EP1338105A2 - Device and method for detecting distortions during optical information transmission - Google Patents

Device and method for detecting distortions during optical information transmission

Info

Publication number
EP1338105A2
EP1338105A2 EP01989354A EP01989354A EP1338105A2 EP 1338105 A2 EP1338105 A2 EP 1338105A2 EP 01989354 A EP01989354 A EP 01989354A EP 01989354 A EP01989354 A EP 01989354A EP 1338105 A2 EP1338105 A2 EP 1338105A2
Authority
EP
European Patent Office
Prior art keywords
signal
optical
distortion
alternating
extreme value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01989354A
Other languages
German (de)
French (fr)
Inventor
Reinhold Noe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10146557A external-priority patent/DE10146557A1/en
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1338105A2 publication Critical patent/EP1338105A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2513Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion
    • H04B10/25133Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to chromatic dispersion including a lumped electrical or optical dispersion compensator
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/2569Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion due to polarisation mode dispersion [PMD]

Definitions

  • the invention relates to an arrangement and an associated method for the distortion detection in optical information transmission according to the preamble of independent claims 1 and 9.
  • Polarization mode dispersion of optical fibers distorts the transmitted optical pulses in the optical information transmission.
  • a number of electrical bandpass filters with subsequent power detectors are usually used on the receiver side, which spectrally analyze the detected signal. This is described in IEEE J. Lightwave Technology, 17 (1999) 9, pp. 1602-1616.
  • the disadvantage here is that, for example, distortions that can arise as a result of higher-order polarization mode dispersion are only weakly reflected in control signals obtained. This makes it difficult to compensate for such distortions. There are also distortions from other effects, e.g. can be chromatic dispersion, including those of a higher order, and nonlinear effects which cannot be detected with sufficient sensitivity according to the prior art.
  • the object of the invention is therefore to provide an arrangement and an associated method for the distortion detection in optical information transmission, which detect distortions differently and better than according to the prior art.
  • the solution to the problem is that a maximum and / or a minimum of an alternating signal is determined and compared with one another.
  • the rising and falling signal edges have a gradient of different amounts when changing from zero to one or vice versa and sensitively indicate distortions caused by shear of the eye pattern.
  • the detected signal is preferably passed through a high-pass filter as a differentiator.
  • Two oppositely polarized one-way rectifiers or one-way power detectors each indicate the maximum or minimum of the alternating signal thus formed. These are compared with each other. The same amounts indicate the same edge steepness of the detected signal and thus freedom from distortion.
  • filters such as Multiple differentiators can be provided to form the alternating signal.
  • the detected signal itself can also be used as an alternating signal without filtering. In this way, for example, the broadening or narrowing of return-to-zero pulses by means of dispersion or self-phase modulation can be detected.
  • FIG. 1 shows an optical data transmission link with an arrangement according to the invention for the distortion detection
  • FIG. 2 shows an eye pattern of the detected signal
  • FIG. 3 shows an eye pattern of an alternating signal
  • FIG. 4 shows a filter
  • FIG. 5 shows an extreme value detector
  • 6 shows another eye pattern of the detected signal
  • FIG. 7 shows an arrangement with an additional depolarizer
  • FIG. 8 shows a controller
  • An optical signal generating device TR which is preferably designed as an optical transmitter, sends an optical signal OS via an optical waveguide LWL to an optical receiver RX.
  • a first compensator C1 operating in the optical range can be provided between the receiver input IN and a photodetector PD for converting the optical signal OS into a detected signal ED designed as an electrical signal.
  • the first compensator C1 is preferably an optical compensator of polarization mode dispersion or chromatic dispersion.
  • the detected signal ED can be passed through a second compensator C2 operating in the electrical area.
  • a downstream decision maker DFF outputs the transmitted data signal DS at decision maker output OD.
  • the second compensator C2 is preferably an adaptive electrical transversal filter and / or a circuit for quantized feedback. In the latter case, the second compensator also receives the transmitted data signal DS. If the second compensator C2 also carries out quantized feedback, the transmitted data signal DS is fed to it.
  • At least a first, second or third alternating signal SED1, SED2, SED3 is formed from the detected signal ED, which is at least approximately proportional to the detected signal differentiated zero, once or twice.
  • the direct component of the alternating signal SED1, SED2, SED3 is known and is preferably chosen to be zero.
  • the first alternating signal SED1 is identical to the detected signal ED
  • the second alternating signal SED2 is the output signal of an at least approximately working as a differentiator.
  • the horizontal axis is time t
  • the vertical axis is the detected signal ED.
  • the course of time during a bit duration is shown.
  • FIG. 3 shows the second alternating signal SED2 that occurs in the case of a detected signal ED corresponding to FIG. 2. The course of time during a bit duration is shown.
  • the second filter works approximately as a differentiator, which is achieved by a first-order high-pass filter with a low cut-off frequency compared to the bit clock frequency.
  • the horizontal axis is time t
  • the vertical axis is the second alternating signal SED2
  • the time average of the second alternating signal SED2 is zero, which is characterized by the symbol 0.
  • Extreme value signals SM1, SM2 are also shown.
  • a first extreme value signal SM1 is a maximum signal SM1
  • a second extreme value signal SM2 is a minimum signal SM2.
  • the maximum signal SM1 and minimum signal SM2 differ by more than 10%, in spite of comparatively small distortions of the detected signal ED.
  • the controller regulates the invention, which relates to distortions caused by polarization mode dispersion, preferably the compensators C1, C2 and / or the optical signal generating device TR, in particular the transmission polarization of the optical signal OS or one in the optical signal generator - Compensation device TR contained compensator of polarization mode dispersion, so that the remaining distortions are minimal. This is then in this embodiment
  • X ⁇ - tr JO 0 ⁇ HJ g ⁇ - ⁇ - ⁇ - JXj H- o ⁇ ⁇ in P> FS FS PJ tr i ⁇ - ⁇ - HH ⁇ - ⁇ ⁇ ⁇ D ⁇ ⁇ IQ a X FS 3 tr in X F- 1 ⁇ q rt s 0 F- 1 - FS rt H ⁇ ⁇ - in ⁇ ⁇ ⁇ q ISJ F-> 0 rt iq ⁇ - ⁇ 0 H g ⁇ - IQ Da ⁇ ⁇ - - ⁇ - ⁇ - FS ⁇ 10 - tr rt in FS tr rt 0 - FS ⁇ rt FS ⁇ - to 3 ⁇ ⁇ Cd 3 3 3 J ⁇ H PJ to ⁇ ⁇ rt ⁇ Mi ⁇ J ⁇ - PJ tr
  • the comparator CC can also be a quotient generator, since a certain quotient between the maximum signal SM1 and minimum signal SM2 can indicate freedom from distortion.
  • the optimum quotient between maximum signal SM1 and minimum signal SM2 is at least approximately equal to 1.
  • the maximum detector Ml and minimum detector M2 designed as a one-way rectifier do not exactly detect the maximum or minimum of the alternating signal SED1, SED2, SED3 as the maximum signal SMl or minimum signal SM2, but rather to the mean value of the square of positive or negative components of the alternating signal SEDl, SED2 , SED3 proportional signals.
  • this is not harmful, since such signals are also monotonous to the maximum or minimum of the alternating signal SED1, SED2, SED3 and are generally even better indicators of distortion, since they are less susceptible to noise.
  • the third filter FI3 is preferably designed as a double differentiator, which is done by double high-pass filtering in the second and first filters FI2, FI1. Triple and multiple differentiation is also possible. Instead of first-order high-pass filters, other high-pass filters or, if appropriate, band-pass filters or even low-pass filters can also be used. By using more than one distortion indication signal Ul, U2, U3 more than one distortion can be displayed.
  • FIG. 6 explains the function of the first extreme value detector DET1 in the case of an optical signal OS which is preferably designed as a return-to-zero signal.
  • FIG. 6 shows a signal ED detected with the bit clock, which signal is simultaneously the first alternating signal SED1. It corresponds to an optical signal OS designed as a non-return-to-zero signal.
  • Signal shapes of the detected signal ED and first alternating signal SED1 running above or below correspond to sent ones ONE or zeros NULL of the optical signal OS.
  • the horizontal axis is time t, the vertical axis is the detected signal ED or first alternating signal SED1.
  • the detected signal ED and the first alternating signal SED1 are a mixed form of return-to-zero and non-return-to-zero signal.
  • the maximum signal SM1 and minimum signal SM2 differ significantly in this exemplary embodiment, not only in terms of their sign, namely the maximum signal SM1 corresponding to ones is greater in magnitude than the minimum signal corresponding to the transmitted zeros.
  • the mean time value of the detected signal ED and the first alternating signal SED1 is equal to 0 and is identified by the symbol 0.
  • a positive sum of positive signal maximum signal SM1 and negative signal minimum value SM2 indicates minimal pulse broadening.
  • the controller MP can achieve this state by regulating the compensator C1, C2 by means of the first or second control signal VI, V2 or - since dispersion and self-phase modulation can at least partially compensate for each other - by regulating a level of the optical signal OS on the optical fiber LWL by the third control signal V3, which is fed to the optical signal generating device TR and, for example, controls the pumping power of an optical transmission amplifier or intermediate amplifier.
  • FIG. 7 Another embodiment of the invention is shown in FIG. 7. It is largely identical to that according to FIG. 1, but instead of the controller MP there is another controller MP2 and the optical signal generating device TR is followed by a depolarizer DEPOL, by means of which the optical signal OS is modulated with respect to its polarization.
  • Depolarizers are made of electron, for example. Lett., Vol. 30 (1994) 18, pp. 1500-1501.
  • the DEPOL depolarizer ensures that anisotropic distortions of the optical signal OS, which arise, for example, from polarization mode dispersion or due to the low polarization dependence of self-phase modulation, occur in the first to third distortion display signals U1, U2, U3 by first and third alternating components U1AC, U2AC , U3AC voice.
  • isotropic distortions of the optical signal OS which arise, for example, from chromatic dispersion or the large polarization-independent portion of self-phase modulation, are expressed in the first to third distortion display signal U1, U2, U3 by first and third direct components U1DC, U2DC, U3DC.
  • the further controller MP2 processes the distortion display signals U1, U2, U3 as required by the control of the compensating element Cl, C2, TR present in each case.
  • the further controller MP2 contains first to third AC component detectors DAC, D2AC, D3AC, which extract first to third AC component U1AC, U2AC, U3AC from the first to third distortion display signal U1, U2, U3.
  • First to third alternating components UlAC, U2AC, U3AC are then fed to a controller core MPC, which controls a compensating element C1, C2, TR, which is preferably designed as a compensator of polarization mode dispersion.
  • the further controller MP2 contains first to third DC component detectors D1DC, D2DC, D3DC, which extract first to third DC components U1DC, U2DC, U3DC from the first to third distortion display signal U1, U2, U3.
  • First to third DC components U1DC, U2DC, U3DC are then fed to a controller core MPC, which controls a compensating element C1, C2, TR, which is preferably designed as a compensator of chromatic dispersion or influences the transmitting power of the optical signal OS.
  • a controller core MPC which controls a compensating element C1, C2, TR, which is preferably designed as a compensator of chromatic dispersion or influences the transmitting power of the optical signal OS.

Abstract

The invention relates to a device and to a corresponding method with which distortions of an optical signal (OS) are detected in an extreme value detector (DET1, DET2, DET3) by establishing a maximum signal and a minimum signal. The detected signal (ED), which is not differentiated at all, which is differentiated once or which is differentiated a number of times, is supplied as an alternating signal (SED1, SED2, SED3) to the extreme value detector (DET1, DET2, DET3). This enables, for example, the polarization mode dispersion of a higher order or the chromatic dispersion to be detected and, optionally, compensated for by means of a compensating element (C1, C2, TR).

