EP1341430B1 - Gobelet limiteur de debit - Google Patents

Gobelet limiteur de debit Download PDF

Info

Publication number
EP1341430B1
EP1341430B1 EP01985645A EP01985645A EP1341430B1 EP 1341430 B1 EP1341430 B1 EP 1341430B1 EP 01985645 A EP01985645 A EP 01985645A EP 01985645 A EP01985645 A EP 01985645A EP 1341430 B1 EP1341430 B1 EP 1341430B1
Authority
EP
European Patent Office
Prior art keywords
cup
limited flow
fluid
volume
metering chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01985645A
Other languages
German (de)
English (en)
Other versions
EP1341430A2 (fr
EP1341430A4 (fr
Inventor
Gerald Melsky
Jerry Porter
Andrea Burke
David Porat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Reliant Medical Products Inc
Original Assignee
Reliant Medical Products Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Reliant Medical Products Inc filed Critical Reliant Medical Products Inc
Publication of EP1341430A2 publication Critical patent/EP1341430A2/fr
Publication of EP1341430A4 publication Critical patent/EP1341430A4/fr
Application granted granted Critical
Publication of EP1341430B1 publication Critical patent/EP1341430B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G19/00Table service
    • A47G19/22Drinking vessels or saucers used for table service
    • A47G19/2205Drinking glasses or vessels
    • A47G19/2266Means for facilitating drinking, e.g. for infants or invalids
    • A47G19/2272Means for facilitating drinking, e.g. for infants or invalids from drinking glasses or cups comprising lids or covers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47GHOUSEHOLD OR TABLE EQUIPMENT
    • A47G2200/00Details not otherwise provided for in A47G
    • A47G2200/04For person with a handicap
    • A47G2200/048For person with a handicap of swallowing (dysphagia)

