering. ACI-Blastozysten brauchten die längste Zeit für das Anwachsen, erzeugten eine sehr kleine Zahl von Primärklumpen und keine Zelllinie konnte von dieser Rasse erzeugt werden. Diese Ergebnisse lassen vermuten, daß die Geschwindigkeit, mit der sich die Blastozysten an die Versorgerzellschicht binden und die Anzahl der Primärklumpen während des größten Primärwachstums positiv mit der Effektivität der ECL-Ableitung verbunden (Tabelle 1) sind. Es ist interessant, daß bei den Hybridblastozysten der WKY-Genotyp die ACI bei der Herstellung der ECLs schlägt, jedoch nicht den SD-Genotyp (Tabelle 1).WKY blastocysts grew very rapidly, showed strong primary growth, and more than 10% of the embryos achieved permanent cell lines (Table 1). SD blastocysts grew with some delay, achieved a moderate number of primary clumps, and the effectiveness of cell line generation was poor. ACI blastocysts took the longest time to grow, produced a very small number of primary clumps, and no cell line could be generated by this breed. These results suggest that the rate at which blastocysts bind to the host cell layer and the number of primary clumps during the greatest primary growth are positively related to the effectiveness of ECL derivation (Table 1). It is interesting that the Hybrid blastocysts of the WKY genotype that ACI beats in producing the ECLs, but not the SD genotype (Table 1).
Der Einsatz der Zellen aus den Zelllinien, die aus den embryonalen Stammzellen erzeugt wurden, als "Toleranzvektoren" zur Herbeiführung einer spenderspezifischen Immuntoleranz bedingt weiterhin die Expression der spenderspezifischen MHC-Antigene. Diese Eigenschaft wird erfindungsgemäß dadurch erreicht, daß Zellen der ECLs mit den Genen des Spenders, die für die MHC-Antigene codieren, transfiziert werden. Dies kann durch (i) Fusion der ECL mit einer gegebenen somatischen Zelle oder Zelllinie erfolgen, die die MHC-Gene, die von Interesse sind, aufweist, durch (ii) Transfektion der ECL mit einem gegebenen MHC- kodierenden Plasmid, durch (iii) Schaffung transgener Ratten mit einem MHC-kodierenden Plasmid und die Erstellung von ECL von dieser Rasse oder durch (iv) Peptid-Beladung der ECL mit MHC-Allopeptiden der Klasse I, die für die hochpolymorphe 0.1-Helix eines spezifischen MHC-Antigens der Klasse I kodieren. Für die Verabreichung der transfizierten Zellen stehen verschiedene Varianten, z.B. über die Portalvene, durch intraperitoneale, subkutane oder intravenöse Injektion, zur Verfügung.The use of the cells from the cell lines, which were generated from the embryonic stem cells, as "tolerance vectors" to bring about donor-specific immune tolerance also requires the expression of the donor-specific MHC antigens. This property is achieved according to the invention in that cells of the ECLs are transfected with the genes of the donor which code for the MHC antigens. This can be done by (i) fusing the ECL with a given somatic cell or cell line that contains the MHC genes of interest, (ii) transfecting the ECL with a given MHC-encoding plasmid, by (iii) Creation of transgenic rats with an MHC-encoding plasmid and the generation of ECL from this breed or by (iv) peptide loading the ECL with MHC allopeptides of class I, which are responsible for the highly polymorphic 0.1 helix of a specific MHC class I antigen encode. There are different variants for the administration of the transfected cells, e.g. via the portal vein, by intraperitoneal, subcutaneous or intravenous injection.