Description

Anordnung und Verfahren für die Verzerrungsdetektion bei der optischen InformationsübertragungArrangement and method for distortion detection in optical information transmission
Die Erfindung betrifft eine Anordnung sowie ein dazugehöriges Verfahren für die die Verzerrungsdetektion bei der optischen Informationsübertragung nach dem Oberbegriff der unabhängigen Patentansprüche 1 und 9.The invention relates to an arrangement and an associated method for the distortion detection in optical information transmission according to the preamble of independent claims 1 and 9.
Polarisationsmodendispersion von Lichtwellenleitern verzerrt die gesendeten optischen Impulse bei der optischen Informationsübertragung. Zur Detektion dieser Verzerrungen wird meist empfängerseitig eine Anzahl von elektrischen Bandpassfiltern mit nachfolgenden Leistungsdetektoren eingesetzt, welche das detektierte Signal spektral analysieren. Dies ist in IEEE J. Lightwave Technology, 17(1999)9, S. 1602-1616 beschrieben.Polarization mode dispersion of optical fibers distorts the transmitted optical pulses in the optical information transmission. To detect these distortions, a number of electrical bandpass filters with subsequent power detectors are usually used on the receiver side, which spectrally analyze the detected signal. This is described in IEEE J. Lightwave Technology, 17 (1999) 9, pp. 1602-1616.
Tiefpassverhalten des Spektrums zeigt Verzerrungen durch Polarisationsmodendispersion an.Low pass behavior of the spectrum indicates distortions due to polarization mode dispersion.
Nachteilig dabei ist, dass beispielsweise Verzerrungen, die durch Polarisationsmodendispersion höherer Ordnung entstehen können, sich nur schwach in gewonnenen Regelsignalen widerspiegeln. Dies erschwert die Kompensation solcher Verzerrungen. Es gibt auch Verzerrungen durch andere Effekte, wobei es sich z.B. um chromatische Dispersion, auch solche höherer Ordnung, und nichtlineare Effekte handeln kann, die sich nach dem Stand der Technik nicht ausreichend empfindlich detektie- ren lassen.The disadvantage here is that, for example, distortions that can arise as a result of higher-order polarization mode dispersion are only weakly reflected in control signals obtained. This makes it difficult to compensate for such distortions. There are also distortions from other effects, e.g. can be chromatic dispersion, including those of a higher order, and nonlinear effects which cannot be detected with sufficient sensitivity according to the prior art.
Aufgabe der Erfindung ist es daher, eine Anordnung sowie ein dazugehöriges Verfahren für die Verzerrungsdetektion bei der optischen Informationsübertragung anzugeben, welche Verzerrungen anders und besser als nach dem Stand der Technik de- tektieren.The object of the invention is therefore to provide an arrangement and an associated method for the distortion detection in optical information transmission, which detect distortions differently and better than according to the prior art.
Diese Aufgabe wird durch eine in Anspruch 1 angegebene Anordnung sowie durch ein im Patentanspruch 7 angegebenes Verfahren gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprüchen angegeben.This object is achieved by an arrangement specified in claim 1 and by a method specified in claim 7. Advantageous further developments are specified in the subclaims.
Die Lösung des Problems liegt darin, daß ein Maximum und/oder ein Minimum eines Wechselsignals bestimmt und miteinander verglichen werden. Im Fall von Polarisationsmodendispersion höherer Ordnung besitzen beispielsweise die ansteigenden und abfallenden Signalflanken beim Wechsel von einer Null zu einer Eins bzw. umgekehrt Steilheiten unterschiedlicher Beträge und zeigen durch Scherung des Augenmusters verursachte Verzerrungen in empfindlicher Weise an. Zur Auswertung wird das detektierte Signal vorzugsweise durch ein Hochpaßfilter als Differentiator geleitet. Zwei entgegengesetzt gepolte Einweg- Gleichrichter oder Einweg-Leistungsdetektoren geben jeweils das Maximum bzw. Minimum des so gebildeten Wechselsignals an. Diese werden miteinander verglichen. Gleiche Beträge zeigen gleiche Flankensteilheiten des detektierten Signals und damit Verzerrungsfreiheit an. In Erweiterung des erfinderischen Prinzips können auch andere Filter wie z.B. mehrfache Diffe- rentiatoren zur Bildung des Wechselsignals vorgesehen sein. Auch das detektierte Signal selbst kann ohne Filterung als Wechselsignal verwendet werden. Dadurch kann beispielsweise die Verbreiterung oder Verschmälerung von Return-to-Zero- Impulsen durch Dispersion oder Selbstphasenmodulation detek- tiert werden.The solution to the problem is that a maximum and / or a minimum of an alternating signal is determined and compared with one another. In the case of higher-order polarization mode dispersion, for example, the rising and falling signal edges have a gradient of different amounts when changing from zero to one or vice versa and sensitively indicate distortions caused by shear of the eye pattern. For the evaluation, the detected signal is preferably passed through a high-pass filter as a differentiator. Two oppositely polarized one-way rectifiers or one-way power detectors each indicate the maximum or minimum of the alternating signal thus formed. These are compared with each other. The same amounts indicate the same edge steepness of the detected signal and thus freedom from distortion. In extension of the inventive principle, other filters such as Multiple differentiators can be provided to form the alternating signal. The detected signal itself can also be used as an alternating signal without filtering. In this way, for example, the broadening or narrowing of return-to-zero pulses by means of dispersion or self-phase modulation can be detected.
Die Erfindung wird anhand von Ausführungsbeispielen näher erläutert .The invention is explained in more detail using exemplary embodiments.
Es zeigenShow it
Figur 1 eine optische Datenübertragungsstrecke mit erfindungsgemäßer Anordnung für die Verzerrungsdetektion, Figur 2 ein Augenmuster des detektierten Signals, Figur 3 ein Augenmuster eines Wechselsignals, Figur 4 ein Filter, Figur 5 einen Extremwertdetektor, Figur 6 ein weiteres Augenmuster des detektierten Signals, Figur 7 eine Anordnung mit zusätzlichem Depolarisator und Figur 8 einen Regler1 shows an optical data transmission link with an arrangement according to the invention for the distortion detection, FIG. 2 shows an eye pattern of the detected signal, FIG. 3 shows an eye pattern of an alternating signal, FIG. 4 shows a filter, FIG. 5 shows an extreme value detector, 6 shows another eye pattern of the detected signal, FIG. 7 shows an arrangement with an additional depolarizer and FIG. 8 shows a controller
In einer optischen Datenübertragungsstrecke gemäß Figur 1 ist die Verwendung der erfindungsgemäßen Anordnung für die Verzerrungsdetektion dargestellt. Eine vorzugsweise als optischer Sender ausgebildete optische Signalerzeugungseinrichtung TR sendet ein optisches Signal OS über einen Lichtwel- lenleiter LWL zu einem optischen Empfänger RX. Zwischen dem Empfängereingang IN und einem Fotodetektor PD zur Umsetzung des optischen Signals OS in ein als elektrisches Signal ausgeführtes detektiertes Signal ED kann ein erster, im optischen Bereich arbeitender Kompensator Cl vorgesehen sein. Vorzugsweise ist der erste Kompensator Cl ein optischer Kompensator von Polarisationsmodendispersion oder chromatischer Dispersion. Das detektierte Signal ED kann durch einen zweiten, im elektrischen Bereich arbeitenden Kompensator C2 geleitet werden. Ein nachgeschalteter Entscheider DFF gibt am Entscheiderausgang OD das übertragene Datensignal DS ab. Der zweite Kompensator C2 ist vorzugsweise ein adaptives elektrisches Transversalfilter und/oder eine Schaltung zur quanti- sierten Rückkopplung. Im letzteren Fall erhält der zweite Kompensator auch das übertragene Datensignal DS . Falls der zweite Kompensator C2 auch quantisierte Rückkopplung durchführt, wird ihm das übertragene Datensignal DS zugeleitet.The use of the arrangement according to the invention for the distortion detection is shown in an optical data transmission link according to FIG. An optical signal generating device TR, which is preferably designed as an optical transmitter, sends an optical signal OS via an optical waveguide LWL to an optical receiver RX. A first compensator C1 operating in the optical range can be provided between the receiver input IN and a photodetector PD for converting the optical signal OS into a detected signal ED designed as an electrical signal. The first compensator C1 is preferably an optical compensator of polarization mode dispersion or chromatic dispersion. The detected signal ED can be passed through a second compensator C2 operating in the electrical area. A downstream decision maker DFF outputs the transmitted data signal DS at decision maker output OD. The second compensator C2 is preferably an adaptive electrical transversal filter and / or a circuit for quantized feedback. In the latter case, the second compensator also receives the transmitted data signal DS. If the second compensator C2 also carries out quantized feedback, the transmitted data signal DS is fed to it.