Definitions

  • This invention relates to limited flow cups.
  • Dysphagia a condition characterized by difficulty in swallowing food and liquids, can be present in patients suffering from stroke, head injury, neurological disorders, and other cognitive and motor problems. It may also occur as a result of aging, disability, or as a transient condition following some surgeries. As a result of dysphagia, patients may also suffer from dehydration and nutritional deficits.
  • the bolus When a person suffering from dysphagia attempts to swallow thin liquids, the bolus may tend to go down the bronchus and into the lungs, causing coughing, choking and even aspiration, which can lead to pneumonia. In order to maintain nutrition and hydration, these patients are sometimes given very small volumes, typically about one teaspoon. These smaller boluses can be more readily handled, often without aspiration problems.
  • Limited flow drinking cups are designed to provide a fixed, metered amount of liquid to a user.
  • a typical limited flow cup includes a cup body having a cover that defines an opening through which fluid can pass. Metering is provided by a three-piece assembly including (a) the cover, (b) a tube that is fixed to the cover at the opening and extends downward into the cup body, and (c) a tiny, self-contained metering cup mounted at the lower end of the tube.
  • the metering cup has an open end that faces in a generally sideways direction. Prior to drinking, the cup body contains liquid up to a given liquid level, the metering cup is full of liquid, and the tube is filled with liquid up to the liquid level within the cup body.
  • the metering cup and the portion of the tube that is below the liquid level in the cup body together define a metering chamber having a limited volume.
  • the liquid within the metering chamber flows through the tube and out through the opening to the user.
  • the open end of the metering cup generally extends above the liquid level within the cup body, so that fluid cannot flow into the metering cup. As a result, only the volume within the metering chamber is dispensed during a single drinking motion.
  • US 4,214,679 discloses a measured quantity liquid dispenser provided as part of a volumetric container, the container having an elongated neck with a graduated cup disposed therein and a removable cap. Grooves between the neck and cup permit the dispenser to be tilted with the cap on to fill the cup to a desired level. With the cap off, the dispenser may be tilted to drain the measured liquid from the cup while an angular relationship between the neck and container prevents additional liquid from flowing into the neck or cup.
  • the present invention features a limited flow cup that has a metering chamber that is defined by a nested relationship between a pair of cups.
  • the nested arrangement allows the metering chamber to be defined by components that do not include any closed features, such as tubes, and provides a device that does not include any small or moving parts.
  • the lack of closed features allows the cups to be readily molded. Ease of molding is further facilitated by the simple shape of the cups, which allows them to release relatively easily from a mold.
  • the limited flow cup is generally economical to manufacture, e.g., by injection molding.
  • the lack of small and moving parts allows the cup to be easily assembled both during manufacturing and prior to use by the user or a caregiver, and makes the cup relatively resistant to failure or damage.
  • the cup is also easy for the user to correctly assemble and use. Additionally, the lack of closed features, which are typically difficult to clean, allows, the limited flow cup to be kept clean and sanitary, e.g., by simply disassembling the nested cups and washing them in a dishwasher.
  • the invention features a limited flow cup as defined in claim 1.
  • Implementations of the invention may include one or more of the following features.
  • the metering chamber includes a cavity and an elongated fluid passage in fluid communication with the cavity.
  • the cavity is defined by an indentation in a lower surface of the inner cup, and a lower surface of the outer cup.
  • the elongated fluid passage is defined by a channel extending into the inner cup, and a ridge protruding from an inner wall of the outer cup.
  • the cavity includes an opening to allow fluid to flow into the cavity from the reservoir. The opening is in a side surface of the cavity, and the opening extends to a lower surface of the inner cup to allow for delivery of essentially all of the liquid in the reservoir.
  • the limited flow cup further includes a cover that sealingly engages the rims of the inner and outer cups and defines an opening through which the user can drink the liquid.
  • a lower surface of the cover defines an annular channel that, when the cover is in place, is in fluid communication with the metering chamber.
  • the cover defines one or more apertures that communicate between the ambient air and the annular channel, allowing air to enter the annular channel.
  • the cover further defines a drinking spout, and the aperture(s) allow sufficient air to enter the annular channel so that a user of the limited flow cup is hindered from withdrawing fluid from the limited flow cup by sucking on the drinking spout.
  • the volume of the metering chamber is from about 4.5 to 5.5 ml.
  • the volume of the cavity is from about 3 to 5 ml.
  • the volume of the elongated fluid passage is less than about 25% of the total volume of the metering chamber.
  • the volume of the metering chamber is less than 10% of the volume of the inner cup.
  • the amount of fluid delivered to the user when the inner cup is 10% full varies by no more than 25% from the amount of fluid delivered when the inner cup is 100% full.
  • the cover defines a headspace volume that is from about 28% to 40% of the volume of the inner cup.
  • the outer cup and inner cup include corresponding structures that prevent the outer cup from being used without the inner cup in nested arrangement with the outer cup.
