EP1335341B1 - Method and apparatus for processing video pictures - Google Patents

Method and apparatus for processing video pictures Download PDF

Info

Publication number
EP1335341B1
EP1335341B1 EP20030000172 EP03000172A EP1335341B1 EP 1335341 B1 EP1335341 B1 EP 1335341B1 EP 20030000172 EP20030000172 EP 20030000172 EP 03000172 A EP03000172 A EP 03000172A EP 1335341 B1 EP1335341 B1 EP 1335341B1
Authority
EP
European Patent Office
Prior art keywords
sub
field
sustain
priming
period
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP20030000172
Other languages
German (de)
French (fr)
Other versions
EP1335341A2 (en
EP1335341A3 (en
Inventor
Sebastian Weitbruch
Cédric Thebault
Axel Goetzke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Deutsche Thomson Brandt GmbH
Original Assignee
Deutsche Thomson Brandt GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP02000946A external-priority patent/EP1329869A1/en
Application filed by Deutsche Thomson Brandt GmbH filed Critical Deutsche Thomson Brandt GmbH
Priority to EP20030000172 priority Critical patent/EP1335341B1/en
Publication of EP1335341A2 publication Critical patent/EP1335341A2/en
Publication of EP1335341A3 publication Critical patent/EP1335341A3/en
Application granted granted Critical
Publication of EP1335341B1 publication Critical patent/EP1335341B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/2007Display of intermediate tones
    • G09G3/2018Display of intermediate tones by time modulation using two or more time intervals
    • G09G3/2022Display of intermediate tones by time modulation using two or more time intervals using sub-frames
    • G09G3/2029Display of intermediate tones by time modulation using two or more time intervals using sub-frames the sub-frames having non-binary weights
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/28Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels
    • G09G3/288Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels
    • G09G3/291Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes
    • G09G3/292Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using luminous gas-discharge panels, e.g. plasma panels using AC panels controlling the gas discharge to control a cell condition, e.g. by means of specific pulse shapes for reset discharge, priming discharge or erase discharge occurring in a phase other than addressing
    • G09G3/2927Details of initialising
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0238Improving the black level
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/02Improving the quality of display appearance
    • G09G2320/0285Improving the quality of display appearance using tables for spatial correction of display data
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2360/00Aspects of the architecture of display systems
    • G09G2360/16Calculation or use of calculated indices related to luminance levels in display data