Aus dem detektierten Signal ED wird mindestens ein erstes, zweites bzw. drittes Wechselsignal SEDl, SED2 , SED3 gebildet, welches wenigstens näherungsweise proportional zum nullmal, einmal bzw. zweimal diffenzierten detektierten Signal ist. Der Gleichanteil des Wechselsignals SEDl, SED2 , SED3 ist bekannt und wird vorzugsweise gleich Null gewählt. Das erste Wechselsignal SEDl ist identisch mit dem detektierten Signal ED, das zweite Wechselsignal SED2 ist Ausgangssignal eines wenigstens näherungsweise als Differenzierer arbeitenden ers- rt N rt Da 1 rt o to *) < FS to PJ to < iQ 0 tr M ü 10 > ü Φ X ü FI) μ- tn tr FS 0 Frj F in rtAt least a first, second or third alternating signal SED1, SED2, SED3 is formed from the detected signal ED, which is at least approximately proportional to the detected signal differentiated zero, once or twice. The direct component of the alternating signal SED1, SED2, SED3 is known and is preferably chosen to be zero. The first alternating signal SED1 is identical to the detected signal ED, the second alternating signal SED2 is the output signal of an at least approximately working as a differentiator. rt N rt Da 1 rt o to * ) <FS to PJ to <iQ 0 tr M ü 10> ü Φ X ü FI) μ- tn tr FS 0 F rj F in rt
Φ Φ μ- Φ H- Φ F-1 μ- Φ ω φ Ω 0 rt F-1 Φ ffi N X P) Ω 0 Cd μ- μ- ) H in μ- φ Φ φ H Φ μ- ΦΦ Φ μ- Φ H- Φ F- 1 μ- Φ ω φ Ω 0 rt F- 1 Φ ffi NXP ) Ω 0 Cd μ- μ-) H in μ- φ Φ φ H Φ μ- Φ
0 FS Φ IG s ?? - iQ iQ 0 0J Ω Φ - F-1 B rt tfl tr Ω π3 0 FS tu ω rt (Q μ- 0 3 ) 0 |Q 00 FS Φ IG s ?? - iQ iQ 0 0 J Ω Φ - F- 1 B rt tfl tr Ω π3 0 FS tu ω rt ( Q μ- 0 3) 0 | Q 0
O FS rt 0 r Da Φ tr to Φ FS tr UJ (Q Di . 0 N N 0O FS rt 0 r Da Φ tr to Φ FS tr UJ ( Q Di. 0 NN 0
< 1 rt tr n μ- o ) Φ O: φ 0 μ- < ffi J. O i Φ > P) μ- μ- μ- μ- PJ Frj<1 rt tr n μ- o ) Φ O: φ 0 μ- <ffi J. O i Φ> P ) μ- μ- μ- μ- PJ F rj
Φ Kl Φ φ φ tO FS 0 to φ tr t rt O i 3 Φ ω X N 0 Φ FS 0 in Φ Ö1 p) Φ -J μ-Φ Kl Φ φ φ tO FS 0 to φ tr t rt O i 3 Φ ω XN 0 Φ FS 0 in Φ Ö 1 p ) Φ - J μ-
FS H- 0 μ- t FS - Φ 0 to μ- N Φ FS FS ^ X in φ 0 iQ μ- in tn rt FS § 0 FS F-"FS H- 0 μ- t FS - Φ 0 to μ- N Φ FS FS ^ X in φ 0 iQ μ- in tn rt FS § 0 FS F- "
<Q rt M g Φ H μ- 0 X J rt N μ- Φ Φ φ μ- (Q 0 rt (Q Di Φ 0 Φ Φ rt<Q rt M g Φ H μ- 0 XJ rt N μ- Φ Φ φ μ- ( Q 0 rt ( Q Di Φ 0 Φ Φ rt
P> 3 03 <Q N Φ ^ N fτJ 0 -> (Q 0 • 0 rt FS μ- 0 rt φ H φ Φ P) Φ Da FS 0 FS μ- ΦP> 3 03 <QN Φ ^ N fτJ 0 - > ( Q 0 • 0 rt FS μ- 0 rt φ H φ Φ P ) Φ Da FS 0 FS μ- Φ
0 P> μ- Φ Φ tϋ Φ Φ 0 Di IQ rt rt F-1 Φ F-1 3 3 - 0 IQ P) ) a 0 FS0 P> μ- Φ Φ tϋ Φ Φ 0 Di IQ rt rt F- 1 Φ F- 1 3 3 - 0 IQ P )) a 0 FS
Fti <q H μ- to 0 FS <_l. 3 J FS N Di ö tfl Φ Da μ- in FS Φ (Q to P> Ω 0 J φ IQFti <q H μ- to 0 FS <_l. 3 J FS N Di ö tfl Φ Da μ- in FS Φ ( Q to P> Ω 0 J φ IQ
Φ 0 μ- <Q μ- D IQ Φ Φ Φ F-1 μ- X Φ μ- X in Φ (Q φ Φ μ- ^ φ N in φ FS 0^ FS FS inΦ 0 μ- <Q μ- D IQ Φ Φ Φ F- 1 μ- X Φ μ- X in Φ ( Q φ Φ μ- ^ φ N in φ FS 0 ^ FS FS in
0 J P> 0 rt iQ φ 0 (Q X Φ rt Φ 0 φ φ rt Φ μ- rt FS X in FS N tr \-b Ω tr Frj0 J P> 0 rt iQ φ 0 ( QX Φ rt Φ 0 φ φ rt Φ μ- rt FS X in FS N tr \ -b Ω tr F rj
C iQ 0 FS 0 Φ φ rt FS rt μ- tfl μ- < Φ 0 FJ Φ H in φ μ- Ifl X Φ O tr Φ X HC iQ 0 FS 0 Φ φ rt FS rt μ- tfl μ- <Φ 0 FJ Φ H in φ μ- Ifl X Φ O tr Φ XH
Φ tn ω Φ Φ P> P) IQ μ- N Φ rt Φ Φ to Φ ? > μ- rt ≥! rt μ- iQ rt Φ μ- μ- Φ l\J ιq 0 μ- FS to rt F-1 H3 Φ to Φ FS FS Φ FS rt 0 -> . t Φ rt 0 Φ μ- rt IQ rt 0 to φ Cd 0 rt Φ t ?Ö 0 to tfl N O in rt ~ 0 φ p) 0 rt Φ Φ φ Φ μ- μ- tr α <! Cd - μ- Di iQ to rt iQ P> Φ FS (Q Φ F-1 Φ 0 0 rt 0 iQ Da ιq H- • o 3 ö μ- J N 0 rt W Φ μ- H FS to P) ti H tr *n Di D rt Da in PJΦ tn ω Φ Φ P> P ) IQ μ- N Φ rt Φ Φ to Φ? > μ- rt ≥! rt μ- iQ rt Φ μ- μ- Φ l \ J ιq 0 μ- FS to rt F- 1 H3 Φ to Φ FS FS Φ FS rt 0 ->. t Φ rt 0 Φ μ- rt IQ rt 0 to φ Cd 0 rt Φ t? Ö 0 to tfl NO in rt ~ 0 φ p ) 0 rt Φ Φ φ Φ μ- μ- tr α <! Cd - μ- Di iQ to rt iQ P> Φ FS ( Q Φ F- 1 Φ 0 0 rt 0 iQ Da ιq H- • o 3 ö μ- JN 0 rt W Φ μ- H FS to P ) ti H tr * n Di D rt Da in PJ
0 F-1 FS μ- Da FS Φ 0 0 0 Φ O 0 tr in FS 0 3 N N D μ- s: Φ Φ Φ Φ rt tn0 F- 1 FS μ- Da FS Φ 0 0 0 Φ O 0 tr in FS 0 3 NND μ- s: Φ Φ Φ Φ rt tn
PJ P. Cd ^ rt 3 P) μ- to IQ IQ 0 3 rt 0 a iQ 0 co X X Φ H Φ 0 0 0 0 Φ φ to PJ O: W Ω ^ Φ to Φ •ü tr S 0 M to 0 φ in rt Ω - IQ 0 DaPJ P. Cd ^ rt 3 P ) μ- to IQ IQ 0 3 rt 0 a iQ 0 co XX Φ H Φ 0 0 0 0 Φ φ to PJ O: W Ω ^ Φ to Φ • ü tr S 0 M to 0 φ in rt Ω - IQ 0 Da
Hl rt 0 D- IQ tr o 3 Ml Φ FS φ N Φ μ- (Q ^3 to Da Φ μ- Φ 0J Φ Ω tsi in FS o Φ Φ D Φ H Di rt 3 Φ : μ- tfl 0 X μ- t 10 F-1 μ- μ- rt Da Φ FS IQ FS X J X μ-Hl rt 0 D- IQ tr o 3 Ml Φ FS φ N Φ μ- ( Q ^ 3 to Da Φ μ- Φ 0 J Φ Ω tsi in FS o Φ Φ D Φ H Di rt 3 Φ: μ- tfl 0 X μ- t 10 F- 1 μ- μ- rt Da Φ FS IQ FS X J X μ-
H 0 0 Φ 3 μ- 0 •ö 0" 0* 0 μ- ω 0 FS PJ ~ |Q Cd Φ FS FS in Φ tn φ P> Φ 0 rtH 0 0 Φ 3 μ- 0 • ö 0 "0 * 0 μ- ω 0 FS PJ ~ | Q Cd Φ FS FS in Φ tn φ P> Φ 0 rt
3 rt 0 Ω to 0 Φ FS FS FS (Q μ- O 0 0 φ 0 μ- in h-1 rt 0 F-1 μ- P>: rt φ O to Φ ω tr (Q 0 Φ rt μ- 0 φ N φ t) N a P> rt to rt rt Fή tfl Φ μ- rt rt tr Φ3 rt 0 Ω to 0 Φ FS FS FS ( Q μ- O 0 0 φ 0 μ- in h- 1 rt 0 F- 1 μ- P>: rt φ O to Φ ω tr ( Q 0 Φ rt μ- 0 φ N φ t ) N a P> rt to rt rt F ή tfl Φ μ- rt rt tr Φ
0 Ό T 0 μ- to P 10 FS Ω P> FS X FS S Φ M F-1 FS tr rt Φ H μ- 0 •Q 0 Φ φ rt > rt rt Φ ι-3 P> Φ ^ tr φ Φ tfl O μ- ι-3 Φ Cd N Φ 0 F-1 iQ tn 0 0 FS s:0 Ό T 0 μ- to P 10 FS Ω P> FS X FS S Φ M F- 1 FS tr rt Φ H μ- 0 • Q 0 Φ φ rt> rt rt Φ ι-3 P> Φ ^ tr φ Φ tfl O μ- ι-3 Φ Cd N Φ 0 F- 1 iQ tn 0 0 FS s:
O μ- μ- < rt 3 Ja rt 0 μ- rt 0 μ- rt N (Q t Di 3 X X - 0 Fr] rt IQ 0 Φ φ 10 o Φ P) iQ O S 0 < Di rt Φ φ Φ -. Φ X rt s; ^ ) μ- Φ TJ 0 Ω to O tr FS J Φ D ) FS Cd i 0 ) Φ Φ to tn tfl 10 φ FS Φ μ- Da F-" F-1 0 Q- μ- (Q ^ t rt N rt FS F-1 Φ μ- iQ to 0 tn μ- ü FS Φ Di Ω F-1 P» rt IQ Φ F-" IQ tnO μ- μ- <rt 3 Ja rt 0 μ- rt 0 μ- rt N ( Q t Di 3 XX - 0 F r] rt IQ 0 Φ φ 10 o Φ P ) iQ OS 0 <Di rt Φ φ Φ - , Φ X rt s; ^ ) μ- Φ TJ 0 Ω to O tr FS J Φ D ) FS Cd i 0 ) Φ Φ to tn tfl 10 φ FS Φ μ- Da F- "F- 1 0 Q- μ- ( Q ^ t rt N rt FS F- 1 Φ μ- iQ to 0 tn μ- ü FS Φ Di Ω F- 1 P »rt IQ Φ F-" IQ tn
Di Φ Φ μ- rt to 0 0 PJ tr O (Q M Φ rt 3 FS tr rt in to Φ in rt X Φ φ 0 Φ FS iQ 0 to N ö ^ tr M W N FS 0 t-3 FS Da X μ- in Φ Cd FS 0 Φ φ rt μ- FS Φ iQ Ω o Φ μ- tu iQ F-1 O X PJ J to Φ Φ rt φ FS Di a Pi: Φ FS μ- IQDi Φ Φ μ- rt to 0 0 PJ tr O ( QM Φ rt 3 FS tr rt in to Φ in rt X Φ φ 0 Φ FS iQ 0 to N ö ^ tr MWN FS 0 t-3 FS Da X μ- in Φ Cd FS 0 Φ φ rt μ- FS Φ iQ Ω o Φ μ- tu iQ F- 1 OX PJ J to Φ Φ rt φ FS Di a Pi: Φ FS μ- IQ
Φ m 0 rt φ * o F-> F-1 Φ φ Φ 3 P> rt rt FS rt in FS t rj tr FS tn tn μ-Φ m 0 rt φ * o F-> F- 1 Φ φ Φ 3 P> rt rt FS rt in FS t rj tr FS tn tn μ-
X μ- φ 0 FS Φ 3 - to PJ tr 3 •d 0 H- Φ Φ rt Φ in μ- H φ in Φ iQ rt ιq 3 ιq μ- < μ- •d μ- to F-" Φ Φ Φ N tn a 10 0 ?e i 0 μ- Fr] rt iQ F^ FS rt rjX μ- φ 0 FS Φ 3 - to PJ tr 3 • d 0 H- Φ Φ rt Φ in μ- H φ in Φ iQ rt ιq 3 ιq μ- <μ- • d μ- to F- "Φ Φ Φ N tn a 10 0? Ei 0 μ- F r] rt iQ F ^ FS rt rj
H- 0 Φ ιq Φ Di Φ π ιq rt to 0 0 X (Q rt rt Φ iQ H rt F-1 0 Φ H PJ PJH- 0 Φ ιq Φ Di Φ π ιq rt to 0 0 X ( Q rt rt Φ iQ H rt F- 1 0 Φ H PJ PJ
Φ ) P) 0 (Q FI Φ 0 0 Φ rt tn φ Φ •> O rt Cd 0 Φ Φ iQ 0 0 ) F-1 S Φ N FS o ) 0 Di PJ μ- F-1 Φ N FS Φ X P) μ- Φ IQ • ω rt to P) M Φ μ- e F-1 Φ FS X O rt rt Φ μ- X Φ ?f rt 0 s: Ω tr IQ rj toΦ ) P ) 0 ( Q FI Φ 0 0 Φ rt tn φ Φ •> O rt Cd 0 Φ Φ iQ 0 0) F- 1 S Φ N FS o ) 0 Di PJ μ- F- 1 Φ N FS Φ XP ) μ- Φ IQ • ω rt to P ) M Φ μ- e F- 1 Φ FS XO rt rt Φ μ- X Φ? f rt 0 s: Ω tr IQ rj to
Φ O rt a φ N Φ FS μ- φ F-1 O Φ (Q t 0 Φ 0 rt FS 0 Φ ^ μ- X μ- Ö N CdΦ O rt a φ N Φ FS μ- φ F- 1 O Φ ( Q t 0 Φ 0 rt FS 0 Φ ^ μ- X μ- Ö N Cd
0 w ≥! Ml Φ FS ^ FS X 0 to rt ~ FS 10 rt ~ μ- O Φ to Di Ω N H φ P) X ö0 w ≥! Ml Φ FS ^ FS X 0 to rt ~ FS 10 rt ~ μ- O Φ to Di Ω NH φ P ) X ö
• O rt to 0 Frj Φ μ- rt Ω Φ Φ rt FS 3 H tr Φ i μ- rt in φ ) ω P S 0 0 tr (Q Φ 0' o O to 0 FI Φ O: Ifl X ö a tn μ- φ 10 Φ μ-• O rt to 0 Frj Φ μ- rt Ω Φ Φ rt FS 3 H tr Φ i μ- rt in φ) ω PS 0 0 tr ( Q Φ 0 'o O to 0 FI Φ O: Ifl X ö a tn μ - φ 10 Φ μ-
H- o 1 Φ > iQ N a Da Φ 0 to Φ t F-1 rt ) tn 0 0 Φ F-1 FS Φ rt rt Φ FS N Mi μ- tQ tr Pd rt 0 Φ 0 φ μ- to PJ to - Φ ϋ rt 0 a FS - μ- F-" μ- in X PJ 10H- o 1 Φ> iQ N a Da Φ 0 to Φ t F- 1 rt) tn 0 0 Φ F- 1 FS Φ rt rt Φ FS N Mi μ- tQ tr Pd rt 0 Φ 0 φ μ- to PJ to - Φ ϋ rt 0 a FS - μ- F- "μ- in X PJ 10
Φ φ Φ (Q 0 (Q φ rt (- J i 0 Φ 0 Φ tr φ Cd rt rt IQ iQ X φ Ω rtΦ φ Φ ( Q 0 ( Q φ rt (- J i 0 Φ 0 Φ tr φ Cd rt rt IQ iQ X φ Ω rt
PJ 0 rt 0 Φ φ Cd Φ Φ O i tr O Φ (Q 0 to N 0 ι-3 Di to rt μ- Φ Frj μ- trPJ 0 rt 0 Φ φ Cd Φ Φ O i tr O Φ ( Q 0 to N 0 ι-3 Di to rt μ- Φ Frj μ- tr
& ü P> Ml H o tr 3 Φ t FS F-" Di X Φ Cd Φ tQ Cd FS to H rt Φ ιo tr FS Φ 5 0 0= φ tf Φ J •Ö FS in φ J - rt ö 0 0 μ- Da to Φ S 0& ü P> Ml H o tr 3 Φ t FS F- "Di X Φ Cd Φ tQ Cd FS to H rt Φ ιo tr FS Φ 5 0 0 = φ tf Φ J • Ö FS in φ J - rt ö 0 0 μ- Da to Φ S 0
N 0 0 0 l-h ^ 3 rt H1 Φ M P) μ- FS X N 0 Φ NJ P) Φ ü IQN 0 0 0 lh ^ 3 rt H 1 Φ MP ) μ- FS XN 0 Φ NJ P ) Φ ü IQ