  • the outer cup includes an aperture in a lower surface of the outer cup, through which liquid will flow if the outer cup is filled with liquid without the inner cup in nested arrangement with the outer cup, and the inner cup includes a plug extending from its lower surface, the plug being positioned to seal the aperture in the lower surface of the outer cup when the inner and outer cups are properly nested.
  • the aperture in the outer cup includes a raised rim
  • the inner cup includes a recess that is constructed to seal around the raised rim and over the aperture when the inner and outer cups are properly nested.
  • a limited flow cup for dispensing a limited volume of liquid to a user each time the limited flow cup is tilted to a drinking position
  • the limited flow cup including: (a) an outer cup, (b) an inner cup, nested within the outer cup for containing a supply of the liquid, and (c) a cover that is constructed to be sealingly applied to the outer cup and inner cup, the cover including an aperture through which the liquid can be delivered to the user.
  • the outer cup and inner cup have adjacent spaced surfaces that together define a metering chamber that includes a cavity, and an elongated fluid passage in fluid communication between the cavity and the aperture, the cavity including an inlet through which fluid can flow from the inner cup to the cavity.
  • the inlet is positioned so that it will be above the liquid level in the inner cup when the inner cup is tilted sufficiently to allow fluid to flow from the aperture.
  • a lower surface of the cover defines an annular channel that, when the cover is in place, is in fluid communication with the metering chamber.
  • the cover further defines a drinking spout, and one or more apertures that communicate between the ambient air and the annular channel, allowing air to enter the annular channel, the aperture(s) allowing sufficient air to enter the annular channel so that a user of the limited flow cup is hindered from withdrawing fluid from the limited flow cup by sucking on the drinking spout.
  • a limited flow cup including a pair of nesting inner and outer cups, the inner and outer cups being constructed to be nested and disassembled by a user, allowing easy cleaning, and the nested arrangement of the cups defining a fluid passage that does not exist when the cups are disassembled.
  • the inner and outer cups do not include any closed features.
  • Preferred limited flow cups of the invention include an "anti-suck” feature (e.g., the apertures in communication with the annular channel, described above) that impedes the user from circumventing the metering function by sucking fluid out of the cup.
  • an "anti-suck” feature e.g., the apertures in communication with the annular channel, described above
  • the metering feature generally cannot be circumvented by applying mouth suction to the hole in the lid of the cup through which the user drinks.
  • Preferred cups do not require the person filling the cup with liquid to follow any special or non-obvious steps, such as filling the cup so that liquid stays below a fill line or mark on the cup, steps which may be difficult for caregivers to remember.
  • Such preferred cups are also designed to meter fluid even when filled to the rim of the cup, while still maintaining an aesthetic cup shape, as will be discussed in detail below.
  • the ability of the cup to function properly when filled to the rim ensures that a metered volume will be delivered each time the user drinks from the cup, including the first drink when the cup is at its fullest. This assurance of first-pour functioning is very important in dysphagia applications, due to the grave consequences that may result from receiving too large a volume of liquid even once.
  • the assembled cup is generally spill-proof, with only a single metered volume of liquid exiting the cup when it is inadvertently knocked on its side.
  • limited flow cup 10 includes an outer cup 12 including a generally cylindrical side wall 54 and a generally flat bottom surface 52 (Fig. 3).
  • a pair of handles 16 extend from side wall 54.
  • a cover 14 is constructed to be sealingly attached to the outer cup 12. As shown in Figs. 1A and 1B, the cover 14 includes a drinking spout 18 having an aperture 20 through which a user of the cup can sip a liquid.
  • the cover also includes a vent hole 22 to allow air to enter the cup as fluid is depleted and thereby allows liquid to flow out of the inner cup unimpeded, and three "anti-suck" holes 24, the function of which will be discussed below.
  • the limited flow cup 10 further includes a generally cylindrical inner cup 26 that is slightly smaller in outer diameter than the inner diameter of the outer cup 12, and slightly shorter than outer cup 12, so that the inner cup 26 can be received within the outer cup 12 in nested engagement as shown in Fig. 2.
  • a clearance of 0.005 to 0.010 inches would ensure that the cups could be easily nested and un-nested and at the same time ensure that very little liquid-holding volume is created between the cups.
  • the inner cup 26 fits snugly within the outer cup 12, and defines a reservoir 38 for holding a liquid.
  • the inner and outer cups include structural features that together define a metering chamber when the cups are nested, as will be discussed below.
  • the inner cup 26 includes a generally flat bottom surface 44 and a generally cylindrical side wall 48, having a locally flat portion 49.
  • a disc-shaped cavity 42 is formed by an indentation 64 in bottom surface 44.
  • a channel 46 defined by a diagonally cut groove in the inner cup 26, defines a triangular volume extending from the cavity 42 up the outer side wall 48 of the inner cup. (Seen from above, in Figs. 3A and 3B, the cavity 42 and channel 46 look like a protrusion 42' and a ridge 46', respectively.)
  • the inner surface of outer cup 12 includes an elongated generally triangular ridge 50 that extends along part of the bottom surface 52 and extends up the inner surface of side wall 54 of the outer cup 12.
  • the cavity 42 is closed from below by the generally flat bottom surface 62 of the outer cup 12.