In der klinischen Praxis der Organtransplantation wird dadurch die Möglichkeit geschaffen, die Alloreaktion der Empfänger durch die Verabreichung von ECLs, die die spenderspezifischen MHC-Antigene exprimieren, zu modifizieren. Eine exakte Phänotypisierung und morphologische Charakterisierung der von ECL abgeleiteten Abkömmlinge ermöglicht, ähnliche Zellen mit Stammzellenmerkmalen im erwachsenen Wirt zu suchen. Dies ermöglicht, zu einem besseren Verständnis der Plastizität der aus einem erwachsenenen Gewebe hergeleiteten Stammzellen zu kommen, die, alternativ zu den ECL, die ECL-Eigenschaften teilen und in ähnlicher Form verwendet werden können.In clinical practice of organ transplantation, this creates the possibility of modifying the recipient's alloreaction by administering ECLs that express the donor-specific MHC antigens. An exact phenotyping and morphological characterization of the descendants derived from ECL makes it possible to search for similar cells with stem cell characteristics in the adult host. This enables a better understanding of the plasticity of the stem cells derived from an adult tissue, which, as an alternative to the ECL, share the ECL properties and can be used in a similar form.
Ausführungsbeispiele:EXAMPLES
1. Isolation und Kultivierung der Ratten-ECL1. Isolation and cultivation of the rat ECL
Mausembryofibroblasten (MEF) oder Rattenembryofibroblasten (REF) werden aus 13-14- Tage schwangeren Tieren bereitet, die mitotisch inaktiviert wurden durch 3 - 5 Behandlungen mit Mitomyzin C (10 μg/ml) 2 oder 1 Stunden lang, gewaschen mit Phosphat gepufferter Salzlösung (PBS) und in Nunc 4-Muldenschalen (well-dishes) gepflanzt. Die Blastozysten werden mit PBS/20 % FCS (fötales Kälberserum) oder einem Kulturmedium aus dem Uterus von 4,5 Tage schwangeren Ratten gespült, auf inaktivierte Embryofibroblasten gepflanzt und 3 - 4 Tage in DMEM/15 % FCS/2,500 μ/ml LIF („Leukemia inhibiting factor", ESGRO, Life Technologies) mit Zusätzen (Iannaccone et al, Dev. Biol. 1994;163:288-292) in einem Medium von 6% CO2/Luft unbehandelt belassen. In dieser Zeit entwickeln sich die Blastozysten und binden sich an den Versorger, und die ICM beginnt zu wachsen, wobei die Effizienz vom genetischen Hintergrund abhängt. Auswüchse mit einer ES-zellenartigen Erscheinung werden aufgenommen und in mehrere Klumpen zerbrochen durch Ansaugen in gezogene Glaskapillaren mit einem etwas geringeren Durchmesser als die Auswüchse und auf frische Versorgerplatten aufgebracht. Das Aufnehmen und Zerbrechen erfolgt entweder täglich oder jeden zweiten Tag. Zerfallene Kolonien werden reihenweise zurückgesetzt, bis man eine kleine Zahl sauberer, stabil wachsender ES-artiger Klumpen erhält. Die Population der Klumpen wird dann auf mehrere Dutzend erweitert, in 35 mm-Schalen aufbewahrt und leicht trypsiniert in ein Gemisch einzelner Zellen und kleiner Aggregate. Die hergestellten Ratten-ES-Zellen wurden jeden oder jeden zweiten Tag durch Trypsinierung (0,05 % Trypsin, 0,02 % EDTA-4Na, 1 % Hühnerserum, in Ca/Mg-freier PBS) passagiert. Die Artenidentität der sich ergebenden Zelllinien wird durch PCR, unter Anwendung von Renin-Gen-Primern (Brenin et al., Transplant. Proc. 1997;29:1761-1765), geprüft, um eine Verunreinigung durch Maus-ES-Zellen auszuschließen.Mouse embryo fibroblasts (MEF) or rat embryo fibroblasts (REF) are prepared from 13-14 day pregnant animals that have been mitotically inactivated by 3-5 treatments with mitomycin C (10 μg / ml) for 2 or 1 hours, washed with phosphate buffered saline ( PBS) and planted in Nunc 4-wells. The blastocysts are flushed with PBS / 20% FCS (fetal calf serum) or a culture medium from the uterus of rats 4.5 days pregnant, planted on inactivated embryo fibroblasts and 3-4 days in DMEM / 15% FCS / 2,500 μ / ml LIF ( "Leukemia inhibiting factor", ESGRO, Life Technologies) with additives (Iannaccone et al, Dev. Biol. 1994; 163: 288-292) left untreated in a medium of 6% CO 2 / air. During this time, the blastocysts develop and tie themselves to the supplier, and the ICM begins to grow, with the Efficiency depends on the genetic background. Outgrowths with an ES-cell-like appearance are picked up and broken up into several lumps by suction in drawn glass capillaries with a somewhat smaller diameter than the outgrowths and applied to fresh supply plates. Picking up and breaking up occurs either daily or every other day. Crumbled colonies are reset in rows until a small number of clean, steadily growing ES-like clumps are obtained. The clump population is then expanded to several dozen, stored in 35 mm dishes and slightly trypsinized into a mixture of individual cells and small aggregates. The rat ES cells produced were passaged every or every other day by trypsinization (0.05% trypsin, 0.02% EDTA-4Na, 1% chicken serum, in Ca / Mg-free PBS). The species identity of the resulting cell lines is checked by PCR using Renin gene primers (Brenin et al., Transplant. Proc. 1997; 29: 1761-1765) in order to rule out contamination by mouse ES cells.