Cd s 1 to X ü φ μ- . - 0 O FS F-1 (Q μ- X Da (Q a •• Fr] iQ 0 μ- 3 'TJ a (Q ü • rt D rt φ rt 0 to to tf CQ 0 g FS φ FS Φ Cd rt μ- P) • Hi μ- μ- μ- PJ o Φ φ μ- Φ rt Ω a < μ- rt P> <τ) Di μ- μ- 1 ι-3 O to F-1 to 0 Mi rt M Mi 0 φ 0 1 rt F tn Φ 0J Φ [ Φ μ- P> Φ b-> (T rt t FS Cd rt Cd iQ a Φ rt Mi tQCd s 1 to X ü φ μ-. - 0 O FS F- 1 ( Q μ- X Da ( Q a •• F r] iQ 0 μ- 3 ' T J a ( Q ü • rt D rt φ rt 0 to to tf CQ 0 g FS φ FS Φ Cd rt μ- P ) • Hi μ- μ- μ- PJ o Φ φ μ- Φ rt Ω a <μ- rt P><τ) Di μ- μ- 1 ι-3 O to F- 1 to 0 Mi rt M Mi 0 φ 0 1 rt F tn Φ 0 J Φ [Φ μ- P> Φ b-> (T rt t FS Cd rt Cd iQ a Φ rt Mi tQ
0 0 Φ rt Di Φ S 1 1 0 FS N Φ Φ rt - 1 ü Φ ö tn PJ 1 Φ Φ φ 10 rt 1 " φ 0 1 0 μ- IQ Φ ) FS ω 1 1 μ- FS 1 10 0 Φ rt Di Φ S 1 1 0 FS N Φ Φ rt - 1 ü Φ ö tn PJ 1 Φ Φ φ 10 rt 1 "φ 0 1 0 μ- IQ Φ) FS ω 1 1 μ- FS 1 1
I 1 1 0 tn 1 I 1 1 0 tn 1
sprechen gesendeten Einsen EINS bzw. Nullen NULL des optischen Signals OS. Die horizontale Achse ist die Zeit t, die vertikale Achse das detektierte Signal ED. Gezeigt ist der Zeitverlauf während einer Bitdauer. Obwohl die Augenöffnung kaum geschlossen ist, bestehen deutliche Unterschiede zwischen dem Betrag der Steilheit der Anstiegsflanken FI einerseits und dem Betrag der Steilheit der Abfallflanken F2 andererseits .speak sent ones ONE or zeros ZERO of the optical signal OS. The horizontal axis is time t, the vertical axis is the detected signal ED. The course of time during a bit duration is shown. Although the eye opening is hardly closed, there are clear differences between the amount of steepness of the rising edges FI on the one hand and the amount of steepness of the falling edges F2 on the other hand.
Figur 3 zeigt das bei einem detektierten Signal ED entsprechend Figur 2 auftretende zweite Wechselsignal SED2. Gezeigt ist der Zeitverlauf während einer Bitdauer. Das zweite Filter arbeitet näherungsweise als Differenzierer arbeitet, was durch ein Hochpaßfilter erster Ordnung mit einer im Vergleich zur Bittaktfrequenz niedrigen Grenzfrequenz erreicht wird.FIG. 3 shows the second alternating signal SED2 that occurs in the case of a detected signal ED corresponding to FIG. 2. The course of time during a bit duration is shown. The second filter works approximately as a differentiator, which is achieved by a first-order high-pass filter with a low cut-off frequency compared to the bit clock frequency.
Die horizontale Achse ist die Zeit t, die vertikale Achse das zweite Wechselsignal SED2 , und der zeitliche Mittelwert des zweiten Wechselsignals SED2 ist gleich Null, was durch das Sybol 0 gekennzeichnet ist. Extremwertsignale SMl , SM2 sind ebenfalls eingezeichnet. Ein erstes Extremwertsignal SMl ist ein Maximumsignal SMl, ein zweites Extremwertsignal SM2 ein Minimumsignal SM2. Maximumsignal SMl und Minimumsignal SM2 unterscheiden sich in diesem Ausführungsbeispiel trotz vergleichsweise geringer Verzerrungen des detektierten Signals ED dem Betrage nach um mehr als 10%. Die teilweise eckigenThe horizontal axis is time t, the vertical axis is the second alternating signal SED2, and the time average of the second alternating signal SED2 is zero, which is characterized by the symbol 0. Extreme value signals SM1, SM2 are also shown. A first extreme value signal SM1 is a maximum signal SM1, a second extreme value signal SM2 is a minimum signal SM2. In this exemplary embodiment, the maximum signal SM1 and minimum signal SM2 differ by more than 10%, in spite of comparatively small distortions of the detected signal ED. The partially angular
Funktionsverläufe sind auf eine bei der Erzeugung der Figur 3 durchgeführte numerische Differentiation zurückzuführen und treten in Realität nicht auf. Der Regler regelt in diesem Ausführungsbeispiel der Erfin- düng, welches sich auf durch Polarisationsmodendispersion verursachte Verzerrungen bezieht, vorzugsweise die Kompensa- toren Cl, C2 und/oder die optische Signalerzeugungseinrichtung TR, hier insbesondere die Sendepolarisation des optischen Signals OS oder einen in der optischen Signalerzeu- gungseinrichtung TR enthaltenen Kompensator von Polarisationsmodendispersion, so ein, daß die verbleibenden Verzerrungen minimal sind. Dies ist in diesem Ausführungsbeispiel dann Functional sequences can be traced back to a numerical differentiation carried out during the generation of FIG. 3 and do not occur in reality. In this exemplary embodiment, the controller regulates the invention, which relates to distortions caused by polarization mode dispersion, preferably the compensators C1, C2 and / or the optical signal generating device TR, in particular the transmission polarization of the optical signal OS or one in the optical signal generator - Compensation device TR contained compensator of polarization mode dispersion, so that the remaining distortions are minimal. This is then in this embodiment
N 3 Ω ti O g < 3 tn J g to g g 10 Cd *l < . Da FS μ- tr F+i a g 0: 0 Mi Ifl ^d ^ Cd ω iqN 3 Ω ti O g <3 tn J g to g g 10 Cd * l <. Since FS μ- tr F + i a g 0: 0 Mi Ifl ^ d ^ Cd ω iq
X μ- tr : J O 0 Ω H J g μ- μ- μ- JXj H- o Φ Φ in P> FS FS PJ tr i μ- μ- H H μ- Φ φ φ Dα Φ IQ a X FS 3 tr in X F-1 ιq rt s 0 F-1 - FS rt H φ μ- in φ Ω ιq ISJ F-> 0 rt iq μ- Φ 0 H g μ- IQ Da Φ μ- - μ- μ- FS ^ 10 - tr rt in FS tr rt 0 - FS Φ rt FS μ- to 3 Φ Φ Cd 3 3 3 J Φ H PJ to ~ Φ rt φ Mi φ J μ- PJ trX μ- tr: JO 0 Ω HJ g μ- μ- μ- JXj H- o Φ Φ in P> FS FS PJ tr i μ- μ- HH μ- Φ φ φ Dα Φ IQ a X FS 3 tr in X F- 1 ιq rt s 0 F- 1 - FS rt H φ μ- in φ Ω ιq ISJ F-> 0 rt iq μ- Φ 0 H g μ- IQ Da Φ μ- - μ- μ- FS ^ 10 - tr rt in FS tr rt 0 - FS Φ rt FS μ- to 3 Φ Φ Cd 3 3 3 J Φ H PJ to ~ Φ rt φ Mi φ J μ- PJ tr
Φ to Ω Ω c in rt μ- ω F-1 3 0 O Q^ 0 'S φ Φ • Q, o FS 'TJ to 0 Q φ rt M tr in § φ Φ td 0 § g § § X Ul Da P> Φ 0 μ- M H rt 10 Φ 0 to PJ Φ rt Da tr X X 3 Da to to Pα to φ Φ to Da tr tfl td tsi a φ iq Φ to F-1 MlΦ to Ω Ω c in rt μ- ω F- 1 3 0 OQ ^ 0 'S φ Φ • Q, o FS' T J to 0 Q φ rt M tr in § φ Φ td 0 § g § § X Ul Da P> Φ 0 μ- MH rt 10 Φ 0 to PJ Φ rt Da tr XX 3 Da to to Pα to φ Φ to Da tr tfl td tsi a φ iq Φ to F- 1 Ml
F 0 μ- l_l. Φ Φ Φ rt rt Φ Φ μ- Φ Cd FS N FS J Φ rt μ- s; PJ φ FS td ~ μ- 0: 0 J a Ω φ tr rt 0 O FS (Q rt Pi ιq rt ö rt Φ Φ fcS) S O rt X Φ tr ΓJ 0 to a tr X tr rt Φ Φ FS Φ iQ Φ Φ 0 Φ F-3 Pα μ- 0 O: rt μ- Ω Φ J ςj- rt t 0^ FS Ω φ F 0 μ- l_l. Φ Φ Φ rt rt Φ Φ μ- Φ Cd FS N FS J Φ rt μ- s; PJ φ FS td ~ μ- 0: 0 J a Ω φ tr rt 0 O FS ( Q rt Pi ιq rt ö rt Φ Φ fcS ) SO rt X Φ tr ΓJ 0 to a tr X tr rt Φ Φ FS Φ iQ Φ Φ 0 Φ F- 3 Pα μ- 0 O: rt μ- Ω Φ J ς j - rt t 0 ^ FS Ω φ
ΓΛ P» φ K 0 P» 3 F-" rt PJ ^ Φ |Q 0 Φ Da tr PJ FS tr FS FS Φ Φ Φ *l 0 tr 0ΓΛ P »φ K 0 P» 3 F- "rt PJ ^ Φ | Q 0 Φ Da tr PJ FS tr FS FS Φ Φ Φ * l 0 tr 0
0 -1 0 μ- Da rt 0 X Φ rt Φ F-1 rt rt rt to 0 μ- φ Φ ϊr Pa ω PJ 0 FS Φ 3 H- 0 00 - 1 0 μ- Da rt 0 X Φ rt Φ F- 1 rt rt rt to 0 μ- φ Φ ϊr Pa ω PJ 0 FS Φ 3 H- 0 0
•^ rt 0 PJ O Φ in φ μ- O ?r o to Φ Ω Φ 0 in ω rt φ μ- μ-• ^ rt 0 PJ O Φ in φ μ- O? R o to Φ Ω Φ 0 in ω rt φ μ- μ-
Φ φ IQ FS FS (Q FS Ω FS rt o FS Cd ? Φ tr 0 ) to a (Q X iQ t rt IQ Mi tr F-1 10 Fd O 0 (^ in Φ gΦ φ IQ FS FS ( Q FS Ω FS rt o FS Cd? Φ tr 0 ) to a ( QX iQ t rt IQ Mi tr F- 1 10 Fd O 0 (^ in Φ g
10 ^ μ- tn J in i rt tn rt Φ PJ FS iq10 ^ μ- tn J in i rt tn rt Φ PJ FS iq
H xr μ- g α rt μ- P> O Φ FS φ n tr 0 ) H xr μ- g α rt μ- P> O Φ FS φ n tr 0 )
8 g 0 rt 0 Da FS g Φ ts_> g t O 0 l_J- O FS Φ < μ- FS PJ to Φ μ- X in F+i PJ tn φ iQ Φ μ- F-1 FS t ^ FS Φ rt Φ 3 tq o ιq C μ- PJ & 0 *> μ- ιq μ- 8 g 0 rt 0 Da FS g Φ ts_> gt O 0 l_J- O FS Φ <μ- FS PJ to Φ μ- X in F + i PJ tn φ iQ Φ μ- F- 1 FS t ^ FS Φ rt Φ 3 tq o ιq C μ- PJ & 0 *> μ- ιq μ-
Φ to 0: X IQ 0 rt Ω Φ P) Φ 0 0 X Fd Φ φ t μ- 0 φ S FS FS ' ΦS FS Φ 0 0 iq Q^ tn IQ 3Φ to 0: X IQ 0 rt Ω Φ P ) Φ 0 0 X Fd Φ φ t μ- 0 φ S FS FS 'ΦS FS Φ 0 0 iq Q ^ tn IQ 3
F-1 μ- O FS μ- PJ O Φ P^ 0 0 F-1 N o N J S D. F-" 0 tn Φ Fd rtF- 1 μ- O FS μ- PJ O Φ P ^ 0 0 F- 1 N o NJS D. F- "0 tn Φ F d rt
F-1 0 3 0 tr α W rt 0 • tfl 0 Cd 0 Cd iQ μ- o μ- N 0 0 b-> 0 Φ IQ in rt tr μ- φF- 1 0 3 0 tr α W rt 0 • tfl 0 Cd 0 Cd iQ μ- o μ- N 0 0 b-> 0 Φ IQ in rt tr μ- φ
Φ Da - Da g IQ N H3 rt Φ Pα IQ ö ιq X to μj 3 0 μ- tsi ιq in N X F-1 Φ Φ iQ φ 0 to μ- 3 X g O FS Φ Φ J PJ rt rt 10 μ- ιq Φ rt Φ rt μ- 3 μ- ?r Φ M to μ- cd PJ Ω Φ in O F-3 FS g FS 0 FS Φ W φ F-1 0 to μ- μ- 0 μ- rt rt d μ- tr iQΦ Da - Da g IQ N H3 rt Φ Pα IQ ö ιq X to μ j 3 0 μ- tsi ιq in NX F- 1 Φ Φ iQ φ 0 to μ- 3 X g O FS Φ Φ J PJ rt rt 10 μ - ιq Φ rt Φ rt μ- 3 μ-? r Φ M to μ- cd PJ Ω Φ in O F- 3 FS g FS 0 FS Φ W φ F- 1 0 to μ- μ- 0 μ- rt rt d μ-tr iQ
0 Φ 3 μ- in Φ Φ ιq Φ μ- N FS rt Pi tfl Cd rt <! Da rt μ- μ- μ- Pa 0 00 Φ 3 μ- in Φ Φ ιq Φ μ- N FS rt Pi tfl Cd rt <! Da rt μ- μ- μ- Pa 0 0
F-1 rj (Q H3 N tr μ- μ- rt μ- μ- 3, M 0 PJ Φ O a F-" μ- 0 iq Φ F-1 Φ P):F- 1 rj ( Q H3 N tr μ- μ- rt μ- μ- 3, M 0 PJ Φ O a F- "μ- 0 iq Φ F- 1 Φ P ) :
Φ tr 0 0 g X N 0 t μ- φ rt 0 H X φ μ. 0 μ- 3 FS INJ μ- rt Ϊ Φ FS 0- in tr F-1 μ- Φ 0 ) F-1 φ X ιq 3 in Φ Φ 3 Φ 0 ti tn PJ ) ^ Ω P): rt μ- tsi rt φ φ ü 0 FS μ- PJ 0 0 rt 3 F-1 H Cd 0 rt 0 X 0 tr rt μ- 0 0 Φ rt N FS toΦ tr 0 0 g XN 0 t μ- φ rt 0 HX φ μ. 0 μ- 3 FS INJ μ- rt Ϊ Φ FS 0- in tr F- 1 μ- Φ 0 ) F- 1 φ X ιq 3 in Φ Φ 3 Φ 0 ti tn PJ ) ^ Ω P): rt μ- tsi rt φ φ ü 0 FS μ- PJ 0 0 rt 3 F- 1 H Cd 0 rt 0 X 0 tr rt μ- 0 0 Φ rt N FS to