  • Ridge 50 nests within channel 46 (Fig. 3), filling most of the volume of the channel, i.e., the width of the ridge is nearly that of the channel, so that a seal will be formed between the ridge and channel.
  • the ridge 50 is slightly shorter than the depth of the channel, so that an elongated fluid passage 56 (Fig. 2) is defined between the "hypotenuse" or top surface 59 of the ridge and the upper wall 58 of the channel.
  • Elongated fluid passage 56 extends diagonally from the cavity 42, with which it is in fluid communication, to the rim 60 of the nested inner and outer cup assembly.
  • the elongated fluid passage 56 ends in an open terminus 57 at rim 60.
  • the cavity 42 communicates with the inside of inner cup 26 by way of an aperture 66 in the wall 68 of cavity 42 that is located diametrically opposite the inlet of elongated fluid passage 56.
  • the engagement of ridge 50 with channel 46 self-aligns the inner and outer cups, so that the limited flow cup is easy for a caregiver or patient to assemble correctly.
  • liquid 40 flows into cavity 42 through aperture 66, until the cavity 42 is full and liquid is also present in the elongated fluid passage 56 up to the liquid level L.
  • the cavity 42 and elongated fluid passage 56 together define a metering chamber.
  • the total volume of liquid that is in the metering chamber when the device is tipped to a drinking position (Fig. 2A) is the volume of liquid that will be delivered to the user through aperture 20.
  • the volume delivered to the user will vary slightly as the liquid level in the cup drops, due to the reduced volume of liquid that will be present in the elongated fluid passage 56.
  • the volume of the cavity is much larger than that of the elongated fluid passage (generally the ratio of the volume of the elongated fluid passage to that of the cavity is about 1:4 to 1:10).
  • the volume of the cavity dominates, and the user will receive essentially the same amount of liquid regardless of the level of fluid in the elongated passage, which will be reduced as the liquid in the cup is depleted.
  • the user may not receive the entire volume present in the metering chamber, depending on the angle to which the user tips the device (e.g., it may be necessary to tip the device well beyond the angle shown in Fig. 2A (generally to about 90 degrees from the position shown in Fig. 2) to receive the entire volume in the metering chamber.)
  • cover 14 includes a drinking spout 18.
  • Spout 18 is located diametrically opposite the cavity 42, to properly orient the cup as will be discussed below.
  • the spout extends relatively high above the upper surface of the cover, and joins with the cover in a smoothly curved surface, to allow the user to drink from the cup without tilting his head back, i.e., to drink in what is sometimes referred to as a "chin tuck" position. This position is generally thought to be a safer drinking position for patients suffering from dysphagia.
  • the cover 14 is also quite tall, relative to the height of the inner and outer cups, for reasons which will be explained below.
  • Cover 14 also includes a generally cylindrical outer sleeve 28 that is coextensive with the outer surface of the cover and is dimensioned to engage rim 30 of cup body 12 in an interference engagement.
  • Cover 14 also includes, extending downwardly from its inner top surface, a generally cylindrical inner sleeve 32 that is generally coaxial with the outer sleeve 28.
  • Inner sleeve 32 is dimensioned to fit within and sealingly engage the inner wall 34 of inner cup 26 to provide a fluid-tight seal.
  • the cover is preferably formed of a resilient material.
  • annular channel 65 is defined between the outer wall 67 of the cover and the inner sleeve 32 (see Figs. 2 and 3). This annular channel 65 is in fluid communication with the open terminus 57 of the elongated fluid passage 56, and also with aperture 20 in the spout 18.
  • fluid flows from the elongated fluid passage 56, into the annular channel 65, and through aperture 20 to the user.
  • a portion 31 of the inner sleeve 32 is flattened, to provide a relatively large volume in the area of the annular channel that is adjacent terminus 57, allowing good flow of fluid to the aperture 20.
  • the flattened portion 31 of the inner sleeve 32 is also geometrically similar to a flat surface 29 (Fig. 3B) on the inside of the inner cup 26, adjacent to the open terminus 57 of the elongated fluid passage 56, thereby allowing surface 31 of the inner sleeve 32 to seal to surface 29 of the inner cup 26.
  • Annular channel 65 also communicates with "anti-suck” holes 24.
  • the "anti-suck” holes 24 allow air to pass into the annular channel 65 in the event that the user sucks on the spout 18, in an attempt to aspirate liquid from the device without tilting the device to a drinking position and thereby activating the limited flow function (discussed below).
  • the "anti-suck” holes 24 prevent the pressure in the annular channel 65 from being lowered sufficiently for fluid to be drawn up into the spout 18, thereby preventing the user from circumventing the limited flow function of the cup.
  • the cover include a plurality of "anti-suck" holes, as shown, rather than a single hole, because it is unlikely that a user would inadvertently cover multiple holes with a finger during use of the cup.
  • the inner and outer cups and the cover are formed by injection molding.
  • Suitable materials for the inner and outer cup include thermoplastic polymers such as polyethylene, polypropylene, polyamides, such as Nylon, and polycarbonate. Thermosets may also be used.
  • Suitable materials for the cover include relatively compliant thermoplastic polymers, such as polypropylene, polyethylene, polyurethanes, plasticized polyvinyl chloride (PVC), and thermoplastic elastomers (TPEs).
  • the inner cup When the cup is to be used, the inner cup is nested within the outer cup, and the inner cup is filled with a liquid to or above a fill line (not shown) on its inner wall 34.
  • the fill line indicates the amount of liquid that should be added in order for the cup to initially contain the advertised volume of the cup, e.g., 8 fluid ounces.