2. Intraportale Injektion von WKY-abgeleiteten ECL in allogene Wirtsratten2. Intraportal injection of WKY-derived ECL into allogeneic host rats
Eine erste Reihe von Experimenten untersuchte das Schicksal einer einmaligen intraportalen Injektion von 1,0 x 106 von WKY abgeleiteten ECL in allogene DA (RTl.avl)-Wirtsratten, die keinerlei immunsuppressive oder myeloablative Behandlung erhalten haben. Die Untersuchungen zeigen, daß diese Zellen langfristig (> 150 Tage) in DA- Wirtsratten überleben können. Dabei wurde herausgefunden, daß die ECL und ihre Abkömmlinge einen Zustand eines ständig gemischten Chimärismus (Hämatopoetische Zellen des Spenders und des Empfängers bestehen nebeneinander im gleichen Wirt) erzeugen können. Weiterhin wurde herausgefunden, daß sich diese Zellen in hämatopoetische Zellen differenzieren, die MHC-Antigene der Klasse II (Ox-3) und B-Zellenabstammungsmarker (Ox-45) exprimieren. Der monoklonale Antikörper (mAb) Ox-3 ist ein spezifischer Antikörper eines (WKY)- MHC-Spenders der Klasse II, der sich an MHC-Epitope der Klasse II bindet, die an WKY exprimiert werden, jedoch nicht an positive DA MHC-Zellen der Klasse II. Eine fließzytometrische Bestimmung von doppelt gefärbten Leukozyten (WBC) ergab, daß 3 bis 5 % der WBC, die DA-Ratten entnommen wurden (100 Tage nach der ECL-Injektion), Ox-3+- Zellen exprimierten, wobei 15 - 20 % der Milzlymphozytenpopulation Ox-3+ enthielten. Diese Ergebnisse weisen die Tatsache nach, daß ECL hämatopoetische Zellen erzeugen können. Dementsprechend wurden Ox-3+-Zellen histomorphologisch (10 - 15 %) im interstitiellen Raum der Empfänger- (DA-) Herzen nachgewiesen, die selektiv 100 Tage nach einer einmaligen intraportalen Injektion von 1,0 x 106 von WKY abgeleiteten ECL zerstört wurden (siehe Abb.l). Der stabile chimärische Zustand dieser Tiere schafft die Grundlage für die Untersuchung des Schicksals der WKY-Herzallotransplantats, die in DA-Ratten transplantiert wurden, sieben Tage nach der intraportalen ECL-Injektion. Kaplan Meier Diagramme zeigen, daß die Vorbehandlung der DA-Ratten mit 1,0 x 106 ECL intraportal und die Herztransplantation (HTx) sieben Tage später zu einer langfristigen (> 150 Tage) abstoßungsfreien Allotransplantatakzeptanz führten, während nichtbehandelte DA-Ratten die WKY-Allografts akut abstießen (siehe Abb. 2). Gleichzeitig wurden die Herzallotransplantate von CAP Ratten von mit WKY-ECL injizierten DA-Ratten innerhalb von 12,4 ± 1,4 Tagen abgestoßen, was die Immunkompetenz dieser Ratten beweist.A first series of experiments examined the fate of a single intraportal injection of WKY-derived 1.0 x 10 6 ECL into allogeneic DA (RTl. Avl ) host rats that had received no immunosuppressive or myeloablative treatment. The investigations show that these cells can survive long-term (> 150 days) in DA host rats. It was found that the ECL and its descendants can produce a state of constantly mixed chimerism (hematopoietic cells of the donor and the recipient coexist in the same host). It was also found that these cells differentiate into hematopoietic cells that express class II MHC antigens (Ox-3) and B cell lineage markers (Ox-45). The monoclonal antibody (mAb) Ox-3 is a specific antibody of a (WKY) MHC class II donor that binds to class II MHC epitopes that are expressed on WKY but not to DA MHC positive cells class II. Flow cytometric determination of double-stained leukocytes (WBC) showed that 3 to 5% of the WBC taken from DA rats (100 days after the ECL injection) expressed Ox-3 + cells, with 15 - 20% of the splenic lymphocyte population