Definitions

  • the present invention relates to a method for processing video pictures, especially to a method for controlling priming pulses for improving the quality of pictures displayed on matrix display screens like plasma display panels (PDPs) or other display devices based on the principle of duty cycle modulation (PWM for Pulse Width Modulation) of light emission.
  • PDPs plasma display panels
  • PWM Pulse Width Modulation
  • the invention also relates to an apparatus for carrying out the method.
  • a plasma display panel is constituted by two insulating plates sealed together to form a space filled with gas. Ribs are provided inside the space to form a matrix array of discharge cells which could only be "ON” or “OFF". Also, unlike other displays such as CRT (Color ray tube) or LCD (Liquid Crystal Display) in which grey levels are expressed by analogue control of the light emission, a PDP controls the grey level by modulating the number of light pulses per frame. These light pulses are known as sustain pulses. The time-modulation will be integrated by the eye over a period corresponding to the eye time response.
  • contrast is of paramount importance.
  • contrast values are inferior to those achieved for CRTs due, at least, to the following reasons :
  • the object of the invention is to propose a new priming concept which increases the contrast ratio and decreases response fidelity problems.
  • the object of the invention is also to propose a new priming concept which can be used with the process described in PCT patent application No WO01/56003 .
  • the present invention relates to a method as defined in claim 1.
  • a priming period is added at the beginning of the sub field n+1.
  • the above method may be improved by also adding a priming pulse at the beginning of the video field.
  • a priming pulse is used in combination with an optimised coding such as a specific coding enabling to respect the Single-O-Level criterion in order to improve the panel response fidelity.
  • optimised coding such as a specific coding enabling to respect the Single-O-Level criterion in order to improve the panel response fidelity. This criterion allows only a maximum of one sub-field switched OFF between two sub-fields switched ON.
  • the determination of a sustain threshold value is done using a specific test pattern, modifying the sustain pulses number and determining for which sustain pulses number a response fidelity problem is visible, said number giving the sustain threshold value D.
  • Said apparatus may comprise a peak luminance enhancement (PLE) measuring unit, a sub-field coding unit and a plasma control unit.
  • Said plasma control unit comprises at least an encoding look up table for storing various sub-field codes per PLE value, a selection of appropriate sustain table giving the sustain threshold value and priming table for PDP controlling.
  • FIG. 1 On figure 1 , a sub-field organisation with 12 sub-fields SF1 to SF12 is presented.
  • the weights of the sub-fields are as follows 1 ⁇ 2 ⁇ 3 ⁇ 5 ⁇ 8 ⁇ 12 ⁇ 18 ⁇ 24 ⁇ 31 ⁇ 40 ⁇ 50 ⁇ 61.
  • the specific weight in said sub-fields SFi(1 ⁇ i ⁇ 12) represents a subdivision of the 256 video levels to be rendered in 8 bit video mode. Then each video level from 0 to 255 will be rendered by a combination of those sub-fields, each sub-field being either fully activated or deactivated So, 256 video levels can be generated with this sub-field organisation as required in TV/video technology.
  • Figure 1 illustrates the frame period that is for example of 16,6 ms for 60 Hz frame period and its sub-division in sub-fields SF.
  • Each sub-field SF is a period of time in which successively the following is being done with a cell.
  • a single soft priming P is used at the beginning of the frame period.
  • the weights of the sub-fields are based on the mathematical Fibonacci sequence as described in PCT patent application No. WO 01/56003 .
  • This optimised sub-fields encoding enables to have no more than one sub-field OFF between two sub-fields ON (SOL concept). In fact, under some circumstances, this type of sub-field organisation with a single soft priming is not enough to obtain, perfect response fidelity.
  • the method of the present invention also uses a power control method as described for example in WO00/46782 in the name of THOMSON Licensing S.A..
  • This method generates more or less sustain pulses as a function of average picture power, i.e., it switches between different modes with different power levels.
  • the sub-field organisation is variable in respect to a factor for the sub-field weights which is used to vary the amount of small pulses generated during each sub-field. More specifically, the sub-field weight factor determines how many sustain pulses are produced for the sub-fields, e.g. if this factor is *2, that means that the sub-field weight number is to be multiplied by two to achieve the number of sustain pulses which are generated during an active sub-field period.
  • the factor is determined by dividing the total number of sustain pulses by 255 which corresponds to the coding of the video levels.
  • the total number of sustain pulses depends on the measure of the Power Level Enhancement (PLE) or of the Average Power Level (APL) for a given picture. So, for a full white picture, the number of sustain pulses will be low and for a peak white picture, the number of sustain pulses is high for the same power consumption.
  • PLE Power Level Enhancement
  • APL Average Power Level
  • An example of the number of sustain pulses for each weight in function of the factor is given in the following table. It corresponds to the sub-field weights described above.
  • a specific test pattern is used as shown in Figure 2 .
  • the specific test pattern has been built such that only two different grey levels are used, that two consecutive cells in a line receive sustain pulses corresponding to respectively one grey level and that the corresponding cells of two consecutive lines receive sustain pulses corresponding to respectively one grey level.
  • the two grey levels may be, for example, 170 and 176. How are chosen the value of these grey levels will be explained hereafter. In fact, these two grey levels 170 and 176 have respectively the corresponding digital code word 111111101110 and 111111011110. These two values have been chosen since they have something special together: indeed, all sub-fields are identical except the 7 th and 8 th ones.
