EP1341736A2 - Lamellar pressed body - Google Patents

Lamellar pressed body

Info

Publication number
EP1341736A2
EP1341736A2 EP01986867A EP01986867A EP1341736A2 EP 1341736 A2 EP1341736 A2 EP 1341736A2 EP 01986867 A EP01986867 A EP 01986867A EP 01986867 A EP01986867 A EP 01986867A EP 1341736 A2 EP1341736 A2 EP 1341736A2
Authority
EP
European Patent Office
Prior art keywords
mixture
body according
press body
binder
water content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01986867A
Other languages
German (de)
French (fr)
Inventor
Stefan Dr. Dick
Arthur Schepf
Tteshi Kimura
Andrew Robertson
Mike Gaffney
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sued Chemie AG
Original Assignee
Sued Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sued Chemie AG filed Critical Sued Chemie AG
Publication of EP1341736A2 publication Critical patent/EP1341736A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3035Compressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3042Use of binding agents; addition of materials ameliorating the mechanical properties of the produced sorbent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/13Compounding ingredients
    • C04B33/14Colouring matters
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/02Preparing or treating the raw materials individually or as batches
    • C04B33/20Preparing or treating the raw materials individually or as batches for dry-pressing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B33/00Clay-wares
    • C04B33/30Drying methods
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62655Drying, e.g. freeze-drying, spray-drying, microwave or supercritical drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • H05B33/04Sealing arrangements, e.g. against humidity
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3463Alumino-silicates other than clay, e.g. mullite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/349Clays, e.g. bentonites, smectites such as montmorillonite, vermiculites or kaolines, e.g. illite, talc or sepiolite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Definitions

  • the invention relates to platelet-shaped pressed bodies (wafers) based on an inorganic sorbent and a binder, with a thickness of less than 700 ⁇ m, which are characterized by high mechanical strength and low brittleness and which are capable of inorganic and organic Effectively sorb gases or vapors.
  • zeolite tablets are produced by mixing a zeolite, a binder and a lubricant and extruding the mixture. It is obviously tablets with the same dimensions in all directions.
  • zeolite tablets for use as gas adsorbents is known, powdered and dried at 105 to 110 ° C zeolite mixed with 8.1 wt .-% bentonite powder and kneaded with a 4% aqueous urea solution. The mixture is tableted, dried and calcined at 510 ° C. The increase in compressive strength is due to the urea content.
  • zeolite is mixed in the Na form with 25% by weight of clay, kneaded with water, extruded, calcined at 650 ° C., immersed in a calcium chloride solution, washed, at 110 ° C. dried and activated at 400 ° C.
  • the tablets are used as desiccants.
  • zeolite powder is mixed with kaolin and Na (or NH 4 -) hydroxyethyl cellulose, molded, dried and calcined at 650 ° C. in order to increase the strength of the zeolite tablets.
  • deodorants are extruded by extruding zeolite powder or grains with calcium chloride or bentonite and water, whereupon the mixture is tabletted and the tablets are calcined.
  • drying agents are produced by extruding a mixture of microporous particles (for example gypsum, cement, ceramic 'ulver) and an inorganic or organic filler, such as CaCl, LiCl, bentonite, zeolites, PVA or other water-soluble polymers , The mixture is tabletted and then cured.
  • zeolite tablets are produced as drying agents using 20% sepiolite as a binder. The mixture is kneaded with water, tabletted, dried at 150 ° C. and calcined at 550 ° C. The tablets have an improved drying effect compared to bentonite tablets.
  • the tablets produced according to the state of the art are unsuitable for use in confined spaces and under mechanical stress, since they are too thick and too heavy and, based on mass and surface area, have too little sorption power for harmful gases and vapors. With the methods and mixtures according to the prior art, brittle compacts are obtained which crumble in particular after firing.
  • electroluminescent devices only function properly over a long period of time if a desiccant is present. This is due to the sensitivity of the electrodes, especially the cathodes, e.g. due to moisture (the cathodes are made of Ca or Mg alloys). That is why these devices are sealed as well as possible under protective gas.
  • EP 500 382 A2 describes the use of a moisture absorber in an electroluminescent device.
  • the drying agent in the form of a powder or small beads is applied to a black silicone resin coating.
  • the desiccant is filled in a gas-permeable bag.
  • the object of the present invention is to provide plate-shaped pressed bodies (wafers) based on an inorganic sorbent and an inorganic binder with a very small thickness (less than 700 ⁇ m) which, despite their small thickness, have great strength and thus in particular can be installed in electronic components in which only a limited space is available and which can be exposed to vibrations (eg electronic display devices in automobiles and mobile telephones).
  • a very small thickness less than 700 ⁇ m
  • platelet-shaped pressed bodies based on an inorganic sorbent and a binder with a thickness of less than 700 ⁇ m, which can be obtained by pressing a mixture consisting of or containing at least one inorganic sorbent, at least one binder, and optionally water and pressing aids, at a pressure of at least 70 MPa, the weight ratio of the dry sorbent and the dry binder in the mixture being between about 4 and 0.7 and the water content of the mixture, determined at 160 ° C., is between about 8 and 20%; and calcining the resulting green body at temperatures of at least about 500 ° C to ⁇ to substantially remove the total water content.
  • the pressed bodies (wafers) according to the invention have high strength, low brittleness, high sorption speed and high sorption capacities with low mass. They show a low thermal expansion, no abrasion and can easily be colored by adding pigments during manufacture.
  • the wafers according to the invention can be produced in automated processes in large numbers per unit of time. They are easy to handle and can be removed from a storage container, for example, using so-called “pick-and-place” machines and inserted into an electronic device.
  • the wafers according to the invention are also capable of sorbing other gases (ammonia, amines, oxygen). Since they have a high sorption capacity, the electronic device in which they are used does not need to be completely airtight, i.e. the rate of diffusion for water vapor into the device may be greater than zero.
  • a suitable material for sealing the device e.g. an epoxy resin
  • the critical time by which this material must have reached its final lowest water vapor permeability can be extended by using the wafer.
  • the inorganic sorbent is preferably a natural or artificial zeolite.
  • other sorbents such as amorphous silica or aluminum hydroxide, and mixtures of two or more sorbents can also be used.
  • any binder which appears suitable to a person skilled in the art in this field can be used as the binder.
  • a smectitic clay in particular bentonite, is preferably used as the binder.
  • inorganic binders eg aluminum oxide hydroxide (pseudo boehmite).
  • organic binders based on carbohydrates or proteins can also be used, for example starch, cellulose derivatives (such as CMC or CEC), casein or synthetic polymers such as PVA, PVP or polyphenols or tannin-containing binders (quebracho). Mixtures of different binders can also be used.
  • the thickness of the wafer is preferably not more than about 400 ⁇ m, in particular about 200 to 400 ⁇ m.
  • the invention further relates to a method, in particular for the production of the pressed bodies defined above, which is characterized in that a mixture consisting of or comprising at least one inorganic sorbent, at least one binder, and optionally water and pressing aids at a pressure of at least approximately 70 MPa pressed, the weight ratio of the dry sorbent and the dry binder in the mixture being between approximately 4 and 0.7 and the water content of the mixture, determined at 160 ° C., being between approximately 8 and 20%; and calcined the green compact obtained at temperatures of at least about 500 ° C. until the total water content was largely removed.
  • the desired water content of the mixture can be determined via the water content of the components (sorbent, binder) and / or additional water can be set.
  • Zeolite A which is preferably used as sorbent, is available in powder form and has a water content of about 10 to 22%.
  • the bentonite which is preferably used as a binder is available as a powder with a water content of about 10 to 20%.
  • the bentonite used has a montmorillonite content of preferably> 80%, based on the dry state.
  • the best results can be achieved when the mixture is pressed into the pressed body if the mixture does not contain large proportions, i.e. contains not more than about 15%, preferably not more than about 8%, and particularly preferably 0% of particles> 250 ⁇ m, preferably> 200 ⁇ m and particularly preferably> 150 ⁇ m, and the main proportion of the particles, i.e. at least 50%, preferably at least 60%, is greater than about 45 ⁇ m.
  • a preferred process measure is that zeolite and bentonite powder are mixed in the desired ratio with so much water that the mixture can be granulated.
  • An intensive mixer is preferably used for this.
  • the amount of water that has to be added depends on the mixing ratio of zeolite and bentonite and the colloidal chemical properties of the bentonite used in each case and can easily be determined routinely by a person skilled in the art.
  • the mixture is adjusted or dried to a water content of about 8 to 20%, the water content being determined at 160 ° C.
  • the mixture is then comminuted to particle sizes ⁇ 250 ⁇ m, preferably ⁇ 200 ⁇ m, particularly preferably ⁇ 150 ⁇ m in accordance with the above information.
  • the best results can be achieved when the mixture is pressed into the green compact if the particles of the mixture have at least for the most part a largely spherical character, as obtained, for example, by spray drying.
  • a particularly preferred process measure is therefore zeolite. and slurrying bentonite powder in water to a pumpable suspension using a high-shear stirrer, such as an Ultra-Turrax stirrer, and spray-drying this by conventional methods.
  • the water content of the mixture can be set to the preferred values between about 8 and 20% (the water content is determined at 160 ° C).
