EP1337498B1 - Method and device for the production of concrete - Google Patents

Method and device for the production of concrete Download PDF

Info

Publication number
EP1337498B1
EP1337498B1 EP01983561A EP01983561A EP1337498B1 EP 1337498 B1 EP1337498 B1 EP 1337498B1 EP 01983561 A EP01983561 A EP 01983561A EP 01983561 A EP01983561 A EP 01983561A EP 1337498 B1 EP1337498 B1 EP 1337498B1
Authority
EP
European Patent Office
Prior art keywords
refrigerant
cold
gas
mixture
spray chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01983561A
Other languages
German (de)
French (fr)
Other versions
EP1337498A1 (en
Inventor
Erich Lindner
Dieter Reichel
Jens Tauchmann
Thomas Weichmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Liquide Deutschland GmbH
Messer Group GmbH
Max Boegl Bauunternehmung GmbH and Co KG
Original Assignee
Air Liquide Deutschland GmbH
Messer Group GmbH
Max Boegl Bauunternehmung GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Liquide Deutschland GmbH, Messer Group GmbH, Max Boegl Bauunternehmung GmbH and Co KG filed Critical Air Liquide Deutschland GmbH
Publication of EP1337498A1 publication Critical patent/EP1337498A1/en
Application granted granted Critical
Publication of EP1337498B1 publication Critical patent/EP1337498B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/06Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients
    • C04B40/0683Inhibiting the setting, e.g. mortars of the deferred action type containing water in breakable containers ; Inhibiting the action of active ingredients inhibiting by freezing or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B22/00Use of inorganic materials as active ingredients for mortars, concrete or artificial stone, e.g. accelerators, shrinkage compensating agents
    • C04B22/002Water
    • C04B22/0053Water added in a particular physical form, e.g. atomised or in the gas phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C2303/00Special arrangements or features for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Special arrangements or features for producing artificial snow
    • F25C2303/044Snow making using additional features, e.g. additives, liquid gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C3/00Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow
    • F25C3/04Processes or apparatus specially adapted for producing ice or snow for winter sports or similar recreational purposes, e.g. for sporting installations; Producing artificial snow for sledging or ski trails; Producing artificial snow

Definitions

  • the invention relates to a method and a device for concrete production.
  • a disadvantage of the cooling by means of cryogenic liquefied nitrogen (LN 2 ) is that this method has only a low efficiency, since relatively large amounts of LN 2 must be entered within a short time in the respective batch to achieve the desired cooling effect.
  • the poor efficiency of this cooling method is due to the fact that primarily only the heat of vaporization of the liquid nitrogen can be used and the available surface for the heat exchange is limited.
  • the rapid evaporation of the nitrogen also releases large volumes of gas within a very short time, which can lead to local deflagration and ejection from the mixer.
  • fresh concrete may suffer frost damage as a result of local critical subcooling.
  • Object of the present invention is therefore to provide a method and an apparatus for producing concrete, which avoids the disadvantages of the previously known cooling method and in particular allows economical use of the coolant used at the same time high cooling capacity.
  • a part or the entire amount of the binder, such as cement, and aggregates, such as gravel, sand, fly ash u. dergl. existing binder mixture added water in the form of a previously generated, consisting of snow crystals refrigerant.
  • Such snow crystals have the advantage of a larger surface with a lower specific weight compared to flake ice.
  • the transfer of the process heat generated during setting is thus much faster than with the flake ice.
  • inhomogeneity phenomena are largely avoided by water inclusions.
  • a cold gas is generated from water, a propellant gas and a refrigerant, which is sprayed in a spray chamber in the form of a cold gas jet.
  • This cold gas jet has a temperature which is significantly below the freezing temperature of the water.
  • the water present in the cold gas jet freezes to crystals, which are then added to a binder mixture for the production of fresh concrete.
  • the size, temperature and surface quality of the crystals are largely determined by the composition of the cold gas and the temperature of the cold gas jet. The production of crystals with temperatures well below 0 ° C is also possible without problems.
  • the cold gas jet is set in rotation.
  • the beam path is extended in the blasting chamber, thereby achieving greater homogeneity of the crystals produced.
  • the coolant produced in the spray chamber is subjected to aftercooling.
  • a suitable coolant such as liquid nitrogen
  • a cryogenic, liquefied gas is used. From an environmental and economic point of view, liquid nitrogen or liquid carbon dioxide are particularly recommended.
  • a propellant gas for the production of the cold gas or the cold gas jet is advantageously used gaseous nitrogen.
  • gaseous nitrogen gaseous nitrogen.
  • the liquid cooling medium used preferably simultaneously serves to transport the coolant from the spray chamber to the binder mixture. In this way, a discharge of the refrigerant can be achieved largely without compaction, clumping and changing the crystal structure of the snow / ice crystals.
  • the device according to the invention according to claim 8 comprises a mixing device in which water, a propellant gas, for example nitrogen, and a coolant, for example liquefied nitrogen, is mixed to form a cold gas and which is in fluid communication with a spray device received in a spray chamber.
  • a spray chamber arise during spraying of the cold gas from the water component snow / ice crystals.
  • the coolant generated in the spray chamber is fed to a mixing chamber in which it is mixed with a binder mixture to fresh concrete.
  • the spray chamber is associated with a cooling device by means of which the snow generated in the spray chamber can be further cooled to a predetermined temperature value.
  • a suitable refrigerant in the cooling device temperatures of minus 30 ° C can be achieved down to minus 190 ° C.
  • An advantageous development of the invention provides to connect the mixing device for generating the cold gas and / or the mixing chamber for generating the fresh concrete with a control device by means of which the composition of the cold gas and / or the fresh concrete is adjustable according to a predetermined program.
  • the composition of the cold gas determines - in addition to the nozzle geometry of the spray nozzle - significantly the consistency and the temperature of the generated refrigerant.
  • the control of the supply takes place by suitable, controlled by the control device valves on the mixing device and the mixing chamber.
  • FIG. 1 shows schematically the operation of a device according to the invention for producing fresh concrete.
  • the device 1 has a known mixing chamber 2, in which the required for the production of fresh concrete aggregates, such as sand, gravel, fly ash, and cement are introduced and mixed into a binder mixture Z.
  • the mixing chamber may be, for example, a mobile or stationary mixing plant.
  • a subcooled coolant S is added to the binder mixture in the mixing chamber 2.
  • the lines 4, 5, 6, mixed in a mixing section 7 are introduced via corresponding lines 4, 5, 6, mixed in a mixing section 7 to form a cold gas mixture and fed to a spray nozzle 8, which is arranged in a spray chamber 9.
  • the lines 4,5,6 can also open directly into the spray nozzle 8, which is designed for this purpose as a three-fluid nozzle.
  • the invention is not limited to liquid nitrogen as a refrigerant for the production of the cold gas mixture, but it can also be used for this purpose other known refrigerant, in particular other liquefied gases are used.
  • another multi-nozzle system can be used instead of a three-fluid nozzle.
  • the cold gas mixture is discharged in the form of a directed into the interior of the spray chamber 9 cold gas jet, the cold gas jet is placed in a rotation about its own axis to extend the beam path.
  • a supercooled atmosphere forms in the interior of the spray chamber 9 even after a short time.
  • the water contained in the cold gas jet freezes and settles in the interior of the spray chamber 9 in the form of snow crystals, the refrigerant S.
  • the cold, inert atmosphere inside the spray chamber 9 promotes the formation of crystals with high surface area and low specific gravity. Size, consistency and temperature of the crystals are determined in particular by the mixing ratio of gaseous and liquid nitrogen and water in the cold gas mixture.
  • the snow crystals formed in the spray chamber 9 are supplied in the embodiment of a Nachkühl Anlagen 10, in which the refrigerant S is further cooled.
  • the Nachkühl Stanford 10 consists of a cooling chamber 11 for the Good to be cooled, which is in thermal contact with a refrigerant 12. It is within the scope of the invention also possible to use the spray chamber 9 by means of the liquid nitrogen introduced therein directly as the cooling chamber 11 of the Nachkuh Nur 10 and / or to use liquid nitrogen from the cold gas jet as a transport vehicle for the snow crystals. If the after-cooler 10 is operated with liquid nitrogen as the refrigerant 12, temperatures down to -190 ° C can be achieved. At temperatures below -30 ° C, for example, minus 40 ° C, the snow crystals can be transported very well. The so cooled refrigerant S is fed to the mixing chamber 2 and mixed there in a known manner with additives and cement to fresh concrete.
  • the large surface of the snow crystals of the refrigerant S allows an effective and rapid absorption of the setting process of the cement resulting process heat.
  • fresh concrete temperatures of down to 0 ° C can be achieved.
  • An electronic control 13 enables the production of the refrigerant S or fresh concrete according to a predetermined program.
  • the electronic control 13 is connected to controllable valves 14,15,16, such as solenoid valves, in the lines 4,5,6, by means of which the mixing ratio and / or the respective pressure in the lines 4,5,6 can be adjusted.
  • a feed line 18 of the refrigerant S to the mixing chamber 2 is also equipped with a solenoid valve 19, which can be controlled by the controller 13. In this way, the temperature, consistency and amount of the binder Z supplied to the refrigerant S can be set accurately and reliably and, for example, be selected so that the fresh concrete produced has a certain temperature value, for example 0 ° C.
  • the continuously or regularly measured by means of a suitable measuring device temperature of the fresh concrete is introduced as a control variable, which is continuously regulated by the adjustment of the temperature of the supplied refrigerant S.
  • the method according to the invention allows the conversion of the feedwater into refrigerant S within a few minutes.
  • the cold transfer is very effective when re-cooling, so that this process takes only a few minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Medicinal Preparation (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