  • the value 170 is applied to the first red cell, the value 176 to the first green cell, the value 170 to the first blue cell, the value 176 to the second red cell, the value 170 to the second blue cell and so on.
  • the value 176 is applied to the first red cell, the value 170 to the first green cell, the value 176 to the first blue cell and so on.
  • the control method described above is used.
  • the sub-field weight factor is modified until a response fidelity problems on the border line of the screen appears. This problem is due to a different behaviour between border opened cells and inside closed cells.
  • the number of sustain pulses obtained for the optimised factor is used to determine the sustain threshold value. For instance, let us assume that the first problem appears with a factor 4,4 at the transition between values 170 and 176: this means that the sub-field responsible for the miss-writing is the 7 th having a number of sustain equal to 79 (18 x 4,4), then the sustain threshold is set to 79.
  • This value is stored in a specific table to be used afterward in the method according to the present invention. This value depends on the features of the PDP such as the chosen addressing speed and the panel technology (gas mixture, MgO layer, barrier ribs height, cell size).
  • Figure 3a concerns a full white picture.
  • the weights of the sub-fields are as follows: 1 ⁇ 2 ⁇ 3 ⁇ 5 ⁇ 8 ⁇ 12 ⁇ 18 ⁇ 24 ⁇ 31 ⁇ 40 ⁇ 50 ⁇ 61 and the number of sustain pulses is: 1 ⁇ 1 ⁇ 1 ⁇ 2 ⁇ 3 ⁇ 5 ⁇ 7 ⁇ 10 ⁇ 12 ⁇ 16 ⁇ 20 ⁇ 24 as the sub-field weight factor is 0,4.
  • the number of sustain pulses in each sub-field SF1 to SF12 is calculated and is compared to the sustain threshold value which is 79.
  • Figures 3b to 3d represent the case of picture between full white picture and peak white picture.
  • the number of sustain pulses is increased so that the optimised sub-field weight factor is 1,6.
  • the number of sustain pulses is: 2 ⁇ 3 ⁇ 5 ⁇ 8 ⁇ 13 ⁇ 19 ⁇ 29 ⁇ 38 ⁇ 50 ⁇ 64 ⁇ 80 ⁇ 98.
  • the number of sustain pulses of each sub-field SF1 to SF12 is compared to the sustain threshold value 79. It appears that for the sub-field SF11, the number of sustain pulses 80 is above the sustain threshold value. According to the present invention, a priming pulse P is added before the sub-field SF12.
  • the number of sustain pulses is still increased to obtain a sub-field weight factor of 2.
  • the number of sustain pulses is : 2 ⁇ 4 ⁇ 6 ⁇ 10 ⁇ 16 ⁇ 24 ⁇ 36 ⁇ 48 ⁇ 62 ⁇ 80 ⁇ 100 ⁇ 122.
  • a priming pulse P has to be added on sub-field SF11.
  • another priming pulse P is also added on sub-field SF12, since the SF11 is also above the predetermined threshold as shown in figure 3c .
  • a first priming pulse P is also added at the beginning of the frame.
  • Figure 3d represents the case where a priming P is also added on sub-field SF10 as well as on sub-fields SF11 and SF12. This case corresponds, for example, to a sub-field weight factor of 2,6according to the above table.
  • the number of sustain pulses may be increased up to obtain a peak white picture.
  • more priming operations will be used in order to perform a good response fidelity while keeping a maximal contrast ratio.
  • the maximal number of priming to be added is 6 for a sub-field weight factor between 6,6 and 8,2.
  • the present invention has been described with reference to a mode based on 12 sub-fields.
  • the present invention may be implemented in a PDP with several modes, for example, three modes based on 10, 11 and 12 sub-fields.
  • the user can choose which modes he wants.
  • the PLE circuit will decide how many sustain pulses will be made in general. Nevertheless, with the same number of sustain pulses in total, the number of sustain pulses for each sub-field will change and also the number and the position of priming pulses.
  • the present invention provides a type of dynamic priming system which is adapted to the maximal white luminance for having a good contrast ratio for all picture contents whatever are the power level modes.
  • FIG 4 a circuit implementation of the invention is illustrated.
  • the input video data R, G, B coded on 8-bit standard binary code is applied to a degamma function as well known in the art.
  • the video data RGB is applied to a PLE measurement circuit 11 where the RGB data is analysed and computed to give a PLE value sent to the plasma control block 12.
  • the 8-bitvideo data is also sent to a sub-field coding circuit 13 that receives the appropriate code from a LUT table 121 in the plasma control block 12.
  • a sub-field code word is assigned to each normalised pixel value.
  • the RGB sub-field data SF R , SF G , SF B are sent from the sub-field coding circuit 13 to the serial to parallel conversion circuit 14 and then to the column drivers (data top, data bottom) of the PDP 15.
  • the plasma control circuit 12 comprises a PLE analysis circuit 120 that receives the PLE signal from PLE measurement circuit 11.
  • This circuit 120 provides a filtering and a hysterisis control of the system.
  • the PLE value from the circuit 120 is sent to a LUT table 121 storing various data to realise the selection of appropriate code, the selection of appropriate sustain table and priming table as well as various sub-field code per PLE value as explained above.
  • a specific sub-field encoding table converting 8-bit video data in sub-field codeword is loaded in the block 13 to make the sub-field encoding.
  • the serial to parallel conversion block 14 will load in a memory 16 the various sub-field separately (e.g. 12 different tables of 1 bit). Then during the frame the various sub-field data (1 bit) are send line per line to the data driver.
  • the corresponding priming table located in 121 is read to determine if a priming operation is required or not before sub-field n.
  • the corresponding sustain table is read to send the required number of sustain to sustain generator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Control Of Gas Discharge Display Tubes (AREA)
  • Transforming Electric Information Into Light Information (AREA)