Q φ Φ rt tr rt 0 0 3 tr - - rt D. 0 tfl φ tfl to Φ <! φ iq . X 0 g to FS μ- μ- to N Φ g tq rt Pα N g 0, μ- rt rt PJ Da 0 ιq Cd tA μ- 3 Φ to Φ 0 t rt o g X 0 μ- Φ Φ X X PJ H Φ φ r FS 0 μ- μ- φ a g rt Fti μ- ö μ- iqQ φ Φ rt tr rt 0 0 3 tr - - rt D. 0 tfl φ tfl to Φ <! φ iq. X 0 g to FS μ- μ- to N Φ g tq rt Pα N g 0, μ- rt rt PJ Da 0 ιq Cd tA μ- 3 Φ to Φ 0 t rt og X 0 μ- Φ Φ XX PJ H Φ φ r FS 0 μ- μ- φ ag rt Fti μ- ö μ- iq
0 to • 0 F-» • 0 H FS rt Φ X ≥i rt 0 O Φ Ω φ ιq F-1 u> μ- Φ P): to 0: IQ PJ rt 10 00 to • 0 F- »• 0 H FS rt Φ X ≥i rt 0 O Φ Ω φ ιq F- 1 u> μ- Φ P ) : to 0: IQ PJ rt 10 0
0 φ α μ- ≥! in Φ μ- to Φ φ d tr tr φ φ rt μ- rt φ tr 0 IQ Φ X 0 rt μ- Cd Pα tr g μ- 3 F-1 Ω X" N Ω 3 •» ?r 0 F Φ ^d FS iq iq rt 0 FS FS PJ 0 φ a0 φ α μ- ≥! in Φ μ- to Φ φ d tr tr φ φ rt μ- rt φ tr 0 IQ Φ X 0 rt μ- Cd Pα tr g μ- 3 F- 1 Ω X "N Ω 3 •»? r 0 F Φ ^ d FS iq iq rt 0 FS FS PJ 0 φ a
Φ rt μ- Φ N μ- o ^ ^ rt X tr 0 rt F-1 0 Cu 0 rt F-1 Φ φ tr1 μ- rt N μ-Φ rt μ- Φ N μ- o ^ ^ rt X tr 0 rt F- 1 0 Cu 0 rt F- 1 Φ φ tr 1 μ- rt N μ-
FS Φ 0 FS X 0 Da § μ- O φ Φ 3 H O 0 μ- 0 tr - φ 0 φ X tr ω gFS Φ 0 FS X 0 Da § μ- O φ Φ 3 H O 0 μ- 0 tr - φ 0 φ X tr ω g
10 μ- Φ Da H Φ FS μ- Da ≥l FS 0 μ- Φ X Φ μ- X PJ 0 X Cd Φ N Φ μ-10 μ- Φ Da H Φ FS μ- Da ≥l FS 0 μ- Φ X Φ μ- X PJ 0 X Cd Φ N Φ μ-
Ω PJ Φ d 3 0 Φ ≥! Pα rt g Φ ) tq tn rt rt Pa Ω Φ Ω 0 X μ- a μ- X tr 0 FS FS g rt to H g Φ PJ rt σ rt μ- FS PJ tr 10 μ- FS rt iq μ- μ- ω Ml μ- ö Φ - μ- to m X Φ PJ M α • 0 0 PJ: iTö rt Φ iq Qi tr ΦΩ PJ Φ d 3 0 Φ ≥! Pα rt g Φ) tq tn rt rt Pa Ω Φ Ω 0 X μ- a μ- X tr 0 FS FS g rt to H g Φ PJ rt σ rt μ- FS PJ tr 10 μ- FS rt iq μ- μ- ω Ml μ- ö Φ - μ- to m X Φ PJ M α • 0 0 PJ: iTö rt Φ iq Qi tr Φ
Φ rt μ- 0 a o μ- X 0 ι-3 P* 3 φ Φ in 0 (Q o μ- φ φ N φ φΦ rt μ- 0 ao μ- X 0 ι-3 P * 3 φ Φ in 0 ( Q o μ- φ φ N φ φ
Da μ- Φ 0 μ- Φ > rr H tr 10 Cd 3 rt IQ F-1 IQ F ιq rt Ifl . Qi Ω FS X tr μ. μ- 3Since μ- Φ 0 μ- Φ > rr H tr 10 Cd 3 rt IQ F- 1 IQ F ιq rt Ifl. Qi Ω FS X tr μ. μ- 3
F-1 0 S & 3 rt O 3 μ- X 0 O ~ 0 P) Φ . μ- Φ tr φ to μ- N tn Ω to μ- Φ 0 0 Φ α FS C ια 0 rt 3 FS X F j Ml 0 μ- φ ü to ω tQ rt tn X rt tr μ-F- 1 0 S & 3 rt O 3 μ- X 0 O ~ 0 P ) Φ. μ- Φ tr φ to μ- N tn Ω to μ- Φ 0 0 Φ α FS C ια 0 rt 3 FS XF j Ml 0 μ- φ ü to ω tQ rt tn X rt tr μ-
Ω 0 0 3 ff to ) Φ Di FS 10 μ- ö μ- Mi ιq 0 Ca. μ- rt rt J rt N Φ ιq tr Φ 0 <q tn rt 0 0 Fd Φ μ- g FS Cd Φ IQ φ Φ φ φ N FS 0 X 0 10Ω 0 0 3 ff to ) Φ Di FS 10 μ- ö μ- Mi ιq 0 Approx. μ- rt rt J rt N Φ ιq tr Φ 0 <q tn rt 0 0 F d Φ μ- g FS Cd Φ IQ φ Φ φ φ N FS 0 X 0 10
Φ FS a μ- o PJ tn 0 O tr 3 ιq F-1 Pα β rt FS to 10 rt X O 0 Da J Φ φ μ- P S tΩ 0 tQ FS 0 iQ Di H μ- X 0 t Φ <! μ- IQ X Frj Φ 3 0 M μ- FS j H rt Φ 0 0 PJ tn J rt φ Φ J 0 Pα - FS Φ ιq ö φ PJ μ- μ- d Q tu in rt in μ- Pa rj Φ μ- X J iQ 0 Φ Φ S FS → 0 J 10 FS 0 μ- FS F-1 rt Ml φ rt F-1 to o 0 Φ F-" tn Φ ιq μ- 0 rt Da 10 ö Ifl PJ μ- tq rt Φ PJ tr 0 K φ rt g tr in iQ 0: 0 ^ 1-1. 10 to Cd Frj rt Fti 0 Φ 0 Da φ 0 o s; Φ F-1 J N N φ to J tr O φ φ μ- g Φ S s; F H pi: Ü) Φ (Q Φ FS ω Di Ω Φ Fr] FSΦ FS a μ- o PJ tn 0 O tr 3 ιq F- 1 Pα β rt FS to 10 rt XO 0 Da J Φ φ μ- PS tΩ 0 tQ FS 0 iQ Di H μ- X 0 t Φ <! μ- IQ X Frj Φ 3 0 M μ- FS j H rt Φ 0 0 PJ tn J rt φ Φ J 0 Pα - FS Φ ιq ö φ PJ μ- μ- d Q tu in rt in μ- Pa rj Φ μ - XJ iQ 0 Φ Φ S FS → 0 J 10 FS 0 μ- FS F- 1 rt Ml φ rt F- 1 to o 0 Φ F- "tn Φ ιq μ- 0 rt Da 10 ö Ifl PJ μ- tq rt Φ PJ tr 0 K φ rt g tr in iQ 0: 0 ^ 1-1. 10 to Cd Frj rt Fti 0 Φ 0 Da φ 0 os; Φ F- 1 JNN φ to J tr O φ φ μ- g Φ S s; FH pi: Ü) Φ ( Q Φ FS ω Di Ω Φ Fr] FS
X X 0 g 0 FS 3 N X ιq F-1 μ- Φ U) to FS 5 FS Φ μ- tQ tr 0 μ- tr 0 μ- 10 0, μ- • φ rt tS IQ rt "^ s; φ 0 0 Ω • - W d Φ FS Ω FS N PJ rt Φ Fd tr F-1 φ rt μ- • g g μ- μ- P 0 φ tr Φ F-1 0 tr Φ X Ω N μ- PJ to rt »xj 3XX 0 g 0 FS 3 NX ιq F- 1 μ- Φ U ) to FS 5 FS Φ μ- tQ tr 0 μ- tr 0 μ- 10 0, μ- • φ rt tS IQ rt "^ s; φ 0 0 Ω • - W d Φ FS Ω FS N PJ rt Φ F d tr F- 1 φ rt μ- • gg μ- μ- P 0 φ tr Φ F- 1 0 tr Φ X Ω N μ- PJ to rt »xj 3
PJ: rt μ- N to P) 1 0 3 to <! rj FS μ- N 10 0 tr rt 0 > φ φ H rt Φ 1 0 X 10 Φ D. φ o H rt μ- μ- a ti Φ 1 F-1 S toPJ: rt μ- N to P ) 1 0 3 to <! rj FS μ- N 10 0 tr rt 0> φ φ H rt Φ 1 0 X 10 Φ D. φ o H rt μ- μ- a ti Φ 1 F- 1 S to
Φ FS 1 μ- F-1 3 F- 0 φ φ φ I FS 1 0 1 1 1 1 FS Φ FS 1 μ- F- 1 3 F- 0 φ φ φ I FS 1 0 1 1 1 1 FS
Pα Cd IQ 3 to X iQ Cd φ Mi g N td td K P ω IQ α FS) (Q t P Ω F 3 P X tr o g ü to o PPα Cd IQ 3 to X iQ Cd φ Mi g N td td KP ω IQ α FS) ( Q t P Ω F 3 PX tr og ü to o P
0 X Φ P g φ X μ- o F-» Φ Φ Φ Φ 0 Φ H P 0 0 μ- tr F-1 O H μ- tSJ P Φ to t) α tn t α 00 X Φ P g φ X μ- o F- »Φ Φ Φ Φ 0 Φ HP 0 0 μ- tr F- 1 OH μ- tSJ P Φ to t) α tn t α 0
FS rt H μ- Φ r FS FS FS rt 0 N rt φ IQ iq P Φ φ Φ H tn 3 X ] in 0 P iQFS rt H μ- Φ r FS FS FS rt 0 N rt φ IQ iq P Φ φ Φ H tn 3 X] in 0 P iQ
Ω FS μ- Φ rt μ- FS φ Da 0 FS Φ FS Φ FS μ- ω F-1 S FS μ- P m g 10 μ- g Φ tr Φ iQ 0 Φ Ω Φ Φ 0 0 μ- P Frl μ- P Ω < X Φ Ω FS μ- F-1 φ cj 0 0 F-1Ω FS μ- Φ rt μ- FS φ Da 0 FS Φ FS Φ FS μ- ω F- 1 S FS μ- P mg 10 μ- g Φ tr Φ iQ 0 Φ Ω Φ Φ 0 0 μ- P Frl μ- P Ω <X Φ Ω FS μ- F- 1 φ cj 0 0 F- 1
3 0 < 0 FS tr 3 X FS Da 0 rt IQ F-> |Q (Q tr φ φ to 0 X * μ- ιq a to N cj 0 Ω3 0 <0 FS tr 3 X FS Da 0 rt IQ F-> | Q ( Q tr φ φ to 0 X * μ- ιq a to N cj 0 Ω
Φ X P Φ Pα Φ X o F-1 tq IQ Φ Φ Φ FS μ- g φ P rt 0 a μ- X tr Φ F-1 ö 0 tr tr μ- Φ F-1 FS 2 Φ 0 μ- g φ 0 in S5 tsi IQ 10 0 0 p: P μ- tq φ N S 0 tq N MΦ XP Φ Pα Φ X o F- 1 tq IQ Φ Φ Φ FS μ- g φ P rt 0 a μ- X tr Φ F- 1 ö 0 tr tr μ- Φ F- 1 FS 2 Φ 0 μ- g φ 0 in S5 tsi IQ 10 0 0 p: P μ- tq φ NS 0 tq NM
0 FS rsj g to 0 FS in Ω μ- 0 Φ 0 0 μ- 0 0 Φ φ μ- μ- rt rt F-" Φ 0 μ- X in FS 10 X O φ rt Φ μ- *d μ-1 rt rt tr 0 μ- P a IQ P F-1 FS IQ Ω ιq Φ FS P rt • φ Cj Ω IΩ tn F-1 FS 0 P tn P μ- o 0 Ω 0 Ω F-1 FS in F-" tr IQ μ- tsi to φ Φ rt p i' £ tfl α μ- - FS μ- 0 μ- 0 3 FS tr P tr - 0 rt Φ rt F-1 g g S to g N to φ g Φ0 FS rsj g to 0 FS in Ω μ- 0 Φ 0 0 μ- 0 0 Φ φ μ- μ- rt rt F- "Φ 0 μ- X in FS 10 XO φ rt Φ μ- * d μ- 1 rt rt tr 0 μ- P a IQ P F- 1 FS IQ Ω ιq Φ FS P rt • φ Cj Ω IΩ tn F- 1 FS 0 P tn P μ- o 0 Ω 0 Ω F- 1 FS in F- "tr I Q μ- tsi to φ Φ rt pi '£ tfl α μ- - FS μ- 0 μ- 0 3 FS tr P tr - 0 rt Φ rt F- 1 gg S to g N to φ g Φ
0 (Q 0 3 0 to tq rt Pα Da & F-" 0 P μ- Pα Φ φ § F-1 μ- rt P -> μ- 0 S 0 0 0 φ 0 Φ P § & φ X F-h iq X IQ rt o P to O π F-" 00 ( Q 0 3 0 to tq rt Pα Da & F- "0 P μ- Pα Φ φ § F- 1 μ- rt P - > μ- 0 S 0 0 0 φ 0 Φ P § & φ X Fh iq X IQ rt o P to O π F- " 0
Ω P to IQ § 0 μ- P tn Da 0 rt Φ P a φ in rt ^ tr 10 Ω < 0 O g 0 μ-Ω P to IQ § 0 μ- P tn Da 0 rt Φ P a φ in rt ^ tr 10 Ω <0 O g 0 μ-
-. X O: FS Φ μ- tr F-1 in IQ (Q F-" to Φ 0 Φ to φ 0 P φ Φ F-> Φ O O F-1 O 3 Φ 0 μ- 0 3 P-. XO: FS Φ μ- tr F- 1 in IQ ( Q F- "to Φ 0 Φ to φ 0 P φ Φ F-> Φ OO F- 1 O 3 Φ 0 μ- 0 3 P
< Φ μ- tn •d rt tq X1 μ- F-" μ- 0 0 P FS 0 FS in Φ FS 0 Ω 0<Φ μ- tn • d rt tq X 1 μ- F- "μ- 0 0 P FS 0 FS in Φ FS 0 Ω 0
Φ 0 O tq tsi P 0 Φ Ifl rt ιq Ml IQ Ω N F-1 Fd • P= N μ- P tr 0 Pα rt tr cj §Φ 0 O tq tsi P 0 Φ Ifl rt ιq Ml IQ Ω N F- 1 Fd • P = N μ- P tr 0 Pα rt tr cj §
FS U) 3 0 0 P to 0 10 π iq μ- 10 H F-1 tr g Φ to o tr Ω Φ rt 0 t i tfl Da Φ Φ rt l Pα Pi tr to Fd P iq 0 g 0 iQ rt φ Φ rt P Φ P μ- F-1 td φ t FS μ- in X P Φ 0 0 0 F-1 Φ φ μ- g W φ F-1 φ F-1 0 P O 3 FS Φ 0 μ- tq X ιq - P Φ FS FS < iq rt rt 0 - rt FSFS U ) 3 0 0 P to 0 10 π iq μ- 10 H F- 1 tr g Φ to o tr Ω Φ rt 0 ti tfl Da Φ Φ rt l Pα Pi tr to F d P iq 0 g 0 iQ rt φ Φ rt P Φ P μ- F- 1 td φ t FS μ- in XP Φ 0 0 0 F- 1 Φ φ μ- g W φ F- 1 φ F- 1 0 PO 3 FS Φ 0 μ- tq X ιq - P Φ FS FS <iq rt rt 0 - rt FS
0 P 0 Mi - 0 0 FS p: rt 0 Ω FS μ- φ pα FS to 0 tr 0 Φ φ O Φ l_I. iq Φ0 P 0 Mi - 0 0 FS p: rt 0 Ω FS μ- φ pα FS to 0 tr 0 Φ φ O Φ l_I. iq Φ
Pα 0 tn to 0: tq iQ W Φ 10 Φ tr o 3 tn Q^ μ- p: 0 Φ 0 FS M g FS ^ Cd φ j W PPα 0 tn to 0: tq iQ W Φ 10 Φ tr o 3 tn Q ^ μ- p: 0 Φ 0 FS M g FS ^ Cd φ j W P
0 0 P g tr Cd to tn g in 0 μ- μ- rt (70 IQ to IQ Φ μ- Φ rt tr Pα < c] rt 00 0 P g tr Cd to tn g in 0 μ- μ- rt (70 IQ to IQ Φ μ- Φ rt tr Pα <c] rt 0
0 to rt to FS tr g P IQ to P 0 £3 § ιq Φ p: Φ 10 μ- to 0 (Q 0 0 O Φ O o t O Pα tq g P μ- rt φ t μ- 0 Cd p: Frj 0 in tn 0 FS rt 0 X rt P 0 rt μ- FS Ω FS FS φ to 0 O 0 0 tn (Q iQ • ? tr to F-1 μ- μ- P Φ Φ φ t i 0 Di Φ 3 O P Mi tr IQ 10 P FS0 to rt to FS tr g P IQ to P 0 £ 3 § ιq Φ p: Φ 10 μ- to 0 ( Q 0 0 O Φ O ot O Pα tq g P μ- rt φ t μ- 0 Cd p: Frj 0 in tn 0 FS rt 0 X rt P 0 rt μ- FS Ω FS FS φ to 0 O 0 0 tn ( Q iQ •? Tr to F- 1 μ- μ- P Φ Φ φ ti 0 Di Φ 3 OP Mi tr IQ 10 P FS
Da Ω 0 0 X F- Φ 0 Φ rt φ F-" (Q F-" FS 0 g μ- Φ N FS F-1 0 P Φ μ- 0 φSince Ω 0 0 X F- Φ 0 Φ rt φ F- " ( Q F-" FS 0 g μ- Φ N FS F- 1 0 P Φ μ- 0 φ
Φ tr tr rt φ P FS to P 0 α S FS Da Pα 0 P IQ 0 Φ Da § - 10 P 10 0 10 0 tn Φ tr Φ FS tn Ω P Φ Φ 0 Φ μ- P O X φ μ- P <! tQ (Q 0 "d Di iq - tn l_I. Φ FS Ωα Φ tr 0 to 3 0 in 10 F-1 F-1 α to μ- 0 iQ in φ μ- Ω P in Ω P P toΦ tr tr rt φ P FS to P 0 α S FS Da Pα 0 P IQ 0 Φ Da § - 10 P 10 0 10 0 tn Φ tr Φ FS tn Ω P Φ Φ 0 Φ μ- POX φ μ- P <! tQ ( Q 0 "d Di iq - tn l_I. Φ FS Ωα Φ tr 0 to 3 0 in 10 F- 1 F- 1 α to μ- 0 iQ in φ μ- Ω P in Ω PP to