contained Ox-3 + . These results demonstrate the fact that ECL can produce hematopoietic cells. Accordingly, Ox-3 + cells were detected histomorphologically (10-15%) in the interstitial space of the recipient (DA) hearts, which were selectively destroyed 100 days after a single intraportal injection of 1.0 x 10 6 ECL derived from WKY (see Fig.l). The stable chimeric state of these animals provides the basis for examining the fate of the WKY cardiac allograft transplanted in DA rats seven days after the intraportal ECL injection. Kaplan Meier diagrams show that pretreatment of DA rats with 1.0 x 10 6 ECL intraportally and heart transplantation (HTx) seven days later led to long-term (> 150 days) non-rejection allograft acceptance, whereas untreated DA rats caused WKY Reject allografts acutely (see Fig. 2). At the same time, CAP rat heart transplants were rejected from DA rats injected with WKY-ECL within 12.4 ± 1.4 days, demonstrating the immune competence of these rats.
3. Ko-Kultivierung von ECL mit somatischen Zellinien3. Co-cultivation of ECL with somatic cell lines
In primären in vitro Untersuchungen wurde nachgewiesen, dass die zuvor beschriebenen ECL Zellen durch Ko-Kultivierung mit somatischen Zellen neuronalen oder entodermalen Ursprungs, eine Differenzierung in Astrozyten respektive Kardiomyozyten und Hepatozyten annehmen. Damit eignen sich die beschriebenen embryonalen Zellinien auch zur Behandlung Organ-spezifischer Erkrankungen des Zentralnervensystems (z.B. als dopaminerge Zellen zur Behandlung des M. Parkinson, als Hepatozyten zur Behandlung der Leberzirrhose oder als Kardiomyozyten zur Behandlung frischer Herzinfarkte). Die nunmehr anstehende Isolierung der für diese spezifischen Differenzierungsformen notwendigen Signalproteine ist von großer klinischer Bedeutung, da sie ein problemloses Programmieren der ECLs zur gewünschten Zellpopulation ermöglichen konnte. Das Ziel besteht daher in der exakten Sequenzierung dieser Funktionsproteine, um deren rekombinante Herstellung zu ermöglichen. Die große Sequenzhomologie zwischen Ratten- und Menschprotein würde darüber hinaus auch Aufschlüsse zur analogen Herstellung menschlicher Funktionsproteine geben. Die damit verbundenen therapeutischen Anwendungsmoglichkeiten umfassen sowohl den voran beschriebenen Einsatz der ECL-abgeleiteten somatischen Zellinien als auch der daraus abgeleiteten Funktionsproteine für den zukünftigen klinischen Einsatz auf allen Indikationsebenen des Tissue-Engineering zum Organersatz, für Gentherapie und zur Behandlung metabolischer Erkrankungen im Bereich des ZNS, der Leber und des Herzens. Primary in vitro studies have shown that the ECL cells described above assume differentiation into astrocytes or cardiomyocytes and hepatocytes by co-cultivation with somatic cells of neuronal or entodermal origin. The embryonic cell lines described are therefore also suitable for the treatment of organ-specific diseases of the central nervous system (e.g. as dopaminergic cells for the treatment of Parkinson's disease, as hepatocytes for the treatment of cirrhosis of the liver or as cardiomyocytes for the treatment of fresh heart attacks). The forthcoming isolation of the signal proteins necessary for these specific forms of differentiation is of great clinical importance, since it could enable problem-free programming of the ECLs for the desired cell population. The goal is therefore the exact sequencing of these functional proteins in order to enable their recombinant production. The large sequence homology between rat and human protein would also provide information on the analog production of human functional proteins. The associated therapeutic application possibilities include both the use of the ECL-derived somatic cell lines described above and the functional proteins derived therefrom for future clinical use on all indication levels of tissue engineering for organ replacement, for gene therapy and for the treatment of metabolic diseases in the area of the CNS, the liver and the heart.