Description

  • The present invention relates to a method for processing video pictures, especially to a method for controlling priming pulses for improving the quality of pictures displayed on matrix display screens like plasma display panels (PDPs) or other display devices based on the principle of duty cycle modulation (PWM for Pulse Width Modulation) of light emission. The invention also relates to an apparatus for carrying out the method.
  • The invention will be described in relation with PDP but may be applicable to other types of displays as mentioned above.
  • As well known, a plasma display panel is constituted by two insulating plates sealed together to form a space filled with gas. Ribs are provided inside the space to form a matrix array of discharge cells which could only be "ON" or "OFF". Also, unlike other displays such as CRT (Color ray tube) or LCD (Liquid Crystal Display) in which grey levels are expressed by analogue control of the light emission, a PDP controls the grey level by modulating the number of light pulses per frame. These light pulses are known as sustain pulses. The time-modulation will be integrated by the eye over a period corresponding to the eye time response.
  • To achieve a good picture quality, contrast is of paramount importance. However, on plasma display panels (PDPs), contrast values are inferior to those achieved for CRTs due, at least, to the following reasons :
    • In a PDP, it is common to use a certain amount of priming operations per frame of video picture. This priming process which makes a pre-excitation of the plasma cell is required to prepare the cells for homogeneous writing of each sub-period of the frame called "sub-fields". In known addressing modes, two types of priming pulses can be distinguished : hard-priming pulses (square form pulses, with very fast increasing slope) which are used once per frame period and soft priming pulses (triangular form pulses, with slow increasing slope) which are presently used once per sub-field. Actually, the second type of priming is used in almost every panel type. The priming process has the negative effect that a panel background light is generated. The hard priming operation creates important background luminance which reduces achievable contrast factor. The soft priming operation is used for each sub-field. It creates less background luminance per operation, but because soft priming is in general used many times per frame, this will increase the background and the total result may be worse. The same problem will arise, if more sub-fields are used in each frame since the number of priming operations is commonly linked to the number of sub-fields.
    • In addition, the panel efficacy (lumen/watt) is limited, and for a given power consumption of the PDP, only a limited luminance can be performed on the screen depending on the picture content.
  • To overcome the drawback of reduced contrast, it has been proposed, in PCT patent application No. WO01/56003 in the name of THOMSON Licensing S.A., to increase contrast of a PDP by the use of "self-priming" and "refreshing sub-fields". Self priming sub-fields reduce or eliminate the need for priming, thus making dark areas darker, while refreshing sub-fields can be addressed faster. In practice, the number of refreshing sub-fields in a frame period is higher than the number of the self-priming sub-fields. Therefore, the total addressing time can be reduced with this new technique.
  • Faster addressing leaves more time for sustain pulses, thus allowing bright areas that are brighter. This is especially true for PDP monitors connected to 75Hz multimedia sources, because in order to have an acceptable number of sub-fields, picture power is normally limited for 75Hz sources. In 50Hz and 60Hz modes, where picture power is normally limited by the power electronics, a reduced addressing time may be alternatively used for increasing the number of sub-fields and thus improving picture quality.
  • In fact, the concept described in the above PCT patent application works well in case of full-white pictures having a limited maximal white value (for example 100 cd/m2 with around 150 sustain pulses). In that case, since the soft-priming light emission is below 0,1 cd/m2, the contrast ratio is beyond 1000:1 in dark room. Nevertheless, experiments have shown that, when the number of sustain pulses grows, the biggest sub-fields will suffer from response fidelity problems. There are many reasons for that. For example :
    • The sub-fields are far away from the priming pulse located at the beginning of the frame and therefore more sensitive to response fidelity problems.
    • Such sub-fields contain more energy, which also generate more heating of the cell. Since the response fidelity problem increases with the temperature, such sub-fields generate more problems during an increasing of the overall luminance.
  • In addition, when the number of sustain pulses of a given sub-field increases too much, its inertia increases at the same time and response fidelity problems are encountered.
  • The object of the invention is to propose a new priming concept which increases the contrast ratio and decreases response fidelity problems.
  • The object of the invention is also to propose a new priming concept which can be used with the process described in PCT patent application No WO01/56003 .
  • The present invention relates to a method as defined in claim 1.
  • According to a preferred embodiment, for each sub-field n with n ≤ N-1 and for which the number of sustain pulses is above or equal to the sustain threshold D, a priming period is added at the beginning of the sub field n+1.. With the features above, in case of "peak white" pictures, depending on the maximal luminance, more priming operations are used in order to perform a good response fidelity while keeping a maximal contrast ratio.
  • The above method may be improved by also adding a priming pulse at the beginning of the video field. Preferably, such priming operation is used in combination with an optimised coding such as a specific coding enabling to respect the Single-O-Level criterion in order to improve the panel response fidelity. This criterion allows only a maximum of one sub-field switched OFF between two sub-fields switched ON.
  • According to a specific embodiment, the determination of a sustain threshold value is done using a specific test pattern, modifying the sustain pulses number and determining for which sustain pulses number a response fidelity problem is visible, said number giving the sustain threshold value D.
  • The invention consists also in an apparatus for carrying out the above method as defined in claim 6. Said apparatus may comprise a peak luminance enhancement (PLE) measuring unit, a sub-field coding unit and a plasma control unit. Said plasma control unit comprises at least an encoding look up table for storing various sub-field codes per PLE value, a selection of appropriate sustain table giving the sustain threshold value and priming table for PDP controlling.
  • The present invention will be explained hereafter in more detail with reference to the following description and the drawings wherein :