  • the setting of the particle size distribution so that the mixture, as defined above, does not contain any larger proportions of particles> 250 ⁇ m, preferably> 200 ⁇ m and particularly preferably> 150 ⁇ m, and the main proportion of the particles is greater than approximately 45 ⁇ m can also be done by Corresponding control of the spray drying process and, if appropriate, subsequent process steps such as deagglomeration, sieving and sifting known as such in the prior art are carried out.
  • the compact is formed from the mixture by applying a pressure of at least about 70 MPa.
  • the preferred pressing pressure is about 100 to 1300 MPa.
  • the mixture can be pressed in commercially available automatic presses, the type of which is known to the person skilled in the art.
  • the compacts are calcined at about 500 to 900 ° C, preferably at about 650 ° C, until constant weight is achieved and the water content is largely removed.
  • the application of pressure to the pressed bodies during the calcination is brought about by using a specially designed belt calcining device, with the belts being pressurized.
  • the pressure can be applied to the compact during the calcination in any way, as long as the curvature of the compact is effectively prevented during the calcination on the one hand and the pressure does not damage the compact on the other.
  • a pressure between 10 and 30,000 Pa, in particular between 100 and 5,000 Pa, can be used.
  • a certain number of pressed bodies are stacked in tubes which, for example, consist of stainless steel or ceramic. These tubes preferably have bores, which the Allow water to escape during the calcination. This enables quick and even drying.
  • the entire stack within the tube is subjected to a pressure sufficient to suppress the curvature of the pressed body during the calcination, but which does not lead to breakage, sticking together or sintering of the pressed body during this process step.
  • this pressure is between about 10 and 30,000 Pa, in particular between 100 and 5.00.0 Pa.
  • the wafers calcined according to the invention under pressure are flat and show no or only minimal curvature or curvature, which is a prerequisite for use in electroluminescent devices.
  • the calcination temperature is approached or increased step by step in order to prevent the formation of cracks and cracks in the pressed bodies due to water escaping too quickly or unevenly.
  • the compacts can also be calcined and cooled under vacuum, • which enables them to sorb even permanent gases such as oxygen.
  • the compact can also contain coloring pigments, for example Fe 3 O 4 .
  • the invention further relates to the use of the pressing bodies defined above as inserts in electronic devices or components, such as display devices, in particular in electroluminescent components, such as organic light-emitting diodes (LEDs). However, they can also be used in moisture sensitive liquid crystal display (LCD) devices.
  • LCD moisture sensitive liquid crystal display
  • These devices or components can be caused by inorganic or organic gases or vapors during the manufacture or during the Use are damaged in their function and have only a very small space for a sorbent due to their design.
  • the electronic component can be significantly reduced in volume and cost.
  • the wafers have a higher sorption capacity and speed for water vapor in the required temperature and humidity range within an electronic component.
  • the volume of the material increases by 100% during the hydration reaction; Therefore, additional volume must be provided for the expansion of the desiccant within the component and a water vapor permeable film must be applied between BaO and the electroluminescent layer, which prevents contact between the expanding and possibly crumbling desiccant and the layer.
  • the wafers show no change in volume when absorbing water vapor and remain mechanically stable, so that the provision of an additional expansion volume within the component and the application of a protective film can be dispensed with.
  • BaO also has the disadvantage that it itself and its hydration products react strongly basic; it also heats it up very strongly when it absorbs moisture, and it tends to self-ignite if it comes into direct contact with organic compounds. This limits the choice of polymers for the above-mentioned protective film on very expensive, for example fluoropolymers, and thus increases the cost of the component. In addition, there are disposal problems with the use of BaO, since it is very difficult to disassemble, reuse and dispose of the individual parts of the electronic component as a harmful chemical.
  • the compacts according to the invention can also be used for other purposes, e.g. as inserts in pharmaceutical packaging, since there is only a limited volume available to hold a desiccant.
  • the compacts can be in any shape, e.g. be round, square, triangular or rectangular or also contain bores and / or recesses.
  • the compacts according to the invention are dust-free and wear-resistant. They can be produced in large numbers per time unit in conventional press machines.
  • Thickness 300 ⁇ 50 ⁇ m
  • drop test serves as a measure of the compressive strength, whereby 100 calcined pressed bodies (round disks with a diameter of 27 mm) are dropped from a height of 1 m with the flat side down. The percentage of broken test specimens is determined.
  • Thickness 300 ⁇ 50 ⁇ m
  • Example 2 57 kg zeolite 4A (water content 20%), 42 kg bentonite (water content 12%) and 1 kg calcium stearate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried at 110 ° C. to a water content of 12% and then granulated (Stokes granulator) and sieved on a 250 ⁇ m sieve. 0.22 g of the material with a particle size ⁇ 250 ⁇ m are pressed to a wafer with a pressure of 72 MPa. The green wafers are processed as in Example 2:
  • Thickness 300 ⁇ 50 ⁇ m
  • Example 4 The procedure of Example 4 was repeated with the difference that the green wafers were calcined in vacuo.
  • the calcined wafers had essentially the same product properties as the wafers of Example 4, but additionally showed an oxygen absorption capacity of about 5 ml / g (determined in a dry oxygen atmosphere).
  • Thickness 300 ⁇ 50 ⁇ m
  • Example 4 The procedure of Example 4 was repeated with the difference that the pressure applied during the pressing was 1200 MPa. The drop test showed 10% break. The reject rate was ⁇ 10%.
  • Example 4 The procedure of Example 4 was repeated with the difference that 54 kg of zeolite 4A, 40 kg of bentonite, 5 kg of Fe3Ü4 and 1 kg of calcium stereate were used.
  • the wafers obtained were colored dark and could be used as a contrast surface in an LED display.
  • 0.17 g of this material is pressed at a pressure of 190 MPa to a wafer with a diameter of 20 mm, the water vapor partial pressure in the ambient air of the pressing tools being about 30 mbar.
  • the green wafers are calcined at 650 ° C for three hours using pressure.
  • 300 green wafers are stacked in perforated stainless steel tubes (height 120 mm, inner diameter 22 mm), and the stack is subjected to a pressure of 2550 Pa. After the calcination, the product was cooled and packaged with the exclusion of moisture.
  • Thickness 300 ⁇ 50 ⁇ m
  • 0.17 g of this material are pressed with a pressure of 210 MPa into a wafer from the 'diameter of 20 mm, wherein the water vapor partial pressure is mbar in the ambient air of the pressing tools about 17th
  • the green wafers are made using Calcined pressure at 650 ° C for three hours.
  • 300 green wafers are stacked in perforated stainless steel tubes (height 120 mm, inner diameter 22 mm) and the stack is subjected to a pressure of 2550 Pa. After the calcination, the product was cooled and packaged with the exclusion of moisture.
  • Thickness 300 ⁇ 50 ⁇ m
  • 0.17 g of this material is pressed at a pressure of 195 MPa to a wafer with a diameter of 20 mm, the water vapor partial pressure in the ambient air of the pressing tools being approximately 12 mbar and the pressing tools being periodically sprayed with magnesium stearate.
  • the green wafers are calcined at 650 ° C for three hours using pressure.
  • 300 green wafers are stacked in perforated stainless steel tubes (height 120 mm, inner diameter 22 mm) and the stack is subjected to a pressure of 2550 Pa. After the calci- nation was cooled and packaged with the exclusion of moisture.
  • Thickness 300 ⁇ 50 ⁇ m
  • Thickness 300 ⁇ 50 ⁇ m
  • An organic electroluminescent component 1 (square, area 12.9 cm 2 ), as shown in Figure 1, is produced using a wafer (circular, diameter 27 mm) from Example 4. After the wafer 2 has been attached to the rear wall 3 of the component, this is attached to the glass substrate 5 of the component with the aid of an adhesive 4 and sealed as far as possible with the aid of an adhesive.
  • a microscopic photograph (magnification 50 times) of the light-emitting part 6 (consisting of the anode 7, the light-emitting layer 8 and the cathode 9) of the component is then taken. This photograph shows no dark (non-luminous) spots that would indicate an attack on the cathode 9.
  • the component is exposed to a temperature of 85 ° C and a relative humidity of 85% for 500 h.
  • a microscopic photograph of the light-emitting part 6 of the component 1 is then taken again.
  • a comparison of the two photographs shows that there are no dark spots that would indicate an attack on the cathode 9.
  • An organic electroluminescent component 1 such as Example 9 is produced using BaO.
  • a water-permeable Teflon film is used as a cover for the BaO, which is attached to the rear wall 3 of the component with the aid of a thin double-sided adhesive tape.
  • the amount of BaO is adjusted so that the total mass of BaO, the Teflon film and the double-sided adhesive tape corresponds exactly to that of a wafer used in Example 9.
  • Example 9 wrote, enlarged photographs of the light-emitting part taken before and after storage for 500 h at 85 ° C and 85% humidity. A comparison of the two photographs shows a clearly recognizable growth of dark spots, which indicate an attack on the cathode 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Drying Of Gases (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The invention relates to a lamellar pressed body (wafer), based on an inorganic sorbent and a binding agent, with a thickness of less than 700 mu m. Said wafer is obtained by pressing a mixture of the inorganic sorbent, binding agent, water and optionally auxiliary pressing agents at a pressure of at least 70 Mpa, whereby the weight ratio of the dry sorbent and the dry binding agent in the mixture lies between approximately 4 and 0.7 and the water content of the mixture, determined at 160 DEG C, lies between approximately 8 and 20 %. The green pressed body thus obtained is then calcined at temperatures of at least approximately 500 DEG C, until a considerable amount of the water content has been removed.

