EP1336728B1 - Method and device for regulating the air/fuel ratio of an internal combustion engine - Google Patents

Method and device for regulating the air/fuel ratio of an internal combustion engine Download PDF

Info

Publication number
EP1336728B1
EP1336728B1 EP02020196A EP02020196A EP1336728B1 EP 1336728 B1 EP1336728 B1 EP 1336728B1 EP 02020196 A EP02020196 A EP 02020196A EP 02020196 A EP02020196 A EP 02020196A EP 1336728 B1 EP1336728 B1 EP 1336728B1
Authority
EP
European Patent Office
Prior art keywords
oxygen
air
excess
deficiency
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02020196A
Other languages
German (de)
French (fr)
Other versions
EP1336728A2 (en
EP1336728A3 (en
Inventor
Eberhard Schnaibel
Kersen Wehmeier
Klaus Hirschmann
Richard Hotzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1336728A2 publication Critical patent/EP1336728A2/en
Publication of EP1336728A3 publication Critical patent/EP1336728A3/en
Application granted granted Critical
Publication of EP1336728B1 publication Critical patent/EP1336728B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/0295Control according to the amount of oxygen that is stored on the exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • F01N13/0097Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series the purifying devices are arranged in a single housing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2430/00Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics
    • F01N2430/06Influencing exhaust purification, e.g. starting of catalytic reaction, filter regeneration, or the like, by controlling engine operating characteristics by varying fuel-air ratio, e.g. by enriching fuel-air mixture
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/16Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1418Several control loops, either as alternatives or simultaneous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1422Variable gain or coefficients
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio

Definitions

  • the invention relates to a method for controlling the fuel / air ratio of a combustion process, which is operated alternately with excess air and lack of air, with at least one catalyst volume in the exhaust gas of the combustion process, which stores oxygen at excess oxygen in the exhaust gas and releases it in an oxygen deficiency, in which method determining the oxygen inputs into the catalyst volume and the oxygen discharges resulting from air deficiency from the catalyst volume and controlling the fuel / air ratio such that the sum of the oxygen inputs and oxygen discharges determined in a predetermined interval assumes a predetermined value.
  • the invention further relates to an electronic control device for carrying out the method. Such a method and such a device are known from DE 40 01 616 C2 and the WO 01/61165 A1 known.
  • the invention relates to the regulation of the fuel / air ratio or the air ratio lambda of a combustion process.
  • Lambda is known to be the ratio of the actual combustion process amount of air to the amount of air required for a stoichiometric combustion of a certain amount of fuel.
  • Combustion process exhaust gases are often passed through a catalyst to convert exhaust gas constituents such as nitrogen oxides (NOx), unburned hydrocarbons (HC) and carbon monoxide (CO) into nitrogen, water and carbon dioxide.
  • NOx nitrogen oxides
  • HC unburned hydrocarbons
  • CO carbon monoxide
  • three-way catalysts are used for exhaust gas purification in automobiles.
  • Optimum conversion efficiency which is characterized by a minimum of NOx, HC and CO downstream of the catalyst at defined inputs of NOx, HC and CO into the catalyst, requires the most accurate adjustment of a desired air / fuel ratio for the combustion process. This can also include the most precise possible setting of a desired temporal behavior, for example a periodic fluctuation of lambda about a mean desired value.
  • Nernst probes are used in the first place.
  • a Nernst probe is understood to be the known oxygen-sensitive exhaust gas sensor whose characteristic curve above the mixture composition in the thermodynamic equilibrium in the region of the stoichiometric mixture composition has a steep transition between a low (about 100 mV) and a high (about 900 mV) signal level.
  • the term of the two-step control comprises a control in which an actual value of the probe signal, which corresponds to an actual oxygen concentration in the exhaust gas and thus a specific lambda actual value, is compared with a desired value and depending on the sign of the deviation enrichment or emaciation of the fuel / air ratio is generated.
  • This regulation is characterized by the fact that, so to speak, only the sign, but not the amount of deviation is processed by a control algorithm.
  • two-point controls are applied both to two-point probes in front of a catalyst and behind a catalyst.
  • These methods have in common that they respond to the said steep transition of the probe signal with a sudden change in the manipulated variable, for example, an injection pulse width.
  • the sudden adjustment is followed by an approximately continuous change of the manipulated variable whose time course corresponds to a ramp (linear).
  • the lambda value of the optimal pollutant conversion in the catalytic converter does not exactly correspond to the lambda value of the steep change in the Nernst probe signal.
  • the oscillation in the oxygen content of the exhaust gas which occurs during a jump-ramp control, is averaged out by the catalyst, provided that it is functional.
  • This averaging results from the fact that the catalyst stores the oxygen excess from the exhaust gas during the half wave of oscillation with oxygen excess and emits the stored oxygen back to the exhaust gas in the half-wave of the oscillation with lack of oxygen.
  • an exhaust gas probe arranged behind the (sufficiently large) catalytic converter registers the mean value of the oscillation. Since the upstream catalyst protects the rear probe from excessive temperature fluctuations and also promotes the adjustment of the thermodynamic equilibrium of the exhaust components, the signal of the rear probe is less affected by temperature influences and cross sensitivity of the exhaust probe.
  • Cross-sensitivity is understood as meaning an undesired shift of the probe characteristic above the oxygen content of the exhaust gas in the presence of other exhaust gas constituents.
  • the rear probe therefore measures more accurately and can be effectively used to guide the front probe. For example, if the front probe is adjusting to an incorrect setpoint due to a characteristic shift, it will be detected by the rear exhaust probe signal and the front probe loop reference will be corrected accordingly.
  • Another group of processes is based on an optimized catalyst filling strategy.
  • the methods of this group balance the registered components and try to compensate for a false balance before it is measured on the arranged behind a certain catalyst volume probe.
  • the Nernst probe is also operated here in your fat branch and compensates only for a false balance zero.
  • the above DE 40 01 616 A1 shows such a method for controlling the air-fuel ratio of a combustion process, which is operated alternately with excess air and lack of air.
  • a catalyst volume in the exhaust gas of the combustion process stores oxygen in excess of oxygen in the exhaust gas and releases it again in the event of a lack of oxygen.
  • the oxygen excesses taking place in the excess of air into the catalyst volume and the oxygen discharges resulting from lack of air from the catalyst volume are determined with the aid of a Nernst probe arranged upstream of the catalytic converter and the fuel / air ratio is controlled so that the sum the determined in a predetermined interval oxygen inputs and Sauerstoffausträge assumes a predetermined value.
  • the inventive method allows the required optimized catalyst operation and thereby improves the above-mentioned methods in terms of robustness and control speed decisively in operating points in which the above methods do not have sufficient robustness or in which these methods are affected by cross-sensitivities. This improvement results from the fact that the invention contains sub-aspects of the methods described above, and these are supplemented by shares, which cause a substantial increase in robustness.
  • the method of the invention utilizes the two-point characteristic of a Nernst probe downstream of the catalyst in conjunction with balancing, i. consideration of oxygen input and oxygen emissions related to the catalyst.
  • a controlling part is connected to the regulating part. This part is based on a balance sheet optimum for the catalyst operation. Due to the necessary balance sheet optimization of the regulatory phase, an additional amount required with regard to the balance sheet zero point is determined. Based on the zero point of the balance, a controlled proportion of fat or lean is attached to the flanks fat-lean or lean-fat of the jumping probe. This proportion should be calculated in such a way that a maximum pollutant level is established behind an overall catalytic system.
  • a development of the invention therefore provides that the change between oxygen excess and lack of oxygen is controlled in the operation of the internal combustion engine so that the difference between the oxygen excesses occurring in excess of air in the catalyst volume and the taking place in the absence of air oxygen discharges from the catalyst volume assumes a predetermined value.
  • a further embodiment provides that a quantity is used to determine the taking place at excess oxygen in the catalyst volume and the taking place in lack of air oxygen discharges from the catalyst volume, which at least co-determines the fuel flow to the engine.
  • said quantity is formed on the basis of an intake air amount calculated from measured quantities and on the basis of an amount of fuel added to this amount of intake air.
  • said size is formed as a function of the signal of an exhaust gas probe arranged in front of the catalyst volume.
  • a further embodiment provides that the said variable is an input variable for a second control loop in which the air-fuel ratio is regulated with a smaller time constant compared to the first control loop.
  • Another embodiment is characterized in that the formation of said size is changed when the oxygen inputs and Sauerstoffausträge differ from each other.
  • the change takes place so that said deviation becomes smaller.
  • the change is formed as a function of the integral of said deviation.
  • the fuel / air ratio is predetermined by a superimposed control loop.
  • a further embodiment provides that the values of the specific oxygen inputs and oxygen emissions are used to determine a real zero value between oxygen excess and oxygen deficiency.
  • the invention can also be understood as a method for controlling the fuel / air ratio of a combustion process with a lambda probe behind a partial catalyst volume, wherein the lambda probe indicates when the degree of filling of the partial catalyst volume with oxygen exceeds a first predetermined value, or falls below a second predetermined value. If the value falls below the second predetermined value, the fuel / air ratio is defined on average defined leaner (fuel-poor). If the second predetermined value is exceeded as a result, the amount is enriched accordingly on average. This results in a characteristic for the operating point of the combustion process and the catalyst frequency of the emaciation and Anfettept.
  • an operating point is defined, for example, by a specific value of the combustion chamber charge at a certain speed.
  • the oxygen input and the oxygen discharge is accounted for.
  • the fuel metering in such a way that the balance of the oxygen inputs and the oxygen discharges averages over a period (an oxygen contribution and an oxygen discharge) to a predetermined value, preferably the value zero, which corresponds to a defined average lambda value.
  • any average lambda value can be set because each delay to some extent an additional entry of oxygen (in delayed change to rich mixture) or discharge of oxygen (with a delayed change to lean mixture) causes.
  • the defined delay is preferably such that the resulting additional entry or additional discharge with respect to a period corresponds to a predetermined value.
  • the invention also relates to a control device, preferably an electronic control device for carrying out at least one of the above-mentioned methods, developments and embodiments.
  • Fig. 1 shows the structure of a first technical environment in which the invention has its effect.
  • Fig. 2 discloses an embodiment of the invention related to this structure in the form of a functional block diagram.
  • the 3 and 4 show waveforms to illustrate the effect of said embodiment.
  • Fig. 5 shows the structure of a second technical environment for the application of the invention.
  • Fig. 6 discloses a related embodiment of the invention in functional block representation.
  • Fig. 7 discloses the structure of a preferred technical environment of the invention for meeting the above SULEV requirements.
  • Fig. 8 shows a corresponding embodiment of the invention in functional block diagram.
  • FIGS. 9 to 13 represent time courses of signals to illustrate the effect of the invention in the context of the preferred technical environment.
  • the numeral 10 in the FIG. 1 denotes an internal combustion engine that burns a mixture of fuel and air in a combustion process.
  • the amount or mass of the air flowing to the combustion process is detected by an air flow meter 14.
  • the signal of the air flow meter 14 is supplied to an electronic control device 18.
  • the electronic control unit 18 calculates therefrom and optionally from further operating parameters of the combustion process a fuel metering signal with which a fuel metering means 16 is actuated.
  • the fuel metering means 16 for example an injection valve or an arrangement of injection valves, is arranged in a suction pipe 12 of the internal combustion engine.
  • the mixture formation that is the Mixing of sucked air and metered fuel in the intake manifold instead.
  • the mixture formation can also take place directly in the combustion chambers of the internal combustion engine, as is known from the diesel engine and the petrol engine with gasoline direct injection.
  • the exhaust gases of the combustion process in the internal combustion engine are passed through an exhaust pipe 20 to a catalyst volume 22.
  • An exhaust gas probe 24 arranged upstream of the catalyst volume 22 preferably detects the oxygen concentration in the exhaust gas between the combustion process and the catalyst volume 22.
  • the exhaust gas probe 24 is also referred to as a pre-sample probe 24.
  • Another exhaust gas probe is arranged behind the catalyst volume 22. This exhaust gas probe is preferably a so-called Nernst probe 26, while the Vorkatsonde 24 is preferably realized as a broadband probe.
  • Nernst probe 26 is the Automotive Handbook, 22nd edition, VDI-Verlag Dusseldorf, ISBN 3-18-419122-2 (Automotive Handbook 4 th Edition, SAE Society of Automotive Engineers, USA, ISBN 1-56091-918-3 , page 491 (491), on page 492 (492) of the same book also discloses a broadband probe as an embodiment of precursor probe 24.
  • Broadband probe 24 has a metering gap connected to the exhaust via a gas inlet port.
  • the measuring gap is further provided with an electrochemical pumping cell, with which oxygen can be pumped out of the measuring gap or into the measuring gap
  • the pumping current Isvk required for this purpose provides a measure of the oxygen content of the exhaust gas, in other words, the broadband probe supplies a current si gnal I S V onde- or- K at.
  • the Nernst 26 provides a voltage signal U S onde- H inter- K at.
  • the signals of the two exhaust gas probes 24 and 26 are also supplied to the electronic control device 18 and additionally influence the fuel metering.
  • the internal combustion engine 10 effectively represents a controlled system as part of a first control circuit of internal combustion engine 10, exhaust gas probe 24, electronic control device 18 and fuel metering device 16.
  • An oxygen deficiency in the exhaust gas is registered by the exhaust gas probe 24 and leads through a corresponding processing by a control algorithm in the electronic control device 18 to increase the injection pulse width, with which the fuel metering means 16 is driven.
  • This control loop is superimposed on a further control loop, which is based on the signal of the Nernst probe 26.
  • the interaction of the two control circuits according to the invention is described below with a view to the structure of FIG. 2 explained.
  • the numeral 28 denotes a map, which is addressed for example by input variables such as the measured air quantity and the engine speed and the base pulse width t_Basis as the output value for the Fuel metering supplies. This output value is linked in the rule link 30 with a control factor fr from a first controller 34. The result of this combination determines, as the injection pulse width ti, the amount of fuel that is supplied to the combustion process in the internal combustion engine 10.
  • This signal Ushk of the Nernst probe 26 is fed to a two-point controller 36.
  • This two-point controller 36 represents a true two-point controller in the classical sense, in which the manipulated variable can only correspond to one of two values.
  • the signal Ushk of the exhaust gas probe 26 is compared with a threshold of, for example, 450 millivolts. If there is an excess of oxygen behind the catalyst 22, the signal Ushk has an order of magnitude of approximately 100 millivolts.
  • the two-position controller 36 enriches, for example by outputting a factor of 1.02, with which the manipulated variable formed in the first controller is multiplied, which ultimately leads to an increase in the injection pulse width and thus to an enrichment of the mixture.
  • the signal Ushk has an order of magnitude of approximately 900 millivolts, and the two-position regulator 36 accordingly empties, for example by outputting a factor of 0.98. This factor 0.98 reduces in the first controller 34, the manipulated variable fr, which ultimately leads to a shortening of the injection pulse widths ti and thus to an emaciation.
  • the Nernst probe 26 thus forms in conjunction with the two-point controller 36 and the other controlled system (34, 30, 10, 24, 22) a second control loop.
  • This second control circuit ensures that the catalyst volume 22 is filled with an average-lean mixture when the probe indicates oxygen deficiency behind the catalyst volume 22.
  • the two-point control algorithm fills and deflates the catalyst volume 22 again and again. Since the oxygen storage can only deliver the amount of oxygen that it has previously stored, the real oxygen excess and oxygen deficiency levels must be equal. In other words, the oxygen introduced into the catalyst volume 22 in oxygen excess phases corresponds in its quantity to the oxygen discharged from the catalyst volume 22 in the absence of oxygen. According to the invention, these two quantities are detected by measurement using equal amounts and used to correct the first control loop.
  • the FIG. 2 the structure 38, 40, 42, 44, 46 and 32 on.
  • the numeral 38 denotes a trigger signal path with which a signal integrator 40 is set to zero and triggered.
  • the signal integrator 40 is supplied in parallel to the trigger signal 38, the signal Isvk the Vorkatsonde 24, and a corrected signal Isvk_korr the Vorkatsonde 24.
  • This signal integrator is wired and designed to integrate only the excess oxygen part of the Isvk signal. The integration is triggered when the two-position controller 36 outputs a leaning signal and it is stopped when the two-position controller 36 switches to enriching mixture.
  • the final value of the oxygen storage integrator 40 thus provides a measure of the oxygen storage capacity (OSC).
  • integrator 42 calculates a negative oxygen deficiency an oxygen output -OSC.
  • the output signals of the integrators 40 and 42 are subtracted from each other. Since they must be physically the same by definition, a nonzero result of the difference linkage 44 in a sense a calculation error.
  • a calculation error is based on a characteristic shift of the signal Isvk of the precursor probe 24.
  • a characteristic shift has the consequence, for example, already fat mixture signaled, although still present in real lean mixture.
  • the value of the MINUS_OSC integrator 42 will be greater than the value of the OSC integrator 40.
  • the difference in both values is applied to an integrator 46 whose output signal corrects the signal Isvk of the pre-sample probe 24 via an offset correction link 32.
  • the shifted characteristic is effectively compensated so that the values of the OSC integrator 40 and of the MINUS_OSC integrator 42 are equal again after the correction has settled.
  • the number 52 in the FIG. 3 denotes a first time range in which the offset correction has not yet settled.
  • the numeral 54 in the FIG. 3 a second time range in which the offset correction has settled.
  • FIG. 3 shows the time course of the signal Isvk over time t.
  • the dashed line 48 marks the (false) zero measurement value of the pre-sample probe 24.
  • the zero value that is, the value that separates oxygen excess from the oxygen deficiency, is of fundamental importance for the formation of said OSC and MINUS_OSC amounts.
  • This "zero value" between oxygen excess and oxygen deficiency is provided by a probe in front of the catalyst or a stored value is used, for example an injection time assuming a stoichiometric mixture composition. This zero value can be incorrect.
  • the excess oxygen or oxygen deficiency quantities based on this - possibly faulty zero value.
  • the relative deviation from the assumed zero value is known. With the measured amount of air can be determined from the absolute value for the oxygen input or oxygen discharge.
  • the oxygen storage can only deliver the amount of oxygen that it has previously stored, the real oxygen excess and oxygen deficiency levels must be equal. If the calculated quantities are not equal, this can only be because the assumed zero value does not correspond to the real zero value, so that, for example, in the calculation a real entry was evaluated as a discharge. Subsequently, the assumed zero value is changed in the direction of the larger amount. That is, if in the previous calculation, the oxygen excess amount was larger than the oxygen deficiency amount, the zero value is shifted toward oxygen excess. Starting from this new zero value, the same amounts are enriched and emaciated again. This procedure is repeated until the said calculated quantities are the same. The associated zero value corresponds to the real zero value.
  • the values of the specific oxygen inputs and oxygen emissions are used to determine a real zero value between oxygen excess and oxygen deficiency. This can be used to correct either a front probe or a pilot zero value. This procedure is described with continuing reference to Fig. 3 further explained.
  • the dashed line 50 indicates the real zero value.
  • the low signal level corresponds to a rich mixture, ie an oxygen deficiency
  • the high signal level corresponds to a lean mixture, ie oxygen excess.
  • the hatched area 64 represents the integral of an oxygen excess period over the real one
  • the hatched area 66 correspondingly represents the integral of an oxygen deficiency period above the real zero value 50.
  • Both areas are equal because the switching between rich and lean mixture is performed by the accurately measuring Nernst probe 26 behind the catalyst volume 22.
  • the hatched area 68 corresponds to the integral over the (false) zero value of the exhaust gas probe 24 during an oxygen excess period
  • the area 70 corresponds to the integral of an oxygen deficiency above the false zero during an oxygen deficiency period.
  • the surfaces 68 and 70 are metrologically detected by the integrators 40 and 42, respectively. It can be clearly seen that in the non-steady state, the OSC value (68) deviates greatly from the MINUS_OSC value (70).
  • the signal Isvk is shifted down so that the zero measurement line 48 coincides with the real zero line 50.
  • the signal in the second time range 54 thus reflects the course of the corrected signal Isvk_korr again.
  • the OSC quantities (72) and MINUS_OSC quantities (74) are the same.
  • the Nernst probe 26 shown in the waveform of the FIG. 3 corresponding signal Ushk the Nernst probe 26 shown.
  • the signal Isvk effectively indicates the oxygen concentration in front of the catalyst and the signal Ushk effectively indicates the oxygen concentration behind the catalyst. From the comparison of FIG. 3 and FIG.
  • FIG. 5 shows a modification of the structure of FIG. 1
  • no Vorkatsonde 24 provided in the structure of FIG. 5
  • the structure of FIG. 6 discloses an embodiment of the invention without Vorkatsonde 24.
  • the injection pulse widths ti determine the amount of fuel that is attributed to the internal combustion engine 10 to match the measured amount of air.
  • the Nernst probe 26 arranged behind the catalyst volume 22 again supplies the voltage signal Ushk to the two-position controller 36.
  • the two-position controller 36 modulates basic pulse widths t_basis supplied by a multiplicative link 30 from a pilot control map 28.
  • the injection pulse widths ti are also supplied to a differential link 58, which are additionally supplied to comparison pulse widths ti_L1.
  • the ti_L1 values represent to some extent assumed zero values in the sense that ti> ti_L1 assumes a rich mixture and ti_L1> ti a lean mixture. Analogous to the explanation of FIG.
  • the integrator 40 provides a measure of the oxygen storage capacity of the catalyst volume and the integrator 42 provides a measure of the reducing agent storage capacity of the catalyst.
  • the difference of both values in the difference link 44 is formed and integrated in the integrator 46.
  • the integrator output acts on the injection times via the offset correction link 32.
  • the mode of action of the structure after the FIGS. 5 and 6 This corresponds largely to the effect of the structures after the Figures 1 and 2 ,
  • the FIG. 3 can also be seen on the structure of FIG. 5 and FIG. 6 read. This is in the FIG. 3 only to replace the value Isvk by the injection time ti.
  • the zero line 48 corresponds in the case of FIG. 6 then a value ti_L1.
  • FIGS. 7 and 8 represents a presently preferred embodiment.
  • This embodiment differs from the subject of Figures 1 and 2 by a main catalyst volume 60 behind the Nernst probe 26 and by another Nernst probe 62 behind the main catalyst volume 60.
  • the main catalyst volume 60 has the function of compensating for the oscillation in the oxygen content of the exhaust gas behind the partial catalyst volume 22 that inevitably occurs in this control concept. Since optimum medium-duty operation is desired for optimum catalyst operation, the structure described hitherto must be extended by a component which provides this desired fat shift or, in other cases, optionally a desired lean shift. This is done in the context of this preferred embodiment further Nernst 62.
  • FIGS. 9 to 13 displayed desired signal behavior.
  • the FIGS. 9 and 10 show the previously explained signals Ushk and Isvk in the steady state.
  • the FIG. 11 shows the course of the signal Ushk in the context of this embodiment. From the FIG. 12 is It can be seen that a change from lean to rich in the signal Ushk is only delayed by a delay period tv to the controller 34, which is shown in the time course of the Isvk signal.
  • the hatched areas 76 thus represent a desired additional MINUS_OSCE entry into the catalyst volumes, which ultimately results in the FIG. 13 shown, relatively even in the rich area above 450 millivolts extending signal of the other Nernst probe 62 shows.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses, der abwechselnd mit Luftüberschuß und Luftmangel betrieben wird, mit wenigstens einem Katalysatorvolumen im Abgas des Verbrennungsprozesses, das bei Sauerstoffüberschuß im Abgas Sauerstoff speichert und diesen bei Sauerstoffmangel abgibt, bei welchem Verfahren die bei Luftüberschuß erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und die bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen bestimmt werden und bei dem das Kraftstoff/Luftverhältnis so geregelt wird, daß die Summe der in einem vorbestimmten Intervall bestimmten Sauerstoffeinträge und Sauerstoffausträge einen vorbestimmten Wert annimmt. Die Erfindung betrifft weiter eine elektronische Steuereinrichtung zur Durchführung des Verfahrens. Ein solches Verfahren und eine solche Vorrichtung sind aus der DE 40 01 616 C2 und der WO 01/61165 A1 bekannt.The invention relates to a method for controlling the fuel / air ratio of a combustion process, which is operated alternately with excess air and lack of air, with at least one catalyst volume in the exhaust gas of the combustion process, which stores oxygen at excess oxygen in the exhaust gas and releases it in an oxygen deficiency, in which method determining the oxygen inputs into the catalyst volume and the oxygen discharges resulting from air deficiency from the catalyst volume and controlling the fuel / air ratio such that the sum of the oxygen inputs and oxygen discharges determined in a predetermined interval assumes a predetermined value. The invention further relates to an electronic control device for carrying out the method. Such a method and such a device are known from DE 40 01 616 C2 and the WO 01/61165 A1 known.