  • the inner cup 26 can be filled up to its rim, if desired, without any problems in metering of the liquid 40, for reasons that will be discussed below.
  • the fill line is preferably 1/8 to 3/8 inch below the rim, so that the cup may be filled with its advertised volume and the lid snapped in place without spilling liquid from the cup.
  • the cover 14 is then snapped onto the cup assembly, so that the cover and the rims of the inner and outer cups are in sealing engagement.
  • the top surface 59 of the ridge 50 is slightly convex, as is the corresponding upper wall 58 of channel 46.
  • the curvature of surface 59 allows surface 59 to be relatively vertical near the rim of outer cup 12, and, similarly, the curvature of wall 58 allows wall 58 to be relatively vertical near the rim of inner cup 26.
  • the volume of liquid in the metering chamber is delivered to the user through aperture 20.
  • liquid flows within the inner cup 26 so that level L' remains horizontal.
  • the inner cup and cover are dimensioned, and the cavity 42 and aperture 66 are oriented, so that before the angle of tilt of the cup is such that liquid will flow out of the spout 18 (typically at least about 30 degrees from the horizontal) the aperture 66 will be exposed above the liquid level L' in the inner cup 26, as shown in Fig. 2A.
  • the aperture 66 is above the liquid level L', liquid will not flow into aperture 66 when the cup is tilted further for drinking, and thus the user will receive only the volume of liquid in the metering chamber, as discussed above. To drink more liquid, the user must return the cup to its upright (or nearly upright) position, allowing the user time to swallow the predetermined volume of liquid. Because spout 18 is located diametrically opposite the cavity 42, as discussed above, the user will always orient the cup so that the aperture 66 will be above the liquid level during drinking, as shown in Fig. 2A.
  • the limited flow cup perform its metering function the first time (and every subsequent time) that the cup is used, and that it perform the metering function regardless of how full the inner cup 26 is filled.
  • the limited flow function of the cup not be circumvented by over-filling the inner cup 26, and that the amount of liquid dispensed to the user never exceed the maximum volume of the metering chamber.
  • the amount of liquid dispensed to the user is approximately same (e.g., vary by no more than 25%) whether the inner cup is 10% full or 100% full.
  • the first condition can be met by making the cover 14 is quite tall, relative to the height of the inner and outer cups, as shown in the figures.
  • the inner sleeve 32 and wall 36 together define a relatively large open volume or "headspace" that cannot be filled with liquid when the user fills the inner cup.
  • This headspace allows the liquid to be displaced within the cup as shown in Fig. 2A when the cup is tilted (i.e., allows the cup to meet condition (a), above).
  • the volume of the headspace defined by the cover is generally about 28% to 40% of the volume of the inner cup.
  • the total headspace volume required to satisfy both conditions will depend upon the geometry of the cover, e.g., the total volume required will be less if the volume defined by the drinking spout (the volume on the side of the cup into which the liquid flows when the cup is tilted to drink) is increased.
  • condition (b) it is important that, of the total volume of the headspace, a sufficient amount is disposed on the side of the cup into which the liquid flows when the cup is tilted to drink so that the level of the liquid will never be above line L' when the cup is tilted to the angle at which liquid will begin to flow out of aperture 20.
  • the extra volume created by an extended drinking spout is created mostly in the annular volume. where it does not alter the fluid level dynamics in the volume enclosed by the inner cup and the headspace inside the lid's inner partition.
  • the preferred dimensions of the cup are as follows: the inner diameter of the inner cup 26 is from about 3.0 to 3.5 inches, the diameter of the inner sleeve of the cover is the same as the inner diameter of the inner cup 26, the height of the inner cup is from about 1.5 to 2.5, the height of the cover (exclusive of the spout) is from about 0.75 to 1.25 inches, and the height of the spout above the top of the cover is about 0.75 to 1.25 inches.
  • the volume of the cup may be altered, e.g., by scaling all dimensions proportionally.
  • the outer cup 12 may include an aperture 100 in its lower surface, and the inner cup 26 may include a plug 102 that seals the aperture 100 when the cups are properly nested.
  • the outer cup 12 may include a bore 104 having a rim 106, and the inner cup 26 may include an annular recess 108 that is constructed to fit sealingly over the rim 106.
  • the cavity need not be disc-shaped, but could be square, rectangular, or any other desired shape.
  • the ridge in the outer cup can be omitted, and the channel defined by a groove in the inner cup and a cylindrical inner wall of the outer cup. Also, while the ridge is shown and described as having a slightly curved "hypotenuse", the ridge may be more triangular in shape. Many other alterations of the structural features of the inner and outer cup may be made, provided that the nested arrangement of the inner and outer cup defines the metering chamber.
  • the cup has been shown as having two handles. However, in other embodiments the cup may have a single handle or no handle.
  • cover has been shown and discussed as being relatively tall, nd having a tall, curved spout, many other cover designs may be used. Suitable cover geometries will depend upon the volume of the cup and the application in which it will be used, as will be readily understood by those skilled in the art.
  • the cup may be used in many applications, other than by dysphagia sufferers, e.g., as a travel coffee mug, as an infant "dripless" cup, or as a disposable container for beverages such as nutritional drinks.
  • the double-walled construction may afford a degree of thermal insulation.
  • the volume of the cavity may vary widely, e.g., from 1 to 20 ml.