Description

Patentanmeldung Patent application
Plättchenförmi e PresskörperPlatelet-shaped pressed body
Beschreibung-Description-
Die Erfindung bezieht sich auf plättchenförmige Presskörper (Wafer) auf der Basis eines anorganischen Sorbens und eines Bindemittels, mit einer Dicke von weniger als 700 μm, die sich durch eine hohe mechanische Festigkeit und geringe Sprödigkeit auszeichnen und die in der Lage sind, anorganische und organische Gase oder Dämpfe effektiv zu sorbieren.The invention relates to platelet-shaped pressed bodies (wafers) based on an inorganic sorbent and a binder, with a thickness of less than 700 μm, which are characterized by high mechanical strength and low brittleness and which are capable of inorganic and organic Effectively sorb gases or vapors.
Die Herstellung von Presskörpern, insbesondere von Tabletten, auf der Basis von Zeolithen und Bindemitteln ist bereits bekannt. So werden nach der JP-A-61 15 5216 Zeolith-Tabletten durch Vermischen eines Zeoliths, eines Bindemittels und eines Gleitmittels und Extrudieren des Gemischs hergestellt. Es handelt sich offenbar um Tabletten mit gleichen Abmessungen in allen Richtungen. Aus der JP-A-56063818 ist die Herstellung von Zeolith-Tabletten zur Verwendung als Gasadsorbentien bekannt, wobei gepulverter und bei 105 bis 110°C getrockneter Zeolith mit 8.1 Gew.-% Bentonitpulver vermischt und mit einer 4%igen wässrigen Harnstofflösung geknetet wird. Das Gemisch wird tablettiert, getrocknet und bei 510°C calciniert. Die Erhöhung der Druckfestigkeit ist durch den Harnstoffgehalt bedingt.The production of compacts, in particular tablets, on the basis of zeolites and binders is already known. According to JP-A-61 15 5216, zeolite tablets are produced by mixing a zeolite, a binder and a lubricant and extruding the mixture. It is obviously tablets with the same dimensions in all directions. From JP-A-56063818 the production of zeolite tablets for use as gas adsorbents is known, powdered and dried at 105 to 110 ° C zeolite mixed with 8.1 wt .-% bentonite powder and kneaded with a 4% aqueous urea solution. The mixture is tableted, dried and calcined at 510 ° C. The increase in compressive strength is due to the urea content.
Aus der JP-A-55 16 5144 ist bekannt, Zeolithpulver für Kühlaggregate in Pulverform mit Bentonit und Wasser zu verkneten, das Gemisch zu extrudieren und runde Teilchen mit einem Durchmesser vom 0,8 bis 10 mm zu formen.From JP-A-55 16 5144 it is known to knead zeolite powder for cooling units in powder form with bentonite and water, to extrude the mixture and to form round particles with a diameter of 0.8 to 10 mm.
Nach der JP-A-55 10 4913 wird Zeolith in der Na-Form mit 25 Gew.-% Ton vermischt, mit Wasser verknetet, extrudiert, bei 650°C calciniert, in eine Calciumchlorid-Lösung getaucht, gewaschen, bei 110°C getrocknet und bei 400°C aktiviert. Die Tabletten werden als Trockenmittel verwendet.According to JP-A-55 10 4913, zeolite is mixed in the Na form with 25% by weight of clay, kneaded with water, extruded, calcined at 650 ° C., immersed in a calcium chloride solution, washed, at 110 ° C. dried and activated at 400 ° C. The tablets are used as desiccants.
Nach der JP-A-4 603 2572 wird Zeolithpulver mit Kaolin und Na- (oder NH4-) -Hydroxyethylcellulose vermischt, geformt, getrocknet und bei 650°C calciniert, um die Festigkeit der Zeolith-Tabletten zu erhöhen.According to JP-A-4 603 2572, zeolite powder is mixed with kaolin and Na (or NH 4 -) hydroxyethyl cellulose, molded, dried and calcined at 650 ° C. in order to increase the strength of the zeolite tablets.
Nach der JP-A-21 44 121 werden Deodorantien durch Extrudieren von Zeolithpulver oder -körnern mit Calciumchlorid oder Bentonit und Wasser extrudiert, worauf das Gemisch tablettiert und die Tabletten calciniert werden.According to JP-A-21 44 121, deodorants are extruded by extruding zeolite powder or grains with calcium chloride or bentonite and water, whereupon the mixture is tabletted and the tablets are calcined.
Nach der JP-A-63 218 234 werden Trockenmittel durch Extrudieren eines Gemisches aus mikroporösen Teilchen (z.B. Gips, Zement, keramischem ' ulver) und einem anorganischen oder organischen Füllstoff, wie CaCl , LiCl, Bentonit, Zeolithen, PVA oder anderen wasserlöslichen Polymeren hergestellt. Das Gemisch wird tablettiert und dann ausgehärtet. Nach der JP-A-60 132 643 werden Zeolith-Tabletten als Trockenmittel unter Verwendung vom 20% Sepiolith als Bindemittel hergestellt. Das Gemisch wird mit Wasser geknetet, tablettiert, bei 150°C getrocknet und bei 550 °C calciniert. Die Tabletten haben im Vergleich zu Bentonit-Tabletten eine verbesserte Trockenwirkung.According to JP-A-63 218 234, drying agents are produced by extruding a mixture of microporous particles (for example gypsum, cement, ceramic 'ulver) and an inorganic or organic filler, such as CaCl, LiCl, bentonite, zeolites, PVA or other water-soluble polymers , The mixture is tabletted and then cured. According to JP-A-60 132 643, zeolite tablets are produced as drying agents using 20% sepiolite as a binder. The mixture is kneaded with water, tabletted, dried at 150 ° C. and calcined at 550 ° C. The tablets have an improved drying effect compared to bentonite tablets.
Für den Einsatz unter räumlich beengten Verhältnissen und unter mechanischer Beanspruchung sind die nach dem Stand der Technik hergestellten Tabletten ungeeignet, da sie zu dick und zu schwer sind und masse- und oberflächenbezogen eine zu geringe Sorptionskraft für schädliche Gase und Dämpfe haben. Mit den Verfahren und Mischungen nach dem Stand der Technik werden zu spröde Presskörper erhalten, die insbesondere nach dem Brennen abbröckeln.The tablets produced according to the state of the art are unsuitable for use in confined spaces and under mechanical stress, since they are too thick and too heavy and, based on mass and surface area, have too little sorption power for harmful gases and vapors. With the methods and mixtures according to the prior art, brittle compacts are obtained which crumble in particular after firing.
Es ist bekannt, dass elektrolumineszierende Geräte nur dann problemlos über eine längere Zeit funktionieren, wenn ein Trockenmittel anwesend ist. Dies ist auf die Empfindlichkeit der Elektroden, insbesondere der Kathoden, z.B. gegenüber Feuchtigkeit zurückzuführen (die Kathoden bestehen aus Ca- oder Mg-Legierungen) . Deshalb werden diese Geräte unter Schutzgas möglichst gut versiegelt.It is known that electroluminescent devices only function properly over a long period of time if a desiccant is present. This is due to the sensitivity of the electrodes, especially the cathodes, e.g. due to moisture (the cathodes are made of Ca or Mg alloys). That is why these devices are sealed as well as possible under protective gas.
In der EP 500 382 A2 ist der Einsatz eines Feuchtigkeitsabsorbers in einem elektrolumineszierenden Gerät beschrieben. Das Trockenmittel in Form eines Pulvers oder kleiner Kügelchen wird dabei auf einen schwarzen Siliconharzüberzug aufgebracht. Nach der bevorzugten Aus ührungsform ist das Trockenmittel in einem gasdurchlässigen Beutel eingefüllt.EP 500 382 A2 describes the use of a moisture absorber in an electroluminescent device. The drying agent in the form of a powder or small beads is applied to a black silicone resin coating. According to the preferred embodiment, the desiccant is filled in a gas-permeable bag.
In der US-A-5, 882 , 761 ist ebenfalls der Einsatz eines Trockenmittels in einem elektroluminiszierenden Gerät beschrieben. Als bevorzugtes Trockenmittel wird BaO eingesetzt. Die aus den vorstehenden Druckschriften bekannten Sorbentien haben den Nachteil, dass sie nur Wasserdampf sorbieren können. Ein Angriff auf die Kathoden kann aber auch durch andere Gase ausgelöst werden, die neben Wasser beim Abbinden des zum Versiegeln benutzten Epoxidharzes entstehen (Ammoniak, flüchtige Amine) . Daneben führt auch die Einwirkung von Sauerstoff zum Versagen der luminiszenten Bauteile (Oxidation der Kathode) .The use of a desiccant in an electroluminescent device is also described in US Pat. No. 5,882,761. BaO is used as the preferred desiccant. The sorbents known from the above publications have the disadvantage that they can only sorb water vapor. However, an attack on the cathodes can also be triggered by other gases which, in addition to water, form when the epoxy resin used for sealing sets (ammonia, volatile amines). In addition, the action of oxygen leads to the failure of the luminescent components (oxidation of the cathode).
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, platt- chenförmige Presskörper (Wafer) auf der Basis eines anorganischen Sorbens und eines anorganischen Bindemittels mit einer sehr geringen Dicke (weniger als 700 μm) bereitzustellen, die trotz ihrer geringen Dicke eine große Festigkeit haben und somit insbesondere in elektronische Bauteile eingebaut werden können, in denen nur ein beschränkter Platz zur Verfügung steht und die Erschütterungen ausgesetzt sein können (z.B. elektronische Anzeigevorrichtungen in Automobilen und Mobil- telefonen) .The object of the present invention is to provide plate-shaped pressed bodies (wafers) based on an inorganic sorbent and an inorganic binder with a very small thickness (less than 700 μm) which, despite their small thickness, have great strength and thus in particular can be installed in electronic components in which only a limited space is available and which can be exposed to vibrations (eg electronic display devices in automobiles and mobile telephones).
Diese Aufgabe wird erfindungsgemäß gelöst durch Bereitstellung von plättchenförmigen Presskörpern (Wafer) auf der Basis eines anorganischen Sorbens und eines Bindemittels, mit einer Dicke von weniger als 700 μm, die erhältlich sind durch Verpressen eines Gemisches, bestehend aus bzw. enthaltend mindestens ein anorganisches Sorbens, mindestens ein Bindemittel, sowie gegebenenfalls Wasser und Presshilfsmittel, bei einem Druck von mindestens 70 MPa, wobei im Gemisch das Gewichtsverhältnis des trockenen Sorbens und des trockenen Bindemittels zwischen etwa 4 und 0,7 liegt und der Wassergehalt des Gemisches, bestimmt bei 160°C, zwischen etwa 8 und 20% beträgt; und Calcinieren der erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500°C bis zur weitgehenden Entfernung des Gesamtwassergehalts.This object is achieved according to the invention by providing platelet-shaped pressed bodies (wafers) based on an inorganic sorbent and a binder with a thickness of less than 700 μm, which can be obtained by pressing a mixture consisting of or containing at least one inorganic sorbent, at least one binder, and optionally water and pressing aids, at a pressure of at least 70 MPa, the weight ratio of the dry sorbent and the dry binder in the mixture being between about 4 and 0.7 and the water content of the mixture, determined at 160 ° C., is between about 8 and 20%; and calcining the resulting green body at temperatures of at least about 500 ° C to to substantially remove the total water content.
Die erfindungsgemäßen Presskörper (Wafer) weisen eine hohe Festigkeit, geringe Sprödigkeit, hohe Sorptionsgeschwindigkeit und hohe Sorptionskapazitäten bei geringer Masse auf. Sie zeigen eine geringe thermische Ausdehnung, keinen Abrieb und sind leicht durch Zugabe von Pigmenten bei der Herstellung färbbar.The pressed bodies (wafers) according to the invention have high strength, low brittleness, high sorption speed and high sorption capacities with low mass. They show a low thermal expansion, no abrasion and can easily be colored by adding pigments during manufacture.