Claims

Patentansprüche claims
1. Verfahren zur Erzeugung einer spenderspezifischen Immuntoleranz gegen transplantierte Gewebe, dadurch gekennzeichnet, daß dem Empfänger vor der Transplantation Zellen verabreicht werden, die von frühen Embryonalstadien, z.B. Blastozysten, abgeleitet wurden („embryonal stem cell like cell lines", ECL).1. A method for generating a donor-specific immune tolerance to transplanted tissue, characterized in that the recipient is administered before the transplantation cells which are from early embryonic stages, e.g. Blastocysts have been derived ("embryonic stem cell like cell lines", ECL).
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die verabreichten Zellen mit MHC-Genen und/oder Reportergenen transfiziert wurden.2. The method according to claim 1, characterized in that the administered cells have been transfected with MHC genes and / or reporter genes.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Zellen mit den spenderspezifischen MHC-Genen transfiziert wurden.3. The method according to claim 2, characterized in that the cells have been transfected with the donor-specific MHC genes.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Transfektion durch eine Fusion der ECL mit einer somatischen Zelle oder Zelllinie erfolgt, die die spenderspezifischen MHC-Gene aufweisen.4. The method according to claim 3, characterized in that the transfection is carried out by a fusion of the ECL with a somatic cell or cell line which have the donor-specific MHC genes.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Transfektion mit einem bestimmten MHC-kodierenden Plasmid erfolgt.5. The method according to claim 3, characterized in that the transfection is carried out with a specific MHC-coding plasmid.
6. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Transfektion durch Schaffung transgener nichtmenschlicher Säugetiere mit einem MHC-kodierenden Plasmid und die Herstellung von ECL von diesen transgenen Tieren erfolgt.6. The method according to claim 3, characterized in that the transfection takes place by creating transgenic non-human mammals with an MHC-coding plasmid and the production of ECL from these transgenic animals.
7. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß die Transfektion durch Peptid- Beladung der ECL mit MHC-Allopeptiden der Klasse I, die für die hochpolymorphe αi- Helix eines spezifischen MHC-Antigens der Klasse I kodieren, erfolgt.7. The method according to claim 3, characterized in that the transfection by peptide loading of the ECL with MHC allopeptides of class I, which code for the highly polymorphic α-helix of a specific MHC antigen of class I, takes place.
8. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die verabreichten Zellen mit einem LacZ-Plasmid transfiziert wurden.8. The method according to claim 2, characterized in that the administered cells have been transfected with a LacZ plasmid.
9. Verfahren nach einem der Ansprüche 1-8, dadurch gekennzeichnet, daß Zellen von humanen Zelllinien eingesetzt werden.9. The method according to any one of claims 1-8, characterized in that cells from human cell lines are used.
10. Verfahren nach einem der Ansprüche 1-9, dadurch gekennzeichnet, daß die Zellen 3-7 Tage vor der Transplantation zugeführt werden. 10. The method according to any one of claims 1-9, characterized in that the cells are fed 3-7 days before the transplant.
11. Verfahren nach einem der Ansprüche 1-10, dadurch gekennzeichnet, daß die Zellen intravenös zugeführt werden.11. The method according to any one of claims 1-10, characterized in that the cells are supplied intravenously.
12. Verfahren nach Anspruch 11, dadurch gekennzeichnet, daß die Zellen intraportal zugeführt werden.12. The method according to claim 11, characterized in that the cells are supplied intraportally.
13. Verfahren nach einem der Ansprüche 1-10, dadurch gekennzeichnet, daß die Zellen subkutan zugeführt werden.13. The method according to any one of claims 1-10, characterized in that the cells are supplied subcutaneously.
14. Verfahren nach einem der Ansprüche 1-10, dadurch gekennzeichnet, daß die Zellen intraperitoneal zugeführt werden.14. The method according to any one of claims 1-10, characterized in that the cells are supplied intraperitoneally.
15. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ECL Zellinie als Ausgangszelle zur Differenzierung in neuronale Zellen mit spezifischer Transmitterfunktion (z.B Dopamin) programmiert wird.15. The method according to claim 1, characterized in that the ECL cell line is programmed as a starting cell for differentiation into neuronal cells with a specific transmitter function (e.g. dopamine).
16. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ECL Zellinie als Ausgangszelle zur Differenzierung in Hepatozyten zur Unterstützung der leberspezifischen Metabolismen programmiert wird.16. The method according to claim 1, characterized in that the ECL cell line is programmed as a starting cell for differentiation in hepatocytes to support the liver-specific metabolisms.
17. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die ECL Zellinie als Ausgangszelle zur Differenzierung in Kardiomyozyten zur Regeneration der Herzmuskelfunktion programmiert wird.17. The method according to claim 1, characterized in that the ECL cell line is programmed as a starting cell for differentiation in cardiomyocytes for regeneration of the heart muscle function.
18. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die infolge der Ko-Kultivierung gefundenen Signalproteine mit spezifischem Differenzierungspotential für neuronale Zellen (dopamin-produzierende Zellen), Hepatozyten und Kardiomyozyten als rekombinante Proteine hergestellt werden. 18. The method according to claim 1, characterized in that the signal proteins found as a result of the co-cultivation with specific differentiation potential for neuronal cells (dopamine-producing cells), hepatocytes and cardiomyocytes are produced as recombinant proteins.
EP01995556A 2000-12-04 2001-12-04 Use of cells derived from embryonic stem cells for increasing transplantation tolerance and for repairing damaged tissue Withdrawn EP1341915A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10061334A DE10061334A1 (en) 2000-12-04 2000-12-04 Use of cells derived from embryonic stem cells to increase transplant tolerance and to restore destroyed tissue
DE10061334 2000-12-04
PCT/DE2001/004512 WO2002046401A1 (en) 2000-12-04 2001-12-04 Use of cells derived from embryonic stem cells for increasing transplantation tolerance and for repairing damaged tissue