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Pediatric Medicine (AREA)
  • Table Devices Or Equipment (AREA)

Claims (23)

  1. Gobelet limiteur de débit (10) comprenant un gobelet extérieur (12) et, dans une relation de logement avec le gobelet extérieur, un gobelet intérieur (26) qui définit un réservoir de fluide (38), la relation de logement entre le gobelet extérieur et le gobelet intérieur définissant entre eux une chambre de dosage (42, 56), dans une communication par fluide avec le réservoir (38), conçu de manière à contenir une certaine quantité de fluide afin de la fournir à un utilisateur au cours de la prise d'une boisson, la chambre de dosage (42, 56) étant configurée de telle sorte que la quantité de fluide fournie à l'utilisateur au cours de la prise de boisson est toujours inférieure ou égale au volume présent dans la chambre de dosage.
  2. Gobelet limiteur de débit selon la revendication 1, dans lequel la chambre de dosage (42, 56) comprend une admission (66) au travers de laquelle un fluide en provenance du réservoir de fluide (38) peut s'écouler vers la chambre de dosage, l'admission étant configurée de manière à permettre une entrée de fluide en provenance du réservoir à l'intérieur de la chambre de dosage lorsque le gobelet à limitation de débit se trouve dans une première position, et limite une entrée de fluide en provenance du réservoir à l'intérieur de la chambre de dosage lorsque le gobelet à limitation de débit se trouve dans une seconde position inclinée.
  3. Gobelet limiteur de débit selon la revendication 2, dans lequel l'admission (66) est positionnée de telle sorte qu'elle se trouve au-dessus du niveau de liquide présent dans le réservoir de fluide (38) lorsque le gobelet à limitation de débit (10) est incliné au cours de la prise de boisson.
  4. Gobelet limiteur de débit selon la revendication 1, dans lequel ladite chambre de dosage comprend une cavité (42) et un passage de fluide allongé (56) en communication par fluide avec la cavité.
  5. Gobelet limiteur de débit selon la revendication 4, dans lequel la cavité (42) est définie par un renfoncement aménagé dans une surface inférieure du gobelet intérieur (26), et dans une surface inférieure du gobelet extérieur.
  6. Gobelet limiteur de débit selon la revendication 4, dans lequel le passage de fluide allongé (56) est défini par un canal (46) qui s'étend à l'intérieur du gobelet intérieur (26), et par une nervure (50) en saillie à partir d'une paroi intérieure du gobelet extérieur (12).
  7. Gobelet limiteur de débit selon la revendication 4, dans lequel la cavité (42) comprend une ouverture (66) destinée à permettre un écoulement d'un fluide en provenance du réservoir à l'intérieur de la cavité.
  8. Gobelet limiteur de débit selon la revendication 7, dans lequel l'ouverture (66) est située dans une surface latérale (68) de la cavité (42), et l'ouverture s'étend jusqu'à une surface inférieure (44) du gobelet inférieur (26) afin de permettre essentiellement la totalité de la livraison du liquide dans le réservoir.
  9. Gobelet limiteur de débit selon la revendication 1, comprenant en outre un couvercle (14) qui engage de manière étanche les bords du gobelet intérieur et du gobelet extérieur et qui définit une ouverture (20) grâce à laquelle l'utilisateur peut boire le liquide.
  10. Gobelet limiteur de débit selon la revendication 9, dans lequel une surface inférieure du couvercle (14) définit un canal annulaire (65) qui, lorsque le couvercle est en place, se trouve en communication par fluide avec la chambre de dosage (42, 56).
  11. Gobelet limiteur de débit selon la revendication 10, dans lequel le couvercle (14) définit une ou plusieurs ouvertures (22, 24) qui communiquent avec l'air ambiant et le canal annulaire, ce qui permet à l'air de pénétrer à l'intérieur du canal annulaire.
  12. Gobelet limiteur de débit selon la revendication 11, dans lequel le couvercle (14) définit en outre un bec de boisson (18), et l'ouverture (les ouvertures) (22, 24) permet (permettent) une entrée d'air suffisante dans le canal annulaire de telle sorte qu'un utilisateur du gobelet à limitation de débit est empêché de prendre du fluide en aspirant le bec de boisson.
  13. Gobelet limiteur de débit selon la revendication 1, comprenant en outre une paire d'anses (16) qui s'étendent à partir d'une paroi latérale (54).
  14. Gobelet limiteur de débit selon la revendication 1, dans lequel le volume de ladite chambre de dosage (42, 56) se situe environ entre 4,5 et 5,5 ml.
  15. Gobelet limiteur de débit selon la revendication 4, dans lequel le volume de ladite cavité (42) se situe environ entre 3 et 5 ml.
  16. Gobelet limiteur de débit selon la revendication 4, dans lequel le volume dudit passage de fluide allongé (56) est inférieur d'environ 25 % au volume total de la chambre de dosage.
  17. Gobelet limiteur de débit selon la revendication 1, dans lequel le volume de la chambre de dosage (42, 56) est inférieur d'environ 10 % au volume du réservoir de fluide.
  18. Gobelet limiteur de débit selon la revendication 1, dans lequel la quantité de fluide fournie à l'utilisateur, lorsque réservoir de fluide (38) est rempli à 10 %, ne varie pas de plus de 25 % du volume fourni lorsque le réservoir de fluide est rempli à 100 %.
  19. Gobelet limiteur de débit selon la revendication 9, dans lequel le couvercle (14) définit un volume d'espace libre qui se situe environ entre 28 % et 40 % du volume du gobelet intérieur (26).
  20. Gobelet limiteur de débit selon la revendication 1, dans lequel le gobelet extérieur (12) et le gobelet intérieur (26) ont des structures correspondantes (100 - 108) qui empêchent l'utilisation du gobelet extérieur (12) sans le gobelet intérieur (26) dans un aménagement de logement dans le gobelet extérieur.
  21. Gobelet limiteur de débit selon la revendication 20, dans lequel le gobelet extérieur (12) comprend une ouverture (100) aménagée dans une surface inférieure du gobelet extérieur, au travers de laquelle s'écoule le liquide si le gobelet extérieur est rempli de liquide sans que le gobelet intérieur (26) soit dans un aménagement de logement' dans le gobelet extérieur.
  22. Gobelet limiteur de débit selon la revendication 21, dans lequel le gobelet intérieur (26) comprend un bouchon (102) qui s'étend à partir de sa surface inférieure, le bouchon étant positionné de manière à rendre étanche l'ouverture (100) aménagée dans la surface inférieure du gobelet extérieur lorsque le gobelet intérieur et le gobelet extérieur sont logés de manière appropriée.
  23. Gobelet limiteur de débit selon la revendication 21, dans lequel l'ouverture (100) aménagée dans le gobelet extérieur comprend un bord en élévation (106), et le gobelet intérieur (26) comprend un retrait (108) qui est conçu de manière à rendre étanche le bord en élévation et l'ouverture lorsque le gobelet intérieur et le gobelet extérieur sont logés de manière appropriée.
EP01985645A 2000-11-13 2001-11-02 Gobelet limiteur de debit Expired - Lifetime EP1341430B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US711796 1985-03-14
US71179600A 2000-11-13 2000-11-13
PCT/US2001/051171 WO2002038012A2 (fr) 2000-11-13 2001-11-02 Gobelet à limiteur de débit