Im allgemeinen betrifft die Erfindung die Regelung des Kraftstoff/Luft-Verhältnisses bzw. des Luftverhältnisses Lambda eines Verbrennungsprozesses. Lambda gibt bekanntlich das Verhältnis der tatsächlich bei dem Verbrennungsprozeß beteiligten Luftmenge zu derjenigen Luftmenge an, die für eine stöchiometrische Verbrennung einer bestimmten Kraftstoffmenge benötigt wird. Abgase von Verbrennungsprozessen werden häufig durch einen Katalysator geführt, um Abgasbestandteile wie Stickoxide (NOx), unverbrannte Kohlenwasserstoffe (HC) und Kohlenmonoxid (CO) in Stickstoff, Wasser und Kohlendioxid zu konvertieren. Zum Beispiel werden Dreiwegekatalysatoren zur Abgasreinigung bei Kraftfahrzeugen verwendet.In general, the invention relates to the regulation of the fuel / air ratio or the air ratio lambda of a combustion process. Lambda is known to be the ratio of the actual combustion process amount of air to the amount of air required for a stoichiometric combustion of a certain amount of fuel. Combustion process exhaust gases are often passed through a catalyst to convert exhaust gas constituents such as nitrogen oxides (NOx), unburned hydrocarbons (HC) and carbon monoxide (CO) into nitrogen, water and carbon dioxide. For example, three-way catalysts are used for exhaust gas purification in automobiles.

Ein optimaler Wirkungsgrad der Konvertierung, der bei definierten Einträgen von NOx, HC und CO in den Katalysator durch ein Minimum von NOx, HC und CO hinter dem Katalysator charakterisiert ist, erfordert eine möglichst präzise Einstellung eines gewünschten Kraftstoff/Luftverhältnisses für den Verbrennungsprozeß. Dies kann auch die möglichst präzise Einstellung eines gewünschten zeitlichen Verhaltens einschließen, beispielsweise eine periodische Schwankung von Lambda um einen mittleren Sollwert.Optimum conversion efficiency, which is characterized by a minimum of NOx, HC and CO downstream of the catalyst at defined inputs of NOx, HC and CO into the catalyst, requires the most accurate adjustment of a desired air / fuel ratio for the combustion process. This can also include the most precise possible setting of a desired temporal behavior, for example a periodic fluctuation of lambda about a mean desired value.