Die erfindungsgemäßen Wafer können in automatisierten Prozessen in großen Stückzahlen pro Zeiteinheit hergestellt werden. Sie sind leicht handhabbar und können beispielsweise mit Hilfe sog. "pick-and-place" Maschinen einem Vorratsbehälter entnommen und in ein elektronisches Gerät eingesetzt werden.The wafers according to the invention can be produced in automated processes in large numbers per unit of time. They are easy to handle and can be removed from a storage container, for example, using so-called “pick-and-place” machines and inserted into an electronic device.
Die erfindungsgemäßen Wafer sind in der Lage, neben Wasserdampf auch andere Gase (Ammoniak, Amine, Sauerstoff) zu sor- bieren. Da sie eine hohe Sorptionskapazität besitzen, braucht das elektronische Gerät, in das sie eingesetzt werden, nicht völlig luftdicht abgeschlossen sein, d.h. die Diffusionsrate für Wasserdampf in das Gerät darf größer als Null sein. Zudem wird die Auswahl eines geeigneten Stoffes zur Versiegelung des Gerätes (z.B. eines Epoxidharzes) vereinfacht, da die kritische Zeit, bis zu der dieser Stoff seine endgültige niedrigste Wasserdampfdurchlässigkeit erreicht haben muss, durch den Einsatz des Wafers verlängert werden kann.In addition to water vapor, the wafers according to the invention are also capable of sorbing other gases (ammonia, amines, oxygen). Since they have a high sorption capacity, the electronic device in which they are used does not need to be completely airtight, i.e. the rate of diffusion for water vapor into the device may be greater than zero. In addition, the selection of a suitable material for sealing the device (e.g. an epoxy resin) is simplified, since the critical time by which this material must have reached its final lowest water vapor permeability can be extended by using the wafer.
Vorzugsweise stellt das anorganische Sorbens einen natürlichen oder künstlichen Zeolithen dar. Es können aber auch andere Sorbentien, wie amorphe Kieselsäure oder Aluminiumhydroxid, sowie Gemische aus zwei oder mehr Sorbentien, verwendet werden.The inorganic sorbent is preferably a natural or artificial zeolite. However, other sorbents, such as amorphous silica or aluminum hydroxide, and mixtures of two or more sorbents can also be used.
Als Bindemittel kann im Prinzip jedes dem Fachmann auf diesem Gebiet geeignet erscheinende Bindemittel verwendet werden. Bevorzugt wird als Bindemittel ein smektitischer Ton, insbesondere Bentonit, verwendet. Ebenso ist der Einsatz weiterer anorganischer Bindemittel, z.B. Aluminiumoxidhydroxid (Pseudo- boehmit) möglich. Es können aber auch organische Bindemittel auf Kohlenhydrat- oder Proteinbasis verwendet werden, z.B. Stärke, Cellulosederivate (wie CMC oder CEC) , Casein oder auch synthetische Polymere wie PVA, PVP oder Polyphenole oder tan- ninhaltige Bindemittel (Quebracho) . Es können auch Gemische verschiedener Bindemittel verwendet werden.In principle, any binder which appears suitable to a person skilled in the art in this field can be used as the binder. A smectitic clay, in particular bentonite, is preferably used as the binder. It is also possible to use other inorganic binders, eg aluminum oxide hydroxide (pseudo boehmite). However, organic binders based on carbohydrates or proteins can also be used, for example starch, cellulose derivatives (such as CMC or CEC), casein or synthetic polymers such as PVA, PVP or polyphenols or tannin-containing binders (quebracho). Mixtures of different binders can also be used.
Durch den Zusatz von Bentonit zum Zeolith wird überraschenderweise das Sorptionsvermögen des letzteren nicht vermindert. Tatsächlich ist ein synergetischer Effekt festzustellen, d.h. die Wasserdampfaufnähme des Gemischs ist nach der Calcinierung weitaus weniger gegenüber reinem Zeolith vermindert als es rein rechnerisch zu erwarten wäre.The addition of bentonite to the zeolite surprisingly does not reduce the sorption capacity of the latter. In fact, a synergetic effect can be observed, i.e. the water vapor absorption of the mixture after calcination is far less reduced than that of pure zeolite than would be expected from a purely mathematical point of view.
Die Dicke des Wafers beträgt vorzugsweise nicht mehr als etwa 400 μm, insbesondere etwa 200 bis 400 μm.The thickness of the wafer is preferably not more than about 400 μm, in particular about 200 to 400 μm.
Gegenstand der Erfindung ist ferner ein Verfahren insbesondere zur Herstellung der vorstehend definierten Presskörper, das dadurch gekennzeichnet ist, dass man ein Gemisch, bestehend aus bzw. enthaltend mindestens ein anorganisches Sorbens, mindestens ein Bindemittel, und gegebenenfalls Wasser und Presshilfsmittel bei einem Druck von mindestens etwa 70 MPa ver- presst, wobei im Gemisch das Gewichtsverhältnis des trockenen Sorbens und des trockenen Bindemittels zwischen etwa 4 und 0,7 liegt und der Wassergehalt des Gemisches, bestimmt bei 160°C, zwischen etwa 8 und 20% beträgt; und den erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500°C calciniert bis zur weitgehenden Entfernung des Gesamtwassergehalts .The invention further relates to a method, in particular for the production of the pressed bodies defined above, which is characterized in that a mixture consisting of or comprising at least one inorganic sorbent, at least one binder, and optionally water and pressing aids at a pressure of at least approximately 70 MPa pressed, the weight ratio of the dry sorbent and the dry binder in the mixture being between approximately 4 and 0.7 and the water content of the mixture, determined at 160 ° C., being between approximately 8 and 20%; and calcined the green compact obtained at temperatures of at least about 500 ° C. until the total water content was largely removed.
Es wurde gefunden, dass nach diesem Verfahren besonders vorteilhafte Presskörper mit sehr guten physikalischen und chemischen Eigenschaften erhältlich sind. Besonders vorteilhafte Presskörper ergeben sich bei einem Mischungsverhältnis von trockenem Sorbens zu Bindemittel in der Ausgangsmischung zwischen etwa 1,5 und 1.It has been found that particularly advantageous pressed bodies with very good physical and chemical properties can be obtained by this process. Particularly advantageous compacts result from a mixing ratio of dry sorbent to binder in the starting mixture of between about 1.5 and 1.
Der gewünschte Wassergehalt des Gemisches kann über den Wassergehalt der Komponenten (Sorbens, Bindemittel) und/oder zu- sätzliche Zugabe von Wasser eingestellt werden.The desired water content of the mixture can be determined via the water content of the components (sorbent, binder) and / or additional water can be set.
Der als Sorbens bevorzugt verwendete Zeolith A ist in Pulverform erhältlich und hat einen Wassergehalt von etwa 10 bis 22%. Der als Bindemittel bevorzugt verwendete Bentonit ist als Pulver mit einem Wassergehalt von etwa 10 bis 20% erhältlich. Der verwendete Bentonit hat einen Montmorillonitgehalt von vorzugsweise > 80%, bezogen auf den trockenen Zustand. Als Presshilfsmittel wird vorzugsweise ein fettsaures Salz eines zwei- oder dreiwertigen Metalls, wie Calcium-, Magnesium- oder Aluminiumstearat verwendet .Zeolite A, which is preferably used as sorbent, is available in powder form and has a water content of about 10 to 22%. The bentonite which is preferably used as a binder is available as a powder with a water content of about 10 to 20%. The bentonite used has a montmorillonite content of preferably> 80%, based on the dry state. A fatty acid salt of a divalent or trivalent metal, such as calcium, magnesium or aluminum stearate, is preferably used as the pressing aid.
Es wurde gefunden, dass beim Verpressen des Gemisches zum Presskörper die besten Resultate erzielt werden können, wenn das Gemisch keine größeren Anteile, d.h. nicht mehr als etwa 15%, vorzugsweise nicht mehr als etwa 8%, und besonders bevorzugt 0% an Partikeln > 250 μm, bevorzugt > 200 μm und besonders bevorzugt > 150 μm enthält, sowie der Hauptanteil der Partikel, d.h. mindestens 50%, vorzugsweise mindestens 60%, größer als etwa 45 μm ist.It has been found that the best results can be achieved when the mixture is pressed into the pressed body if the mixture does not contain large proportions, i.e. contains not more than about 15%, preferably not more than about 8%, and particularly preferably 0% of particles> 250 μm, preferably> 200 μm and particularly preferably> 150 μm, and the main proportion of the particles, i.e. at least 50%, preferably at least 60%, is greater than about 45 μm.
Eine bevorzugte Verfahrensmaßnahme besteht darin, dass Zeolith- und Bentonitpulver im gewünschten Verhältnis mit so viel Wasser gemischt werden, dass das Gemisch granuliert werden kann. Vorzugsweise wird hierzu ein Intensivmischer verwendet. Die Menge des Wassers, die zugesetzt werden muss, hängt vom Mischungsverhältnis von Zeolith und Bentonit sowie den kolloidchemischen Eigenschaften des jeweils verwendeten Bentonits ab und kann vom Fachmann leicht routinemäßig bestimmt werden. Nach dem Granulieren wird das Gemisch bis auf einen Wassergehalt von etwa 8 bis 20% eingestellt bzw. getrocknet, wobei der Wassergehalt bei 160°C bestimmt wird. Anschließend wird das Gemisch auf Partikelgrößen < 250 μm, bevorzugt < 200 μm, besonders bevorzugt < 150 μm gemäß der vorstehenden Angaben zerkleinert . Überraschenderweise wurde gefunden, dass beim Verpressen des Gemisches zum grünen Presskörper die besten Resultate erzielt werden können, wenn die Partikel des Gemisches zumindest größtenteils einen weitgehend sphärischen Charakter besitzen, wie sie z.B. durch Sprühtrocknen erhalten werden. Eine besonders bevorzugte Verfahrensmaßnahme besteht deshalb darin, Zeolith- . und Bentonitpulver unter Einsatz eines hochscherenden Rühraggregats, wie z.B. eines Ultra-Turrax-Rührers, in Wasser zu einer pumpfähigen Suspension aufzuschlämmen und diese nach herkömmlichen Verfahren sprühzutrocknen. Durch entsprechende Steuerung des Sprühtrockenprozesses kann der Wassergehalt des Gemisches auf die bevorzugten Werte zwischen etwa 8 und 20% eingestellt werden (der Wassergehalt wird bei 160°C bestimmt) . Die Einstellung der Partikelgrößenverteilung, so dass das Gemisch, wie oben definiert, keine größeren Anteile an Partikeln > 250 μm, bevorzugt > 200 μm und besonders bevorzugt > 150 μm enthält, sowie der Hauptanteil der Partikel größer als etwa 45 μm ist, kann ebenfalls durch entsprechende Steuerung des Sprühtrocknungsprozesses und gegebenenfalls anschließende als solche im Stand der Technik bekannte Prozessschritte wie Deagglomerieren, Sieben und Sichten erfolgen.A preferred process measure is that zeolite and bentonite powder are mixed in the desired ratio with so much water that the mixture can be granulated. An intensive mixer is preferably used for this. The amount of water that has to be added depends on the mixing ratio of zeolite and bentonite and the colloidal chemical properties of the bentonite used in each case and can easily be determined routinely by a person skilled in the art. After granulation, the mixture is adjusted or dried to a water content of about 8 to 20%, the water content being determined at 160 ° C. The mixture is then comminuted to particle sizes <250 μm, preferably <200 μm, particularly preferably <150 μm in accordance with the above information. Surprisingly, it was found that the best results can be achieved when the mixture is pressed into the green compact if the particles of the mixture have at least for the most part a largely spherical character, as obtained, for example, by spray drying. A particularly preferred process measure is therefore zeolite. and slurrying bentonite powder in water to a pumpable suspension using a high-shear stirrer, such as an Ultra-Turrax stirrer, and spray-drying this by conventional methods. By appropriately controlling the spray drying process, the water content of the mixture can be set to the preferred values between about 8 and 20% (the water content is determined at 160 ° C). The setting of the particle size distribution so that the mixture, as defined above, does not contain any larger proportions of particles> 250 μm, preferably> 200 μm and particularly preferably> 150 μm, and the main proportion of the particles is greater than approximately 45 μm can also be done by Corresponding control of the spray drying process and, if appropriate, subsequent process steps such as deagglomeration, sieving and sifting known as such in the prior art are carried out.