    • figure 1 shows an example of a sub-field organisation according to prior art,
    • Figure 2 shows a test pattern used to obtain the sustain threshold value,
    • figure 3a - 3d show examples of a sub-field organisation according to the present invention, and
    • figure 4 shows schematically a block diagram of an apparatus according to the invention.
  • On figure 1, a sub-field organisation with 12 sub-fields SF1 to SF12 is presented. The weights of the sub-fields are as follows
    1 ― 2 ― 3 ― 5 ― 8 ― 12 ― 18 ― 24 ― 31 ― 40 ― 50 ― 61.
  • The specific weight in said sub-fields SFi(1 ≤ i ≤ 12) represents a subdivision of the 256 video levels to be rendered in 8 bit video mode. Then each video level from 0 to 255 will be rendered by a combination of those sub-fields, each sub-field being either fully activated or deactivated So, 256 video levels can be generated with this sub-field organisation as required in TV/video technology. Figure 1 illustrates the frame period that is for example of 16,6 ms for 60 Hz frame period and its sub-division in sub-fields SF. Each sub-field SF is a period of time in which successively the following is being done with a cell.
    1. 1. There is an addressing period of fixed length in which the cell is either brought to an excited state with a high voltage or to a neutral state with lower voltage.
    2. 2. There is a sustain period depending of the sub-field weighting in which a gas discharge is made with short voltage pulses which lead to corresponding short lighting pulses. Of course only the cells previously excited will produce lighting pulses. There will not be a gas discharge in the cells in neutral state.
    3. 3. There is an erasing period of fixed length in which the charge of the cells is quenched.
  • In addition, in the specific sub-field organisation described above, a single soft priming P is used at the beginning of the frame period. Moreover, the weights of the sub-fields are based on the mathematical Fibonacci sequence as described in PCT patent application No. WO 01/56003 . This optimised sub-fields encoding enables to have no more than one sub-field OFF between two sub-fields ON (SOL concept). In fact, under some circumstances, this type of sub-field organisation with a single soft priming is not enough to obtain, perfect response fidelity.
  • The method of the present invention also uses a power control method as described for example in WO00/46782 in the name of THOMSON Licensing S.A.. This method generates more or less sustain pulses as a function of average picture power, i.e., it switches between different modes with different power levels. In fact, the sub-field organisation is variable in respect to a factor for the sub-field weights which is used to vary the amount of small pulses generated during each sub-field. More specifically, the sub-field weight factor determines how many sustain pulses are produced for the sub-fields, e.g. if this factor is *2, that means that the sub-field weight number is to be multiplied by two to achieve the number of sustain pulses which are generated during an active sub-field period. The factor is determined by dividing the total number of sustain pulses by 255 which corresponds to the coding of the video levels. The total number of sustain pulses depends on the measure of the Power Level Enhancement (PLE) or of the Average Power Level (APL) for a given picture. So, for a full white picture, the number of sustain pulses will be low and for a peak white picture, the number of sustain pulses is high for the same power consumption. An example of the number of sustain pulses for each weight in function of the factor is given in the following table. It corresponds to the sub-field weights described above. TABLE
    Sub-field weight 1 2 3 5 8 12 18 24 31 40 50 61
    Sustain/Weight SUM
    0,4 1 1 1 2 3 5 7 10 12 16 20 24 102
    0,6 1 1 2 3 5 7 11 14 19 24 30 37 154
    0,8 1 2 2 4 6 10 14 19 25 32 40 49 204
    1 1 2 3 5 8 12 18 24 31 40 50 61 255
    1,2 1 2 4 6 10 14 22 29 37 48 60 73 306
    1,4 1 3 4 7 11 17 25 34 43 56 70 85 356
    1,6 2 3 5 8 13 19 29 38 50 64 80 98 409
    1,8 2 4 5 9 14 22 32 43 56 72 90 110 459
    2 2 4 6 10 16 24 36 48 62 80 100 122 510
    2,2 2 4 7 11 18 26 40 53 68 88 110 134 561
    2,4 2 5 7 12 19 29 43 58 74 96 120 146 611
    2,6 3 5 8 13 21 31 47 62 81 104 130 159 664
    2,8 3 6 8 14 22 34 50 67 87 112 140 171 714
    3 3 6 9 15 24 36 54 72 93 120 150 183 765
    3,2 3 6 10 16 26 38 58 77 99 128 160 195 816
    3,4 3 7 10 17 27 41 61 82 105 136 170 207 866
    3,6 4 7 11 18 29 43 65 86 112 144 180 220 919
    3,8 4 8 11 19 30 46 68 91 118 152 190 232 969
    4 4 8 12 20 32 48 72 96 124 160 200 244 1020
    4,2 4 8 13 21 34 50 76 101 130 168 210 256 1071
    4,4 4 9 13 22 35 53 79 106 136 176 220 268 1121
    4,6 5 9 14 23 37 55 83 110 143 184 230 281 1174
    4,8 5 10 14 24 38 58 86 115 149 192 240 293 1224
    5 5 10 15 25 40 60 90 120 155 200 250 305 1275
    5,2 5 10 16 26 42 62 94 125 161 208 260 317 1326
    5,4 5 11 16 27 43 65 97 130 167 216 270 329 1376
    5,6 6 11 17 28 45 67 101 134 174 224 280 342 1429
    5,8 6 12 17 29 46 70 104 139 180 232 290 354 1479
    6 6 12 18 30 48 72 108 144 186 240 300 366 1530
    6,2 6 12 19 31 50 74 112 149 192 248 310 378 1581
    6,4 6 13 19 32 51 77 115 154 198 256 320 390 1631
    6,6 7 13 20 33 53 79 119 158 205 264 330 403 1684
    6,8 7 14 20 34 54 82 122 163 211 272 340 415 1734
    7 7 14 21 35 56 84 126 168 217 280 350 427 1785
    7,2 7 14 22 36 58 86 130 173 223 288 360 439 1836
    7,4 7 15 22 37 59 89 133 178 229 296 370 451 1886
    7,6 8 15 23 38 61 91 137 182 236 304 380 464 1939
    7,8 8 16 23 39 62 94 140 187 242 312 390 476 1989
    8 8 16 24 40 64 96 144 192 248 320 400 488 2040
    8,2 8 16 25 41 66 98 148 197 254 328 410 500 2091
  • The method of the present invention will be described using the same type of sub-field organisation as described with reference to Figure 1 as well as the control method described above.
  • First of all, to determine the sustain threshold value D, a specific test pattern is used as shown in Figure 2. The specific test pattern has been built such that only two different grey levels are used, that two consecutive cells in a line receive sustain pulses corresponding to respectively one grey level and that the corresponding cells of two consecutive lines receive sustain pulses corresponding to respectively one grey level. In more detail, the two grey levels may be, for example, 170 and 176. How are chosen the value of these grey levels will be explained hereafter. In fact, these two grey levels 170 and 176 have respectively the corresponding digital code word 111111101110 and 111111011110. These two values have been chosen since they have something special together: indeed, all sub-fields are identical except the 7th and 8th ones. Therefore, they enable to illustrate the influence of the 7th on the 8th.As explained above for line n-1, the value 170 is applied to the first red cell, the value 176 to the first green cell, the value 170 to the first blue cell, the value 176 to the second red cell, the value 170 to the second blue cell and so on.