Bezüglich der optimierten Konvertierung von Katalysatoranlagen in Kraftfahrzeugen sind verschiedene Ansätze bekannt, die mit einer Abgassonde hinter einem Katalysator dessen schadstoffoptimalen Betrieb gewährleisten. Dabei werden in erster Linie Nernstsonden verwendet. Unter einer Nernstsonde wird hier der bekannte sauerstoffempfindliche Abgassensor verstanden, dessen Kennlinie über der Gemischzusammensetzung im thermodynamischen Gleichgewicht im Bereich der stöchiometrischen Gemischzusammensetzung einen steilen Übergang zwischen einem niedrigen (ca. 100 mV) und einem hohen (ca 900 mV) Signalpegel aufweist.With regard to the optimized conversion of catalytic converter systems in motor vehicles, various approaches are known which ensure the optimal pollutant operation with an exhaust gas probe behind a catalytic converter. Nernst probes are used in the first place. A Nernst probe is understood to be the known oxygen-sensitive exhaust gas sensor whose characteristic curve above the mixture composition in the thermodynamic equilibrium in the region of the stoichiometric mixture composition has a steep transition between a low (about 100 mV) and a high (about 900 mV) signal level.

Hierbei sind Verfahren bekannt, die unter dem Oberbegriff Zweipunktregelung zusammengefasst werden können. Dabei umfaßt der Begriff der Zweipunktregelung eine Regelung, bei der ein Istwert des Sondensignals, das einer Ist-Sauerstoffkonzentration im Abgas und damit einem bestimmten Lambda-Istwert entspricht, mit einem Sollwert verglichen wird und bei dem je nach Vorzeichen der Abweichung eine Anfettung oder eine Abmagerung des Kraftstoff/Luftverhältnisses erzeugt wird. Diese Regelung zeichnet sich dadurch aus, daß gewissermaßen nur das Vorzeichen, nicht aber der Betrag der Abweichung durch einen Regelalgorithmus verarbeitet wird.Here, methods are known, which can be summarized under the generic term two-step control. In this case, the term of the two-step control comprises a control in which an actual value of the probe signal, which corresponds to an actual oxygen concentration in the exhaust gas and thus a specific lambda actual value, is compared with a desired value and depending on the sign of the deviation enrichment or emaciation of the fuel / air ratio is generated. This regulation is characterized by the fact that, so to speak, only the sign, but not the amount of deviation is processed by a control algorithm.

Begrifflich werden Zweipunktregelungen sowohl in Bezug auf Zweipunktsonden vor einem Katalysator und hinter einem Katalysator angewandt. Diese Verfahren haben gemeinsam, dass sie auf den genannten steilen Übergang des Sondensignals mit einer sprungartigen Änderung der Stellgröße, beispielsweise einer Einspritzimpulsbreite reagieren. Der sprungartigen Verstellung folgt eine näherungsweise stetige Veränderung der Stellgröße, deren zeitlicher Verlauf einer Rampe (linear) entspricht. Der Lambdawert der optimalen Schadstoffkonvertierung im Katalysator entspricht nicht genau dem Lambdawert der steilen Änderung des Nernstsondensignals. Um dennoch mit der Nernstsonde den optimalen Lambdawert für den Katalysator einstellen zu können, kann eine je nach Richtung des Vorzeichenwechsels unterschiedliche und damit unsymmetrische Sprunghöhe, eine auf einen Sprung folgende und bezüglich der Sprungrichtung unsymmetrische Rampe oder eine vorbestimmte Verzögerungszeit zwischen einer Sondensignaländerung und einer Stellgrößenänderung verwendet werden. Dadurch wird der Mittelwert des zeitlichen Verlauf der Stellgröße so verschoben, dass der Katalysator in seinem optimalen Arbeitspunkt betrieben wird. Dieser liegt zumeist leicht auf der fetten Seite, da hiermit insbesondere ein Sicherheitsabstand zu der mit Blick auf unerwünschte NOx-Emissionen kritischeren mageren Seite vermieden wird. Diese Art der Zweipunktregelung erfolgt häufig auf der Basis des Signals einer vor dem Katalysator angeordneten Abgassonde. Die bei einer Sprung-Rampe-Regelung auftretende Schwingung im Sauerstoffgehalt des Abgases wird durch den Katalysator, sofern dieser funktionsfähig ist, ausgemittelt. Diese Mittelung ergibt sich dadurch, daß der Katalysator während der Halbwelle der Schwingung mit Sauerstoffüberschuß den Sauerstoffüberschuß aus dem Abgas speichert und den gespeicherten Sauerstoff in der Halbwelle der Schwingung mit Sauerstoffmangel wieder an das Abgas abgibt. Eine hinter dem (ausreichend großen) Katalysator angeordnete Abgassonde registriert in diesem Fall den Mittelwert der Schwingung. Da der vorgeschaltete Katalysator die hintere Sonde vor übermäßigen Temperaturschwankungen schützt und außerdem die Einstellung des thermodynamischen Gleichgewichts der Abgasbestandteile fördert, ist das Signal der hinteren Sonde weniger durch Temperatureinflüsse und Querempfindlichkeiten der Abgassonde beeinflußt. Dabei versteht man unter einer Querempfindlichkeit eine unerwünschte Verschiebung der Sondenkennlinie über dem Sauerstoffgehalt des Abgases in Anwesenheit von anderen Abgasbestandteilen. Die hintere Sonde mißt daher genauer und kann gewissermaßen zur Führung der vorderen Sonde eingesetzt werden. Wenn beispielsweise die vordere Sonde aufgrund einer Kennlinienverschiebung auf einen nicht korrekten Sollwert regelt, wird dies über das Signal der hinteren Abgassonde erkannt und der Sollwert für den Regelkreis der vorderen Sonde wird entsprechend korrigiert.Conceptually, two-point controls are applied both to two-point probes in front of a catalyst and behind a catalyst. These methods have in common that they respond to the said steep transition of the probe signal with a sudden change in the manipulated variable, for example, an injection pulse width. The sudden adjustment is followed by an approximately continuous change of the manipulated variable whose time course corresponds to a ramp (linear). The lambda value of the optimal pollutant conversion in the catalytic converter does not exactly correspond to the lambda value of the steep change in the Nernst probe signal. Nevertheless, in order to be able to set the optimal lambda value for the catalyst with the Nernst probe, a different and thus asymmetrical jump height, a jump following a jump and an asymmetrical ramp with respect to the jump direction or a predetermined delay time between a probe signal change and a manipulated variable change can be used become. As a result, the mean value of the time profile of the manipulated variable is shifted so that the catalyst in its optimal Operating point is operated. This is usually easy on the fat side, since in particular a safety margin is avoided with respect to the lean side critical with regard to undesired NOx emissions. This type of two-step control is often based on the signal of an exhaust gas sensor located in front of the catalytic converter. The oscillation in the oxygen content of the exhaust gas, which occurs during a jump-ramp control, is averaged out by the catalyst, provided that it is functional. This averaging results from the fact that the catalyst stores the oxygen excess from the exhaust gas during the half wave of oscillation with oxygen excess and emits the stored oxygen back to the exhaust gas in the half-wave of the oscillation with lack of oxygen. In this case, an exhaust gas probe arranged behind the (sufficiently large) catalytic converter registers the mean value of the oscillation. Since the upstream catalyst protects the rear probe from excessive temperature fluctuations and also promotes the adjustment of the thermodynamic equilibrium of the exhaust components, the signal of the rear probe is less affected by temperature influences and cross sensitivity of the exhaust probe. Cross-sensitivity is understood as meaning an undesired shift of the probe characteristic above the oxygen content of the exhaust gas in the presence of other exhaust gas constituents. The rear probe therefore measures more accurately and can be effectively used to guide the front probe. For example, if the front probe is adjusting to an incorrect setpoint due to a characteristic shift, it will be detected by the rear exhaust probe signal and the front probe loop reference will be corrected accordingly.

Weiterhin sind sogenannte stetige Verfahren bekannt. Diese nutzen nicht die steile Änderung des Nernstsondensignals, sondern beispielsweise den vergleichsweise linearen Verlauf des Pumpstroms über dem Lambdawert bei einer Breitbandsonde. Diese Verfahren nutzen nicht nur das Vorzeichen, sondern auch den Betrag der Abweichung eines Istwertes von einem Sollwert. Auch hier ist darauf zu achten, dass der Katalysator mit leicht fettem Gemisch betrieben wird. Da bei diesen Verfahren kleinere Sondensignaländerungen verwertet werden, wirken sich Querempfindlichkeiten, Temperaturempfindlichkeiten und alterungsspezifische Verschiebungen von Schadstoffabhängigkeiten vergleichsweise stark aus.Furthermore, so-called continuous methods are known. These do not use the steep change of the Nernstsondensignals, but, for example, the relatively linear course of the pump current above the lambda value in a broadband probe. These methods not only use the sign, but also the amount of deviation of an actual value from a setpoint. Again, make sure that the catalyst is operated with a slightly rich mixture. Since smaller probe signal changes are utilized in these methods, cross sensitivities, temperature sensitivities and aging-specific shifts of pollutant dependencies have a comparatively strong effect.

Eine weitere Verfahrensgruppe basiert auf einer optimierten Befüllstrategie des Katalysator. Die Verfahren dieser Gruppe bilanzieren die eingetragenen Komponenten und versuchen eine Fehlbilanz auszugleichen bevor sie an der hinter einem gewissen Katalysatorvolumen angeordneten Sonde zu messen ist. Die Nernstsonde wird hier ebenfalls in Ihrem Fett-Ast betrieben und gleicht nur noch einen falschen Bilanznullpunkt aus. Die oben genannte DE 40 01 616 A1 zeigt ein solches Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses, der abwechselnd mit Luftüberschuß und Luftmangel betrieben wird. Ein Katalysatorvolumen im Abgas des Verbrennungsprozesses speichert bei Sauerstoffüberschuß im Abgas den Sauerstoff und gibt diesen bei Sauerstoffmangel wieder ab. Bei diesem bekannten Verfahren werden die bei Luftüberschuß erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und die bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen mit Hilfe einer vor dem Katalysator angeordneten Nernstsonde bestimmt und das Kraftstoff/Luftverhältnis wird so geregelt, daß die Summe der in einem vorbestimmten Intervall bestimmten Sauerstoffeinträge und Sauerstoffausträge einen vorbestimmten Wert annimmt.Another group of processes is based on an optimized catalyst filling strategy. The methods of this group balance the registered components and try to compensate for a false balance before it is measured on the arranged behind a certain catalyst volume probe. The Nernst probe is also operated here in your fat branch and compensates only for a false balance zero. The above DE 40 01 616 A1 shows such a method for controlling the air-fuel ratio of a combustion process, which is operated alternately with excess air and lack of air. A catalyst volume in the exhaust gas of the combustion process stores oxygen in excess of oxygen in the exhaust gas and releases it again in the event of a lack of oxygen. In this known method, the oxygen excesses taking place in the excess of air into the catalyst volume and the oxygen discharges resulting from lack of air from the catalyst volume are determined with the aid of a Nernst probe arranged upstream of the catalytic converter and the fuel / air ratio is controlled so that the sum the determined in a predetermined interval oxygen inputs and Sauerstoffausträge assumes a predetermined value.

Es hat sich gezeigt, daß die künftigen gesetzgeberischen Anforderungen, beispielsweise die SULEV-Forderungen (Super Ultra Low Emission Vehicle) aus den USA weitere Verbesserungen der bekannten Regelstrategien mit Blick auf einen optimierten Katalysatorbetrieb in Verbindung mit einer weiter gesteigerten Robustheit und Regelgeschwindigkeit erfordern.It has been found that the future legislative requirements, for example the SULEV claims (S uper U ltra L ow E mission V ehicle) from the United States further improvements in the known control strategies with a view to an optimized catalyst operating in conjunction with a further increase in robustness and Require control speed.

Diese Forderung wird auf der Basis des aus der DE 40 01 616 bekannten Verfahrens dadurch erfüllt, daß der Verbrennungsprozeß jeweils mindestens solange mit Sauerstoffüberschuß oder Sauerstoffmangel betrieben wird, bis dieser an einer sauerstoffempfindlichen Nernstsonde hinter dem Katalysatorvolumen auftritt. In Abwandlung des bekannten Verfahrens ist bei einem Ausführungsbeispiel der Erfindung keine Abgassonde vor dem Katalysator erforderlich. Bei einem weiteren Ausführungsbeispile wird vor dem Katalysator anstelle der Nernstsonde nach dem Stand der Technik eine Breitbandsonde verwendet.This requirement is based on the from the DE 40 01 616 known method characterized in that the combustion process is operated in each case at least as long as oxygen excess or lack of oxygen until it occurs at an oxygen-sensitive Nernst probe behind the catalyst volume. In a modification of the known method, no exhaust gas probe in front of the catalyst is required in one embodiment of the invention. In another embodiment, a broadband probe is used in front of the catalyst instead of the prior art Nernst probe.

Das erfindungsgemäße Verfahren ermöglicht den geforderten optimierten Katalysatorbetrieb und verbessert dabei die oben genannten Verfahren hinsichtlich Robustheit und Regelgeschwindigkeit entscheidend in Arbeitspunkten, in denen die obigen Verfahren keine ausreichende Robustheit aufweisen bzw. in denen diese Verfahren durch Querempfindlichkeiten beeinträchtigt werden. Diese Verbesserung ergibt sich dadurch, daß die Erfindung Teilaspekte der oben dargestellten Verfahren enthält und diese um Anteile ergänzt, die eine wesentliche Steigerung der Robustheit bewirken.The inventive method allows the required optimized catalyst operation and thereby improves the above-mentioned methods in terms of robustness and control speed decisively in operating points in which the above methods do not have sufficient robustness or in which these methods are affected by cross-sensitivities. This improvement results from the fact that the invention contains sub-aspects of the methods described above, and these are supplemented by shares, which cause a substantial increase in robustness.