Das Formen des Presskörpers aus dem Gemisch erfolgt durch Anwenden eines Druckes von mindestens etwa 70 MPa. Der bevorzugte Pressdruck beträgt etwa 100 bis 1300 MPa. Das Verpressen des Gemisches kann in kommerziell erhältlichen Pressautomaten erfolgen, deren Bauart dem Fachmann bekannt ist.The compact is formed from the mixture by applying a pressure of at least about 70 MPa. The preferred pressing pressure is about 100 to 1300 MPa. The mixture can be pressed in commercially available automatic presses, the type of which is known to the person skilled in the art.
Um eine reibungslose Produktion der Presskörper zu gewährleisten, ist es wichtig, dass sich die geformten Körper ohne Rückstand und leicht von den Presswerkzeugen lösen. Dies kann durch Wahl entsprechend oberflächenmodifizierter Werkzeuge (mit z.B. TiN- oder WC-modifizierter Stahl), genauer Einstellung des Wassergehaltes des Gemisches und Kontrolle von Temperatur und Luftfeuchtigkeit am Ort des Pressvorganges sichergestellt werden. Bei niedrigen Wassergehalten des Gemisches ist es vorteilhaft, eine verhältnismäßig hohe absolute Luftfeuchtigkeit einzustellen, z.B. 50 bis 80% relative Feuchtigkeit bei etwa 25 bis 35°C. Bei höhen Wassergehalten des Gemisches ist eine verhältnismäßig niedrige absolute Luftfeuchtigkeit günstiger, z.B. 30 bis 50% Relative Feuchtigkeit bei etwa 20 bis 30°C. Eine weitere bevorzugte Möglichkeit ist das Auftragen eines "anti-sticking-agents" , wie z.B. Magnesium- oder Calciumstearat, auf die Presswerkzeuge nach einer vorbestimmten Anzahl von Pressenzykleh, z.B. nach jedem oder jedem zweiten Zyklus. Dadurch kann ein Ankleben der Presslinge an die Presswerkzeuge wirksam vermeiden werden.In order to ensure smooth production of the pressing bodies, it is important that the shaped bodies come off easily and without residue from the pressing tools. This can be ensured by choosing appropriate surface-modified tools (with, for example, TiN or WC-modified steel), precise adjustment of the water content of the mixture and control of temperature and air humidity at the location of the pressing process. At low water content of the mixture it is advantageous to set a relatively high absolute humidity, for example 50 to 80% relative humidity at about 25 to 35 ° C. If the mixture has high water contents, a relatively low absolute humidity is more favorable, for example 30 to 50% relative humidity at about 20 to 30 ° C. Another preferred possibility is the application of an “anti-sticking agent”, such as magnesium or calcium stearate, to the pressing tools after a predetermined number of press cycles, for example after every or every second cycle. This effectively prevents the compacts from sticking to the pressing tools.
Die Presskörper werden bei etwa 500 bis 900°C, vorzugsweise bei etwa 650°C calciniert, bis Gewichtskonstanz erreicht und der Wassergehalt weitgehend entfernt ist.The compacts are calcined at about 500 to 900 ° C, preferably at about 650 ° C, until constant weight is achieved and the water content is largely removed.
Es wurde weiterhin überraschend gefunden, dass die Entstehung von Wölbungen und Krümmungen bei der Calcination der Presskörper durch Anwendung von Druck auf die Presskörper während des Calcinationsschrittes weitgehend unterdrückt werden kann.It has also been found, surprisingly, that the formation of curvatures and curvatures during the calcination of the pressed bodies can be largely suppressed by applying pressure to the pressed bodies during the calcining step.
Nach einer bevorzugten Ausführungsform wird die Anwendung von Druck auf die Presskörper während der Calcination durch Einsatz eines speziell konstruierten Bandcalciniergerätes bewirkt, wobei über die Bänder eine Druckbeaufschlagung auf die Presskörper erfolgt. Im Prinzip kann die Druckbeau schlagung auf die Presskörper während der Calcination auf jede beliebige Weise erfolgen, solang durch den angewendeten Druck einerseits eine Wölbung der Presskörper während der Calcination wirkungsvoll verhindert wird und andererseits der Druck nicht zur Beschädigung der Presskörper führt. Allgemein kann ein Druck zwischen 10 und 30.000 Pa, insbesondere zwischen 100 und 5.000 Pa, angewendet werden. Nach einer weiteren bevorzugten Möglichkeit wird eine gewisse Anzahl an Presskörpern in Rδhrchen gestapelt, die z.B. aus rostfreiem Stahl oder Keramik bestehen. Bevorzugt weisen diese Röhrchen Bohrungen auf, die das Entweichen von Wasser während der Calcination erlauben. Dadurch wird ein rasches und gleichmäßiges Trocknen ermöglicht. Der gesamte Stapel innerhalb des Röhrchens wird einem Druck ausgesetzt, der ausreicht, Wölbungen der Presskörper während der Calcination zu unterdrücken, der jedoch nicht zum Zerbrechen, Zusammenkleben oder Sintern der Presskörper während dieses Prozessschrittes führt. Allgemein liegt dieser Druck zwischen etwa 10 und 30.000 Pa, insbesondere zwischen 100 und 5.00.0 Pa. Die erfindungsgemäß unter Druckbeaufschlagung calci- nierten Wafer sind flach und zeigen keine oder nur minimale Wölbung oder Krümmung, was für den Einsatz in elektrolumines- zenten Geräten Voraussetzung ist.According to a preferred embodiment, the application of pressure to the pressed bodies during the calcination is brought about by using a specially designed belt calcining device, with the belts being pressurized. In principle, the pressure can be applied to the compact during the calcination in any way, as long as the curvature of the compact is effectively prevented during the calcination on the one hand and the pressure does not damage the compact on the other. In general, a pressure between 10 and 30,000 Pa, in particular between 100 and 5,000 Pa, can be used. According to a further preferred possibility, a certain number of pressed bodies are stacked in tubes which, for example, consist of stainless steel or ceramic. These tubes preferably have bores, which the Allow water to escape during the calcination. This enables quick and even drying. The entire stack within the tube is subjected to a pressure sufficient to suppress the curvature of the pressed body during the calcination, but which does not lead to breakage, sticking together or sintering of the pressed body during this process step. In general, this pressure is between about 10 and 30,000 Pa, in particular between 100 and 5.00.0 Pa. The wafers calcined according to the invention under pressure are flat and show no or only minimal curvature or curvature, which is a prerequisite for use in electroluminescent devices.
Nach einer weiteren bevorzugten Ausführungsform wird die Cal- cinationstemperatur schrittweise angefahren bzw. erhöht, um die Bildung von Rissen und Sprüngen in den Presskörpern durch zu schnelles bzw. ungleichmäßiges Entweichen von Wasser zu verhindern.According to a further preferred embodiment, the calcination temperature is approached or increased step by step in order to prevent the formation of cracks and cracks in the pressed bodies due to water escaping too quickly or unevenly.
Die Presskorper können auch unter Vakuum calciniert und abgekühlt werden,• wodurch sie in der Lage sind, auch permanente Gase wie Sauerstoff zu sorbieren.The compacts can also be calcined and cooled under vacuum, • which enables them to sorb even permanent gases such as oxygen.
Ferner können die Presskörper färbende Pigmente, z.B. Fe3θ4, enthalten.The compact can also contain coloring pigments, for example Fe 3 O 4 .
Gegenstand der Erfindung ist ferner die Verwendung der vorstehend definierten Presskörper als Einsätze in elektronischen Geräten oder Bauteilen, wie Anzeigevorrichtungen, insbesondere in elektrolumineszierenden Bauteilen, wie organischen licht- emittierenden Dioden (LED) . Sie können aber auch in feuchtigkeitsemp indlichen Flüssigkristall-Anzeigevorrichtungen (LCD) verwendet werden.The invention further relates to the use of the pressing bodies defined above as inserts in electronic devices or components, such as display devices, in particular in electroluminescent components, such as organic light-emitting diodes (LEDs). However, they can also be used in moisture sensitive liquid crystal display (LCD) devices.
Diese Geräte oder Bauteile können durch anorganische oder organische Gase oder Dämpfe bei der Herstellung oder während des Gebrauchs in ihrer Funktion geschädigt werden und haben aufgrund ihrer Bauart nur ein sehr geringes Raumangebot für ein Sorptionsmittel .These devices or components can be caused by inorganic or organic gases or vapors during the manufacture or during the Use are damaged in their function and have only a very small space for a sorbent due to their design.
Diese elektronischen Geräte oder Bauteile (z.B. Anzeigevorrichtungen in Kraftfahrzeugen und Mobiltelefonen) sind häufig starken Erschütterungen ausgesetzt, weshalb es wichtig ist, dass die Presskörper nicht zerbrechen oder zerbröseln. Aufgrund ihrer Festigkeit ist es nicht erforderlich, die Presskörper mit einer gasdurchlässigen Folie abzudecken, wodurch die Herstellung der elektonischen Bauteile vereinfacht wird.These electronic devices or components (e.g. display devices in motor vehicles and mobile phones) are often subjected to strong vibrations, which is why it is important that the pressed bodies do not break or crumble. Because of their strength, it is not necessary to cover the pressed body with a gas-permeable film, which simplifies the manufacture of the electronic components.
Gegenüber BaO lässt sich eine deutliche Volumen- und Kostenreduktion des elektronischen Bauteils erreichen. So besitzen die Wafer massebezogen eine höhere Sorptionskapazität und -ge- schwindigkeit für Wasserdampf im benötigten Temperatur- und Feuchtigkeitsbereich innerhalb eines elektronischen Bauteils. Zudem muss beim Einsatz von BaO berücksichtigt werden, dass bei der Hydrationsreaktion eine Volumenzunahme des Materials um 100% eintritt; deshalb ist innerhalb des Bauteils zusätzliches Volumen für die Ausdehnung des Trockenmittels vorzusehen und zwischen BaO und der elektrolumineszierenden Schicht eine wasserdampfdurchlässige Folie anzubringen, die den Kontakt zwischen dem sich ausdehnenden und eventuell abbröckelnden Trockenmittel und der Schicht verhindert. Demgegenüber zeigen die Wafer bei der Wasserdampfaufnahme keine Volumenänderung und bleiben mechanisch stabil, so dass auf die Bereitstellung eines zusätzlichen Ausdehnungsvolumens innerhalb des Bauteils sowie die Anbringung einer Schutzfolie verzichtet werden kann.Compared to BaO, the electronic component can be significantly reduced in volume and cost. For example, the wafers have a higher sorption capacity and speed for water vapor in the required temperature and humidity range within an electronic component. In addition, when using BaO, it must be taken into account that the volume of the material increases by 100% during the hydration reaction; Therefore, additional volume must be provided for the expansion of the desiccant within the component and a water vapor permeable film must be applied between BaO and the electroluminescent layer, which prevents contact between the expanding and possibly crumbling desiccant and the layer. In contrast, the wafers show no change in volume when absorbing water vapor and remain mechanically stable, so that the provision of an additional expansion volume within the component and the application of a protective film can be dispensed with.