O rt φ X tn φ in rt p: Di tq tr X IQ rt - α o 3 IQ 0 Φ S ιq to 0 tr 0 to 0 φO rt φ X tn φ in rt p: Di tq tr X IQ rt - α o 3 IQ 0 Φ S ιq to 0 tr 0 to 0 φ
Da Φ X μ- Ω 0 tsi rt φ φ P Φ ω Pα - P to F-1 rt 10 g (Q 0 tq P 0 O tq μ- φ tr φ FS tr - X rt N IQ 0 F-1 FS X Φ H g α P ^ B φ Φ μ- μ- H P Pα 0 Da rt rt S Φ μ- μ- P X o t rt Φ rt tr H F-1 to F-" : 10 μ- FS ιq 0 Φ H μ- O 0 iq O ΦDa Φ X μ- Ω 0 tsi rt φ φ P Φ ω Pα - P to F- 1 rt 10 g ( Q 0 tq P 0 O tq μ- φ tr φ FS tr - X rt N IQ 0 F- 1 FS X Φ H g α P ^ B φ Φ μ- μ- HP Pα 0 Da rt rt S Φ μ- μ- PX ot rt Φ rt tr H F- 1 to F- ": 10 μ- FS ιq 0 Φ H μ- O 0 iq O Φ
0 F-1 Φ φ Fti 0 X φ P j3 to μ- Φ Φ Ui - to μ. μ- Ω in 0 μ- μ- IQ φ g S X φ α0 F- 1 Φ φ Fti 0 X φ P j3 to μ- Φ Φ Ui - to μ. μ- Ω in 0 μ- μ- IQ φ g SX φ α
Pi - in 0 C P 0 Φ FS 0 § μ- μ- 10 *" in 0 Pα ιq tr Ω P 3 Ω P Ω Φ X P φ • H H FS rt Da Φ IQ ιq φ rt μ- Pα 0 to Φ 0 Φ tr F-1 tr to φ g X tr FS p: g 0Pi - in 0 CP 0 Φ FS 0 § μ- μ- 10 * "in 0 Pα ιq tr Ω P 3 Ω P Ω Φ XP φ • HH FS rt Da Φ IQ ιq φ rt μ- Pα 0 to Φ 0 Φ tr F- 1 tr to φ g X tr FS p: g 0
FS X P μ- H Da Da Φ 0 rt 0 μ- rt P Da UJ 0 P μ- rj Φ g 0 to μ- 0- tr t φ 0 ü Ω to Φ Φ P^ FS P iQ Φ N tn Ü1 Da F-1 öd φ in FS to 3 W Φ • gFS XP μ- H Da Da Φ 0 rt 0 μ- rt P Da UJ 0 P μ- rj Φ g 0 to μ- 0- tr t φ 0 ü Ω to Φ Φ P ^ FS P iQ Φ N tn Ü 1 Da F- 1 öd φ in FS to 3 W Φ • g
Cd 0 in P tr 3 0 φ φ 0 < F-" S φ g X rt Φ φ α F-1 μ- . N P 0 0 rt PCd 0 in P tr 3 0 φ φ 0 <F- "S φ g X rt Φ φ α F- 1 μ-. NP 0 0 rt P
X 0 in N - tn 0 0 o Φ rt 0 N μ- μ- FS S to rt > (Q o 0 0 § H • - ö X rt Φ tr . FS 0 to μ- Φ X 0 FS P g FS μ- 0 o td μ. tq Pα N μ- μ-X 0 in N - tn 0 0 o Φ rt 0 N μ- μ- FS S to rt > ( Q o 0 0 § H • - ö X rt Φ tr. FS 0 to μ- Φ X 0 FS P g FS μ- 0 o td μ. tq Pα N μ- μ-
FS i μ- < O Cd a Di 0 w g Ω 0 Pα Φ μ- Da tr < F-1 p: Ω α P μ- φ Φ tn J α Da φ 3FS i μ- <O Cd a Di 0 wg Ω 0 Pα Φ μ- Da tr <F- 1 p: Ω α P μ- φ Φ tn J α Da φ 3
Φ φ 0 Φ tr • a μ- μ- P g F-1 tr μ- μ- 3 μ- Φ IQ tr N F-1 P 0 Ω 10 rt Ω μ- P cΦ φ 0 Φ tr • a μ- μ- P g F- 1 tr μ- μ- 3 μ- Φ IQ tr N F- 1 P 0 Ω 10 rt Ω μ- P c
3 FS φ FS Φ μ- φ Ω 0 φ P - φ to Φ rt 0 iq φ FS 0 φ Φ Pα Ω Φ 0* φ cΛ Fd B3 FS φ FS Φ μ- φ Ω 0 φ P - φ to Φ rt 0 iq φ FS 0 φ Φ Pα Ω Φ 0 * φ cΛ Fd B
X 3 N S g Φ tr 0 X X μ- Φ 3 Φ FS tQ 0 » to Da tr p: tr X (- o PαX 3 NS g Φ tr 0 XX μ- Φ 3 Φ FS tQ 0 »to Da tr p: tr X (- o Pα
Φ < Φ P FS tsi rt φ μ- to w ιq to S Φ F-1 α d g μ- φ rt rt 0: to Da M ΦΦ <Φ P FS tsi rt φ μ- to w ιq to S Φ F- 1 α dg μ- φ rt rt 0: to Da M Φ
FS φ 0 FS öd X Φ • IQ μ- 3 g rt 0 & < μ- P FS Φ 0 o J w Φ μ- rt o o tn Fd μ- P rt rt FS α FS Φ μ- FS tti tr iQ F-1 co φ P tn Φ ιq Da μ- g 0 • H ω 0 10 FS 10 P φ FS Φ in IQ Φ 0 rt 3 • Φ Fiϊ IQ 3 μ- F-1 rt FS 0 Φ P Ω μ- Pα P 0 rt Fd 0 10 P φ 0 μ- μ- FS 0 FS > tn . P N F-1 Ifl μ- N P 0 tr 0 FS α φ μ- iq φ 0 α rt rt ιq Φ IQ p: ü P rt φ φ Φ * Φ Φ H Da IQ φ μ- tfl μ- μ- iq α φ IQ 0 0 μ- p: OFS φ 0 FS öd X Φ • IQ μ- 3 g rt 0 &<μ- P FS Φ 0 o J w Φ μ- rt oo tn Fd μ- P rt rt FS α FS Φ μ- FS tti tr iQ F- 1 co φ P tn Φ ιq Da μ- g 0 • H ω 0 10 FS 10 P φ FS Φ in IQ Φ 0 rt 3 • Φ Fiϊ IQ 3 μ- F- 1 rt FS 0 Φ P Ω μ- Pα P 0 rt F d 0 10 P φ 0 μ- μ- FS 0 FS> tn. PN F- 1 Ifl μ- NP 0 tr 0 FS α φ μ- iq φ 0 α rt rt ιq Φ IQ p: ü P rt φ φ Φ * Φ Φ H Da IQ φ μ- tfl μ- μ- iq α φ IQ 0 0 μ- p: O
0 μ- tr in iq to α 0 μ- Da μ- rt μ- φ Cd IQ FS P iQ FS 3 0 rt φ P P C φ iq P 0 o rt FS0 μ- tr in iq to α 0 μ- Da μ- rt μ- φ Cd IQ FS P iQ FS 3 0 rt φ P P C φ iq P 0 o rt FS
P Ω Φ P Φ μ- Ω tj 0 0 Φ (Q μ- ö tn FS to 0 Φ tr p: rt in Ifl φ P Ω IQ pα Φ P tr μ- 0 tQ Φ tr 0 FS Φ K rt rt l- 0 g 0 Ml < § rt rt μ- X to φ 0 tr 10 φ 0 0 φ Φ Pi N o 0 μ- rt Ω FS rt Φ Pα 0 t 0: o 10 FS Φ < g Φ FS tqP Ω Φ P Φ μ- Ω tj 0 0 Φ ( Q μ- ö tn FS to 0 Φ tr p: rt in Ifl φ P Ω IQ pα Φ P tr μ- 0 tQ Φ tr 0 FS Φ K rt rt l- 0 g 0 Ml <§ rt rt μ- X to φ 0 tr 10 φ 0 0 φ Φ Pi N o 0 μ- rt Ω FS rt Φ Pα 0 t 0: o 10 FS Φ <g Φ FS tq
0 Φ P μ- g in e IQ0 Φ P μ- g in e IQ
Φ Φ Fd P 0 Φ tr o < 0 ffi P IQ tr FS μ- P D. tQΦ Φ Fd P 0 Φ tr o <0 ffi P IQ tr FS μ- P D. tQ
0 μ- rt H φ 0 Φ FS Φ 3 0 in α FS 1 1 1 FS X IQ P rt Φ α Φ P o 1 μ- FS FS 1 1 Φ rt μ- Φ 1 Φ H F-1 FS 0 o 1 1 1 3 • 1 1 •> tQ 0 μ- rt H φ 0 Φ FS Φ 3 0 in α FS 1 1 1 FS X IQ P rt Φ α Φ P o 1 μ- FS FS 1 1 Φ rt μ- Φ 1 Φ H F- 1 FS 0 o 1 1 1 3 • 1 1 •> tQ
SMl, SM2 ersetzt wird. Der Vergleicher CC kann auch ein Quotientenbildner sein, denn ein bestimmter Quotient zwischen Maximumsignal SMl und Minimumsignal SM2 kann Verzerrungsfrei- heit anzeigen. Im Fall des zweiten Extremwertdetektors DET2 ist der optimale Quotient zwischen Maximumsignal SMl und Minimumsignal SM2 dem Betrage nach wenigstens näherungsweise gleich 1.SMl, SM2 is replaced. The comparator CC can also be a quotient generator, since a certain quotient between the maximum signal SM1 and minimum signal SM2 can indicate freedom from distortion. In the case of the second extreme value detector DET2, the optimum quotient between maximum signal SM1 and minimum signal SM2 is at least approximately equal to 1.
Als Einweggleichrichter ausgeführter Maximumdetektor Ml und Minimumdetektor M2 detektieren in der Praxis als Maximumsignal SMl bzw. Minimumsignal SM2 nicht genau das Maximum bzw. Minimum des Wechselsignals SEDl, SED2, SED3 , sondern eher zum Mittelwert des Quadrats positiver bzw. negativer Anteile des Wechselsignals SEDl, SED2 , SED3 proportionale Signale. Dies ist aber nicht schädlich, da auch solche Signale sich monoton zum Maximum bzw. Minimum des Wechselsignals SEDl, SED2 , SED3 verhalten und in der Regel sogar bessere Indikatoren von Verzerrungen sind, da sie weniger mit 'Rauschen behaftet sind.In practice, the maximum detector Ml and minimum detector M2 designed as a one-way rectifier do not exactly detect the maximum or minimum of the alternating signal SED1, SED2, SED3 as the maximum signal SMl or minimum signal SM2, but rather to the mean value of the square of positive or negative components of the alternating signal SEDl, SED2 , SED3 proportional signals. However, this is not harmful, since such signals are also monotonous to the maximum or minimum of the alternating signal SED1, SED2, SED3 and are generally even better indicators of distortion, since they are less susceptible to noise.
Das dritte Filter FI3 ist vorzugsweise als zweifacher Diffe- rentiator ausgelegt, was durch zweifache Hochpaßfilterung in zweitem und erstem Filter FI2, FI1 erfolgt. Auch drei- und mehrfache Differentiation ist möglich. Statt Hochpaßfiltern erster Ordnung können auch andere Hochpaßfilter oder ggf. auch Bandpaßfilter oder sogar Tiefpaßfilter eingesetzt werden. Durch Verwendung mehr als eines Verzerrungsanzeigesignals Ul, U2, U3 kann mehr als eine Verzerrung angezeigt werden.The third filter FI3 is preferably designed as a double differentiator, which is done by double high-pass filtering in the second and first filters FI2, FI1. Triple and multiple differentiation is also possible. Instead of first-order high-pass filters, other high-pass filters or, if appropriate, band-pass filters or even low-pass filters can also be used. By using more than one distortion indication signal Ul, U2, U3 more than one distortion can be displayed.
Figur 6 erläutert die Funktion des ersten Extremwertdetektors DETl im Fall eines vorzugsweise als Return-to-Zero-Signal ausgebildeten optischen Signals OS. Die Figur 6 zeigt ein mit dem Bittakt getriggertes Augenmuster detektierten Signals ED, welches gleichzeitig das erste Wechselsignal SEDl ist. Es entspricht einem als Non-Return-to-Zero-Signal ausgebildeten optischen Signal OS. Oben bzw. unten verlaufende Signalformen des detektierten Signals ED und ersten Wechselsignals SEDl entsprechen gesendeten Einsen EINS bzw. Nullen NULL des optischen Signals OS. Die horizontale Achse ist die Zeit t, die vertikale Achse das detektierte Signal ED oder erste Wechselsignal SEDl. Durch die in optischen Empfängern übliche Tief- paßfilterung zur Rauschunterdrückung ist das detektierte Signal ED und erste Wechselsignal SEDl eine Mischform von Re- turn-to-Zero- und Non-Return-to-Zero-Signal . Maximumsignal SMl und Minimumsignal SM2 unterscheiden sich in diesem Ausführungsbeispiel deutlich, nicht nur durch ihr Vorzeichen, und zwar ist das gesendeten Einsen entsprechende Maximumsignal SMl dem Betrage nach größer als das gesendeten Nullen entsprechende Minimumsignal. Der zeitliche Mittelwert des detektierten Signals ED und ersten Wechselsignals SEDl ist gleich 0 und ist durch das Symbol 0 gekennzeichnet. Eine mög- liehst positive Differenz zwischen Betrag des Maximumsignals SMl abzüglich Betrag des Minimumsignals SM2 oder - entsprechend der Ausführungsvariante des ersten Extremwertdetektors DETl gemäß Figur 5 - eine möglichst positive Summe von positive Werte aufweisendem Maximumsignal SMl und negative Werte aufweisendem Minimumsignal SM2 zeigt minimale Impulsverbreiterung an. Der Regler MP kann diesen Zustand durch Einrege- lung des Kompensators Cl, C2 mittels erstem bzw. zweitem Steuersignal VI, V2 erreichen oder - da Dispersion und Selbstphasenmodulation sich wenigstens teilweise gegenseitig kompensieren können - durch Einregelung eines Pegels des optischen Signals OS auf dem Lichtwellenleiter