Das erfindungsgemäße Verfahren nutzt die Zweipunktcharakteristik einer Nernstsonde hinter dem Katalysator in Verbindung mit einer Bilanzierung, d.h. einer Berücksichtigung von auf den Katalysator bezogenen Sauerstoffeinträgen und Sauerstoffausträgen.The method of the invention utilizes the two-point characteristic of a Nernst probe downstream of the catalyst in conjunction with balancing, i. consideration of oxygen input and oxygen emissions related to the catalyst.

Aufgrund der Massenerhaltung müssen diese Einträge und Austräge bei der erfindungsgemäßen Gemischsteuerung gleich sein. Würde dieses Verfahren in seiner einfachsten Form angewandt und vernachlässigt man Nichtlinearitäten, so würde sich hinter einem der Sprungsonde anschließenden Katalysatorvolumen eine Sprungsondenspannung von 450mV einstellen (Aufgrund von Unsymmetrien kann sich hier auch eine von 450mV abweichende Spannung einstellen). Dieses entspricht aber nach gängiger Meinung nicht einem optimierten Katalysatorbetrieb.Due to the conservation of mass, these entries and discharges must be the same in the mixture control according to the invention. If this method were used in its simplest form and neglected nonlinearities, then a jump probe voltage of 450 mV would be set behind a the jump probe subsequent catalyst volume (due to asymmetries may here also set a deviating from 450mV voltage). However, this generally does not correspond to optimized catalyst operation.

Um den optimierten Betrieb zu gewährleisten wird dem regelnden Teil ein steuernder Teil angeschlossen. Dieser Teil basiert auf einem Bilanzoptimum für den Katalysatorbetrieb. Aufgrund der notwendigen Bilanzoptimierung der regelnden Phase, wird eine bezüglich Bilanznullpunkt notwendige Zusatzmenge ermittelt. Bezogen auf den Bilanznullpunkt wird an die Flanken Fett-Mager bzw. Mager-Fett der Sprungsonde ein gesteuerter Anteil Fett bzw. Mager angehängt. Dieser Anteil ist so zu bemessen, dass sich hinter einem Gesamtkatalysatorsystem ein Schadstoffoptimum einstellt.To ensure the optimized operation, a controlling part is connected to the regulating part. This part is based on a balance sheet optimum for the catalyst operation. Due to the necessary balance sheet optimization of the regulatory phase, an additional amount required with regard to the balance sheet zero point is determined. Based on the zero point of the balance, a controlled proportion of fat or lean is attached to the flanks fat-lean or lean-fat of the jumping probe. This proportion should be calculated in such a way that a maximum pollutant level is established behind an overall catalytic system.

Eine Weiterbildung der Erfindung sieht daher vor, daß der Wechsel zwischen Sauerstoffüberschuß und Sauerstoffmangel beim Betrieb des Verbrennungsmotors so gesteuert wird, daß die Differenz der bei Luftüberschuß erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und der bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen einen vorbestimmten Wert annimmt.A development of the invention therefore provides that the change between oxygen excess and lack of oxygen is controlled in the operation of the internal combustion engine so that the difference between the oxygen excesses occurring in excess of air in the catalyst volume and the taking place in the absence of air oxygen discharges from the catalyst volume assumes a predetermined value.

Eine weitere Ausführungsform sieht vor, daß zur Bestimmung der bei Luftüberschuß erfolgenden Sauerstoffeinträge in das Katalysatorvolumen und der bei Luftmangel erfolgenden Sauerstoffausträge aus dem Katalysatorvolumen eine Größe benutzt wird, die den Kraftstoffzufluß zum Verbrennungsmotor wenigstens mitbestimmt.A further embodiment provides that a quantity is used to determine the taking place at excess oxygen in the catalyst volume and the taking place in lack of air oxygen discharges from the catalyst volume, which at least co-determines the fuel flow to the engine.

Gemäß einer weiteren Ausführungsform wird die genannte Größe auf der Basis einer aus Meßgrößen errechneten Ansaugluftmenge und auf der Basis einer zu dieser Ansaugluftmenge zugemessenen Kraftstoffmenge gebildet.According to another embodiment, said quantity is formed on the basis of an intake air amount calculated from measured quantities and on the basis of an amount of fuel added to this amount of intake air.

Nach einer alternativen bevorzugten Ausführungsform wird die genannte Größe in Abhängigkeit von dem Signal einer vor dem Katalysatorvolumen angeordneten Abgassonde gebildet.According to an alternative preferred embodiment, said size is formed as a function of the signal of an exhaust gas probe arranged in front of the catalyst volume.

Eine weitere Ausführungsform sieht vor, daß die genannte Größe eine Eingangsgröße für einen zweiten Regelkreis ist, in dem das Kraftstoff/Luftverhältnis mit einer im Vergleich zum ersten Regelkreis kleineren Zeitkonstante geregelt wird.A further embodiment provides that the said variable is an input variable for a second control loop in which the air-fuel ratio is regulated with a smaller time constant compared to the first control loop.

Eine weitere Ausführungsform zeichnet sich dadurch aus, daß die Bildung der genannten Größe verändert wird, wenn die Sauerstoffeinträge und Sauerstoffausträge voneinander abweichen.Another embodiment is characterized in that the formation of said size is changed when the oxygen inputs and Sauerstoffausträge differ from each other.

Gemäß einer Weiterbildung dieser Ausführungsform erfolgt die Veränderung so, daß die genannte Abweichung kleiner wird.According to a development of this embodiment, the change takes place so that said deviation becomes smaller.

Nach einer bevorzugten Ausführungsform dieser Weiterbildung wird die Veränderung als Funktion des Integrals der genannten Abweichung gebildet.According to a preferred embodiment of this development, the change is formed as a function of the integral of said deviation.

Nach einer weiteren Ausführungsform wird das Kraftstoff/Luftverhältnis durch einen überlagerten Regelkreis vorgegeben.According to a further embodiment, the fuel / air ratio is predetermined by a superimposed control loop.

Eine weitere Ausgestaltung sieht vor, daß die Werte der bestimmten Sauerstoffeinträge und Sauerstoffausträge genutzt werden, um einen realen Nullwert zwischen Sauerstoffüberschuß und Sauerstoffmangel zu bestimmen.A further embodiment provides that the values of the specific oxygen inputs and oxygen emissions are used to determine a real zero value between oxygen excess and oxygen deficiency.

In einer weiteren Ausführungsform kann die Erfindung auch als Verfahren zur Regelung des Kraftstoff/Luft-Verhältnisses eines Verbrennungsprozesses mit einer Lambdasonde hinter einem Teilkatalysatorvolumen verstanden werden, bei dem die Lambdasonde anzeigt, wenn der Grad der Befüllung des Teilkatalysatorvolumens mit Sauerstoff einen ersten vorbestimmten Wert überschreitet oder einen zweiten vorbestimmten Wert unterschreitet. Bei Unterschreiten des zweiten vorbestimten Wertes wird das Kraftstoff/Luftverhältnis im Mittel definiert magerer (kraftstoffärmer) eingestellt. Bei daraus resultierendem Überschreiten des zweiten vorbestimten Wertes wird entsprechend im Mittel definiert angefettet. Dabei ergibt sich eine für den Betriebspunkt des Verbrennungsprozesses und den Katalysator charakteristische Frequenz der Abmagerungen und Anfettungen. Bei einem Verbrennungsmotor wird ein ein Betriebspunkt beispielsweise durch einen bestimmten Wert der Brennraumfüllung bei einer bestimmten Drehzahl definiert. Im weiteren wird der Sauerstoffeintrag und der Sauerstoffaustrag bilanziert. Die Kraftstoffzumessung erfolgt so, daß sich als Bilanz der Sauerstoffeinträge und der Sauerstoffausträge im Mittel über eine Periode (ein Sauerstoffeitrag und ein Sauerstoffaustrag) ein vorbestimmter Wert, vorzugsweise der Wert Null ergibt, was einem definierten mittleren Lambdawert entspricht. Durch eine definierte Verzögerung des Wechsels zwischen im Mittel fettem und magerem Kraftstoff/Luft-Gemisch läßt sich ein beliebiger mittlerer Lambdawert einstellen, da jede Verzögerung gewissermaßen einen zusätzlichen Eintrag von Sauerstoff (bei verzögertem Wechsel zu fettem Gemisch) oder Austrag von Sauerstoff (bei verzögertem Wechsel zu magerem Gemisch) bewirkt. Die definierte Verzögerung erfolgt bevorzugt so, daß der resultierende Zusatzeintrag oder Zusatzaustrag bezogen auf eine Periode einem vorbestimmten Wert entspricht. Die Erfindung bezieht sich auch auf eine Steuereinrichtung, vorzugsweise eine elektronische Steuereinrichtung zur Durchführung wenigstens einer der oben angegebenen Verfahren, Weiterbildungen und Ausführungsformen.In a further embodiment, the invention can also be understood as a method for controlling the fuel / air ratio of a combustion process with a lambda probe behind a partial catalyst volume, wherein the lambda probe indicates when the degree of filling of the partial catalyst volume with oxygen exceeds a first predetermined value, or falls below a second predetermined value. If the value falls below the second predetermined value, the fuel / air ratio is defined on average defined leaner (fuel-poor). If the second predetermined value is exceeded as a result, the amount is enriched accordingly on average. This results in a characteristic for the operating point of the combustion process and the catalyst frequency of the emaciation and Anfettungen. In an internal combustion engine, an operating point is defined, for example, by a specific value of the combustion chamber charge at a certain speed. In addition, the oxygen input and the oxygen discharge is accounted for. The fuel metering in such a way that the balance of the oxygen inputs and the oxygen discharges averages over a period (an oxygen contribution and an oxygen discharge) to a predetermined value, preferably the value zero, which corresponds to a defined average lambda value. By a defined delay of the change between medium fat and lean fuel / air mixture, any average lambda value can be set because each delay to some extent an additional entry of oxygen (in delayed change to rich mixture) or discharge of oxygen (with a delayed change to lean mixture) causes. The defined delay is preferably such that the resulting additional entry or additional discharge with respect to a period corresponds to a predetermined value. The invention also relates to a control device, preferably an electronic control device for carrying out at least one of the above-mentioned methods, developments and embodiments.

Im folgenden werden Ausführungsbeispiele der Erfindung mit Bezug auf die Figuren erläutert.In the following, embodiments of the invention will be explained with reference to the figures.

Fig. 1 zeigt die Struktur eines ersten technischen Umfeldes, in der die Erfindung ihre Wirkung entfaltet. Fig. 1 shows the structure of a first technical environment in which the invention has its effect.

Fig. 2 offenbart ein auf diese Struktur bezogenes Ausführungsbeispiel der Erfindung in der Form einer Funktionsblockdarstellung. Fig. 2 discloses an embodiment of the invention related to this structure in the form of a functional block diagram.

Die Fig. 3 und 4 zeigen Signalverläufe zur Veranschaulichung der Wirkung des genannten Ausführungsbeispiels.The 3 and 4 show waveforms to illustrate the effect of said embodiment.

Fig. 5 zeigt die Struktur eines zweiten technischen Umfeldes für die Anwendung der Erfindung. Fig. 5 shows the structure of a second technical environment for the application of the invention.

Fig. 6 offenbart ein darauf bezogenes Ausführungsbeispiel der Erfindung in Funktionsblockdarstellung. Fig. 6 discloses a related embodiment of the invention in functional block representation.

Fig. 7 offenbart die Struktur eines zur Erfüllung der o.a. SULEV-Forderungen bevorzugten technischen Umfeldes der Erfindung. Fig. 7 discloses the structure of a preferred technical environment of the invention for meeting the above SULEV requirements.

Fig. 8 zeigt ein entsprechendes Ausführungsbeispiel der Erfindung in Funktionsblockdarstellung. Fig. 8 shows a corresponding embodiment of the invention in functional block diagram.

Die Figuren 9 bis 13 stellen zeitliche Verläufe von Signalen zur Verdeutlichung der Wirkung der Erfindung im Rahmen des bevorzugten technischen Umfeldes dar.The FIGS. 9 to 13 represent time courses of signals to illustrate the effect of the invention in the context of the preferred technical environment.