Xenon or xenon-containing gases and, where appropriate, an NO source are employed as medicament for cerebral protection. Cerebral protection is defined as reducing or preventing impairments of cerebral function of various causes, but especially secondary to perfusion impairments of unclear etiology. The medicament can be used for cerebral protection for the prophylaxis of impairments of cerebral perfusion and for therapy after cerebral disorders have occurred, irrespective of the cause (e.g. cognitive, sensory or motor in nature).

Description

Die Erfindung betrifft ein Verfahren sowie eine Vorrichtung zur Betonherstellung.The invention relates to a method and a device for concrete production.

Um die Bildung von Rissen und Spannungen beim Bau von großen Betonkörpern wie Brückenwiderlagern, Staumauern, Pylonen u. dergl. zu vermeiden, ist es üblich, für diese Bauwerke gekühlten Frischbeton einzusetzen. Hierdurch kann die bei der Hydration des Zements freiwerdende Wärme besser kompensiert und gleichmäßiger abgeführt und so Spannungsdifferenzen im Beton vermieden werden. Außerdem ist die Verarbeitung von ungekühltem Frischbeton bei Außentemperaturen über 25°C problematisch, da die bei derart hohen Außentemperaturen resultierende Peaktemperatur des Betons beim Abbinden oberhalb von 60°C liegen und somit zu Festigkeitsverlusten führen kann. Durch die Kühlung wird das Überschreiten diese Grenze vermieden.To the formation of cracks and tensions in the construction of large concrete bodies such as bridge abutments, dams, pylons and. Like. To avoid, it is customary to use for these buildings cooled fresh concrete. As a result, the released during the hydration of the cement heat can be better compensated and discharged more evenly and thus voltage differences in the concrete can be avoided. In addition, the processing of uncooled fresh concrete at outdoor temperatures above 25 ° C is problematic because the resulting at such high outside temperatures peak temperature of the concrete when setting above 60 ° C and thus can lead to loss of strength. Cooling avoids exceeding this limit.

Zur Herstellung von gekühltem Frischbeton ist es bekannt, den bereits fertig angemachten Frischbeton durch Zugabe von Scherbeneis oder flüssigen Stickstoff im stationären oder mobilen Mischer oder in der rotierenden Trommel eines Betontransportfahrzeugs auf die gewünschte Temperatur zu kühlen. Einen zusammenfassenden Überblick über bekannte Kühlverfahren geben die Artikel "Kühlen von Frischbeton mit flüssigem Stickstoff' von W. Trappmann und W. Duesberg in "gas aktuell", 25 (1983), S. 15 und "Frischbeton mit flüssigem Stickstoff' von D. Rebhan in "Betonwerk + Fertigteil-Technik", Heft 8/1981, S. 507. Ein entsprechendes Verfahren ist auch aus der WO-A-98/03828 bekannt.For the production of cooled fresh concrete, it is known to cool the ready-made fresh concrete by the addition of flake ice or liquid nitrogen in the stationary or mobile mixer or in the rotating drum of a concrete transport vehicle to the desired temperature. For a summary of known cooling methods, see the articles "Cooling of Fresh Concrete with Liquid Nitrogen" by W. Trappmann and W. Duesberg in "Gas aktuell", 25 (1983), p. 15 and "Fresh Concrete with Liquid Nitrogen" by D. Rebhan in "Concrete Plant + Precast Technology", Issue 8/1981, p 507. A corresponding method is also from the WO-A-98/03828 known.