LWL durch das drittes Steuersignal V3 , welches der optischen Signalerzeugungseinrichtung TR zugeführt wird und beispielsweise die Pumpleistung eines optischen Sendeverstärkers oder Zwischen- Verstärkers steuert.FIG. 6 explains the function of the first extreme value detector DET1 in the case of an optical signal OS which is preferably designed as a return-to-zero signal. FIG. 6 shows a signal ED detected with the bit clock, which signal is simultaneously the first alternating signal SED1. It corresponds to an optical signal OS designed as a non-return-to-zero signal. Signal shapes of the detected signal ED and first alternating signal SED1 running above or below correspond to sent ones ONE or zeros NULL of the optical signal OS. The horizontal axis is time t, the vertical axis is the detected signal ED or first alternating signal SED1. Due to the low-pass filtering for noise suppression customary in optical receivers, the detected signal ED and the first alternating signal SED1 are a mixed form of return-to-zero and non-return-to-zero signal. The maximum signal SM1 and minimum signal SM2 differ significantly in this exemplary embodiment, not only in terms of their sign, namely the maximum signal SM1 corresponding to ones is greater in magnitude than the minimum signal corresponding to the transmitted zeros. The mean time value of the detected signal ED and the first alternating signal SED1 is equal to 0 and is identified by the symbol 0. A possible positive difference between the magnitude of the maximum signal SM1 minus the magnitude of the minimum signal SM2 or — according to the embodiment variant of the first extreme value detector DET1 according to FIG. 5 —a positive sum of positive signal maximum signal SM1 and negative signal minimum value SM2 indicates minimal pulse broadening. The controller MP can achieve this state by regulating the compensator C1, C2 by means of the first or second control signal VI, V2 or - since dispersion and self-phase modulation can at least partially compensate for each other - by regulating a level of the optical signal OS on the optical fiber LWL by the third control signal V3, which is fed to the optical signal generating device TR and, for example, controls the pumping power of an optical transmission amplifier or intermediate amplifier.
Ein weiteres Ausführungsbeispiel der Erfindung ist in Figur 7 abgebildet. Es ist weitgehend identisch mit dem gemäß Figur 1, doch ist statt des Reglers MP ein weiterer Regler MP2 vor- handen und der optischen Signalerzeugungseinrichtung TR ein Depolarisator DEPOL nachgeschaltet, durch welchen das optische Signal OS bezüglich seiner Polarisation moduliert wird. Depolarisatoren sind beispielsweise aus Electron. Lett., Vol. 30(1994)18, S. 1500-1501 bekannt. Durch den Depolarisator DEPOL wird erreicht, daß anisotrope Verzerrungen des optischen Signals OS, welche beispielsweise durch Polarisations- modendispersion oder durch die allerdings geringe Polarisationsabhängigkeit von Selbstphasenmodulation entstehen, sich in erstem bis drittem Verzerrungsanzeigesignal Ul, U2, U3 durch erste bie dritte Wechselanteile U1AC, U2AC, U3AC äußern. Ebenso wird erreicht, daß isotrope Verzerrungen des optischen Signals OS, welche beispielsweise durch chromatische Dispersion oder den großen polarisationsunabhängigen Anteil von Selbstphasenmodulation entstehen, sich in erstem bis drittem Verzerrungsanzeigesignal Ul, U2 , U3 durch erste bie dritte Gleichanteile U1DC, U2DC, U3DC äußern.Another embodiment of the invention is shown in FIG. 7. It is largely identical to that according to FIG. 1, but instead of the controller MP there is another controller MP2 and the optical signal generating device TR is followed by a depolarizer DEPOL, by means of which the optical signal OS is modulated with respect to its polarization. Depolarizers are made of electron, for example. Lett., Vol. 30 (1994) 18, pp. 1500-1501. The DEPOL depolarizer ensures that anisotropic distortions of the optical signal OS, which arise, for example, from polarization mode dispersion or due to the low polarization dependence of self-phase modulation, occur in the first to third distortion display signals U1, U2, U3 by first and third alternating components U1AC, U2AC , U3AC voice. It is also achieved that isotropic distortions of the optical signal OS, which arise, for example, from chromatic dispersion or the large polarization-independent portion of self-phase modulation, are expressed in the first to third distortion display signal U1, U2, U3 by first and third direct components U1DC, U2DC, U3DC.
Der weitere Regler MP2 verarbeitet gemäß Figur 8 die Verzerrungsanzeigesignale Ul, U2 , U3 so wie es die Ansteuerung des jeweils vorhandenen kompensierenden Elements Cl, C2 , TR erfordert. In einem Ausführungsbeispiel enthält der weitere Regler MP2 erste bis dritte Wechselanteilsdetektoren DlAC, D2AC, D3AC, welche aus erstem bis drittem Verzerrungsanzeigesignal Ul, U2, U3 erste bis dritte Wechselanteile U1AC, U2AC, U3AC extrahieren. Erste bis dritte Wechselanteile UlAC, U2AC, U3AC werden sodann einem Reglerkern MPC zugeleitet, welcher ein vorzugsweise als Kompensator von Polarisationsmodendispersion ausgebildetes kompensierendes Element Cl, C2 , TR ansteuert. In einem weiteren Ausführungsbeispiel enthält der weitere Regler MP2 erste bis dritte Gleichanteilsdetektoren D1DC, D2DC, D3DC, welche aus erstem bis drittem Verzerrungsanzeigesignal Ul, U2, U3 erste bis dritte Gleichanteile U1DC, U2DC, U3DC extrahieren. Erste bis dritte Gleichanteile U1DC, U2DC, U3DC werden sodann einem Reglerkern MPC zugeleitet, welcher ein vorzugsweise als Kompensator von chromatischer Dispersion ausgebildetes oder die Sendeleistung des optischen Signals OS beeinflussendes kompensierendes Element Cl, C2 , TR ansteuert. Bezugs zeichenlisteAccording to FIG. 8, the further controller MP2 processes the distortion display signals U1, U2, U3 as required by the control of the compensating element Cl, C2, TR present in each case. In one exemplary embodiment, the further controller MP2 contains first to third AC component detectors DAC, D2AC, D3AC, which extract first to third AC component U1AC, U2AC, U3AC from the first to third distortion display signal U1, U2, U3. First to third alternating components UlAC, U2AC, U3AC are then fed to a controller core MPC, which controls a compensating element C1, C2, TR, which is preferably designed as a compensator of polarization mode dispersion. In a further exemplary embodiment, the further controller MP2 contains first to third DC component detectors D1DC, D2DC, D3DC, which extract first to third DC components U1DC, U2DC, U3DC from the first to third distortion display signal U1, U2, U3. First to third DC components U1DC, U2DC, U3DC are then fed to a controller core MPC, which controls a compensating element C1, C2, TR, which is preferably designed as a compensator of chromatic dispersion or influences the transmitting power of the optical signal OS. Reference character list
Cl, C2, TR kompensierende ElementeCl, C2, TR compensating elements
Cl, C2 KompensatorenCl, C2 compensators
TR optische SignalerzeugungseinrichtungTR optical signal generating device
OS optisches SignalOS optical signal
LWL LichtwellenleiterFiber optic cables
RX optischer EmpfängerRX optical receiver
DS übertragenes DatensignalDS transmitted data signal
OD EntscheiderausgangOD decision exit
VI, V2, V3 SteuersignaleVI, V2, V3 control signals
MP ReglerMP controller
PD PhotodetektorPD photodetector
CG VergleicherCG comparator
IN EmpfängereingangIN receiver input
DETl, DET2, DET3 ExtemwertdetektorDET1, DET2, DET3 extreme value detector
INI , IN2 , IN3 Exte wertdetektoreingangINI, IN2, IN3 Exte value detector input
OUTM1 MaximumdetektorausgangOUTM1 maximum detector output
OUTM2 MinimumdetektorausgangOUTM2 minimum detector output
0 Wert Null t Zeit0 value zero t time
DFF D-Flip-FlopDFF D flip-flop
ED detektiertes SignalED detected signal
SEDl, SED2, SED3 WechselsignalSEDl, SED2, SED3 alternating signal
FI1, FI2, FI3 FilterFI1, FI2, FI3 filter
SMl , SM2 ExtremwertSignaleSMl, SM2 extreme value signals
SMl MaximumsignalSMl maximum signal
SM2 MinimumsignalSM2 minimum signal
Gl, G2 GleichanteilGl, G2 DC component
ADD AddiererADD adder
Ml MaximumdetektorMl maximum detector
M2 MinimumdetektorM2 minimum detector
Ul, U2, U3 VerzerrungsanzeigesignalUl, U2, U3 distortion display signal
R SerienwiderstandR series resistance
L ParallelinduktivitätL parallel inductance
Rl, R2 WiderständeRl, R2 resistors
Cl, C2 Kondensatoren Dl, D2 DiodenCl, C2 capacitors Dl, D2 diodes
UU1, UU2 SpannungsquellenUU1, UU2 voltage sources
EINS EinsenONE ones
NULL NullenZERO zeros
D1AC, D2AC, D3AC WechselanteilsdetektorenD1AC, D2AC, D3AC AC component detectors
D1DC, D2DC, D3DC GleichanteilsdetektorenD1DC, D2DC, D3DC DC component detectors
DEPOL DepolarisatorDEPOL depolarizer
UlAC, U2AC, U3AC WechselanteileUlAC, U2AC, U3AC alternating shares
U1DC, U2DC, U3DC GleichanteileU1DC, U2DC, U3DC DC components
MPC Reglerkern MPC controller core