Publications (3)

Publication Number Publication Date
EP1341430A2 EP1341430A2 (fr) 2003-09-10
EP1341430A4 EP1341430A4 (fr) 2005-11-02
EP1341430B1 true EP1341430B1 (fr) 2007-09-12

Family

ID=24859563

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01985645A Expired - Lifetime EP1341430B1 (fr) 2000-11-13 2001-11-02 Gobelet limiteur de debit

Country Status (6)

Country Link
EP (1) EP1341430B1 (fr)
AT (1) ATE372706T1 (fr)
AU (1) AU2002235275A1 (fr)
CA (1) CA2428592A1 (fr)
DE (1) DE60130481T2 (fr)
WO (1) WO2002038012A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517729B2 (en) 2010-03-04 2013-08-27 The University of Western Ontario and Trudell Medical International Oral mouthpiece and method for the use thereof
US10028885B2 (en) 2013-03-15 2018-07-24 The University Of Western Ontario Oral mouthpiece and method for the use thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6755318B2 (en) 2000-11-13 2004-06-29 Reliant Medicals Products, Inc. Limited flow cups
CN101203186B (zh) 2005-05-03 2011-05-18 西安大略大学 口腔装置和与之联合使用的试剂盒
CA2700396C (fr) 2007-09-24 2012-12-18 Eugene Druyan Recipient de distribution de doses de liquide
US10004657B2 (en) 2008-02-08 2018-06-26 The University Of Western Ontario Method of brain activation
BRPI0910626A2 (pt) 2008-04-15 2017-05-16 Trudell Medical Int bocal para terapia de deglutição com pulso de ar e método para sua utilização
GB2465363A (en) * 2008-11-13 2010-05-19 Emma Clark A cup with a conduit and a mouthpiece
CA2810055C (fr) 2010-09-06 2015-05-19 Eugene Druyan Recipient pour distribution de doses de liquide
DE102012110245A1 (de) 2011-10-27 2013-05-02 Petra Reinhardt Dosiervorrichtung sowie Anordnung aus einer Dosiervorrichtung und einem Behälter
US10377559B1 (en) 2013-12-10 2019-08-13 Leah Ceee O. Boomsma Holder for a squeeze pouch
USD867828S1 (en) * 2014-12-10 2019-11-26 Leah Ceee O. Boomsma Pouch holder
US11465821B1 (en) 2013-12-10 2022-10-11 LCeeeDesigns LLC Holder for food and beverage containers