Bei der Verwendung von Eis als Kühlmittel besteht die Gefahr von Inhomogenitätserscheinungen infolge von Wassereinschlüssen im Beton. Auch ist der Kühleffekt äußerst begrenzt, da die Kühlung von Scherbeneis auf Temperaturen T << 0°C nur mit hohem und in den meisten Fällen wirtschaftlich nicht zu rechtfertigendem Aufwand verbunden ist. Weiterhin ist das Scherbeneis nicht gut löslich, und es kommt zu einer Verlängerung der Mischzeiten, was insbesondere in den Mischwerken zu erheblichen Verringerung der Produktionsleistung führt.When using ice as a coolant, there is a risk of inhomogeneity phenomena due to water inclusions in the concrete. Also, the cooling effect is extremely limited, since the cooling of flake ice to temperatures T << 0 ° C is associated with high and in most cases economically unjustifiable effort. Furthermore, the flake ice is not readily soluble, and there is an extension of the mixing times, which leads to a significant reduction in production capacity, especially in the mixing plants.

Nachteilig an der Kühlung mittels tiefkaltem verflüssigtem Stickstoff (LN2) ist, dass dieses Verfahren nur einen geringen Wirkungsgrad besitzt, da verhältnismäßig große Mengen LN2 innerhalb kurzer Zeit in die jeweilige Charge eingetragen werden müssen, um den gewünschten Abkühleffekt zu erreichen. Der schlechte Wirkungsgrad bei dieser Kühlmethode liegt darin begründet, dass primär nur die Verdampfungswärme des flüssigen Stickstoffs genutzt werden kann und die für den Wärmeaustausch zur Verfügung stehende Oberfläche begrenzt ist. Durch das schnelle Verdampfen des Stickstoffs werden ferner innerhalb kürzester Zeit große Gasvolumina freigesetzt, was zu lokalen Verpuffungen und Herausschleudern aus dem Mischer führen kann. Darüber hinaus kann der Frischbeton infolge lokaler kritischer Unterkühlung Frostschäden nehmen.A disadvantage of the cooling by means of cryogenic liquefied nitrogen (LN 2 ) is that this method has only a low efficiency, since relatively large amounts of LN 2 must be entered within a short time in the respective batch to achieve the desired cooling effect. The poor efficiency of this cooling method is due to the fact that primarily only the heat of vaporization of the liquid nitrogen can be used and the available surface for the heat exchange is limited. The rapid evaporation of the nitrogen also releases large volumes of gas within a very short time, which can lead to local deflagration and ejection from the mixer. In addition, fresh concrete may suffer frost damage as a result of local critical subcooling.

In der JP 61201681 A wird vorgeschlagen, die Ausgangsstoffe vor der Zugabe von Zement und Wasser durch Zugabe eines verflüssigten Gases, wie Stickstoff oder Kohlendioxid, abzukühlen. Dieses Verfahren ist allerdings nur begrenzt einsetzbar, da das gekühlte Medium wärme- und feuchtigkeitsisoliert gespeichert werden muss. Eine Kühlung von Stoffen mit hohem Feuchtigkeitsgehalt auf Temperaturen unterhalb von 0°C ist im übrigen nicht möglich.In the JP 61201681 A It is proposed to cool the starting materials prior to the addition of cement and water by adding a liquified gas such as nitrogen or carbon dioxide. However, this method is limited use, since the cooled medium must be stored heat and moisture-insulated. Cooling of substances with high moisture content to temperatures below 0 ° C is otherwise not possible.

Aufgabe der vorliegenden Erfindung ist daher, ein Verfahren sowie eine Vorrichtung zur Herstellung von Beton anzugeben, das die Nachteile der vorbekannten Kühlverfahren vermeidet und insbesondere einen wirtschaftlichen Einsatz des verwendeten Kühlmittels bei gleichzeitiger hoher Kühlleistung erlaubt.Object of the present invention is therefore to provide a method and an apparatus for producing concrete, which avoids the disadvantages of the previously known cooling method and in particular allows economical use of the coolant used at the same time high cooling capacity.

Gelöst ist diese Aufgabe zum einen durch ein Verfahren mit den Merkmalen des Patentanspruchs 1, zum anderen durch eine Vorrichtung mit den Merkmalen des Anspruchs 7.This problem is solved on the one hand by a method having the features of patent claim 1, on the other hand by a device having the features of claim 7.

Beim erfindungsgemäßen Verfahren wird also ein Teil oder die gesamte Menge des dem aus Bindemittel, etwa Zement, und Zuschlagsstoffen, wie Kies, Sand, Flugasche u. dergl. bestehenden Bindemittelgemisches zugesetzten Wasser in Form eines zuvor erzeugten, aus Schneekristallen bestehenden Kälteträgers zugeführt.In the method according to the invention, therefore, a part or the entire amount of the binder, such as cement, and aggregates, such as gravel, sand, fly ash u. dergl. existing binder mixture added water in the form of a previously generated, consisting of snow crystals refrigerant.

Als "Schneekristalle" sollen hier und im folgenden Partikel aus gefrorenem Wasser verstanden werden, die in einer kalten Atmosphäre erzeugt werden.As "snow crystals" here and in the following particles of frozen water are to be understood, which are produced in a cold atmosphere.

Derartige Schneekristalle weisen gegenüber Scherbeneis den Vorteil einer größeren Oberfläche bei einem gleichzeitig geringerem spezifischem Gewicht auf. Die Übertragung der beim Abbinden erzeugten Prozesswärme erfolgt dadurch sehr viel rascher als beim Scherbeneis. Des weiteren werden Inhomogenitätserscheinungen durch Wassereinschlüsse weitgehend vermieden.Such snow crystals have the advantage of a larger surface with a lower specific weight compared to flake ice. The transfer of the process heat generated during setting is thus much faster than with the flake ice. Furthermore, inhomogeneity phenomena are largely avoided by water inclusions.