BaO hat zusätzlich den Nachteil, dass es selbst und seine Hydratationsprodukte stark basisch reagieren;, zudem erhitzt es es bei der Aufnahme von Feuchtigkeit lokal sehr stark und bei unmittelbarem Kontakt mit organischen Verbindungen neigt es zu Selbstentzündung. Dies schränkt die Auswahl an Polymeren für die oben erwähnte Schutzfolie auf sehr teure, z.B. Fluorpolymere, ein und erhöht so die Kosten des Bauteils. Zudem treten bei der Verwendung von BaO Entsorgungsprobleme auf, da es als gesundheitschädliche Chemikalie die Demontage, Wiederverwendung und Entsorgung der Einzelteile des elektronischen Bauteils stark erschwert .BaO also has the disadvantage that it itself and its hydration products react strongly basic; it also heats it up very strongly when it absorbs moisture, and it tends to self-ignite if it comes into direct contact with organic compounds. This limits the choice of polymers for the above-mentioned protective film on very expensive, for example fluoropolymers, and thus increases the cost of the component. In addition, there are disposal problems with the use of BaO, since it is very difficult to disassemble, reuse and dispose of the individual parts of the electronic component as a harmful chemical.
Die erfindungsgemäßen Presskörper können aber auch anderweitig Verwendung finden, z.B. als Einsätze in Pharmaverpackungen, da hier nur ein begrenztes Volumen für die Aufnahme eines Trockenmittels zur Verfügung steht.The compacts according to the invention can also be used for other purposes, e.g. as inserts in pharmaceutical packaging, since there is only a limited volume available to hold a desiccant.
Die Presskörper können in beliebigen Formen vorliegen, z.B. rund, quadratisch, dreieckig oder rechteckig sein oder auch Bohrungen und/oder Aussparungen enthalten. Die erfindungsgemäßen Presskörper sind staubfrei und abriebfest. Sie können in üblichen Pressautomaten in großer Stückzahl pro Zeiteinheit hergestellt werden.The compacts can be in any shape, e.g. be round, square, triangular or rectangular or also contain bores and / or recesses. The compacts according to the invention are dust-free and wear-resistant. They can be produced in large numbers per time unit in conventional press machines.
Die Erfindung ist durch die nachstehenden Beispiele erläutert :The invention is illustrated by the following examples:
Beispiel 1 (Vergleich)Example 1 (comparison)
75,2 kg Zeolith 4A (Wassergehalt 20%), 23,8 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes Granulator) und gesiebt (250 μm) . 0,22 g des Materials mit einer Partikelgröße < 250 μm werden mit einem Druck von 69 MPa zu einem runden Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden lang calciniert, unter Feuchtigkeitsausschluss abgekühlt und luftdicht verpackt. Die Dicke der Wafer nimmt bei der Calcinierung um etwa 15 bis 25% ab. Produkteigenschaften:75.2 kg of zeolite 4A (water content 20%), 23.8 kg bentonite (water content 12%) and 1 kg calcium stearate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried at 110 ° C. to a water content of 12% and then granulated (Stokes granulator) and sieved (250 μm). 0.22 g of the material with a particle size < 250 μm are pressed to a round wafer with a pressure of 69 MPa. The green wafers are calcined at 650 ° C for three hours, cooled with the exclusion of moisture and packed airtight. The thickness of the wafers decreases by about 15 to 25% during the calcination. Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%Moisture (after calcination): <1%
Ausschuss bei der Produktion: > 90%Production scrap:> 90%
Falltest*: 100 % Bruch, Wafer bröckelt am Rand abDrop test *: 100% break, wafer crumbles on the edge
*Als Maß für die Druckfestigkeit dient der sogenannte Fall- test, wobei 100 calciiiierte Presskörper (runde Scheiben mit einem Durchmesser von 27 mm) aus eine Höhe von 1 m mit der flachen Seite nach unten fallengelassen werden. Es wird der Prozentgehalt der gebrochenen Prüfkörper festgestellt .* The so-called drop test serves as a measure of the compressive strength, whereby 100 calcined pressed bodies (round disks with a diameter of 27 mm) are dropped from a height of 1 m with the flat side down. The percentage of broken test specimens is determined.
Beispiel 2 (Vergleich)Example 2 (comparison)
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt .- Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes Granulator) und gesiebt (250 μm) . 0,22 g des Materials mit einer Partikelgröße <250μm Werden mit einem Druck von 69 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden lang calciniert, unter Feuchtigkeitsausschluss abgekühlt und luftdicht verpackt .57 kg zeolite 4A (water content 20%), 42 kg bentonite (water content 12%) and 1 kg calcium stearate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for 4 minutes. The mixture is dried at 110 ° C. to a water content of 12% and then granulated (Stokes granulator) and sieved (250 μm). 0.22 g of the material with a particle size <250μm are pressed to a wafer with a pressure of 69 MPa. The green wafers are calcined at 650 ° C for three hours, cooled with the exclusion of moisture and packed airtight.
Produkteigenschafte :Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%Moisture (after calcination): <1%
Ausschuss bei der Produktion: 75%Production waste: 75%
Falltest: 80% Bruch Beispiel 3Drop test: 80% break Example 3
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes-Gra- nulator) und auf einem 250 μm-Sieb gesiebt. 0,22 g des Materials mit einer Teilchengröße < 250 μm werden mit einem Druck von 72 MPa zu einem Wafer gepresst. Die grünen Wafer werden wie nach Beispiel 2 weiterbehandelt:57 kg zeolite 4A (water content 20%), 42 kg bentonite (water content 12%) and 1 kg calcium stearate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried at 110 ° C. to a water content of 12% and then granulated (Stokes granulator) and sieved on a 250 μm sieve. 0.22 g of the material with a particle size <250 μm are pressed to a wafer with a pressure of 72 MPa. The green wafers are processed as in Example 2:
Produkteigenschaften:Product features:
Dicke: . 300 ± 50 μm Thickness. 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%Moisture (after calcination): <1%
Ausschuss bei der Produktion: < 50%Production scrap: <50%
Falltest: 60 % BruchDrop test: 60% break
Beispiel 4Example 4
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstereat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C' auf einen Wassergehalt von 12% getrocknet, anschließend granuliert (Stokes-Granula- tor) und auf einem 250 μm-Sieb gesiebt. 0,22 g des Materials mit einer Partikelgröße < 250 μm werden mit einem Druck von 350 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden calciniert, unter Feuchtigkeitsausschluss abgekühlt und verpackt . Produkteigenschaften:57 kg zeolite 4A (water content 20%), 42 kg bentonite (water content 12%) and 1 kg calcium stereate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried at 110 ° C. to a water content of 12%, then granulated (Stokes granulator) and sieved on a 250 μm sieve. 0.22 g of the material with a particle size <250 μm are pressed to a wafer with a pressure of 350 MPa. The green wafers are calcined at 650 ° C for three hours, cooled with exclusion of moisture and packaged. Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%Moisture (after calcination): <1%
Ausschuss bei der Produktion: < 25%Production scrap: <25%
Falltest: 15% BruchDrop test: 15% break
Sorptionskapazität * nach einer Stunde: 5,4 Gew.-% nach 5 Stunden: 7,2 Gew.-% nach 24 Stunden: 13,0 Gew.-%Sorption capacity * after one hour: 5.4% by weight after 5 hours: 7.2% by weight after 24 hours: 13.0% by weight
*Die Sorptionskapazität für Wasserdampf wird bei 25°C in einer Atmosphäre mit einer Luftfeuchtigkeit von 10% bestimmt.* The sorption capacity for water vapor is determined at 25 ° C in an atmosphere with a humidity of 10%.
Beispiel 5Example 5
Die Arbeitsweise von Beispiel 4 wurde mit der Abweichung wiederholt, dass die Calcinierung der grünen Wafer im Vakuum erfolgte. Die calcinierten Wafer hatten im wesentlichen die gleichen Produkteigenschaften wie die Wafer von Beispiel 4, zeigten jedoch zusätzlich eine Aufnahmekapazität für Sauerstoff von etwa 5 ml/g (in einer trockenen Sauerstoffatmosphäre bestimmt) .The procedure of Example 4 was repeated with the difference that the green wafers were calcined in vacuo. The calcined wafers had essentially the same product properties as the wafers of Example 4, but additionally showed an oxygen absorption capacity of about 5 ml / g (determined in a dry oxygen atmosphere).
Beispiel 6Example 6
56,5 kg Zeolith 4A (Wassergehalt 20%), 41,5kg Bentonit (Wassergehalt 12%) , 1 kg Calciumstearat und 1 kg Quebracho werden in einem Intensivmischer 2 Minuten gemischt . Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes-Granulato.r) und gesiebt (250 μm) . 0,22 g des Materials mit einer Partikelgrδße < 250 μm werden mit einem Druck von 200 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden calciniert, unter Feuchtigkeitsausschluss abgekühlt und verpackt .56.5 kg of zeolite 4A (water content 20%), 41.5 kg bentonite (water content 12%), 1 kg calcium stearate and 1 kg quebracho are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried at 110 ° C to a water content of 12% and then granulated (Stokes Granulato. R), and sieved (250 .mu.m). 0.22 g of the material with a particle size <250 μm are pressed to a wafer with a pressure of 200 MPa. The green wafers are calcined at 650 ° C for three hours, with the exclusion of moisture cooled and packed.
Produkteigenschaften :Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Feuchte (nach der Calcinierung) < 1%Moisture (after calcination) <1%
Ausschuss bei der Produktion: < 35%Production scrap: <35%
Falltest: 10% BruchDrop test: 10% break
Beispiel 7Example 7
Die Arbeitsweise von Beispiel 4 wurde mit der Abweichung wiederholt, dass der beim Verpressen angewendete Druck 1200 MPa beträgt. Der Falltest ergab 10% Bruch. Der Ausschuss lag bei < 10%.The procedure of Example 4 was repeated with the difference that the pressure applied during the pressing was 1200 MPa. The drop test showed 10% break. The reject rate was <10%.
Beispiel 8Example 8
Die Arbeitsweise von Beispiel 4 wurde mit der Abweichung wiederholt, dass 54 kg Zeolith 4A, 40 kg Bentonit 5 kg Fe3Ü4 und 1 kg Calciumstereat verwendet wurden. Die erhaltenen Wafer waren dunkel gefärbt und konnten in einem LED-Display als Kontrastfläche verwendet werden.The procedure of Example 4 was repeated with the difference that 54 kg of zeolite 4A, 40 kg of bentonite, 5 kg of Fe3Ü4 and 1 kg of calcium stereate were used. The wafers obtained were colored dark and could be used as a contrast surface in an LED display.
Beispiel 9Example 9