  • For the line n, the value 176 is applied to the first red cell, the value 170 to the first green cell, the value 176 to the first blue cell and so on.
  • For the line n + 1, the same schema, as for line n -1, is applied,
  • To determine the optimised picture, the control method described above is used. The sub-field weight factor is modified until a response fidelity problems on the border line of the screen appears. This problem is due to a different behaviour between border opened cells and inside closed cells. The number of sustain pulses obtained for the optimised factor is used to determine the sustain threshold value. For instance, let us assume that the first problem appears with a factor 4,4 at the transition between values 170 and 176: this means that the sub-field responsible for the miss-writing is the 7th having a number of sustain equal to 79 (18 x 4,4), then the sustain threshold is set to 79. This value is stored in a specific table to be used afterward in the method according to the present invention. This value depends on the features of the PDP such as the chosen addressing speed and the panel technology (gas mixture, MgO layer, barrier ribs height, cell size...).
  • Now, the present invention will be explained with reference to figures 3a-3d. On figures 3a-3d, the same coding of the sub-fields is used for the figures but different factors have been applied depending on the content of the picture.
  • Figure 3a concerns a full white picture. In this case, the weights of the sub-fields are as follows:
    1 ― 2 ― 3 ― 5 ― 8 ― 12 ― 18 ― 24 ― 31 ― 40 ― 50 ― 61
    and the number of sustain pulses is:
    1 ― 1 ― 1 ― 2 ― 3 ― 5 ― 7 ― 10 ― 12 ― 16 ― 20 ― 24 as the sub-field weight factor is 0,4.
  • According to the present invention, the number of sustain pulses in each sub-field SF1 to SF12 is calculated and is compared to the sustain threshold value which is 79. As no number of sustain pulses is above 79, the priming sequence will be :
    P = 1 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0 ― 0.
  • In this specific case, only one single priming operation P is used at the beginning of the frame in combination with an optimised coding system. The contrast ratio is then maximal for such pictures having a limited maximal luminance for power consumption purposes.
  • Figures 3b to 3d represent the case of picture between full white picture and peak white picture. In figure 3b, the number of sustain pulses is increased so that the optimised sub-field weight factor is 1,6. In this case, for the same weights of sub-fields as above, the number of sustain pulses is:
    2 ― 3 ― 5 ― 8 ― 13 ― 19 ― 29 ― 38 ― 50 ― 64 ― 80 ― 98.
  • The number of sustain pulses of each sub-field SF1 to SF12 is compared to the sustain threshold value 79. It appears that for the sub-field SF11, the number of sustain pulses 80 is above the sustain threshold value. According to the present invention, a priming pulse P is added before the sub-field SF12.
  • In figure 3c, the number of sustain pulses is still increased to obtain a sub-field weight factor of 2. In this case, the number of sustain pulses is :
    2 ― 4 ― 6 ― 10 ― 16 ― 24 ― 36 ― 48 ― 62 ― 80 ― 100 ― 122.
  • After comparison of sub-field SF10 with the sustain threshold value 79, it appears that a priming pulse P has to be added on sub-field SF11. Moreover, another priming pulse P is also added on sub-field SF12, since the SF11 is also above the predetermined threshold as shown in figure 3c.
  • In the embodiments of figures 3b and 3c, a first priming pulse P is also added at the beginning of the frame.
  • Figure 3d represents the case where a priming P is also added on sub-field SF10 as well as on sub-fields SF11 and SF12. This case corresponds, for example, to a sub-field weight factor of 2,6according to the above table.
  • The number of sustain pulses may be increased up to obtain a peak white picture. In this case, depending on the maximal luminance, more priming operations will be used in order to perform a good response fidelity while keeping a maximal contrast ratio. In the above table, the maximal number of priming to be added is 6 for a sub-field weight factor between 6,6 and 8,2.
  • The present invention has been described with reference to a mode based on 12 sub-fields. However, the present invention may be implemented in a PDP with several modes, for example, three modes based on 10, 11 and 12 sub-fields. In this case, the user can choose which modes he wants. For each mode, the PLE circuit will decide how many sustain pulses will be made in general. Nevertheless, with the same number of sustain pulses in total, the number of sustain pulses for each sub-field will change and also the number and the position of priming pulses.
  • So the present invention provides a type of dynamic priming system which is adapted to the maximal white luminance for having a good contrast ratio for all picture contents whatever are the power level modes.
  • In figure 4, a circuit implementation of the invention is illustrated. In the first block 10, the input video data R, G, B coded on 8-bit standard binary code is applied to a degamma function as well known in the art. Then, the video data RGB is applied to a PLE measurement circuit 11 where the RGB data is analysed and computed to give a PLE value sent to the plasma control block 12. The 8-bitvideo data is also sent to a sub-field coding circuit 13 that receives the appropriate code from a LUT table 121 in the plasma control block 12. Here to each normalised pixel value, a sub-field code word is assigned. The RGB sub-field data SFR, SFG, SFB are sent from the sub-field coding circuit 13 to the serial to parallel conversion circuit 14 and then to the column drivers (data top, data bottom) of the PDP 15.
  • As shown in figure 4, the plasma control circuit 12 comprises a PLE analysis circuit 120 that receives the PLE signal from PLE measurement circuit 11. This circuit 120 provides a filtering and a hysterisis control of the system.
  • Then the PLE value from the circuit 120 is sent to a LUT table 121 storing various data to realise the selection of appropriate code, the selection of appropriate sustain table and priming table as well as various sub-field code per PLE value as explained above.
  • Depending on the actual PLE value, a specific sub-field encoding table converting 8-bit video data in sub-field codeword is loaded in the block 13 to make the sub-field encoding. The serial to parallel conversion block 14 will load in a memory 16 the various sub-field separately (e.g. 12 different tables of 1 bit). Then during the frame the various sub-field data (1 bit) are send line per line to the data driver. Before sending a sub-field n, the corresponding priming table located in 121 is read to determine if a priming operation is required or not before sub-field n. After writing, the corresponding sustain table is read to send the required number of sustain to sustain generator.
  • The embodiment described above can be modified without departing from the scope of the claims. In particular other grey level values for the test pattern or other type of codings may be used.