Bei dem erfindungsgemäßen Verfahren zum Herstellen von Schnee-/Eiskristallen wird aus Wasser, einem Treibgas sowie einem Kältemittel ein Kaltgas erzeugt, das in einer Sprühkammer in Form eines Kaltgasstrahls versprüht wird. Dieser Kaltgasstrahl weist eine Temperatur auf, die deutlich unterhalb der Gefriertemperatur des Wassers liegt. Das im Kaltgasstrahl vorliegende Wasser gefriert zu Kristallen, die in der Folge einem Bindemittelgemisch zur Herstellung von Frischbeton beigemengt werden. Größe, Temperatur und Oberflächenbeschaffenheit der Kristalle werden maßgeblich von der Zusammensetzung des Kaltgases und der Temperatur des Kaltgasstrahls bestimmt. Problemlos ist auch die Herstellung von Kristallen mit Temperaturen von weit unter 0°C möglich. Insbesondere ergeben sich bei Temperaturen von weniger als minus 30°C besonders gute Transporteigenschaften der erzeugten Kristalle, da bei diesen Temperaturen keine mikroskopischen Domänen flüssigen Wassers auf der Oberfläche der Schneekristalle mehr vorhanden sind, durch die ansonsten ein Zusammenkleben der Schneekristalle begünstigt werden würden. Die Kältewirkung des eingesetzten Kältemittels wird somit in einem weit höheren Maße ausgenutzt, als bei konventionellen Kühlverfahren.In the method according to the invention for producing snow / ice crystals, a cold gas is generated from water, a propellant gas and a refrigerant, which is sprayed in a spray chamber in the form of a cold gas jet. This cold gas jet has a temperature which is significantly below the freezing temperature of the water. The water present in the cold gas jet freezes to crystals, which are then added to a binder mixture for the production of fresh concrete. The size, temperature and surface quality of the crystals are largely determined by the composition of the cold gas and the temperature of the cold gas jet. The production of crystals with temperatures well below 0 ° C is also possible without problems. In particular, at temperatures of less than minus 30 ° C particularly good transport properties of the crystals produced, since at these temperatures microscopic domains of liquid water on the surface of the snow crystals are no longer present, would otherwise be favored by sticking the snow crystals together. The cooling effect of the refrigerant used is thus utilized to a far greater extent than in conventional cooling methods.

Vorteilhafterweise wird der Kaltgasstrahl in Rotation versetzt. Hierdurch wird der Strahlweg in der Strahlkammer verlängert und dadurch eine größere Homogenität der erzeugten Kristalle erreicht.Advantageously, the cold gas jet is set in rotation. As a result, the beam path is extended in the blasting chamber, thereby achieving greater homogeneity of the crystals produced.

Um die Zieltemperatur des Frischbetons schnell zu erreichen, wird der in der in der Sprühkammer erzeugte Kälteträger einer Nachkühlung unterzogen. Bei Wahl eines geeigneten Kühlmittels, etwa flüssiger Stickstoff, lassen sich so Schneekristalltemperaturen von bis zu -190°C erzeugen. Als bevorzugtes Kühlmittel, sowohl für die Herstellung des Kaltgases wie auch für die Nachkühlung, kommt ein tiefkaltes, verflüssigtes Gas zum Einsatz. Unter Umwelt- und Wirtschaftlichkeitsaspekten empfehlen sich hierbei insbesondere flüssiger Stickstoff oder flüssiges Kohlendioxid.In order to quickly reach the target temperature of the fresh concrete, the coolant produced in the spray chamber is subjected to aftercooling. When choosing a suitable coolant, such as liquid nitrogen, so can snow crystal temperatures of up to -190 ° C. As a preferred coolant, both for the production of the cold gas as well as for the aftercooling, a cryogenic, liquefied gas is used. From an environmental and economic point of view, liquid nitrogen or liquid carbon dioxide are particularly recommended.

Als Treibgas zur Herstellung des Kaltgases bzw. des Kaltgasstrahls kommt vorteilhafterweise gasförmiger Stickstoff zum Einsatz. Durch die Verwendung des - selbst nur schwer wasserlöslichen - Stickstoffs wird verhindert, dass sich Sauerstoff in Wasser löst.As a propellant gas for the production of the cold gas or the cold gas jet is advantageously used gaseous nitrogen. The use of nitrogen - even sparingly soluble in water - prevents oxygen from dissolving in water.

Das eingesetzte flüssige Kühlmedium dient vorzugsweise gleichzeitig dem Transport des Kälteträgers aus der Sprühkammer an das Bindemittelgemisch. Hierdurch kann ein Austrag des Kälteträgers weitestgehend ohne Verdichtung, Verklumpung und Veränderung der Kristallstruktur der Schnee-/Eiskristalle erreicht werden.The liquid cooling medium used preferably simultaneously serves to transport the coolant from the spray chamber to the binder mixture. In this way, a discharge of the refrigerant can be achieved largely without compaction, clumping and changing the crystal structure of the snow / ice crystals.

Die erfindungsgemäße Vorrichtung gemäß Anspruch 8 umfasst eine Mischeinrichtung, in der Wasser, ein Treibgas, beispielsweise Stickstoff, und ein Kühlmittel, beispielsweise verflüssigter Stickstoff, zu einem Kaltgas gemischt wird, und die mit einer in einer Sprühkammer aufgenommenen Sprühvorrichtung in Strömungsverbindung steht. In der Sprühkammer entstehen beim Versprühen des Kaltgases aus dessen Wasserbestandteil Schnee-/Eiskristalle. Durch das Einsprühen des Kaltgases in die Sprühkammer entsteht in dieser zugleich eine inerte und unterkühlte Atmosphäre, die die Entstehung von Schneekristallen mit großer Oberfläche und geringem spezifischem Gewicht begünstigt. Der in der Sprühkammer erzeugte Kälteträger wird einer Mischkammer zugeführt, in der er mit einem Bindemittelgemisch zu Frischbeton vermengbar ist.The device according to the invention according to claim 8 comprises a mixing device in which water, a propellant gas, for example nitrogen, and a coolant, for example liquefied nitrogen, is mixed to form a cold gas and which is in fluid communication with a spray device received in a spray chamber. In the spray chamber arise during spraying of the cold gas from the water component snow / ice crystals. By spraying the cold gas into the spray chamber at the same time creates an inert and supercooled atmosphere, which promotes the formation of snow crystals with a large surface area and low specific weight. The coolant generated in the spray chamber is fed to a mixing chamber in which it is mixed with a binder mixture to fresh concrete.