110,5 kg Zeolith 4A (Wassergehalt 20%), 76,0 kg Bentonit (Wassergehalt 12%) und 1,9 kg Calciumstearat werden in so viel Wasser unter Einsatz eines hochscherenden Rühraggregats (Ultra-Turrax-Rührer) aufgeschlämmt , dass eine pumpfähige Suspension entsteht. Die Suspension wird in einer Weise sprühgetrocknet, dass ein Pulver mit einem Wassergehalt von 9,2% (bestimmt durch Trocknung bei 160°C) und einer Partikelgrößenver- teilung von 0% > 150 μm und 30% < 45 μm entsteht. 0,17g dieses Materials werden mit einem Druck von 190 MPa zu einem Wafer vom Durchmesser 20 mm gepresst, wobei der Wasserdampfpartial- druck in der Umgebungsluft der Presswerkzeuge etwa 30 mbar beträgt . Die grünen Wafer werden unter Anwendung von Druck drei Stunden bei 650 °C calciniert. Dazu werden jeweils 300 grüne Wafer in durchbohrten Rohrchen aus rostfreiem Stahl (Höhe 120 mm, Innendurchmesser 22 mm) gestapelt, und der Stapel einem Druck von 2550 Pa ausgesetzt. Nach der Calcination wurde unter Feuchtigkeitsausschluss abgekühlt und verpackt .110.5 kg of zeolite 4A (water content 20%), 76.0 kg of bentonite (water content 12%) and 1.9 kg of calcium stearate are slurried in so much water using a high-shear stirrer (Ultra-Turrax stirrer) that a pumpable Suspension arises. The suspension is spray dried in such a way that a powder with a water content of 9.2% (determined by drying at 160 ° C.) and a particle size division of 0%> 150 μm and 30% <45 μm. 0.17 g of this material is pressed at a pressure of 190 MPa to a wafer with a diameter of 20 mm, the water vapor partial pressure in the ambient air of the pressing tools being about 30 mbar. The green wafers are calcined at 650 ° C for three hours using pressure. For this purpose, 300 green wafers are stacked in perforated stainless steel tubes (height 120 mm, inner diameter 22 mm), and the stack is subjected to a pressure of 2550 Pa. After the calcination, the product was cooled and packaged with the exclusion of moisture.
Produkteigenschaften:Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Vertikale Ausdehnung: < 350 μmVertical expansion: <350 μm
(Dicke + Krümmung)(Thickness + curvature)
Feuchte: < 1%Humidity: <1%
(nach Calcination)(after calcination)
Ausschuss bei der Produktion: < 5%Production scrap: <5%
Falltest: < !■%Drop test: <! ■%
Beispiel 10Example 10
110,5 kg Zeolith 4A (Wassergehalt 20%), 76,0 kg Bentonit (Wassergehalt 12%) und 1,9 kg Calciumstearat werden in so viel Wasser unter Einsatz eines hochscherenden Rühraggregats (Ultra-Turrax-Rührer) aufgeschlämmt, dass eine pumpfähige Suspension entsteht. Die Suspension wird in einer Weise sprühgetrocknet, dass ein Pulver mit einem Wassergehalt von 12,6% (bestimmt durch Trocknung bei 160°C) und einer Partikelgrößenverteilung von 0% > 150 μm und 26% < 45 μm entsteht. 0,17g dieses Materials werden mit einem Druck von 210 MPa zu einem Wafer vom' Durchmesser 20 mm gepresst, wobei der Wasserdampf- partialdruck in der Umgebungsluft der Presswerkzeuge etwa 17 mbar beträgt. Die grünen Wafer werden unter Anwendung von Druck drei Stunden bei 650 °C calciniert. Dazu werden jeweils 300 grüne Wafer in durchbohrten Rohrchen aus rostfreiem Stahl (Höhe 120 mm, Innendurchmesser 22 mm) gestapelt, und der Stapel einem Druck von 2550 Pa ausgesetzt. Nach der Calcination wurde unter Feuchtigkeitsausschluss abgekühlt und verpackt.110.5 kg of zeolite 4A (water content 20%), 76.0 kg of bentonite (water content 12%) and 1.9 kg of calcium stearate are slurried in so much water using a high-shear stirrer (Ultra-Turrax stirrer) that a pumpable Suspension arises. The suspension is spray-dried in such a way that a powder with a water content of 12.6% (determined by drying at 160 ° C.) and a particle size distribution of 0%> 150 μm and 26% <45 μm is produced. 0.17 g of this material are pressed with a pressure of 210 MPa into a wafer from the 'diameter of 20 mm, wherein the water vapor partial pressure is mbar in the ambient air of the pressing tools about 17th The green wafers are made using Calcined pressure at 650 ° C for three hours. For this purpose, 300 green wafers are stacked in perforated stainless steel tubes (height 120 mm, inner diameter 22 mm) and the stack is subjected to a pressure of 2550 Pa. After the calcination, the product was cooled and packaged with the exclusion of moisture.
Produkteigenschafte :Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Vertikale Ausdehnung: < 350 μmVertical expansion: <350 μm
(Dicke + Krümmung)(Thickness + curvature)
Feuchte: < 1%Humidity: <1%
(nach Calcination)(after calcination)
Ausschuss bei der Produktion: < 5%Production scrap: <5%
Falltest: < 1%Drop test: <1%
Beispiel 11Example 11
110,5 kg Zeolith 4A (Wassergehalt 20%), 76,0 kg Bentonit (Wassergehalt 12%) und 1,9 kg Calciumstearat werden in so viel Wasser unter Einsatz eines hochscherenden Rühraggregats (Ultra-Turrax-Rührer) aufgeschlämmt , dass eine pumpfähige Suspension entsteht. Die Suspension wird in einer Weise sprühgetrocknet, dass ein Pulver mit einem Wassergehalt von 15,5% (bestimmt durch Trocknung bei 160°C) und einer Partikelgrößenverteilung von 4% > 150 μm und 8% < 45 μm entsteht. 0,17g dieses Materials werden mit einem Druck von 195 MPa zu einem Wafer vom Durchmesser 20 mm gepresst, wobei der Wasserdampf- partialdruck in der Umgebungsluft der Presswerkzeuge etwa 12 mbar beträgt und die Presswerkzeuge periodisch mit Magnesium- stearat besprüht werden. Die grünen Wafer werden unter Anwendung' von Druck drei Stunden bei 650°C calciniert. Dazu werden jeweils 300 grüne Wafer in durchbohrten Röhrchen aus rostfreiem Stahl (Höhe 120 mm, Innendurchmesser 22 mm) gestapelt, und der Stapel einem Druck von 2550 Pa ausgesetzt. Nach der Calci- nation wurde unter Feuchtigkeitsausschluss abgekühlt und verpackt .110.5 kg of zeolite 4A (water content 20%), 76.0 kg of bentonite (water content 12%) and 1.9 kg of calcium stearate are slurried in so much water using a high-shear stirrer (Ultra-Turrax stirrer) that a pumpable Suspension arises. The suspension is spray-dried in such a way that a powder with a water content of 15.5% (determined by drying at 160 ° C.) and a particle size distribution of 4%> 150 μm and 8% <45 μm is produced. 0.17 g of this material is pressed at a pressure of 195 MPa to a wafer with a diameter of 20 mm, the water vapor partial pressure in the ambient air of the pressing tools being approximately 12 mbar and the pressing tools being periodically sprayed with magnesium stearate. The green wafers are calcined at 650 ° C for three hours using pressure. For this purpose, 300 green wafers are stacked in perforated stainless steel tubes (height 120 mm, inner diameter 22 mm) and the stack is subjected to a pressure of 2550 Pa. After the calci- nation was cooled and packaged with the exclusion of moisture.
Produkteigenschaften :Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Vertikale Ausdehnung: < 350 μmVertical expansion: <350 μm
(Dicke + Krümmung)(Thickness + curvature)
Feuchte: < 1%Humidity: <1%
(nach Calcination)(after calcination)
Ausschuss bei der Produktion: < 5%Production scrap: <5%
Falltest: < 1%Drop test: <1%
Beispiel 12Example 12
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg einer 50/50 Mischung aus Attapulgit und Kaolin (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird auf einen Wassergehalt von 12% getrocknet, anschließend granuliert und auf einem 150 μm Sieb gesiebt. 0,17 g des Materials mit einer Partikelgröße < 150 μm werden mit einem Druck von 200 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden calciniert, unter Feuchtigkeitsausschluss abgekühlt und verpackt.57 kg of zeolite 4A (water content 20%), 42 kg of a 50/50 mixture of attapulgite and kaolin (water content 12%) and 1 kg of calcium stearate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried to a water content of 12%, then granulated and sieved on a 150 μm sieve. 0.17 g of the material with a particle size <150 μm is pressed to a wafer with a pressure of 200 MPa. The green wafers are calcined at 650 ° C for three hours, cooled with exclusion of moisture and packaged.
Produkteigenschaften:Product features:
Dicke: 300 ± 50 μmThickness: 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%' Moisture (after calcination): <1% '
Ausschuss bei der Produktion: 25%Production waste: 25%
Falltest: 70% Bruch Beispiel 13Drop test: 70% break Example 13
Ein organisches elektroluminiszierendes Bauteil 1 (quadratisch, Fläche 12,9 cm2), wie in Abbildung 1 gezeigt, wird unter Verwendung eines Wafers (kreisrund, Durchmesser 27mm) von Beispiel 4 hergestellt. Nach der Befestigung des Wafers 2 an der Rückwand 3 des Bauteils wird diese mit Hilfe eines Klebstoffs 4 am Glassubstrat 5 des Bauteils befestigt und so weit wie möglich mit Hilfe eines Klebstoffs versiegelt . Anschließend wird eine mikroskopische Photographie (Vergrößerung 50-fach) des lichtemittierenden Teils 6 (bestehend aus der Anode 7, der lichtemittierenden Schicht 8 und der Kathode 9) des Bauteils aufgenommen. Diese Photographie zeigt keine dunklen (nichtleuchtenden) Flecken, die auf einen Angriff auf die Kathode 9 hinweisen würden.An organic electroluminescent component 1 (square, area 12.9 cm 2 ), as shown in Figure 1, is produced using a wafer (circular, diameter 27 mm) from Example 4. After the wafer 2 has been attached to the rear wall 3 of the component, this is attached to the glass substrate 5 of the component with the aid of an adhesive 4 and sealed as far as possible with the aid of an adhesive. A microscopic photograph (magnification 50 times) of the light-emitting part 6 (consisting of the anode 7, the light-emitting layer 8 and the cathode 9) of the component is then taken. This photograph shows no dark (non-luminous) spots that would indicate an attack on the cathode 9.
Das Bauteil wird 500 h einer Temperatur von 85°C und einer relativen Luftfeuchtigkeit von 85% ausgesetzt. Anschließend wird erneut eine mikroskopische Photographie des lichtemittierenden Teils 6 des Bauteils 1 aufgenommen. Ein Vergleich der beiden Photographien zeigt, dass keine dunklen Flecken entstanden sind, die auf einen Angriff auf die Kathode 9 hinweisen würden.The component is exposed to a temperature of 85 ° C and a relative humidity of 85% for 500 h. A microscopic photograph of the light-emitting part 6 of the component 1 is then taken again. A comparison of the two photographs shows that there are no dark spots that would indicate an attack on the cathode 9.
Beispiel 14 (Vergleich)Example 14 (comparison)
Ein organisches elektroluminiszierendes Bauteil 1 wie Beispiel 9 wird unter Verwendung von BaO hergestellt. Als Abdeckung für das BaO wird eine wasserdurchlässige Teflonfolie verwendet, die mit Hilfe eines dünnen Doppelklebebandes an der Rückwand 3 des Bauteils befestigt wird. Die Menge an BaO wird so eingestellt, dass die Gesamtmasse an BaO, der Teflonfolie und des Doppelklebebandes genau der eines in Beispiel 9 verwendeten Wafers entspricht. Anschließend werden, wie in Beispiel 9 be- schrieben, vergrößerte Photographien des lichtemittierenden Teils vor und nach einer Lagerung von 500 h bei 85°C und 85% Luftfeuchtigkeit aufgenommen. Ein Vergleich der beiden Photographien zeigt eine deutlich erkennbares Wachstum dunkler Punkte, die auf einen Angriff auf die Kathode 9 hinweisen. An organic electroluminescent component 1 such as Example 9 is produced using BaO. A water-permeable Teflon film is used as a cover for the BaO, which is attached to the rear wall 3 of the component with the aid of a thin double-sided adhesive tape. The amount of BaO is adjusted so that the total mass of BaO, the Teflon film and the double-sided adhesive tape corresponds exactly to that of a wafer used in Example 9. Then, as in Example 9, wrote, enlarged photographs of the light-emitting part taken before and after storage for 500 h at 85 ° C and 85% humidity. A comparison of the two photographs shows a clearly recognizable growth of dark spots, which indicate an attack on the cathode 9.