Beschreibungdescription

Die Ziffer 10 in der Figur 1 bezeichnet einen Verbrennungsmotor, der ein Gemisch aus Kraftstoff und Luft in einem Verbrennungsprozess verbrennt. Die Menge oder Masse der zum Verbrennungsprozess strömenden Luft wird durch einen Luftmengenmesser 14 erfasst. Das Signal des Luftmengenmessers 14 wird einer elektronischen Steuereinrichtung 18 zugeführt. Die elektronische Steuereinrichtung 18 berechnet daraus und gegebenenfalls aus weiteren Betriebskenngrößen des Verbrennungsprozesses ein Kraftstoffzumesssignal, mit dem ein Kraftstoffzumessmittel 16 angesteuert wird. In der Darstellung der Figur 1 ist das Kraftstoffzumessmittel 16, beispielsweise ein Einspritzventil oder eine Anordnung von Einspritzventilen, in einem Saugrohr 12 des Verbrennungsmotors angeordnet. In diesem Fall findet die Gemischbildung, das heißt die Vermischung von angesaugter Luft und zugemessenem Kraftstoff im Saugrohr statt. Alternativ kann die Gemischbildung aber auch direkt in den Brennräumen des Verbrennungsmotors stattfinden, wie es vom Dieselmotor und vom Ottomotor mit Benzindirekteinspritzung bekannt ist. Die Abgase des Verbrennungsprozesses im Verbrennungsmotor werden durch ein Abgasrohr 20 zu einem Katalysatorvolumen 22 geleitet. Eine vor dem Katalysatorvolumen 22 angeordnete Abgassonde 24 erfasst vorzugsweise die Sauerstoffkonzentration im Abgas zwischen dem Verbrennungsprozess und dem Katalysatorvolumen 22. Im weiteren wird die Abgassonde 24 auch als Vorkatsonde 24 bezeichnet. Eine weitere Abgassonde ist hinter dem Katalysatorvolumen 22 angeordnet. Diese Abgassonde ist vorzugsweise eine sogenannte Nernstsonde 26, während die Vorkatsonde 24 vorzugsweise als Breitbandsonde realisiert ist. Ein Ausführungsbeispiel einer Nernstsonde 26 ist dem Kraftfahrtechnischen Taschenbuch, 22. Auflage, VDI-Verlag Düsseldorf, ISBN 3-18-419122-2 (Automotive Handbook 4th Edition, SAE Society of Automotive Engineers, USA, ISBN 1-56091-918-3, auf der Seite 491 (491) offenbart. Auf der folgenden Seite 492 (492) des gleichen Buches ist auch eine Breitbandsonde als Ausführungsbeispiel der Vorkatsonde 24 offenbart. Die Breitbandsonde 24 weist einen Messspalt auf, der über eine Gaseinlassöffnung mit dem Abgas verbunden ist. Der Messspalt ist weiter mit einer elektrochemischen Pumpzelle versehen, mit der Sauerstoff aus dem Messspalt heraus oder in den Messspalt hinein gepumpt werden kann. Eine elektronische Schaltung regelt die an der Pumpzelle anliegende Spannung so, dass die Zusammensetzung des Gases im Messspalt konstant bei Lambda=1 liegt. Der dazu notwendige Pumpstrom Isvk liefert ein Maß für den Sauerstoffgehalt des Abgases. Mit anderen Worten: die Breitbandsonde liefert ein Stromsignal I Sonde-Vor-Kat. Die Nernstsonde 26 liefert dagegen ein Spannungssignal U Sonde-Hinter-Kat. Die Signale der beiden Abgassonden 24 und 26 werden ebenfalls der elektronischen Steuereinrichtung 18 zugeführt und beeinflussen ergänzend die Kraftstoffzumessung. Der Verbrennungsmotor 10 stellt gewissermaßen eine Regelstrecke als Bestandteil eines ersten Regelkreises aus Verbrennunsmotor 10, Abgassonde 24, elektronischer Steuereinrichtung 18 und Kraftstoffzumesseinrichtung 16 dar. Ein Sauerstoffmangel im Abgas wird von der Abgassonde 24 registriert und führt durch eine entsprechende Verarbeitung durch einen Regelalgorithmus in der elektronischen Steuereinrichtung 18 zu einer Vergrößerung der Einspritzimpulsbreite, mit der das Kraftstoffzumessmittel 16 angesteuert wird. Diesem Regelkreis ist ein weiterer Regelkreis überlagert, der auf dem Signal der Nernstsonde 26 basiert. Das erfindungsgemäße Zusammenwirken der beiden Regelkreise wird im Folgenden mit Blick auf die Struktur der Figur 2 erläutert. Die gestrichelte Linie 27 in der Figur 2 trennt die mit der Ziffer 18 bezeichnete Funktionsstruktur der erfindungsgemäßen elektronischen Steuereinrichtung von den übrigen Bestandteilen der Struktur der Figur 1, insbesondere von dem Verbrennungsmotor 10, der Vorkatsonde 24, dem Katalysatorvolumen 22 und der Nernstsonde 26. Die Ziffer 28 bezeichnet ein Kennfeld, das beispielsweise von Eingangsgrößen wie der gemessenen Luftmenge und der Drehzahl des Verbrennungsmotors adressiert wird und das eine Basisimpulsbreite t_Basis als Ausgangswert für die Kraftstoffzumessung liefert. Dieser Ausgangswert wird in der Regelverknüpfung 30 mit einem Regelfaktor fr aus einem ersten Regler 34 verknüpft. Das Resultat dieser Verknüpfung bestimmt als Einspritzimpulsbreite ti die Kraftstoffmenge, die dem Verbrennungsprozess in dem Verbrennungsmotor 10 zugeführt wird. Aus dem Verbrennungsprozeß resultiert eine bestimmte Sauerstoffkonzentration im Abgas, die sich im Signal Ushk der Nernstsonde 26 abbildet. Dieses Signal Ushk der Nernstsonde 26 wird einem Zweipunktregler 36 zugeführt. Dieser Zweipunktregler 36 stellt einen echten Zweipunktregler im klassischen Sinne dar, bei dem die Stellgröße nur jeweils einem von zwei Werten entsprechen kann. Im Fall des Reglers 36 wird das Signal Ushk der Abgassonde 26 mit einem Schwellenwert von beispielsweise 450 Millivolt verglichen. Wenn hinter dem Katalysator 22 Sauerstoffüberschuss vorliegt, besitzt das Signal Ushk eine Größenordnung von circa 100 Millivolt. In diesem Fall fettet der Zweipunktregler 36 an, indem er beispielsweise einen Faktor 1,02 ausgibt, mit dem die im ersten Regler gebildete Stellgröße multiplikativ vergrößert wird, was letztlich zu einer Vergrößerung der Einspritzimpulsbreite und damit zu einer Anfettung des Gemisches führt. Liegt dagegen hinter dem Katalysatorvolumen 22 Sauerstoffmangel vor, so besitzt das Signal Ushk eine Größenordnung von circa 900 Millivolt und der Zweipunktregler 36 magert entsprechend ab, indem er beispielsweise einen Faktor 0,98 ausgibt. Dieser Faktor 0,98 verkleinert im ersten Regler 34 die Stellgröße fr, was letztlich zu einer Verkürzung der Einspritzimpulsbreiten ti und damit zu einer Abmagerung führt. Die Nernstsonde 26 bildet damit in Verbindung mit dem Zweipunktregler 36 und der übrigen Regelstrecke (34, 30, 10, 24, 22) einen zweiten Regelkreis. Dieser zweite Regelkreis sorgt dafür, dass das Katalysatorvolumen 22 mit einem im Mittel mageren Gemisch befüllt wird, wenn die Sonde hinter dem Katalysatorvolumen 22 Sauerstoffmangel anzeigt. Dieses magere Gemisch sorgt dafür, dass die Nernstsonde 26 hinter dem Katalysatorvolumen 22 irgendwann Sauerstoffüberschuss anzeigt. Wenn dies passiert, wird das Katalysatorvolumen 22 anschließend mit einem im Mittel fetten Gemisch (Sauerstoffmangel = Reduktionsmitteleintrag) befüllt und das Signal der Nernstsonde 26 springt irgendwann wieder nach 900 Millivolt.The numeral 10 in the FIG. 1 denotes an internal combustion engine that burns a mixture of fuel and air in a combustion process. The amount or mass of the air flowing to the combustion process is detected by an air flow meter 14. The signal of the air flow meter 14 is supplied to an electronic control device 18. The electronic control unit 18 calculates therefrom and optionally from further operating parameters of the combustion process a fuel metering signal with which a fuel metering means 16 is actuated. In the presentation of the FIG. 1 For example, the fuel metering means 16, for example an injection valve or an arrangement of injection valves, is arranged in a suction pipe 12 of the internal combustion engine. In this case, the mixture formation, that is the Mixing of sucked air and metered fuel in the intake manifold instead. Alternatively, however, the mixture formation can also take place directly in the combustion chambers of the internal combustion engine, as is known from the diesel engine and the petrol engine with gasoline direct injection. The exhaust gases of the combustion process in the internal combustion engine are passed through an exhaust pipe 20 to a catalyst volume 22. An exhaust gas probe 24 arranged upstream of the catalyst volume 22 preferably detects the oxygen concentration in the exhaust gas between the combustion process and the catalyst volume 22. In addition, the exhaust gas probe 24 is also referred to as a pre-sample probe 24. Another exhaust gas probe is arranged behind the catalyst volume 22. This exhaust gas probe is preferably a so-called Nernst probe 26, while the Vorkatsonde 24 is preferably realized as a broadband probe. An embodiment of a Nernst probe 26 is the Automotive Handbook, 22nd edition, VDI-Verlag Dusseldorf, ISBN 3-18-419122-2 (Automotive Handbook 4 th Edition, SAE Society of Automotive Engineers, USA, ISBN 1-56091-918-3 , page 491 (491), on page 492 (492) of the same book also discloses a broadband probe as an embodiment of precursor probe 24. Broadband probe 24 has a metering gap connected to the exhaust via a gas inlet port. The measuring gap is further provided with an electrochemical pumping cell, with which oxygen can be pumped out of the measuring gap or into the measuring gap An electronic circuit regulates the voltage applied to the pumping cell such that the composition of the gas in the measuring gap remains constant at lambda = 1 The pumping current Isvk required for this purpose provides a measure of the oxygen content of the exhaust gas, in other words, the broadband probe supplies a current si gnal I S V onde- or- K at. In contrast, the Nernst 26 provides a voltage signal U S onde- H inter- K at. The signals of the two exhaust gas probes 24 and 26 are also supplied to the electronic control device 18 and additionally influence the fuel metering. The internal combustion engine 10 effectively represents a controlled system as part of a first control circuit of internal combustion engine 10, exhaust gas probe 24, electronic control device 18 and fuel metering device 16. An oxygen deficiency in the exhaust gas is registered by the exhaust gas probe 24 and leads through a corresponding processing by a control algorithm in the electronic control device 18 to increase the injection pulse width, with which the fuel metering means 16 is driven. This control loop is superimposed on a further control loop, which is based on the signal of the Nernst probe 26. The interaction of the two control circuits according to the invention is described below with a view to the structure of FIG. 2 explained. The dashed line 27 in the FIG. 2 separates the functional structure designated by the numeral 18 of the electronic control device according to the invention of the other components of the structure of FIG. 1 , in particular of the internal combustion engine 10, the Vorkatsonde 24, the catalyst volume 22 and the Nernstsonde 26. The numeral 28 denotes a map, which is addressed for example by input variables such as the measured air quantity and the engine speed and the base pulse width t_Basis as the output value for the Fuel metering supplies. This output value is linked in the rule link 30 with a control factor fr from a first controller 34. The result of this combination determines, as the injection pulse width ti, the amount of fuel that is supplied to the combustion process in the internal combustion engine 10. From the combustion process results in a certain concentration of oxygen in the exhaust gas, which in Signal Ushk of the Nernst probe 26 images. This signal Ushk of the Nernst probe 26 is fed to a two-point controller 36. This two-point controller 36 represents a true two-point controller in the classical sense, in which the manipulated variable can only correspond to one of two values. In the case of the controller 36, the signal Ushk of the exhaust gas probe 26 is compared with a threshold of, for example, 450 millivolts. If there is an excess of oxygen behind the catalyst 22, the signal Ushk has an order of magnitude of approximately 100 millivolts. In this case, the two-position controller 36 enriches, for example by outputting a factor of 1.02, with which the manipulated variable formed in the first controller is multiplied, which ultimately leads to an increase in the injection pulse width and thus to an enrichment of the mixture. If, on the other hand, there is a lack of oxygen behind the catalyst volume 22, the signal Ushk has an order of magnitude of approximately 900 millivolts, and the two-position regulator 36 accordingly empties, for example by outputting a factor of 0.98. This factor 0.98 reduces in the first controller 34, the manipulated variable fr, which ultimately leads to a shortening of the injection pulse widths ti and thus to an emaciation. The Nernst probe 26 thus forms in conjunction with the two-point controller 36 and the other controlled system (34, 30, 10, 24, 22) a second control loop. This second control circuit ensures that the catalyst volume 22 is filled with an average-lean mixture when the probe indicates oxygen deficiency behind the catalyst volume 22. This lean mixture ensures that the Nernst probe 26 eventually displays oxygen excess behind the catalyst volume 22. If this happens, the catalyst volume 22 is then filled with an average-rich mixture (oxygen deficiency = reducing agent entry) and the signal of Nernst probe 26 eventually jumps back to 900 millivolts.