Zweckmäßigerweise ist der Sprühkammer eine Kühleinrichtung zugeordnet, mittels der der in der Sprühkammer erzeugte Schnee auf einen vorbestimmten Temperaturwert weiter abgekühlt werden kann. Durch die Wahl eines geeigneten Kälteträgers in der Kühleinrichtung können Temperaturen von minus 30°C bis zu minus 190°C erreicht werden.Appropriately, the spray chamber is associated with a cooling device by means of which the snow generated in the spray chamber can be further cooled to a predetermined temperature value. By choosing a suitable refrigerant in the cooling device, temperatures of minus 30 ° C can be achieved down to minus 190 ° C.

Eine vorteilhafte Weiterbildung der Erfindung sieht vor, die Mischeinrichtung zur Erzeugung des Kaltgases und/oder die Mischkammer zur Erzeugung des Frischbetons mit einer Steuereinrichtung zu verbinden, mittels der die Zusammensetzung des Kaltgases und/oder des Frischbetons nach einem vorbestimmten Programm einstellbar ist. Die Zusammensetzung des Kaltgases bestimmt- neben der Düsengeometrie der Sprühdüse - maßgeblich die Konsistenz und die Temperatur des erzeugten Kälteträgers. Die Steuerung der Zufuhr erfolgt dabei durch geeignete, von der Steuereinrichtung angesteuerte Ventile an der Mischeinrichtung bzw. der Mischkammer.An advantageous development of the invention provides to connect the mixing device for generating the cold gas and / or the mixing chamber for generating the fresh concrete with a control device by means of which the composition of the cold gas and / or the fresh concrete is adjustable according to a predetermined program. The composition of the cold gas determines - in addition to the nozzle geometry of the spray nozzle - significantly the consistency and the temperature of the generated refrigerant. The control of the supply takes place by suitable, controlled by the control device valves on the mixing device and the mixing chamber.

Anhand der Zeichnung soll nachfolgend ein Ausführungsbeispiel der Erfindung näher erläutert werden.Reference to the drawing, an embodiment of the invention will be explained in more detail below.

Die einzige Zeichnung (Fig. 1) zeigt schematisch die Wirkungsweise einer erfindungsgemäßen Vorrichtung zum Erzeugen von Frischbeton.The single drawing (Fig. 1) shows schematically the operation of a device according to the invention for producing fresh concrete.

Die Vorrichtung 1 weist eine an sich bekannte Mischkammer 2 auf, in der die zur Herstellung von Frischbeton erforderlichen Zuschlagstoffe, wie Sand, Kies, Flugasche, sowie Zement eingebracht und zu einem Bindemittelgemisch Z vermengt werden. Bei der Mischkammer kann es sich beispielsweise um eine mobile oder stationäre Mischanlage handeln. Anstelle des bei üblichen Herstellungsverfahren eingesetzten flüssigen Wassers wird dem Bindemittelgemisch in der Mischkammer 2 ein unterkühlter Kälteträger S zugegeben, dessen Herstellung im folgenden beschrieben wird.The device 1 has a known mixing chamber 2, in which the required for the production of fresh concrete aggregates, such as sand, gravel, fly ash, and cement are introduced and mixed into a binder mixture Z. The mixing chamber may be, for example, a mobile or stationary mixing plant. Instead of the liquid water used in customary production processes, a subcooled coolant S, the preparation of which is described below, is added to the binder mixture in the mixing chamber 2.

Zur Herstellung des Kälteträgers S werden Wasser sowie gasförmiger und flüssiger Stickstoff über entsprechende Leitungen 4,5,6 herangeführt, in einer Mischstrecke 7 zu einem Kaltgasgemisch durchmischt und einer Sprühdüse 8 zugeführt, die in einer Sprühkammer 9 angeordnet ist. Anstelle einer mehr oder weniger langen Mischstrecke können die Leitungen 4,5,6 auch unmittelbar in die Sprühdüse 8 münden, die zu diesem Zweck als Dreistoffdüse ausgebildet ist. Die Erfindung ist im übrigen nicht auf flüssigem Stickstoff als Kältemittel für die Herstellung des Kaltgasgemisches beschränkt, vielmehr können hierzu auch andere bekannte Kältemittel, insbesondere andere verflüssigte Gase herangezogen werden. Auch kann anstelle einer Dreistoffdüse ein anderes Mehrdüsensystem verwendet werden.For the preparation of the refrigerant S, water and gaseous and liquid nitrogen are introduced via corresponding lines 4, 5, 6, mixed in a mixing section 7 to form a cold gas mixture and fed to a spray nozzle 8, which is arranged in a spray chamber 9. Instead of a more or less long mixing section, the lines 4,5,6 can also open directly into the spray nozzle 8, which is designed for this purpose as a three-fluid nozzle. Incidentally, the invention is not limited to liquid nitrogen as a refrigerant for the production of the cold gas mixture, but it can also be used for this purpose other known refrigerant, in particular other liquefied gases are used. Also, instead of a three-fluid nozzle, another multi-nozzle system can be used.