Claims

Patentansprüche claims
1. Plättchenförmige Presskörper (Wafer), enthaltend mindestens ein anorganisches Sorbens und mindestens ein Bindemittel, mit einer Dicke von weniger als 700 μm, erhältlich durch Verpressen eines Gemisches, bestehend aus bzw. enthaltend das (die) anorganische (n) Sorbens (Sorbentien) und das (die) Bindemittel, bei einem Druck von mindestens 70 MPa, wobei im Gemisch das Gewichtsverhältnis des (der) trockenen Sorbens (Sorbentien) und des (der) trockenen Bindemittel (s) zwischen etwa 4 und 0,7 liegt und der Wassergehalt des Gemisches, bestimmt bei 160°C, zwischen etwa 8 und 20% beträgt; und Calcinieren der erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500°C, bis zur weitgehenden Entfernung des Wassergehalts.1. platelet-shaped pressed body (wafer), containing at least one inorganic sorbent and at least one binder, with a thickness of less than 700 μm, obtainable by pressing a mixture consisting of or containing the inorganic sorbent (sorbents) and the binder (s) at a pressure of at least 70 MPa, the mixture of the weight ratio of the dry sorbent (sorbents) and the dry binder (s) being between about 4 and 0.7 and the water content of the mixture, determined at 160 ° C, is between about 8 and 20%; and calcining the green compacts obtained at temperatures of at least about 500 ° C. until the water content has been largely removed.
2. Presskörper nach Anspruch 1, dadurch gekennzeichnet, dass dem Gemisch Wasser und/oder Presshilfsmittel, wie fettsaure Salze eines zwei- oder dreiwertigen Metalls, zugesetzt werden.2. Press body according to claim 1, characterized in that water and / or pressing aids, such as fatty acid salts of a di- or trivalent metal, are added to the mixture.
3. Presskörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Calcinierung bis zur Gewichtskonstanz oder bis zu einer Restfeuchte von < 2 Gew.-%, bestimmt bei der Calcinations- temperatur, durchgeführt wird.3. Press body according to claim 1 or 2, characterized in that the calcination is carried out to constant weight or to a residual moisture content of <2% by weight, determined at the calcination temperature.
4. Presskorper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das anorganische Sorbens einen natürlichen oder künstlichen Zeolith darstellt.4. Press body according to one of claims 1 to 3, characterized in that the inorganic sorbent is a natural or artificial zeolite.
5. Presskörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Bindemittel einen smektitischen Ton, vorzugsweise Bentonit, darstellt. 5. Press body according to one of claims 1 to 4, characterized in that the binder is a smectite clay, preferably bentonite.
6. Presskörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dicke des Wafers etwa 200 bis 400 μm beträgt .6. Press body according to one of claims 1 to 5, characterized in that the thickness of the wafer is about 200 to 400 microns.
7. Presskörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass im Gemisch das Gewichtsverhältnis des trockenen Sorbens zum trockenen Bindemittel zwischen etwa 1,5 und 1 liegt.7. Press body according to one of claims 1 to 6, characterized in that the weight ratio of the dry sorbent to the dry binder is between about 1.5 and 1 in the mixture.
8. Presskörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Druck etwa 100 bis 1300 MPa beträgt.8. Press body according to one of claims 1 to 7, characterized in that the pressure is about 100 to 1300 MPa.
9. Presskörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass als Presshilfsmittel ein fettsaures Salz eines 2- oder 3-wertigen Metalls verwendet wird.9. Press body according to one of claims 1 to 8, characterized in that a fatty acid salt of a 2 or 3-valent metal is used as the pressing aid.
10. Presskorper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass er mit einem tanninhaltigen Bindemittel, vorzugsweise Quebracho, verpresst worden ist.10. pressed body according to one of claims 1 to 9, characterized in that it has been pressed with a tannin-containing binder, preferably Quebracho.
11. Presskörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Gemisch keine größeren Anteile, vorzugsweise nicht mehr als 15%, besonders bevorzugt nicht mehr als 8%, und insbesondere 0% an Partikeln > 250 μm, bevorzugt > 200 μm und besonders bevorzugt > 150 μm enthält.11. Press body according to one of claims 1 to 10, characterized in that the mixture contains no larger proportions, preferably not more than 15%, particularly preferably not more than 8%, and in particular 0% of particles> 250 μm, preferably> 200 μm and particularly preferably contains> 150 μm.
12. Presskörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass der Hauptanteil der Partikel, d.h. mindestens etwa 50%, insbesondere mindestens etwa 60%, im Gemisch größer als etwa 45 μm ist.12. Press body according to one of claims 1 to 11, characterized in that the main part of the particles, i.e. at least about 50%, in particular at least about 60%, in the mixture is greater than about 45 μm.
13. Presskörper nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass das Gemisch hauptsächlich sphärische Partikel enthält . 13. Press body according to one of claims 1 to 12, characterized in that the mixture mainly contains spherical particles.
14. Presskörper nach einem der Ansprüche 1 bis 13, dadurch gekennzeichnet, dass mehr als 50%, insbesondere mehr als 75%, vorzugsweise mehr als 80% und insbesondere mehr als 98% der Partikel im wesentlichen sphärisch sind.14. Press body according to one of claims 1 to 13, characterized in that more than 50%, in particular more than 75%, preferably more than 80% and in particular more than 98% of the particles are substantially spherical.
15. Presskörper nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass das Gemisch durch Sprühtrocknung erhalten wurde .15. Press body according to one of claims 1 to 14, characterized in that the mixture was obtained by spray drying.
16. Presskörper nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass er unter Vakuum calciniert worden ist.16. Press body according to one of claims 1 to 15, characterized in that it has been calcined under vacuum.
17. Presskörper nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die Calcination unter Druckbeaufschlagung auf die Presskörper erfolgt .17. Press body according to one of claims 1 to 16, characterized in that the calcination is carried out under pressure on the press body.
18. Presskörper nach Anspruch 17, dadurch gekennzeichnet, dass die Calcination der Presskörper unter Druck in einem durchbohrten Röhrchen erfolgte.18. Press body according to claim 17, characterized in that the calcination of the pressed body was carried out under pressure in a pierced tube.
19. Verfahren zur Herstellung plättchenförmigen Presskörper (Wafer) , dadurch gekennzeichnet, dass man ein Gemisch, bestehend aus bzw. enthaltend das (die) anorganische (n) Sorbens19. A process for the production of platelet-shaped pressed bodies (wafers), characterized in that a mixture consisting of or comprising the inorganic sorbent (s)
(Sorbentien) und das (die) Bindemittel, bei einem Druck von mindestens 70 MPa verpresst, wobei im Gemisch das Gewichtsverhältnis des (der) trockenen Sorbens (Sorbentien) und des (der) trockenen Bindemittel (s) zwischen etwa 4 und 0,7 liegt und der Wassergehalt des Gemisches, bestimmt bei 160°C, zwischen etwa 8 und 20% beträgt; und Calcinieren der erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500°C bis zur weitgehenden Entfernung des Wassergehalts.(Sorbents) and the binder (s), pressed at a pressure of at least 70 MPa, in the mixture the weight ratio of the dry sorbent (sorbent) and the dry binder (s) between about 4 and 0.7 and the water content of the mixture, determined at 160 ° C, is between about 8 and 20%; and calcining the green compacts obtained at temperatures of at least about 500 ° C. until the water content has been largely removed.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass man einen oder mehrere der in einem der Ansprüche 2 bis 18 angegebenen Bestandteile unter den dort angegebenen Bedingungen verwendet . 20. The method according to claim 19, characterized in that one or more of the constituents specified in one of claims 2 to 18 are used under the conditions specified therein.
21. Verwendung des Presskörpers nach einem der Ansprüche 1 bis 18 als Einsatz in elektronischen Geräten, wie Anzeigevorrichtungen, insbesondere in elektrolumineszierenden Bauteilen. 21. Use of the pressed body according to one of claims 1 to 18 as use in electronic devices, such as display devices, in particular in electroluminescent components.
EP01986867A 2000-12-12 2001-12-12 Lamellar pressed body Withdrawn EP1341736A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10065946 2000-12-12
DE10065946A DE10065946A1 (en) 2000-12-12 2000-12-12 Platelet-shaped pressed body
PCT/EP2001/014618 WO2002048025A2 (en) 2000-12-12 2001-12-12 Lamellar pressed body

Publications (1)

Publication Number Publication Date
EP1341736A2 true EP1341736A2 (en) 2003-09-10

Family

ID=7669555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01986867A Withdrawn EP1341736A2 (en) 2000-12-12 2001-12-12 Lamellar pressed body

Country Status (7)

Country Link
EP (1) EP1341736A2 (en)
JP (1) JP4142951B2 (en)
KR (1) KR100585542B1 (en)
CN (1) CN1282623C (en)
AU (1) AU2002238423A1 (en)
DE (1) DE10065946A1 (en)
WO (1) WO2002048025A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19959957A1 (en) * 1999-12-13 2001-06-21 Sued Chemie Ag Platelet-shaped compacts
US20050238803A1 (en) * 2003-11-12 2005-10-27 Tremel James D Method for adhering getter material to a surface for use in electronic devices
DE102004024676A1 (en) * 2004-05-18 2005-12-15 Süd-Chemie AG Film-type sorbent-containing compositions
US8173995B2 (en) 2005-12-23 2012-05-08 E. I. Du Pont De Nemours And Company Electronic device including an organic active layer and process for forming the electronic device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129139A (en) * 1983-12-16 1985-07-10 Matsushita Electric Ind Co Ltd Zeolite film
JPH03203193A (en) * 1989-12-29 1991-09-04 Sharp Corp Thin film electroluminescent panel
JP2000268954A (en) * 1999-03-17 2000-09-29 Matsushita Electric Ind Co Ltd Electroluminescent element
DE19959957A1 (en) * 1999-12-13 2001-06-21 Sued Chemie Ag Platelet-shaped compacts

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0248025A2 *

Also Published As

Publication number Publication date
KR100585542B1 (en) 2006-06-14
WO2002048025A3 (en) 2003-05-30
WO2002048025A8 (en) 2003-01-09
WO2002048025A2 (en) 2002-06-20
DE10065946A1 (en) 2002-06-13
AU2002238423A1 (en) 2002-06-24
CN1282623C (en) 2006-11-01
JP2004515443A (en) 2004-05-27
KR20030067700A (en) 2003-08-14
CN1484623A (en) 2004-03-24
JP4142951B2 (en) 2008-09-03

Similar Documents

Publication Publication Date Title
EP1242180B1 (en) Laminated pressed articles
US4923843A (en) Peptized activated carbon/alumina composite
EP1788034A2 (en) Moisture absorbing formed article
US7585430B2 (en) Plate-shaped pressed bodies
EP2249961A1 (en) Adsorbent granulate and method for the manufacture thereof
US4058483A (en) Adsorbent material
DE4119695C2 (en) Aluminum nitride grains and process for their manufacture
EP0714696A2 (en) Adsorption filter for air and process for preparing it
EP2055675B1 (en) Hydrotalcite-like particulate material and method for production thereof
EP1341736A2 (en) Lamellar pressed body
US5179063A (en) Hydrotalcite composition
US3116131A (en) Method and materials for disposing of radioactive waste
WO2005117105A2 (en) Film-type composition containing a sorbent
DE3718482A1 (en) METHOD FOR PRODUCING A SINNED MAGNESIA SHAPED BODY WITH IMPROVED HYDRATION RESISTANCE AND WITH IMPROVED MECHANICAL STRENGTH
DE10141020A1 (en) Desiccant based on clay-bound zeolite, process for its production and its use
US7135127B2 (en) Laminated pressed articles
EP0369171B1 (en) Peptized activated carbon/alumina composite
WO2015040172A1 (en) Abrasive medium comprising a phosphate-based filler
JP3092477B2 (en) Granular activated carbon and method for producing the same
DE4412411C2 (en) Abrasion-resistant desiccant containing an adsorbing silicate, a process for its production and its use
DE102004054553A1 (en) Moisture-sensitive electronic device element manufacture involves activating desiccant on internal surface of enclosure, upon exposure to microwave radiation of wavelength that is absorbed by water molecules
DE3218625A1 (en) GETTERS FROM ACTIVE, FINE DISPERSAL METALS
WO2007054255A1 (en) Process for producing a coating containing sorbent
WO2023227857A1 (en) Method for loading a particulate sorbent material
DD283271A7 (en) ADSORPTION DETERGENTS FOR CLEANING GASES AND DUST AND FOR DETECTING SOLVENT RECOVERY

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030612

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17Q First examination report despatched

Effective date: 20071119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20080401