Publications (1)

Publication Number Publication Date
EP1341915A1 true EP1341915A1 (en) 2003-09-10

Family

ID=7666451

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01995556A Withdrawn EP1341915A1 (en) 2000-12-04 2001-12-04 Use of cells derived from embryonic stem cells for increasing transplantation tolerance and for repairing damaged tissue

Country Status (5)

Country Link
US (1) US20040208857A1 (en)
EP (1) EP1341915A1 (en)
JP (1) JP2004519437A (en)
DE (1) DE10061334A1 (en)
WO (1) WO2002046401A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040029311A (en) * 2000-11-22 2004-04-06 제론 코포레이션 Tolerizing allografts of pluripotent stem cells
US7799324B2 (en) 2001-12-07 2010-09-21 Geron Corporation Using undifferentiated embryonic stem cells to control the immune system
EP2292734A1 (en) * 2001-12-07 2011-03-09 Geron Corporation Hematopoietic cells from human embryonic stem cells
US20040224403A1 (en) * 2001-12-07 2004-11-11 Robarts Research Institute Reconstituting hematopoietic cell function using human embryonic stem cells
DE10362002B4 (en) 2003-06-23 2006-10-12 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Adult pluripotent stem cells
EP1576957A1 (en) 2004-03-18 2005-09-21 Universiteit Twente Tissue repair using pluripotent cells
WO2018139502A1 (en) 2017-01-25 2018-08-02 国立大学法人 東京大学 Finding and treatment of inflammation after birth in chimeric animal