Mittels der Sprühdüse 8 wird das Kaltgasgemisch in Form eines in das Innere der Sprühkammer 9 gerichteten Kaltgasstrahls ausgebracht, wobei der Kaltgasstrahl in eine Rotation um die eigene Achse versetzt wird, um den Strahlweg zu verlängern. Durch den Eintrag des Kaltgasstrahl bildet sich im Innern der Sprühkammer 9 bereits nach kurzer Zeit eine unterkühlte Atmosphäre aus. Das im Kaltgasstrahl enthaltene Wasser gefriert und geht im Innern der Sprühkammer 9 ain Form von Schneekristallen nieder, dem Kälteträger S. Die kalte, inerte Atmosphäre im Innern der Sprühkammer 9 begünstigt dabei das Ausbilden von Kristallen mit großer Oberfläche und kleinem spezifischen Gewicht. Größe, Konsistenz und Temperatur der Kristalle werden dabei insbesondere durch das Mischungsverhältnis aus gasförmigem und flüssigem Stickstoff sowie Wasser im Kaltgasgemisch bestimmt.By means of the spray nozzle 8, the cold gas mixture is discharged in the form of a directed into the interior of the spray chamber 9 cold gas jet, the cold gas jet is placed in a rotation about its own axis to extend the beam path. As a result of the entry of the cold gas jet, a supercooled atmosphere forms in the interior of the spray chamber 9 even after a short time. The water contained in the cold gas jet freezes and settles in the interior of the spray chamber 9 in the form of snow crystals, the refrigerant S. The cold, inert atmosphere inside the spray chamber 9 promotes the formation of crystals with high surface area and low specific gravity. Size, consistency and temperature of the crystals are determined in particular by the mixing ratio of gaseous and liquid nitrogen and water in the cold gas mixture.

Die in der Sprühkammer 9 gebildeten Schneekristalle werden im Ausführungsbeispiel einer Nachkühleinrichtung 10 zugeführt, in der der Kälteträger S weiter abgekühlt wird. Die Nachkühleinrichtung 10 besteht aus einer Kühlkammer 11 für das zu kühlende Gut, die mit einem Kälteträger 12 in thermischen Kontakt steht. Es ist im Rahmen der Erfindung auch möglich, die Sprühkammer 9 mittels des darin eingetragenen flüssigen Stickstoffs unmittelbar als Kühlkammer 11 der Nachkühleinrichtung 10 einzusetzen und/oder Flüssigstickstoff aus dem Kaltgasstrahl auch als Transportvehikel für die Schneekristalle zu verwenden. Wird die Nachkühleinrichtung 10 mit flüssigem Stickstoff als Kälteträger 12 betrieben, können Temperaturen bis hinab zu -190°C erzielt werden. Bei Temperaturen unter -30°C, beispielsweise minus 40°C, lassen sich die Schneekristalle besonders gut transportieren. Der so gekühlte Kälteträger S wird der Mischkammer 2 zugeführt und dort in bekannter Weise mit Zugabestoffen und mit Zement zu Frischbeton gemischt.The snow crystals formed in the spray chamber 9 are supplied in the embodiment of a Nachkühleinrichtung 10, in which the refrigerant S is further cooled. The Nachkühleinrichtung 10 consists of a cooling chamber 11 for the Good to be cooled, which is in thermal contact with a refrigerant 12. It is within the scope of the invention also possible to use the spray chamber 9 by means of the liquid nitrogen introduced therein directly as the cooling chamber 11 of the Nachkuheinrichtung 10 and / or to use liquid nitrogen from the cold gas jet as a transport vehicle for the snow crystals. If the after-cooler 10 is operated with liquid nitrogen as the refrigerant 12, temperatures down to -190 ° C can be achieved. At temperatures below -30 ° C, for example, minus 40 ° C, the snow crystals can be transported very well. The so cooled refrigerant S is fed to the mixing chamber 2 and mixed there in a known manner with additives and cement to fresh concrete.

Die große Oberfläche der Schneekristalle des Kälteträgers S ermöglicht eine effektive und rasche Aufnahme der beim Abbindevorgang des Zements entstehenden Prozesswärme. Durch Variation von Temperatur und Menge des eingesetzten Kälteträgers S können Frischbetontemperaturen von bis hinab zu 0°C erzielt werden.The large surface of the snow crystals of the refrigerant S allows an effective and rapid absorption of the setting process of the cement resulting process heat. By varying the temperature and amount of the refrigerant used S fresh concrete temperatures of down to 0 ° C can be achieved.

Eine elektronische Steuerung 13 ermöglicht die Herstellung des Kälteträgers S bzw. Frischbeton nach einem vorgegebenen Programm. Die elektronische Steuerung 13 ist mit ansteuerbaren Ventilen 14,15,16, beispielsweise Magnetventilen, in den Leitungen 4,5,6 verbunden, mittels derer das Mischungsverhältnis und/oder der jeweilige Druck in den Leitungen 4,5,6 eingestellt werden kann. Eine Steuerleitung 17 dient zur Temperaturregelung in der Nachkühleinrichtung 10. Die Zuführung 18 des Kälteträgers S zur Mischkammer 2 ist gleichfalls mit einem Magnetventil 19 ausgerüstet, das von der Steuerung 13 angesteuert werden kann. Auf diese Weise kann die Temperatur, Konsistenz und Menge des dem Bindemittelgemisch Z zugeführten Kälteträgers S genau und zuverlässig eingestellt und beispielsweise so gewählt werden, dass der erzeugte Frischbeton einen gewissen Temperaturwert, beispielsweise 0°C aufweist. Um den vorgegebenen Temperaturwert während der Dauer der Herstellung einer Betonmenge einzuhalten, wird die mittels eines geeigneten Messgeräts kontinuierlich oder regelmäßig gemessene Temperatur des Frischbetons als Stellgröße eingeführt, auf die durch die Einstellung der Temperatur des zugeführten Kälteträgers S hin laufend geregelt wird.An electronic control 13 enables the production of the refrigerant S or fresh concrete according to a predetermined program. The electronic control 13 is connected to controllable valves 14,15,16, such as solenoid valves, in the lines 4,5,6, by means of which the mixing ratio and / or the respective pressure in the lines 4,5,6 can be adjusted. A feed line 18 of the refrigerant S to the mixing chamber 2 is also equipped with a solenoid valve 19, which can be controlled by the controller 13. In this way, the temperature, consistency and amount of the binder Z supplied to the refrigerant S can be set accurately and reliably and, for example, be selected so that the fresh concrete produced has a certain temperature value, for example 0 ° C. In order to maintain the predetermined temperature value during the duration of the production of a concrete amount, the continuously or regularly measured by means of a suitable measuring device temperature of the fresh concrete is introduced as a control variable, which is continuously regulated by the adjustment of the temperature of the supplied refrigerant S.