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424921A (en) * 1982-01-04 1984-01-10 Measure Control Devices, Inc. Measured dispenser

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1498491A (en) * 1922-04-26 1924-06-17 Stinson Isaac Edward Sugar container
US4146157A (en) * 1976-11-22 1979-03-27 Dixon Sr Lester A Anti-spill drinking cup
US4214679A (en) * 1977-05-31 1980-07-29 Whang Chi Man Measured quantity dispenser
US4442948A (en) * 1982-09-16 1984-04-17 Levy Richard C Drinking vessel
US4437576A (en) * 1982-09-30 1984-03-20 Barniak Richard L Drinking vessel with self-contained straws
US4589569A (en) * 1983-10-24 1986-05-20 Solo Cup Company Lid for drinking cup
SE451943B (sv) * 1986-04-21 1987-11-09 Ergonomi Design Gruppen Ab Matningsmugg med doseringskammare
US5294018A (en) * 1993-01-21 1994-03-15 Sanitoy, Inc. Self righting drinking cup with twist on base
US5810210A (en) * 1996-10-08 1998-09-22 Kelley; Scott A. Measured fluid pour method and device
AU5693099A (en) * 1998-08-27 2000-03-21 Jerry Porter Limited flow cup

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4424921A (en) * 1982-01-04 1984-01-10 Measure Control Devices, Inc. Measured dispenser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8517729B2 (en) 2010-03-04 2013-08-27 The University of Western Ontario and Trudell Medical International Oral mouthpiece and method for the use thereof
US8992468B2 (en) 2010-03-04 2015-03-31 The University of Western Ontario and Trudell Medical International Oral mouthpiece and method for the use thereof
US10028885B2 (en) 2013-03-15 2018-07-24 The University Of Western Ontario Oral mouthpiece and method for the use thereof

Also Published As

Publication number Publication date
EP1341430A2 (fr) 2003-09-10
EP1341430A4 (fr) 2005-11-02
WO2002038012A2 (fr) 2002-05-16
CA2428592A1 (fr) 2002-05-16
DE60130481T2 (de) 2008-06-12
WO2002038012A3 (fr) 2002-08-29
ATE372706T1 (de) 2007-09-15
AU2002235275A1 (en) 2002-05-21
DE60130481D1 (de) 2007-10-25

Similar Documents

Publication Publication Date Title
US7854342B2 (en) Limited flow cup
EP1341430B1 (fr) Gobelet limiteur de debit
US4921112A (en) Mug with insert for dispensing measured quantity
US8371470B2 (en) Container for dispensing liquid doses
KR20050053606A (ko) 엎지름 방지용 드링크 제품
US8418877B2 (en) Toddler cup with angled partition
CA2341877C (fr) Gobelet a ecoulement limite
US20080149651A1 (en) Cup With Features To Prevent Spillage
US9016529B2 (en) Container for dispensing liquid doses
CN107920957A (zh) 用于防漏饮用杯的阀组件
US5449097A (en) Controlled volume dispensing mug
US20220400880A1 (en) Limited flow cup
US20010008241A1 (en) Limited flow device
US20070068893A1 (en) Spill proof drinking cap for bottles

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030612

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20050919

RIC1 Information provided on ipc code assigned before grant

Ipc: 7A 47G 19/22 A

Ipc: 7G 01F 11/26 B

17Q First examination report despatched

Effective date: 20051205

17Q First examination report despatched

Effective date: 20051205

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60130481

Country of ref document: DE

Date of ref document: 20071025

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071223

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

26N No opposition filed

Effective date: 20080613

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070912

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20201123

Year of fee payment: 20

Ref country code: GB

Payment date: 20201127

Year of fee payment: 20

Ref country code: FR

Payment date: 20201125

Year of fee payment: 20

Ref country code: IE

Payment date: 20201127

Year of fee payment: 20

Ref country code: DE

Payment date: 20201127

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60130481

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20211101

REG Reference to a national code

Ref country code: IE

Ref legal event code: MK9A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211101

Ref country code: IE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20211102