Claims

Patentansprüche claims
1. Anordnung für eine Verzerrungsdetektion bei der optischen Informationsübertragung mit einem optischen Signal (OS) und einem optischen Empfänger (RX) , in dem ein detektiertes Signal (ED) auftritt, dadurch gekennzeichnet, dass ein Extremwertdetektor (DETl, DET2 , DET3 ) vorgesehen ist, welcher wenigstens ein Extremwertsignal (SMl, SM2) eines aus dem detektierten Signal (ED) abgeleiteten Wechselsignals (SEDl, SED2, SED3) wenigstens näherungsweise bestimmt.1. Arrangement for a distortion detection in optical information transmission with an optical signal (OS) and an optical receiver (RX), in which a detected signal (ED) occurs, characterized in that an extreme value detector (DET1, DET2, DET3) is provided which at least approximately determines an extreme value signal (SM1, SM2) of an alternating signal (SED1, SED2, SED3) derived from the detected signal (ED).
2. Anordnung nach Anspruch 1 , dadurch gekennzeichnet, dass der Extremwertdetektor (DETl, DET2 , DET3 ) einen Maximumdetektor (Ml) und/oder einen Minimumdetektor (M2) aufweist, welcher ein als Maximumsignal (SMl) bzw. Minimumsignal (SM2) ausgebildetes Extremwertsignal (SMl, SM2 ) bestimmt.2. Arrangement according to claim 1, characterized in that the extreme value detector (DET1, DET2, DET3) has a maximum detector (Ml) and / or a minimum detector (M2) which is an extreme value signal designed as a maximum signal (SM1) or minimum signal (SM2) (SMl, SM2) determined.
3. Anordnung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein erstes Wechselsignal (SEDl) wenigstens näherungsweise proportional zum detektierten Signal (ED) ist.3. Arrangement according to claim 1 or 2, characterized in that a first alternating signal (SEDl) is at least approximately proportional to the detected signal (ED).
4. Anordnung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass ein vorzugsweise als Hochpaßfilter ersten bzw. zweiten Grades ausgebildetes zweites bzw. drittes Filter (FI2, FI3) vorgesehen ist, welches ein zweites bzw. drittes Wechselsi- gnal (SED2, SED3 ) aus dem detektierten Signal (ED) ableitet.4. Arrangement according to one of claims 1 to 3, characterized in that a second or third filter (FI2, FI3), which is preferably designed as a high-pass filter of first or second degree, is provided, which has a second or third alternating signal (SED2, SED3) is derived from the detected signal (ED).
5. Anordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Extremwertdetektor (DETl, DET2 , DET3 ) einen Kompara- tor (CC) aufweist, welcher das Maximumsignal (SMl) und das5. Arrangement according to one of claims 1 to 4, characterized in that the extreme value detector (DETl, DET2, DET3) has a comparator (CC) which has the maximum signal (SMl) and the
Minimumsignal (SM2) vergleicht und dadurch ein Verzerrungsanzeigesignal (Ul, U2, U3) erzeugt. Minimum signal (SM2) compares and thereby generates a distortion display signal (Ul, U2, U3).
6. Anordnung nach einem der Ansprüche 1 bis 5, dadurch geken zeichnet, dass ein kompensierendes Element (Cl, C2 , TR) vorgesehen ist, welches ein aus einem Verzerrungsanzeigesignal (Ul, U2, U3) abgeleitetes Steuersignal (VI, V2 , V3) erhält.6. Arrangement according to one of claims 1 to 5, characterized in that a compensating element (Cl, C2, TR) is provided which a control signal (VI, V2, V3) derived from a distortion display signal (Ul, U2, U3) receives.
7. Anordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass ein Gleichanteilsdetektor (DlDC, D2DC, D3DC) vorgesehen ist, welcher aus einem Verzerrungsanzeigesignal (Ul, U2, U3) dessen Gleichanteil (U1DC, U2DC, U3DC) extrahiert, daß das kompensierende Element (Cl, C2, TR) vorzugsweise als Kompensator von chromatischer Dispersion oder die Sendelei- stung des optischen Signals OS beeinflussend ausgebildet ist.7. Arrangement according to one of claims 1 to 6, characterized in that a DC component detector (DlDC, D2DC, D3DC) is provided which extracts its DC component (U1DC, U2DC, U3DC) from a distortion display signal (Ul, U2, U3) that the compensating element (C1, C2, TR) is preferably designed as a compensator for chromatic dispersion or influencing the transmission power of the optical signal OS.
8. Anordnung nach Anspruch 7 , dadurch geken zeic net, dass sendeseitig ein Depolarisator (DEPOL) vorgesehen ist, durch welchen sich eine anisotrope Verzerrung des optischen8. Arrangement according to claim 7, characterized in that a depolarizer (DEPOL) is provided on the transmission side, through which there is an anisotropic distortion of the optical
Signals (OS) in einem Wechselsanteil (UlAC, U2AC, U3AC) eines Verzerrungsanzeigesignals (Ul, U2 , U3 ) auswirkt.Signals (OS) in an alternating component (UlAC, U2AC, U3AC) of a distortion display signal (Ul, U2, U3).
9. Verfahren für eine Verzerrungsdetektion bei der optischen Informationsübertragung mit einem optischen Signal (OS) und einem optischen Empfänger (RX) , in dem ein detektiertes Signal (ED) auftritt, dadurch gekennzeichnet, dass wenigstens ein Extremwertsignal (SMl, SM2) eines aus dem detektierten Signal (ED) abgeleiteten Wechselsignals (SEDl,9. A method for a distortion detection in optical information transmission with an optical signal (OS) and an optical receiver (RX), in which a detected signal (ED) occurs, characterized in that at least one extreme value signal (SM1, SM2) is one of the detected signal (ED) derived alternating signal (SEDl,
SED2 , SED3 ) wenigstens näherungsweise bestimmt wird.SED2, SED3) is determined at least approximately.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass ein als Maximumsignal (SMl) oder Minimumsignal (SM2) ausgebildetes Extremwertsignal (SMl, SM2) bestimmt wird. 10. The method according to claim 9, characterized in that an extreme value signal (SM1, SM2) designed as a maximum signal (SM1) or minimum signal (SM2) is determined.
11. Verfahren nach Anspruch 9 oder 8, dadurch geke nzeichnet, dass ein erstes, zweites bzw. drittes Wechselsignal (SEDl, SED2, SED3) aus dem detektierten Signal (ED) wenigstens nähe- rungsweise durch nullfache, einfache bzw. zweifache Differentiation abgeleitet wird.11. The method according to claim 9 or 8, characterized in that a first, second or third alternating signal (SED1, SED2, SED3) is derived from the detected signal (ED) at least approximately by zero-fold, single or double differentiation ,
12. Verfahren nach einem der Ansprüche 9 bis 11, dadurch geken zeichnet, dass Maximumsignal (SMl) und Minimumsignal (SM2) zur Erzeugung eines Verzerrungsanzeigesignals (Ul, U2 , U3 ) miteinander verglichen werden.12. The method according to any one of claims 9 to 11, characterized in that the maximum signal (SMl) and minimum signal (SM2) for generating a distortion display signal (Ul, U2, U3) are compared.
13. Verfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass ein aus einem Verzerrungsanzeigesignal (Ul, U2, U3 ) abgeleitetes Steuersignal (VI, V2 , V3 ) einem kompensierenden Element (Cl, C2 , TR) zugeführt wird.13. The method according to any one of claims 9 to 12, characterized in that a control signal (VI, V2, V3) derived from a distortion display signal (U1, U2, U3) is fed to a compensating element (Cl, C2, TR).
14. Anordnung nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass aus einem Verzerrungsanzeigesignal (Ul, U2 , U3) dessen Gleichanteil (U1DC, U2DC, U3DC) extrahiert wird, daß das kompensierende Element (Cl, C2 , TR) vorzugsweise als Kompensator von chromatischer Dispersion oder die Sendeleistung des optischen Signals OS beeinflussend ausgebildet ist.14. Arrangement according to one of claims 9 to 13, characterized in that the DC component (U1DC, U2DC, U3DC) is extracted from a distortion display signal (Ul, U2, U3) that the compensating element (Cl, C2, TR) preferably as Compensator of chromatic dispersion or the transmission power of the optical signal OS is formed.
15. Anordnung nach Anspruch 14, dadurch gekennzeichnet, dass das optische Signal (OS) sendeseitig depolarisiert wird, so daß sich eine anisotrope Verzerrung des optischen Signals (OS) in einem Wechselsanteil (UlAC, U2AC, U3AC) eines Verzerrungsanzeigesignals (Ul, U2, U3) auswirkt. 15. The arrangement according to claim 14, characterized in that the optical signal (OS) is depolarized on the transmission side, so that an anisotropic distortion of the optical signal (OS) in an alternating component (UlAC, U2AC, U3AC) of a distortion display signal (Ul, U2, U3) affects.
EP01989354A 2000-12-01 2001-11-28 Device and method for detecting distortions during optical information transmission Withdrawn EP1338105A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10059648 2000-12-01
DE10059648 2000-12-01
DE10146557A DE10146557A1 (en) 2000-12-01 2001-09-21 Arrangement and method for distortion detection in optical information transmission
DE10146557 2001-09-21
PCT/DE2001/004371 WO2002045302A2 (en) 2000-12-01 2001-11-28 Device and method for detecting distortions during optical information transmission

Publications (1)

Publication Number Publication Date
EP1338105A2 true EP1338105A2 (en) 2003-08-27

Family

ID=26007850

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01989354A Withdrawn EP1338105A2 (en) 2000-12-01 2001-11-28 Device and method for detecting distortions during optical information transmission

Country Status (2)

Country Link
EP (1) EP1338105A2 (en)
WO (1) WO2002045302A2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11122173A (en) * 1997-10-20 1999-04-30 Fujitsu Ltd Detection of waveform change by wavelength dispersion, and method and device for compensation of waveform
US6130766A (en) * 1999-01-07 2000-10-10 Qtera Corporation Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0245302A3 *

Also Published As

Publication number Publication date
WO2002045302A2 (en) 2002-06-06
WO2002045302A3 (en) 2003-05-08

Similar Documents

Publication Publication Date Title
DE60024208T2 (en) Improved Distortion Analyzer for Polarization Mode Dispersion Compensation Device (PMD)
DE19732568C1 (en) Optic transmission system with dispersion compensation
DE102005038894B4 (en) Method for receiving an optical signal and optical receiver system
EP0554736A2 (en) Digital optical transmission system with a dispersing optical waveguide at the working wavelength
EP1296471A2 (en) Compensation arrangement for adaptive equalization of an optical signal
DE602005004546T2 (en) Method for amplifying a time-variable optical signal and optical amplification device
DE19635989A1 (en) Transmitter for optical transmission of analog electrical signals and digital transmission system
EP1338105A2 (en) Device and method for detecting distortions during optical information transmission
DE3121310A1 (en) DIGITAL FILTER
DE19904252A1 (en) Distortion detection method and receiver for distorted optical signals
DE10241848B4 (en) Method for detecting optical or electrical signal sequences and eye monitor for carrying out the method
DE10132584B4 (en) Method and arrangement for determining and separating single-channel effects in the optical transmission of a wavelength division multiplex (-WDM) signal
DE102009057043A1 (en) Power electronic converter, has delta-sigma-modulator and pulse width modulator coupled with each other such that pulsing of delta-sigma-modulator, digital filter and pulse width modulator is synchronized with each other
DE60200932T2 (en) DEVICE AND METHOD FOR ANALYZING A LANGUAGE SIGNAL
EP1161804A1 (en) Device for channel-specific dispersion compensation of a wavelength multiplex signal
WO2000003506A1 (en) Device for detecting polarization mode dispersions
DE60304524T2 (en) Method and apparatus for dispersion compensation
DE69919271T2 (en) Device and method for reducing the interaction between self-phase modulation and group speed dispersion in optical systems
DE10146557A1 (en) Arrangement and method for distortion detection in optical information transmission
DE69822036T2 (en) Equalization, pulse shaping and regeneration of optical signals
DE19841755A1 (en) Polarisation transformer for optical transmission engineering
DE3309717C2 (en)
DE3035095C2 (en) Dispersion measurement method and device for multimode fibers
DE1928514C3 (en) Integrable active RC four-pole filter for devices and equipment in electrical communications, measurement and data processing technology
DE10034451A1 (en) Optical receiver

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030528

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20060803

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20061214