Das erfindungsgemäße Verfahren ermöglicht die Umwandlung des Zugabewassers in Kälteträger S innerhalb weniger Minuten. Infolge der großen Oberfläche der Schneekristalle erfolgt die Kälteübertragung beim Nachkühlen sehr effektiv, so dass auch dieser Vorgang nur wenige Minuten in Anspruch nimmt.The method according to the invention allows the conversion of the feedwater into refrigerant S within a few minutes. As a result of the large surface of the snow crystals, the cold transfer is very effective when re-cooling, so that this process takes only a few minutes.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1.1.
Vorrichtungcontraption
2.Second
Mischkammermixing chamber
3.Third
--
4.4th
Leitungmanagement
5.5th
Leitungmanagement
6.6th
Leitungmanagement
7.7th
Mischstreckemixing section
8.8th.
Sprühdüsespray nozzle
9.9th
Sprühkammerspray chamber
10.10th
Nachkühleinrichtungafter-cooling
11.11th
Kühlkammercooling chamber
12.12th
KälteträgerBrine
13.13th
elektronische Steuerungelectronic control
14.14th
VentilValve
15.15th
VentilValve
16.16th
VentilValve
17.17th
Steuerleitungcontrol line
18.18th
Zuführleitungfeed
19.19th
Magnetventilmagnetic valve
SS
KälteträgerBrine
ZZ
Bindemittelgemischbinder mixture

Claims (8)

  1. Method for concrete production, in which a binder, for example cement, is intermingled with additives to form a binder mixture (Z) and fresh concrete is produced by the addition of water to the binder mixture (Z), the water being supplied to the binder mixture (Z) at least partially in the form of a refrigerant (S) consisting of snow crystals, characterized in that, to produce the refrigerant (S),
    - water is intermixed with a propellant gas and with a coolant to form a cold-gas mixture,
    - the cold-gas mixture is injected as a cold-gas jet into a spray chamber (9), the water freezing into snow crystals.
  2. Method according to Claim 1, characterized in that the cold-gas jet is set in rotation when it is being injected into the spray chamber (9).
  3. Method according to Claim 1 or 2, characterized in that the refrigerant (S), before being supplied to the binder mixture (Z), is brought to a predetermined temperature of below minus 30°C in an aftercooling method.
  4. Method according to one of Claims 1 to 3, characterized in that a low-temperature liquefied gas, for example liquefied nitrogen or liquefied carbon dioxide, is used as a coolant for the cold-gas mixture and/or for the aftercooling of the refrigerant (S).
  5. Method according to one of the preceding claims, characterized in that nitrogen and/or air is used as a propellant gas for the cold-gas mixture.
  6. Method according to one of Claims 1 to 5, characterized in that the coolant is used for transporting the generated refrigerant (S) to the binder mixture (Z).
  7. Apparatus for concrete production,
    - with a mixing device (7) for the intermixing of water, a propellant gas and a coolant to form a cold-gas mixture,
    - with a spray nozzle (8) which is flow-connected to the mixing device (7) and is received in a spray chamber (9) and by means of which the cold-gas mixture can be sprayed so as to form a refrigerant (S) consisting at least essentially of snow crystals, and
    - with a mixing chamber (2), in which refrigerant (S) generated in the spray chamber (9) can be intermingled with a binder mixture (Z) to form fresh concrete, characterized in that the spray chamber (9) is assigned a cooling device (11) for the aftercooling of the refrigerant (S) generated in the spray chamber (9).
  8. Apparatus according to Claim 7, characterized by a control device (12) which is operatively connected to the mixing device (7) and/or the mixing chamber (2) and by means of which the temperature and/or the composition of the cold-gas mixture and/or of the fresh concrete can be set.
EP01983561A 2000-11-03 2001-10-19 Method and device for the production of concrete Expired - Lifetime EP1337498B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10054563A DE10054563A1 (en) 2000-11-03 2000-11-03 Method and device for making concrete
DE10054563 2000-11-03
PCT/EP2001/012100 WO2002036523A1 (en) 2000-11-03 2001-10-19 Method and device for the production of concrete

Publications (2)

Publication Number Publication Date
EP1337498A1 EP1337498A1 (en) 2003-08-27
EP1337498B1 true EP1337498B1 (en) 2007-11-14

Family

ID=7662062

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01983561A Expired - Lifetime EP1337498B1 (en) 2000-11-03 2001-10-19 Method and device for the production of concrete

Country Status (7)

Country Link
US (2) US20040050301A1 (en)
EP (1) EP1337498B1 (en)
AT (1) ATE378304T1 (en)
AU (1) AU2002215031A1 (en)
DE (2) DE10054563A1 (en)
WO (1) WO2002036523A1 (en)
ZA (1) ZA200304310B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010129B3 (en) * 2004-03-02 2005-09-01 GÖTZ, Werner Device for producing pre-cooled concrete used in civil engineering comprises a unit for producing refrigerated artificial snow, a metering scale arranged in a refrigerated environment, and a feeding system
DE102004021061B4 (en) * 2004-04-29 2006-04-20 GÖTZ, Werner Artificial snow production, e.g. for production of chilled pre-mixed concrete, avoids lump-formation by using draught tube baffle crystallizer vessel, fed with water and liquid nitrogen
DE102004043498A1 (en) * 2004-09-06 2006-03-09 KTI-Plersch Kältetechnik GmbH Ice Storage
DE102007008811B3 (en) * 2007-02-22 2008-07-10 Messer Group Gmbh Method for the production of cooled fresh concrete, comprises storing mixing material in a supply silo and transporting the mixing material from the silo to a mixing device
WO2008040674A1 (en) 2006-10-04 2008-04-10 Messer Group Gmbh Method and device for the production of chilled fresh concrete
DE102006047261B4 (en) 2006-10-04 2019-06-06 Messer Group Gmbh Method and device for producing cooled fresh concrete
WO2010091376A2 (en) * 2009-02-08 2010-08-12 Blaise Baxter Devices and methods for perfusion therapy
US9526863B2 (en) * 2009-02-08 2016-12-27 Neuronal Protection System, Llc Devices and methods for perfusion therapy
CN110464709A (en) 2012-08-10 2019-11-19 德克萨斯州大学系统董事会 For treating the neuroprotective liposome composition and method of apoplexy
CN103970076A (en) * 2013-01-30 2014-08-06 张永生 Large-volume deposit concrete cooling water intelligent control system
EP4082552A1 (en) 2013-03-15 2022-11-02 The Board of Regents of the University of Texas System Liquids rich in noble gas and methods of their preparation and use
AU2019305626A1 (en) * 2018-07-18 2021-02-11 Likeminds, Inc. Method for accelerated tissue penetration of compounds into brain
DE102019110657A1 (en) 2019-04-25 2020-10-29 Air Liquide Deutschland Gmbh Procedure for maintaining fresh concrete temperatures