Somit befüllt und entleert der Zweipunktregelalgorithmus das Katalysatorvolumen 22 immer wieder. Da der Sauerstoffspeicher nur die Menge an Sauerstoff abgeben kann, die er vorher gespeichert hat, müssen die realen Sauerstoffüberschuß- und Sauerstoffmangel-Mengen gleich sein. Mit anderen Worten: Der in Sauerstoffüberschussphasen in das Katalysatorvolumen 22 eingetragene Sauerstoff entspricht in seiner Menge dem im Sauerstoffmangel aus dem Katalysatorvolumen 22 ausgetragenen Sauerstoff. Erfindungsgemäß werden diese beiden per Definition gleichen Mengen messtechnisch erfasst und zur Korrektur des ersten Regelkreises verwendet. Zu diesem Zweck weist die Figur 2 die Struktur 38, 40, 42, 44, 46 und 32 auf. Dabei bezeichnet die Ziffer 38 einen Triggersignalpfad, mit dem ein Signalintegrator 40 auf Null gesetzt und ausgelöst wird. Dem Signalintegrator 40 wird parallel zu dem Triggersignal 38 das Signal Isvk der Vorkatsonde 24, beziehungsweise ein korrigiertes Signal Isvk_korr der Vorkatsonde 24 zugeführt. Dieser Signalintegrator ist so beschaltet und ausgelegt, dass er nur den Sauerstoffüberschussteil des Signals Isvk integriert. Die Integration wird ausgelöst, wenn der Zweipunktregler 36 ein abmagerndes Signal ausgibt und sie wird gestoppt, wenn der Zweipunktregler 36 auf anfettendes Gemisch umschaltet. Der Endwert des Sauerstoffspeicherintegrators 40 liefert damit ein Maß für die Sauerstoffspeicherfähigkeit des Katalysators (Oxygen Storage Capacity OSC). Analog berechnet der Integrator 42 in Sauerstoffmangelphasen eine negative Sauerstoffmangel einen Sauerstoffaustrag -OSC.Thus, the two-point control algorithm fills and deflates the catalyst volume 22 again and again. Since the oxygen storage can only deliver the amount of oxygen that it has previously stored, the real oxygen excess and oxygen deficiency levels must be equal. In other words, the oxygen introduced into the catalyst volume 22 in oxygen excess phases corresponds in its quantity to the oxygen discharged from the catalyst volume 22 in the absence of oxygen. According to the invention, these two quantities are detected by measurement using equal amounts and used to correct the first control loop. For this purpose, the FIG. 2 the structure 38, 40, 42, 44, 46 and 32 on. In this case, the numeral 38 denotes a trigger signal path with which a signal integrator 40 is set to zero and triggered. The signal integrator 40 is supplied in parallel to the trigger signal 38, the signal Isvk the Vorkatsonde 24, and a corrected signal Isvk_korr the Vorkatsonde 24. This signal integrator is wired and designed to integrate only the excess oxygen part of the Isvk signal. The integration is triggered when the two-position controller 36 outputs a leaning signal and it is stopped when the two-position controller 36 switches to enriching mixture. The final value of the oxygen storage integrator 40 thus provides a measure of the oxygen storage capacity (OSC). Analogously, in oxygen deficiency phases, integrator 42 calculates a negative oxygen deficiency an oxygen output -OSC.

In der Differenzverknüpfung 44 werden die Ausgangssignale der Integratoren 40 und 42 voneinander subtrahiert. Da sie physikalisch per Definition gleich sein müssen, zeigt ein von null abweichendes Ergebnis der Differenzverknüpfung 44 gewissermaßen einen Berechnungsfehler an. Im Rahmen dieser Erfindung geht man davon aus, dass ein solcher Berechnungsfehler auf einer Kennlinienverschiebung des Signals Isvk der Vorkatsonde 24 beruht. Eine Kennlinienverschiebung hat zur Folge, beispielsweise schon fettes Gemisch signalisiert, obwohl real noch mageres Gemisch vorliegt. Als Folge wird der Wert des MINUS_OSCIntegrators 42 größer sein als der Wert des OSC-Integrators 40. Die Differenz beider Werte wird einem Integrator 46 zugeführt, dessen Ausgangssignal über eine Offsetkorrekturverknüpfung 32 das Signal Isvk der Vorkatsonde 24 korrigiert. Dadurch wird gewissermaßen die verschobene Kennlinie ausgeglichen, so dass die Werte des OSC-Integrators 40 und des MINUS_OSCIntegrators 42 nach eingeschwungener Korrektur wieder gleich sind. Diese Zusammenhänge werden durch die Figur 3 in Verbindung mit der Figur 4 weiter verdeutlicht. Die Ziffer 52 in der Figur 3 bezeichnet einen ersten Zeitbereich, in dem die Offsetkorrektur noch nicht eingeschwungen ist. Dagegen bezeichnet die Ziffer 54 in der Figur 3 einen zweiten Zeitbereich, in dem die Offsetkorrektur eingeschwungen ist. Insgesamt zeigt die Figur 3 den zeitlichen Verlauf des Signals Isvk über Zeit t. Die gestrichelte Linie 48 markiert den (falschen) Mess-Nullwert der Vorkatsonde 24. Der Nullwert, das heißt der Wert, der Sauerstoffüberschuß vom Sauerstoffmangel trennt, ist von grundlegender Bedeutung für die Bildung der genannten OSC- und MINUS_OSC-Mengen. Dieser "Nullwert" zwischen Sauerstoffüberschuß und Sauerstoffmangel wird von einer Sonde vor dem Katalysator geliefert oder es wird ein gespeicherter Wert verwendet, beispielsweise eine Einspritzzeit, bei der man stöchiometrische Gemischzusammensetzung annimmt. Dieser Nullwert kann aber fehlerhaft sein. Erfindungsgemäß werden die Sauerstoffüberschuß- respektive Sauerstoffmangel-Mengen bezogen auf diesen - möglicherweise fehlerbehafteten Nullwert bestimmt. Die relative Abweichung von dem angenommenen Nullwert ist bekannt. Mit der gemessenen Luftmenge läßt sich daraus der Absolutwert für den Sauerstoffeintrag bzw. Sauerstoffaustrag bestimmen. Da der Sauerstoffspeicher nur die Menge an Sauerstoff abgeben kann, die er vorher gespeichert hat, müssen die realen Sauerstoffüberschuß- und Sauerstoffmangel-Mengen gleich sein. Wenn die berechneten Mengen nicht gleich sind, kann dies nur daran liegen, daß der angenommene Nullwert nicht dem realen Nullwert entspricht, so daß bspw. bei der Berechnung ein realer Eintrag als Austrag gewertet wurde. Anschließend wird der angenommene Nullwert verändert und zwar in die Richtung der größeren Menge. Das heißt, wenn bei der vorherigen Berechnung die Sauerstoffüberschußmenge größer war als die Sauerstoffmangelmenge, wird der Nullwert in Richtung Sauerstoffüberschuß verschoben. Ausgehend von diesem neuen Nullwert wird wieder mit gleichen Beträgen angefettet und abgemagert. Diese Vorgehensweise wird solange wiederholt, bis die genannten berechneten Mengen gleich sind. Der zugehörige Nullwert entspricht dem realen Nullwert. Mit anderen Worten: Die Werte der bestimmten Sauerstoffeinträge und Sauerstoffausträge werden genutzt, um einen realen Nullwert zwischen Sauerstoffüberschuß und Sauerstoffmangel zu bestimmen.
Damit kann entweder eine vordere Sonde oder ein vorgesteuerter Nullwert korrigiert werden. Dieses Vorgehen wird unter fortlaufendem Bezug auf die Fig. 3 weiter erläutert. Die gestrichelte Linie 50 bezeichnet den realen Nullwert. Bei der Breitbandsonde entspricht der niedrige Signalpegel fettem Gemisch, also Sauerstoffmangel, und der hohe Signalpegel entspricht magerem Gemisch, also Sauerstoffüberschuss. Die schraffierte Fläche 64 stellt das Integral einer Sauerstoffüberschussperiode über dem realen Nullwert 50 dar. Die schraffierte Fläche 66 stellt entsprechend das Integral einer Sauerstoffmangelperiode über dem realen Nullwert 50 dar. Beide Flächen sind gleich, weil die Umschaltung zwischen fettem und magerem Gemisch durch die genau messende Nernstsonde 26 hinter dem Katalysatorvolumen 22 vorgenommen wird. Die schraffierte Fläche 68 entspricht dem Integral über dem (falschen) Messnullwert der Abgassonde 24 während einer Sauerstoffüberschussperiode und die Fläche 70 entspricht dem Integral eines Sauerstoffmangels über dem falschen Messnullwert während einer Sauerstoffmangelperiode. Die Flächen 68 und 70 werden messtechnisch jeweils durch die Integratoren 40 und 42 erfasst. Es ist deutlich ersichtlich, dass im nicht eingeschwungenen Zustand der OSC-Wert (68) stark vom MINUS_OSCWert (70) abweicht. Der zweite Zeitbereich (54) zeigt dagegen den eingeschwungenen Zustand. Als Ergebnis der Integration im Block 46 und des Eingriffs in der Offsetkorrekturverknüpfung 32 ist das Signal Isvk so nach unten verschoben, dass die Messnulllinie 48 mit der realen Nulllinie 50 zusammenfällt. Das Signal im zweiten Zeitbereich 54 spiegelt damit den Verlauf des korrigierten Signals Isvk_korr wieder. Wie aus der Zeichnung ersichtlich, sind in diesem Fall die OSC-Mengen (72) und MINUS_OSCMengen (74) gleich. In der Figur 4 ist das zum Signalverlauf der Figur 3 korrespondierende Signal Ushk der Nernstsonde 26 dargestellt. Das Signal Isvk gibt gewissermaßen die Sauerstoffkonzentration vor dem Kataylsator an und das Signal Ushk gibt gewissermaßen die Sauerstoffkonzentration hinter dem Katalysator an. Aus dem Vergleich der Figur 3 und Figur 4 wird ersichtlich, dass vor dem Katalysator solange Sauerstoffüberschuss (mageres Gemisch) erzeugt wird, wie die hintere Abgassonde 26 Sauerstoffmangel registriert. Umgekehrt wird vor dem Katalysator solange Sauerstoffmangel (fettes Gemisch) erzeugt, wie die hinter dem Katalysator angeordnete Abgassonde 26 mageres Gemisch signalisiert. Die hintere Abgassonde misst prinzipbedingt den Übergang von fettem zu magerem Gemisch und umgekehrt sehr genau, da sie dort den steilen Signalpegelwechsel zwischen 900 und 100 Millivolt aufweist. Sie misst weiter deshalb sehr genau, weil der vorgeschaltete Katalysator 22 die Abgassonde 26 vor größeren Temperaturschwankungen schützt und außerdem die Abgasbestandteile ins thermodynamische Gleichgewicht bringt.
In the difference link 44, the output signals of the integrators 40 and 42 are subtracted from each other. Since they must be physically the same by definition, a nonzero result of the difference linkage 44 in a sense a calculation error. In the context of this invention, it is assumed that such a calculation error is based on a characteristic shift of the signal Isvk of the precursor probe 24. A characteristic shift has the consequence, for example, already fat mixture signaled, although still present in real lean mixture. As a result, the value of the MINUS_OSC integrator 42 will be greater than the value of the OSC integrator 40. The difference in both values is applied to an integrator 46 whose output signal corrects the signal Isvk of the pre-sample probe 24 via an offset correction link 32. As a result, the shifted characteristic is effectively compensated so that the values of the OSC integrator 40 and of the MINUS_OSC integrator 42 are equal again after the correction has settled. These connections are made by the FIG. 3 in conjunction with the FIG. 4 further clarified. The number 52 in the FIG. 3 denotes a first time range in which the offset correction has not yet settled. By contrast, the numeral 54 in the FIG. 3 a second time range in which the offset correction has settled. Overall, the shows FIG. 3 the time course of the signal Isvk over time t. The dashed line 48 marks the (false) zero measurement value of the pre-sample probe 24. The zero value, that is, the value that separates oxygen excess from the oxygen deficiency, is of fundamental importance for the formation of said OSC and MINUS_OSC amounts. This "zero value" between oxygen excess and oxygen deficiency is provided by a probe in front of the catalyst or a stored value is used, for example an injection time assuming a stoichiometric mixture composition. This zero value can be incorrect. According to the invention, the excess oxygen or oxygen deficiency quantities based on this - possibly faulty zero value. The relative deviation from the assumed zero value is known. With the measured amount of air can be determined from the absolute value for the oxygen input or oxygen discharge. Since the oxygen storage can only deliver the amount of oxygen that it has previously stored, the real oxygen excess and oxygen deficiency levels must be equal. If the calculated quantities are not equal, this can only be because the assumed zero value does not correspond to the real zero value, so that, for example, in the calculation a real entry was evaluated as a discharge. Subsequently, the assumed zero value is changed in the direction of the larger amount. That is, if in the previous calculation, the oxygen excess amount was larger than the oxygen deficiency amount, the zero value is shifted toward oxygen excess. Starting from this new zero value, the same amounts are enriched and emaciated again. This procedure is repeated until the said calculated quantities are the same. The associated zero value corresponds to the real zero value. In other words, the values of the specific oxygen inputs and oxygen emissions are used to determine a real zero value between oxygen excess and oxygen deficiency.
This can be used to correct either a front probe or a pilot zero value. This procedure is described with continuing reference to Fig. 3 further explained. The dashed line 50 indicates the real zero value. In the broadband probe, the low signal level corresponds to a rich mixture, ie an oxygen deficiency, and the high signal level corresponds to a lean mixture, ie oxygen excess. The hatched area 64 represents the integral of an oxygen excess period over the real one The hatched area 66 correspondingly represents the integral of an oxygen deficiency period above the real zero value 50. Both areas are equal because the switching between rich and lean mixture is performed by the accurately measuring Nernst probe 26 behind the catalyst volume 22. The hatched area 68 corresponds to the integral over the (false) zero value of the exhaust gas probe 24 during an oxygen excess period, and the area 70 corresponds to the integral of an oxygen deficiency above the false zero during an oxygen deficiency period. The surfaces 68 and 70 are metrologically detected by the integrators 40 and 42, respectively. It can be clearly seen that in the non-steady state, the OSC value (68) deviates greatly from the MINUS_OSC value (70). The second time range (54), however, shows the steady state. As a result of the integration in block 46 and the engagement in the offset correction link 32, the signal Isvk is shifted down so that the zero measurement line 48 coincides with the real zero line 50. The signal in the second time range 54 thus reflects the course of the corrected signal Isvk_korr again. As can be seen from the drawing, in this case the OSC quantities (72) and MINUS_OSC quantities (74) are the same. In the FIG. 4 is that to the waveform of the FIG. 3 corresponding signal Ushk the Nernst probe 26 shown. The signal Isvk effectively indicates the oxygen concentration in front of the catalyst and the signal Ushk effectively indicates the oxygen concentration behind the catalyst. From the comparison of FIG. 3 and FIG. 4 It can be seen that as long as the oxygen excess (lean mixture) is generated before the catalyst as the rear exhaust gas probe 26 detects oxygen deficiency. Conversely, oxygen deficiency (rich mixture) is produced in front of the catalyst as long as that behind the catalyst arranged exhaust gas probe 26 indicates lean mixture. The rear exhaust gas probe measures the principle of the transition from rich to lean mixture and vice versa very precisely, since it has there the steep signal level change between 900 and 100 millivolts. It also measures very precisely because the upstream catalyst 22 protects the exhaust gas probe 26 from major temperature fluctuations and also brings the exhaust gas components into thermodynamic equilibrium.