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0842266A4 (en) * 1995-08-04 1999-07-21 Gen Hospital Corp Transgenic swine and swine cells having human hla genes
FR2760023B1 (en) * 1997-02-21 2004-05-07 Commissariat Energie Atomique EUKARYOTIC CELLS EXPRESSING AT THEIR SURFACE AT LEAST ONE ISOFORM OF HLA-G AND THEIR APPLICATIONS
EP0972039A1 (en) * 1997-03-25 2000-01-19 Morphogenesis, Inc. Universal stem cells
AU3881499A (en) * 1998-09-01 2000-03-21 Wisconsin Alumni Research Foundation Primate embryonic stem cells with compatible histocompatibility genes
US7544355B2 (en) * 2002-03-13 2009-06-09 Universita Degli Studi Di Perugia Methods and compositions for allogeneic transplantation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0246401A1 *

Also Published As

Publication number Publication date
WO2002046401A1 (en) 2002-06-13
US20040208857A1 (en) 2004-10-21
JP2004519437A (en) 2004-07-02
DE10061334A1 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
DE60132429T2 (en) PLURIPOTENTS FROM FAT-FROZEN-GENERIC STROMA CELLS GENERATED STRAIN CELLS AND THEIR USE
Cantz et al. Reevaluation of bone marrow-derived cells as a source for hepatocyte regeneration
DE69233010T2 (en) UNIVERSAL DISPENSING CELLS
DE69832402T2 (en) GENERATION OF HEMATOPOIETIC CELLS FROM MULTIPOTENTE NEURONAL STEM CELLS
DE60026166T2 (en) VETOCELLS THAT ARE EFFECTIVE IN PREVENTING TRANSPLANT DISCHARGE AND HAVING NO GRAFT VERSUS HOST POTENTIAL
DE69333433T2 (en) METHOD FOR THE VITRO CULTIVATION OF DENDRITIC PROCUREMENT CELLS AND THE USE THEREOF FOR IMMUNOGENOUS PRODUCTION
DE69929681T2 (en) MESENCHYMAL STEM CELLS FOR THE PREVENTION AND TREATMENT OF IMMUNE RESPONSES IN TRANSPLANTATIONS
DE3853201T2 (en) Chimeric immunocompromising mammals and their use.
DE69431107T2 (en) THE GENERATION OF TOLERANCE AGAINST FOREIGN TRANSPLANTS BY TOLEROGENESIS WITH THE HELP OF REPLACEMENT LIVES
US20060247195A1 (en) Method of altering cell properties by administering rna
DE69231250T2 (en) COMBINED CELLULAR AND IMMUNE SUPPRESSIVE THERAPIES
DE19833476A1 (en) New genetically modified, adherently growing CD34-negative stem cells for transfer of gene therapy constructs for treatment of immunodeficiency and metabolic disorders
EP1636347A1 (en) Isolated pluripotent adult stem cells and methods for isolating and cultivating the same
JP2003506076A (en) Methods for obtaining undifferentiated avian cell cultures using avian primordial germ cells
Barry et al. Grafts of fetal locus coeruleus neurons in rat amygdala-piriform cortex suppress seizure development in hippocampal kindling
DE69432856T2 (en) SUPPLY OF GENE PRODUCTS BY MEANS OF MESANGIUM CELLS
EP1341915A1 (en) Use of cells derived from embryonic stem cells for increasing transplantation tolerance and for repairing damaged tissue
DE69924728T2 (en) NON-EMBRYONIC EPENDYMAL NEURONAL STEM CELLS AND METHODS FOR THEIR INSULATION
DE69232427T2 (en) suppressor
US20030100107A1 (en) Compositions and methods for generating differentiated human cells
Evers et al. Stem cells in clinical practice
DE69836853T2 (en) Established microglial cells
US4540574A (en) Water soluble fraction capable of controlling the immune reactions of a host against allogenic cells or tissue, the pharmaceutical compositions containing said fraction and a process for preparing the latter
WO2003045428A2 (en) Use of a technically modified cell as a vaccine for treating tumoral disease
Jacoby et al. Fetal pig neural cells as a restorative therapy for neurodegenerative disease

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030703

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20051011

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081129