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3762176A (en) * 1969-09-18 1973-10-02 B Coggins Method and apparatus for making snow
DE2013819A1 (en) * 1970-03-23 1971-10-21 Badische Anilin- & Soda-Fabrik Ag, 6700 Ludwigshafen Porous- light-weight building material prodn
FR2195184A5 (en) * 1972-08-04 1974-03-01 Girod Edgar Storing and transporting mixed concrete - by separately cooling all solids and freezing necessary water to broken-up ice, and mixing and storing cold
SE368948B (en) * 1972-11-07 1974-07-29 Innovationsteknik Inst Ab
US4344290A (en) * 1981-08-24 1982-08-17 Air Products And Chemicals, Inc. Process and apparatus for in-line slush making for concrete cooling
JPS61201681A (en) 1985-03-04 1986-09-06 株式会社大林組 Method of cooling aggregate and apparatus therefor
DE3683637D1 (en) * 1985-07-03 1992-03-05 Toshiro Suzuki PRODUCTION METHOD OF MORTAR AND USE METHOD.
JPH01123705A (en) * 1987-11-10 1989-05-16 Hazama Gumi Ltd Method and apparatus for manufacturing concrete
JP2617115B2 (en) * 1988-06-14 1997-06-04 清水建設株式会社 Method for producing concrete and method for producing concrete molded product
JPH03110364A (en) * 1989-06-07 1991-05-10 Mitsubishi Electric Corp Ice making device and concrete manufacturing device
CZ291660B6 (en) * 1996-07-20 2003-04-16 Max Bögl Bauunternehmung GmbH & Co. KG Process for producing freshly mixed concrete with concrete mixture and ice particles and apparatus for making the same
DE19910986C2 (en) * 1999-03-11 2001-06-07 Aga Ab Use of xenon in the treatment of neurointoxication

Also Published As

Publication number Publication date
EP1337498A1 (en) 2003-08-27
US20040050301A1 (en) 2004-03-18
DE50113275D1 (en) 2007-12-27
US7700135B2 (en) 2010-04-20
WO2002036523A1 (en) 2002-05-10
US20080206157A1 (en) 2008-08-28
ZA200304310B (en) 2004-09-02
ATE378304T1 (en) 2007-11-15
DE10054563A1 (en) 2002-05-16
AU2002215031A1 (en) 2002-05-15

Similar Documents

Publication Publication Date Title
EP1337498B1 (en) Method and device for the production of concrete
EP0696558A2 (en) Superfine cement binder mixture, process for its preparation and device for carrying out the process
DE102005037080A1 (en) Method and apparatus for cooling cement or cementitious powders
EP1404499B1 (en) Method and device for cooling a mixture of substances by way of subcooled water ice
EP0107768A1 (en) Porous, especially fire-proof ceramic product and process for its preparation
DE2802941A1 (en) ARRANGEMENT FOR PRODUCING CRUSH SAND FROM BOTTOM FURNACE SLAG, GRANULATED WITH WATER
DE102005039570A1 (en) Producing method for cooled unset concrete involves cooling concrete starting materials such as binder, aggregate and make-up water by cooling liquid and then by cooling gas
DE2255501B2 (en) Expanding cement additive and process for its manufacture
DE102010032089A1 (en) Method and device for cooling a liquid
AT505718B1 (en) PROCESS FOR THE PRODUCTION OF LIGHT CONCRETE
DE4010045A1 (en) Cooling system for cement - has mixer tube for cooling fluid in cement feeder tube
DE3879849T2 (en) METHOD FOR HYDRATING HALF HYDRATE GYPSUM.
DE102004062670B4 (en) Method and device for cooling cement
DE2537173A1 (en) Cooling fresh concrete with liquified gas - to avoid cracks on setting, esp. in mfg. containers for nuclear reactors
DE10215594A1 (en) Process for conditioning liquid blast furnace slag
DE10232180B4 (en) Process for the production of aerated concrete
DE2723233A1 (en) METHOD OF MANUFACTURING A HYDRAULIC MOERTEL OR CONCRETE
DE1909310C3 (en) Process for the production of hydraulic cement
DE3008368A1 (en) METHOD FOR PRODUCING A GLASS-CERAMIC HEAT EXCHANGER CORE
DE69306247T2 (en) CONCRETE PRODUCTS
DE2023695C3 (en) Process for the production of swelling cement for the production of prestressed concrete by mixing Portland cement with a swelling component
DE3526455A1 (en) Thermally resistant concrete (basalt/quartz concrete)
DE2417500A1 (en) Lightweight lime-sand bricks with internal cavities - mfd using ice instead of water in moulding mixtures
AT305871B (en) Process for the production of a swellable, free lime-containing Portland cement
EP4173789A1 (en) Method and device for producing cooled fresh concrete

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030603

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

Owner name: MAX BOEGL BAUUNTERNEHMUNG GMBH & CO. KG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAX BOEGL BAUUNTERNEHMUNG GMBH & CO. KG

Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAX BOEGL BAUUNTERNEHMUNG GMBH & CO. KG

Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

17Q First examination report despatched

Effective date: 20061020

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MESSER GROUP GMBH

Owner name: AIR LIQUIDE DEUTSCHLAND GMBH

Owner name: MAX BOEGL BAUUNTERNEHMUNG GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50113275

Country of ref document: DE

Date of ref document: 20071227

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080214

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080225

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071114

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071114

EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080414

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

26N No opposition filed

Effective date: 20080815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071114

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080215

BERE Be: lapsed

Owner name: MESSER GROUP G.M.B.H.

Effective date: 20081031

Owner name: AIR LIQUIDE DEUTSCHLAND G.M.B.H.

Effective date: 20081031

Owner name: MAX BOEGL BAUUNTERNEHMUNG G.M.B.H. & CO. KG

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20071114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20121010

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120927

Year of fee payment: 12

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 378304

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131019

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131019

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20181019

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50113275

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200501