Mit anderen Worten: Es handelt sich um ein bilanzierendes Gesamtsystem, welches sich auf den Sprung der Lambda-Sonde hinter einem Teilkatalysatorvolumen stützt bzw. kalibriert. Bezüglich der Zweipunktregelung wird aufgrund von Symmetriegedanken als auch Robustheitsaspekten nach Ablauf einer Periode (möglich auch nach Halbperiode) bewertet welche 02-Menge in den Katalysator ein- und ausgetragen wurde. Aufgrund der Bilanz müssen diese Flächen gleich sein. Falls sich ein Ungleichgewicht ergibt, wird der Offset (der Sondenkennlinie) vor Katalysator so verstellt, dass die Bilanz wieder erfüllt ist. Falls es aufgrund von Gaslaufzeiten zu einer verzögerten Systemreaktion aufgrund des Sprung der Sonde kommt, kann dieser Anteil ebenfalls in der Bilanzierung berücksichtigt werden. Ergibt sich bei diesem Verfahren ein sprungförmig auftretender Fehler, der größer als die Amplitude Schwankung der Sauerstoffkonzentration ist, so wird die Regelung nicht mehr arbeiten können. Daher wird nach einem Maximumkriterium entschieden, dass eine kritischen Zeit überschritten ist und darauf der Offset solange verstellt, bis es wieder zu einem Sondensprung kommt.In other words, it is a total system that accounts for the balance, which is based on the leap of the lambda probe behind a partial catalyst volume. With regard to the two-step control is evaluated on the basis of symmetry thoughts as well as robustness aspects after a period (possible even after half-period) which 02 amount in the catalyst and was discharged. Due to the balance, these areas must be the same. If an imbalance results, the offset (the probe characteristic) before the catalyst is adjusted so that the balance is met again. If, due to gas runtimes, there is a delayed system reaction due to the jump of the probe, this proportion can also be taken into account in the balancing. If, in this method, an abrupt error occurs which is greater than the amplitude fluctuation of the oxygen concentration, the control will no longer be able to work. Therefore, it is decided according to a maximum criterion that a critical time is exceeded and then the offset is adjusted until it comes back to a probe jump.

Die Figur 5 zeigt eine Abwandlung der Struktur der Figur 1. Im Unterschied zu Figur 1 ist bei der Struktur der Figur 5 keine Vorkatsonde 24 vorgesehen. Die Struktur der Figur 6 offenbart ein Ausführungsbeispiel der Erfindung ohne Vorkatsonde 24. Wieder bestimmen die Einspritzimpulsbreiten ti die Kraftstoffmenge, die dem Verbrennungsmotor 10 passend zu der gemessenen Luftmenge zugemessen wird. Die hinter dem Katalysatorvolumen 22 angeordnete Nernstsonde 26 liefert wieder das Spannungssignal Ushk an den Zweipunktregler 36. Der Zweipunktregler 36 moduliert durch eine multiplikative Verknüpfung 30 von einem Vorsteuerkennfeld 28 gelieferte Basisimpulsbreiten t_basis. Er verlängert diese Basisimpulsbreiten beispielsweise dadurch, indem er bei magerem Gemisch hinter dem Katalysatorvolumen 22 einen anfettenden Faktor 1,02 ausgibt. Analog magert er bei Sauerstoffmangel hinter dem Katalysatorvolumen 22 durch Ausgabe eines Faktors 0,98 ab. Die Einspritzimpulsbreiten ti werden auch einer Differenzverknüpfung 58 zugeführt, der zusätzlich Vergleichsimpulsbreiten ti_L1 zugeführt werden. Die ti_L1 Werte stellen gewissermaßen angenommene Nullwerte in dem Sinne dar, dass bei ti > ti_L1 fettes Gemisch und bei ti_L1 > ti mageres Gemisch angenommen wird. Analog zur Erläuterung der Figur 2 liefert auch hier der Integrator 40 ein Maß für die Sauerstoffspeicherfähigkeit des Katalysatorvolumens und der Integrator 42 liefert ein Maß für die Reduktionsmittelspeicherfähigkeit des Katalysators. Auch hier wird die Differenz beider Werte in der Differenzverknüpfung 44 gebildet und im Integrator 46 integriert. Der Integratorausgang wirkt über die Offsetkorrekturverknüpfung 32 auf die Einspritzzeiten ein. Die Wirkungsweise der Struktur nach den Figuren 5 und 6 entspricht damit weitgehend der Wirkungsweise der Strukturen nach den Figuren 1 und 2. Die Figur 3 lässt sich auch auf die Struktur der Figur 5 und Figur 6 lesen. Dazu ist in der Figur 3 lediglich der Wert Isvk durch die Einspritzzeit ti zu ersetzen. Die Nulllinie 48 entspricht im Fall der Figur 6 dann einem Wert ti_L1. Wenn dieser Wert ti_L1 nicht den wirklichen Lambdal-Wert liefert, ergeben sich die im ersten Zeitbereich 52 der Figur 3 dargestellten Verhältnisse. Durch das Einschwingen der Korrektur ergeben sich dann die im zweiten Zeitbereich 54 dargestellten Verhältnisse. Mit anderen Worten: durch die Offsetkorrektur werden die Einspritzzeiten ti gleichmäßig soweit verkürzt, dass sich die gewünschte symmetrische Schwingung um den realen Lambda = 1-Wert ergibt. Die Struktur der Figuren 5 und 6 besitzt gegenüber der Struktur der Figur 1 und Figur 2 den großen Vorteil, dass eine Vorkatsonde 24 eingespart werden kann.The FIG. 5 shows a modification of the structure of FIG. 1 , In contrast to FIG. 1 is in the structure of FIG. 5 no Vorkatsonde 24 provided. The structure of FIG. 6 discloses an embodiment of the invention without Vorkatsonde 24. Again, the injection pulse widths ti determine the amount of fuel that is attributed to the internal combustion engine 10 to match the measured amount of air. The Nernst probe 26 arranged behind the catalyst volume 22 again supplies the voltage signal Ushk to the two-position controller 36. The two-position controller 36 modulates basic pulse widths t_basis supplied by a multiplicative link 30 from a pilot control map 28. It extends these basic pulse widths by, for example, outputting an enriching factor of 1.02 in the case of a lean mixture behind the catalyst volume 22. Likewise, in the absence of oxygen, it leaches behind the catalyst volume 22 by emitting a factor of 0.98. The injection pulse widths ti are also supplied to a differential link 58, which are additionally supplied to comparison pulse widths ti_L1. The ti_L1 values represent to some extent assumed zero values in the sense that ti> ti_L1 assumes a rich mixture and ti_L1> ti a lean mixture. Analogous to the explanation of FIG. 2 Here, too, the integrator 40 provides a measure of the oxygen storage capacity of the catalyst volume and the integrator 42 provides a measure of the reducing agent storage capacity of the catalyst. Again, the difference of both values in the difference link 44 is formed and integrated in the integrator 46. The integrator output acts on the injection times via the offset correction link 32. The mode of action of the structure after the FIGS. 5 and 6 This corresponds largely to the effect of the structures after the Figures 1 and 2 , The FIG. 3 can also be seen on the structure of FIG. 5 and FIG. 6 read. This is in the FIG. 3 only to replace the value Isvk by the injection time ti. The zero line 48 corresponds in the case of FIG. 6 then a value ti_L1. If this value ti_L1 does not deliver the true Lambdal value, the results in the first Time range 52 of the FIG. 3 represented conditions. The settling of the correction then results in the ratios shown in the second time range 54. In other words: by the offset correction, the injection times ti are evenly shortened to the extent that the desired symmetrical oscillation results around the real lambda = 1 value. The structure of FIGS. 5 and 6 owns over the structure of the FIG. 1 and FIG. 2 the big advantage that a Vorkatsonde 24 can be saved.

Die Struktur der Figuren 7 und 8 stellt ein derzeit bevorzugtes Ausführungsbeispiel dar. Dieses Ausführungsbeispiel unterscheidet sich vom Gegenstand der Figuren 1 und 2 durch ein Hauptkatalysatorvolumen 60 hinter der Nernstsonde 26 und durch eine weitere Nernstsonde 62 hinter dem Hauptkatalysatorvolumen 60. Grundsätzlich hat das Hauptkatalysatorvolumen 60 die Funktion, die zwangsläufig bei diesem Regelkonzept auftretende Schwingung im Sauerstoffgehalt des Abgases hinter dem Teilkatalysatorvolumen 22 auszugleichen. Da für einen optimalen Katalysatorbetrieb ein im Mittel leicht fetter Betrieb gewünscht wird, muss die bisher beschriebene Struktur noch um eine Komponente erweitert werden, die diese gewünschte Fettverschiebung oder, in anderen Fällen, gegebenenfalls eine gewünschte Magerverschiebung, liefert. Dazu dient im Rahmen dieses bevorzugten Ausführungsbeispiels die weitere Nernstsonde 62. Deren Signal UsnHK (U-sondenach-Haupt-Kat) wirkt auf ein Verzögerungszeitglied 63 ein, das Signalübergänge im Ausgang des Zweipunktreglers 36 verzögert an den ersten Regler 34 weitergibt. Dadurch ergibt sich das in den Figuren 9 bis 13 dargestellte gewünschte Signalverhalten. Die Figuren 9 und 10 zeigen die bereits bisher erläuterten Signale Ushk und Isvk im eingeschwungenen Zustand. Die Figur 11 zeigt den Verlauf des Signals Ushk im Rahmen dieses Ausführungsbeispiels. Aus der Figur 12 ist ersichtlich, dass ein Wechsel von mager nach fett im Signal Ushk erst zeitverzögert um eine Verzögerungszeitspanne tv an den Regler 34 weitergegeben wird, was sich im zeitlichen Verlauf des Isvk-Signals zeigt. Die schraffierten Flächen 76 repräsentieren damit einen gewünschten zusätzlichen MINUS_OSCEintrag in die Katalysatorvolumina, wodurch sich im Endeffekt das in der Figur 13 gezeigte, relativ gleichmäßig im fetten Bereich oberhalb von 450 Millivolt verlaufende Signal der weiteren Nernstsonde 62 zeigt.The structure of FIGS. 7 and 8 represents a presently preferred embodiment. This embodiment differs from the subject of Figures 1 and 2 by a main catalyst volume 60 behind the Nernst probe 26 and by another Nernst probe 62 behind the main catalyst volume 60. Basically, the main catalyst volume 60 has the function of compensating for the oscillation in the oxygen content of the exhaust gas behind the partial catalyst volume 22 that inevitably occurs in this control concept. Since optimum medium-duty operation is desired for optimum catalyst operation, the structure described hitherto must be extended by a component which provides this desired fat shift or, in other cases, optionally a desired lean shift. This is done in the context of this preferred embodiment further Nernst 62. Their signal UsnHK (U - s onde n ACh H aupt- K at) acts on a delay timer 63, the signal transitions in the output of the two-point controller 36 is delayed to the first controller 34 passes , This results in the FIGS. 9 to 13 displayed desired signal behavior. The FIGS. 9 and 10 show the previously explained signals Ushk and Isvk in the steady state. The FIG. 11 shows the course of the signal Ushk in the context of this embodiment. From the FIG. 12 is It can be seen that a change from lean to rich in the signal Ushk is only delayed by a delay period tv to the controller 34, which is shown in the time course of the Isvk signal. The hatched areas 76 thus represent a desired additional MINUS_OSCE entry into the catalyst volumes, which ultimately results in the FIG. 13 shown, relatively even in the rich area above 450 millivolts extending signal of the other Nernst probe 62 shows.