Claims (6)

  1. A method for processing video signals for display on a plasma display panel comprising a matrix array of cells which could only be "ON" or "OFF", wherein the time duration of a video frame is divided into N sub-fields during which the cells can be activated, each sub-field comprising at least an addressing period, a sustaining period and an erasing period of fixed length in which the charge of the cells is quenched, the duration of which corresponding to the weight associated with said sub-field, said video frame comprising at least a priming period for putting the cells in homogeneous states at the beginning of each frame, characterized in that the addition of a priming period is determined as follows:
    - determination of a sustain threshold value D for a given addressing speed and panel technology,
    - calculation of the number of sustain pulses in each sub-field n, n being such that 1 ≤ n ≤ N, and
    - for at least one sub-field n with n≤ N-1, addition of a priming period at the beginning of the sub-field n+1 only if the number of sustain pulses is above or equal to D.
  2. A method according to claim 1, characterised in that, for each sub-field n with n≤ N-1 and for which the number of sustain pulses is above or equal to D, a priming period is added at the beginning of the sub field n+1.
  3. A method according to claim 1, characterised in that the video values are coded with the sub fields so that there is never more than one sub-field switched OFF between two sub-fields switched ON.
  4. A method according to claim 1, characterised in that the determination of a sustain threshold value is done using a specific test pattern, modifying the sustain pulses number and determining for which sustain pulses number a response fidelity problem is visible, said number giving the sustain threshold value D.
  5. Apparatus for processing video signals in a plasma display panel comprising a matrix array of cells which could only be "ON" or "OFF", wherein the time duration of a video frame is divided into N sub-fields during which the cells can be activated, each sub-field comprising at least an addressing period, a sustaining period and an erasing period of fixed length in which the charge of the cells is quenched, the duration of which corresponding to the weight associated with said sub-field, said video frame comprising at least a priming period for putting the cells in homogeneous states at the beginning of each frame,
    characterized in that it comprises :
    - means for determining a sustain threshold value D for a given addressing speed and panel technology,
    - means for calculating the number of sustain pulses in each sub-field n, n being such that 1 ≤ n ≤ N, and
    - means for adding, for at least one sub-field n with n≤ N-1 and only if the number of sustain pulses is above or equal to D, a priming period at the beginning of the sub-field n+1.
  6. Apparatus according to claim 5, characterised in that it further comprises a peak luminance enhancement measuring unit, a sub-field coding unit and a plasma control unit, said plasma control unit comprising at least an encoding look up table for storing various sub-field codes per peak luminance enhancement value giving the sustain threshold value, a selection of appropriate sustain table and priming table for PDP controlling.
EP20030000172 2002-01-16 2003-01-07 Method and apparatus for processing video pictures Expired - Lifetime EP1335341B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP20030000172 EP1335341B1 (en) 2002-01-16 2003-01-07 Method and apparatus for processing video pictures