Claims (13)

  1. Method for regulating the fuel/air ratio of a combustion process which is operated alternately with an excess of air and a deficiency of air, and having at least one catalytic converter volume in the exhaust gas of the combustion process, which catalytic converter stores oxygen when there is an excess of oxygen in the exhaust gas and releases oxygen when there is a deficiency of oxygen, in which method the oxygen admissions into the catalytic converter volume occurring when there is an excess of air and the oxygen discharges from the catalytic converter volume occurring when there is a deficiency of air are determined, and in which method the fuel/air ratio is adjusted in a first regulating loop such that the sum of the oxygen admissions and oxygen discharges determined in a predetermined interval assumes a predetermined value,
    characterized in that the combustion process is operated in each case on average with an excess of oxygen or a deficiency of oxygen at least until said excess of oxygen or deficiency of oxygen arises at an oxygen-sensitive Nernst cell downstream of the catalytic converter volume, wherein the Nernst cell forms a second regulating circuit in conjunction with a two-position regulator and the rest of the regulating path.
  2. Method according to Claim 1, characterized in that the predetermined interval extends over a period in which the combustion process is operated once on average with an excess of oxygen and once on average with a deficiency of oxygen.
  3. Method according to Claim 1, characterized in that the change between an excess of oxygen and a deficiency of oxygen during the operation of the internal combustion engine is controlled such that the difference between the oxygen admissions into the catalytic converter volume occurring when there is an excess of air and the oxygen discharges from the catalytic converter volume occurring when there is a deficiency of air assumes a predetermined value.
  4. Method according to Claim 1, 2 or 3, characterized in that, to determine the oxygen admissions into the catalytic converter volume occurring when there is an excess of air and the oxygen discharges from the catalytic converter volume occurring when there is a deficiency of air, a parameter is used which at least co-determines the inflow of fuel to the internal combustion engine.
  5. Method according to Claim 4, characterized in that the stated parameter is formed on the basis of an intake air quantity calculated from measurement values, and on the basis of a fuel quantity metered to said intake air quantity.
  6. Method according to Claim 4, characterized in that the stated parameter is formed as a function of the signal of an exhaust-gas probe arranged upstream of the catalytic converter, which will be referred to hereinafter as pre-cat probe.
  7. Method according to Claim 6, characterized in that the stated parameter is an input parameter for a second regulating loop in which the fuel/air ratio is regulated with a smaller time constant than the first regulating circuit.
  8. Method according to one of Claims 5 to 7, characterized in that the formation of the stated parameter is varied if the oxygen admissions and oxygen discharges deviate from one another.
  9. Method according to Claim 8, characterized in that the variation takes place such that the stated deviation becomes smaller.
  10. Method according to Claim 9, characterized in that the variation is formed as a function of the integral of the stated deviation.
  11. Method according to Claim 1, characterized in that the fuel/air ratio is predefined by a superposed regulating circuit (24, 18, 16, 10).
  12. Method according to Claim 3 or 4, characterized in that the values of the determined oxygen admissions and oxygen discharges are utilized to determine a real zero value between an excess of oxygen and a deficiency of oxygen.
  13. Control device having means for carrying out at least one of the methods according to Claims 1 to 10.
EP02020196A 2002-02-13 2002-09-10 Method and device for regulating the air/fuel ratio of an internal combustion engine Expired - Lifetime EP1336728B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10205817 2002-02-13
DE10205817A DE10205817A1 (en) 2002-02-13 2002-02-13 Method and device for regulating the fuel / air ratio of a combustion process

Publications (3)

Publication Number Publication Date
EP1336728A2 EP1336728A2 (en) 2003-08-20
EP1336728A3 EP1336728A3 (en) 2006-04-05
EP1336728B1 true EP1336728B1 (en) 2012-03-21

Family

ID=27588561

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02020196A Expired - Lifetime EP1336728B1 (en) 2002-02-13 2002-09-10 Method and device for regulating the air/fuel ratio of an internal combustion engine

Country Status (3)

Country Link
US (2) US20030150209A1 (en)
EP (1) EP1336728B1 (en)
DE (1) DE10205817A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201734A1 (en) 2013-02-04 2014-08-07 Robert Bosch Gmbh Method for operating oxygen sensor arrangement in exhaust gas system of internal combustion engine, involves detecting values for diagnosis of active oxygen adjustment, where former value represents oxygen storage capacity of catalyst
DE102015222022A1 (en) * 2015-11-09 2017-05-11 Volkswagen Ag Method and device for correcting a characteristic curve of a lambda probe

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10351590A1 (en) * 2003-11-05 2005-06-02 Audi Ag Method for operating an internal combustion engine of a vehicle, in particular of a motor vehicle
DE102004029899A1 (en) * 2004-06-19 2006-01-12 Audi Ag Method and device for controlling the air / fuel ratio supplied to an internal combustion engine as a function of the average degree of filling of the oxygen storage of an exhaust gas catalytic converter
DE102004055231B3 (en) * 2004-11-16 2006-07-20 Siemens Ag Method and device for lambda control in an internal combustion engine
DE102005044729A1 (en) * 2005-09-19 2007-03-22 Volkswagen Ag Lambda control with oxygen quantity balancing
JP4710615B2 (en) * 2006-01-10 2011-06-29 株式会社デンソー Heater control device for gas sensor
DE102006059587A1 (en) * 2006-12-16 2008-06-19 Volkswagen Ag Method for determining condition value of catalyzer arranged in exhaust gas unit of internal combustion engine, involves operating internal combustion engine to certain time point in throttle cutoff phase
DE102006061684A1 (en) * 2006-12-28 2008-07-03 Robert Bosch Gmbh Oxygen level controlling method for internal combustion engine, involves modulating exhaust gas composition between threshold values such that lean and fat adjustments of composition are terminated, when amount reaches values, respectively
DE102006062516A1 (en) 2006-12-29 2008-07-03 Volkswagen Ag Catalytic converter i.e. three-way catalytic converter, oxygen storage capacity determining method for exhaust gas system of internal combustion engine of motor vehicle, involves determining oxygen storage capacity based on oxygen amount
DE102008005110B4 (en) 2008-01-15 2018-10-25 Volkswagen Ag Method and control for operating and adjusting a lambda probe
DE102010002586A1 (en) * 2010-03-04 2011-09-08 Robert Bosch Gmbh Method for operating an internal combustion engine
EP2739839B1 (en) * 2011-08-05 2018-10-10 Husqvarna AB Adjusting of air-fuel ratio of a two-stroke internal combustion engine
US10563606B2 (en) * 2012-03-01 2020-02-18 Ford Global Technologies, Llc Post catalyst dynamic scheduling and control
JP5915779B2 (en) * 2013-01-29 2016-05-11 トヨタ自動車株式会社 Control device for internal combustion engine
JP6094438B2 (en) * 2013-09-27 2017-03-15 トヨタ自動車株式会社 Control device for internal combustion engine
JP6183295B2 (en) * 2014-05-30 2017-08-23 トヨタ自動車株式会社 Control device for internal combustion engine
DE102015201400A1 (en) * 2015-01-28 2016-07-28 Robert Bosch Gmbh Method for determining limits of a determination of an offset at least in a range of a voltage-lambda characteristic of a first lambda probe arranged in an exhaust passage of an internal combustion engine with respect to a reference voltage-lambda characteristic
JP6308150B2 (en) * 2015-03-12 2018-04-11 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
DE102018208034B4 (en) * 2018-05-23 2021-01-14 Audi Ag Method for operating a drive device and a corresponding drive device
DE102018208683A1 (en) * 2018-06-01 2019-12-05 Robert Bosch Gmbh Method and control unit for regulating a fill level of a storage tank of a catalytic converter for an exhaust gas component
DE102018210739A1 (en) * 2018-06-29 2020-01-02 Robert Bosch Gmbh Method for regulating a filling of an exhaust gas component store of a catalytic converter in the exhaust gas of an internal combustion engine
JP7074076B2 (en) * 2019-01-09 2022-05-24 トヨタ自動車株式会社 Internal combustion engine control device
DE102020212725A1 (en) * 2020-10-08 2022-04-14 Robert Bosch Gesellschaft mit beschränkter Haftung Method for operating an internal combustion engine, computing unit and computer program
DE102020128753A1 (en) 2020-11-02 2022-05-05 Volkswagen Aktiengesellschaft Exhaust aftertreatment system for an internal combustion engine and method for exhaust aftertreatment

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2570265B2 (en) * 1986-07-26 1997-01-08 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
DE4001616C2 (en) 1990-01-20 1998-12-10 Bosch Gmbh Robert Method and device for regulating the amount of fuel for an internal combustion engine with a catalyst
US5077970A (en) * 1990-06-11 1992-01-07 Ford Motor Company Method of on-board detection of automotive catalyst degradation
JP3306930B2 (en) * 1992-07-03 2002-07-24 株式会社デンソー Air-fuel ratio control device for internal combustion engine
US5255512A (en) * 1992-11-03 1993-10-26 Ford Motor Company Air fuel ratio feedback control
US5359852A (en) * 1993-09-07 1994-11-01 Ford Motor Company Air fuel ratio feedback control
JP3356878B2 (en) * 1994-05-09 2002-12-16 本田技研工業株式会社 Air-fuel ratio control device for internal combustion engine
DE19606652B4 (en) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Method of setting the air-fuel ratio for an internal combustion engine with a downstream catalytic converter
US5842340A (en) * 1997-02-26 1998-12-01 Motorola Inc. Method for controlling the level of oxygen stored by a catalyst within a catalytic converter
GB9722950D0 (en) * 1997-10-30 1998-01-07 Lotus Car A method of monitoring efficiency of a catalytic converter and a control systemsuitable for use in the method
IT1305375B1 (en) * 1998-08-25 2001-05-04 Magneti Marelli Spa METHOD OF CHECKING THE TITLE OF THE AIR / FUEL MIXTURE SUPPLIED TO AN ENDOTHERMAL ENGINE
JP2001050086A (en) * 1999-08-09 2001-02-23 Denso Corp Air-fuel ratio control unit for internal combustion engine
US6253542B1 (en) * 1999-08-17 2001-07-03 Ford Global Technologies, Inc. Air-fuel ratio feedback control
JP3528739B2 (en) * 2000-02-16 2004-05-24 日産自動車株式会社 Engine exhaust purification device
JP3622661B2 (en) * 2000-10-06 2005-02-23 トヨタ自動車株式会社 Air-fuel ratio control device for internal combustion engine
JP3912054B2 (en) * 2001-08-01 2007-05-09 日産自動車株式会社 Exhaust gas purification device for internal combustion engine
EP1300571A1 (en) * 2001-10-04 2003-04-09 Visteon Global Technologies, Inc. Fuel controller for internal combustion engine
US20040006973A1 (en) * 2001-11-21 2004-01-15 Makki Imad Hassan System and method for controlling an engine
GB2391324B (en) * 2002-07-29 2004-07-14 Visteon Global Tech Inc Open loop fuel controller
JP4016905B2 (en) * 2003-08-08 2007-12-05 トヨタ自動車株式会社 Control device for internal combustion engine
DE102004060125B4 (en) * 2004-12-13 2007-11-08 Audi Ag Method for controlling the loading and unloading of the oxygen storage of an exhaust gas catalytic converter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013201734A1 (en) 2013-02-04 2014-08-07 Robert Bosch Gmbh Method for operating oxygen sensor arrangement in exhaust gas system of internal combustion engine, involves detecting values for diagnosis of active oxygen adjustment, where former value represents oxygen storage capacity of catalyst
DE102015222022A1 (en) * 2015-11-09 2017-05-11 Volkswagen Ag Method and device for correcting a characteristic curve of a lambda probe

Also Published As

Publication number Publication date
US8141345B2 (en) 2012-03-27
US20100212291A1 (en) 2010-08-26
DE10205817A1 (en) 2003-08-14
EP1336728A2 (en) 2003-08-20
US20030150209A1 (en) 2003-08-14
EP1336728A3 (en) 2006-04-05

Similar Documents

Publication Publication Date Title
EP1336728B1 (en) Method and device for regulating the air/fuel ratio of an internal combustion engine
DE69122822T2 (en) Device for determining the cleaning factor of a catalyst in a catalytic converter for an internal combustion engine
DE69822382T2 (en) Emission control system for an internal combustion engine
DE4190939C2 (en) A method and a device for controlling the air-fuel ratio of an internal combustion engine
DE60115303T2 (en) Control system for the air-fuel ratio of an internal combustion engine
DE112008000982B4 (en) Air-fuel ratio control device and air-fuel ratio control method for an internal combustion engine
WO2018091252A1 (en) Method for controlling an exhaust gas component filling level in an accumulator of a catalytic converter
EP1478834B1 (en) Method for adjusting a defined oxygen concentration by means of binary lambda regulation in order to diagnose an exhaust gas catalyst
DE19506980C2 (en) Control method for the fuel injection of an internal combustion engine, which is provided with a catalyst for reducing NO¶x¶, and a device for carrying out this control method
DE19711295A1 (en) System for determining deterioration in exhaust gas catalytic converter
WO2008095904A1 (en) Diagnostic method and device for operating an internal combustion engine
DE19612212B4 (en) Diagnostic device for an air / fuel ratio sensor
DE102005059794B3 (en) Exhaust gas probe calibrating method for use in internal combustion engine, involves detecting plateau phase of measuring signals of probe, after transfer of parameter of fat air-fuel ratio to parameter of lean air-fuel ratio
DE102018216980A1 (en) Method for regulating a filling of a storage device of a catalytic converter for an exhaust gas component as a function of aging of the catalytic converter
DE102018251720A1 (en) Method for determining a maximum storage capacity of an exhaust gas component storage device of a catalytic converter
DE102016219689A1 (en) Method and control device for controlling an oxygen loading of a three-way catalytic converter
DE3821357A1 (en) METHOD AND DEVICE FOR LAMB CONTROL WITH SEVERAL PROBES
WO2007073997A1 (en) Lambda regulation method for a combustion engine
DE4128429C2 (en) System for regulating the air-fuel ratio of an internal combustion engine
DE19610170B4 (en) Lambda control method
DE102007000359A1 (en) Exhaust gas purification device for an internal combustion engine
DE10014881B4 (en) Apparatus and method for calibrating lambda probes
DE102018251725A1 (en) Method for regulating a filling of an exhaust gas component store of a catalytic converter
EP1960644A1 (en) Method for the diagnosis of a catalytic converter which is arranged in an exhaust area of an internal combustion engine and device for carrying out said method
DE102021102456B3 (en) Method for operating a drive device and corresponding drive device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20061005

AKX Designation fees paid

Designated state(s): DE FR IT SE

17Q First examination report despatched

Effective date: 20061130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 50215421

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F01N0003000000

Ipc: F02D0041140000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/14 20060101AFI20111123BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT SE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50215421

Country of ref document: DE

Effective date: 20120516

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50215421

Country of ref document: DE

Effective date: 20130102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130920

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20130924

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130918

Year of fee payment: 12

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140930

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140910

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20211123

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50215421

Country of ref document: DE