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP02000946 2002-01-16
EP02000946A EP1329869A1 (en) 2002-01-16 2002-01-16 Method and apparatus for processing video pictures
EP20030000172 EP1335341B1 (en) 2002-01-16 2003-01-07 Method and apparatus for processing video pictures

Publications (3)

Publication Number Publication Date
EP1335341A2 EP1335341A2 (en) 2003-08-13
EP1335341A3 EP1335341A3 (en) 2004-06-30
EP1335341B1 true EP1335341B1 (en) 2008-10-01

Family

ID=27614614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20030000172 Expired - Lifetime EP1335341B1 (en) 2002-01-16 2003-01-07 Method and apparatus for processing video pictures

Country Status (1)

Country Link
EP (1) EP1335341B1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1553549A1 (en) * 2004-01-07 2005-07-13 Deutsche Thomson-Brandt GmbH Method and device for applying special coding on pixel located at the border area of a plasma display
KR100714187B1 (en) * 2004-01-28 2007-05-02 마쯔시다덴기산교 가부시키가이샤 Method of driving plasma display panel

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1174850A1 (en) * 2000-01-26 2002-01-23 Deutsche Thomson-Brandt Gmbh Method for processing video pictures for display on a display device
JP3231569B2 (en) * 1995-02-13 2001-11-26 日本電気株式会社 Driving method and driving apparatus for plasma display panel
JP3468284B2 (en) * 1999-06-15 2003-11-17 日本電気株式会社 Driving method of plasma display panel
JP3738890B2 (en) * 2000-04-27 2006-01-25 パイオニア株式会社 Driving method of plasma display panel

Also Published As

Publication number Publication date
EP1335341A2 (en) 2003-08-13
EP1335341A3 (en) 2004-06-30

Similar Documents

Publication Publication Date Title
US6940474B2 (en) Method and apparatus for processing video pictures
EP0903718B1 (en) AC plasma display panel and method of driving the same
KR100701098B1 (en) Method for power level control of a display device and apparatus for carrying out the method
US6762567B2 (en) Driving device for plasma display panel
US7173580B2 (en) Method for optimizing brightness in a display device and apparatus for implementing the method
JP2795124B2 (en) Display method of halftone image on display panel
EP1366484B1 (en) Method and apparatus for power level control of a display device
JP3580027B2 (en) Plasma display device
JP4851663B2 (en) Display panel brightness control method
US6989804B2 (en) Method and apparatus for processing video pictures, especially for improving grey scale fidelity portrayal
JP2002108281A (en) Method and device for controlling light emission of matrix-type display during display period
JP2003015583A (en) Drive method for plasma display panel
EP1335341B1 (en) Method and apparatus for processing video pictures
EP1353315A1 (en) Method and apparatus for processing video pictures to improve grey scale resolution of a display device
JP2003140605A (en) Plasma display device and driving method therefor
JP2000172225A (en) Display device
EP1638067A1 (en) Method and apparatus for generating subfield codes
JP2005128544A (en) Method and system for decreasing afterimage of plasma display panel
EP1437706A2 (en) Method for optimizing brightness in a display device and apparatus for implementing the method
US7796138B2 (en) Method and device for processing video data by using specific border coding
EP1638068A1 (en) Method and apparatus for generating subfield codes
JP2003157046A (en) Plasma display device and driving method thereof

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20041207

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

17Q First examination report despatched

Effective date: 20071220

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 746

Effective date: 20081015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60323771

Country of ref document: DE

Date of ref document: 20081113

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090101

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090112

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090302

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090101

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20090702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081001

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160128

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160201

Year of fee payment: 14

Ref country code: FR

Payment date: 20160128

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60323771

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170107

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170107