EP1334955A2 - Matériaux reactifs nanostructurés - Google Patents

Matériaux reactifs nanostructurés Download PDF

Info

Publication number
EP1334955A2
EP1334955A2 EP03002476A EP03002476A EP1334955A2 EP 1334955 A2 EP1334955 A2 EP 1334955A2 EP 03002476 A EP03002476 A EP 03002476A EP 03002476 A EP03002476 A EP 03002476A EP 1334955 A2 EP1334955 A2 EP 1334955A2
Authority
EP
European Patent Office
Prior art keywords
reactive
silicon
substances according
reactive substances
oxidizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03002476A
Other languages
German (de)
English (en)
Other versions
EP1334955A3 (fr
Inventor
Joachim Dr. Diener
Egon Gross
Nicolai Künzner
Dimitri Dr. Kovalev
Victor Dr. Timosnenko
Manfred Dr. Schildknecht
Karl Rudolf
Heinz Hofmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Diehl BGT Defence GmbH and Co KG
Original Assignee
Diehl Munitionssysteme GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Diehl Munitionssysteme GmbH and Co KG filed Critical Diehl Munitionssysteme GmbH and Co KG
Publication of EP1334955A2 publication Critical patent/EP1334955A2/fr
Publication of EP1334955A3 publication Critical patent/EP1334955A3/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/18Compositions or products which are defined by structure or arrangement of component of product comprising a coated component
    • C06B45/30Compositions or products which are defined by structure or arrangement of component of product comprising a coated component the component base containing an inorganic explosive or an inorganic thermic component

Definitions

  • the invention relates to nanostructured reactive substances according to the Preamble of claim 1.
  • silicon atoms are exposed on the surface of the silicon structures and can react with the oxygen in the pores.
  • the energy released by the oxidation reaction causes, among other things, the further removal of hydrogen from the surface of the silicon structures and thus the exposure of silicon atoms, which in turn now react with the oxygen in the environment.
  • Partial oxidation of the surface of the silicon structures stabilizes the system. Since liquid oxygen has to be introduced for the reaction, it only takes place at cryogenic temperatures up to ⁇ 90K. The reaction is triggered spontaneously. The reactive system is therefore not stable and cannot be handled in practice.
  • the invention is based on the object of a safely manageable nanostructured Propose reactive substance based on fuel and oxidant Nanometer size scale is stable and separated from each other Exposure to energy can be brought together for an explosive reaction.
  • a mixture of fuel (silicon) and oxidant on a nanometer scale enables almost direct contact between the fuel and the Oxidizing agent, only separated by a barrier layer. After breaking the barrier layer the fuel and oxidant are spatially close together and can be below React energy release.
  • the silicon-oxygen bond is e.g. B. about 18 KJ / mol stronger than the carbon-oxygen bond, which explains the increased energy density.
  • the reactive substance according to the invention can be safely handled in the temperature range from - 40 ° C to + 100 ° C and also in the event of unwanted external influences such as impact, fall, Light, heat, electromagnetic fields, scoring or sawing in silicon process lines.
  • the reactive substance can be integrated on chips or other components and is suitable for Detonator or igniter for impulse, gas, light, flame and shock wave generating media.
  • the invention is suitable as a pulse element for projectiles, for position control of satellites and control of missiles, missiles and projectiles as well as for ignition of explosives and ignition of other charges, such as propellant charges, pyrotechnic charges.
  • the reactive substance is also suitable as a chip-integrated, ultra-fast heating element for mass spectroscopic application or for the destruction of EPROMS.
  • the reactive substance has a high energy density and energy release rate compared to conventional reactive materials.
  • the energy release rate can be freely selected in a simple manner by choosing a suitable geometric structure and / or structure size. It can be set from burn-up to detonation. If the reactive substance is used as an explosive, the energy density is up to a factor of 5 greater than with TNT.
  • Porous silicon will by electrochemical etching of crystalline silicon (e.g. silicon wafers, wafers) produced and represents a sponge-like structure, consisting of a silicon framework and pores (holes).
  • the mean size, the pores and the remaining after etching Silicon structures, as well as the porosity can be selected by appropriate choice of parameters of the starting material used (substrate doping, etching current density, concentration or composition of the etching solution).
  • pores and silicon structures in the range from approximately 1 nm to 1000 nm can be achieved.
  • the porosity can be set over a range of 10% -98%. Since the pore network of the porous silicon samples is accessible from the outside (the environment), oxidizing agents can be introduced into the pores. The substances listed below appear suitable.
  • the silicon-hydrogen bond is on the surface of the nanostructured framework relatively weak and thus the mixture present on the nanometer size scale is made Fuel (silicon) and oxidizing agent in the pores are relatively unstable.
  • Fuel silicon
  • oxidizing agent in the pores are relatively unstable.
  • To increase the Stability requires additional passivation of the surface of the Silicon scaffold. This can e.g. through oxidation (thermal Treatment of the samples in an oxygen atmosphere) of the porous silicon sample after the Manufacture.
  • a barrier or buffer layer is formed (suboxide layer consisting of a submonolayer of oxygen).
  • the strength of the passivation can vary according to the duration of the thermal treatment (completeness of the oxidation of the surface) can be set. See the exemplary embodiment for details.
  • the barrier layer increases the stability 'of the in the reactive state (filling the pores with oxidizing agent) brought samples.
  • the introduced barrier layer can also act as a diffusion barrier for Slowly running oxidation processes act, which lead to a degradation of the reactive mixture.
  • the hydrogen-covered surface of the silicon structures in porous silicon Air is not stable to oxidation. Forms in a period of about a year a submonolayer of silicon oxide on the surface of the silicon structures.
  • the reactive samples are ignited by supplying energy and breaking the barrier layer on, whereby a direct contact of the fuel (silicon) with the oxidizing agent is achieved.
  • Possible ignition mechanisms are shock, temperature increase (e.g. through Current flow or laser pulse), pulsed laser radiation (which, for example, resonates with a Silicon-hydrogen or silicon-oxygen surface bond is located).
  • One advantage of this implementation is that, in contrast to porous silicon, there are no "connecting bridges" between the nanometer-sized silicon structures (solid framework) that can easily break when impacted, form free silicon bonds and thus lead to an unintended reaction.
  • the compactible body in contrast to porous silicon, can also be shaped geometrically freely.
  • Porous silicon with LiNO 3 as an oxidizing agent in the pores :
  • Porous silicon is produced by electrochemically etching a silicon wafer (surface (100), specific conductivity 8 ohm centimeters) with an etching solution of hydrofluoric acid (HF 49 percent by weight in water) and ethanol (1: 1 by volume).
  • the etching current density is 50 mA / cm 2 .
  • the etching time is 30 minutes.
  • the sample is annealed at 200 ° C in air for 1600 minutes
  • the surface of the silicon structures is covered with a submonolayer (an atomic layer passivated under the surface of the silicon structures).
  • the surface of the However, silicon structures remain covered with hydrogen.
  • One more way consists of annealing at 700 ° C for 30 seconds. The will also Removed hydrogen from the surface of the silicon structures.
  • the stability of the reactive samples filled with oxidizing agents can be slight or strong can be increased compared to the samples without tempering.
  • a saturated solution of lithium nitrate LiNO 3 in methanol is applied to the sample.
  • This saturated solution is drawn into the pores by capillary action.
  • the solvent is evaporated.
  • the application of the solution can be repeated several times in order to fill the pores as completely as possible with LiNO 3 .
  • Metal contacts are then evaporated onto the porous silicon sample, to which a voltage is applied in order to trigger the reaction between silicon and the oxygen from the LiNO 3 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Silicon Compounds (AREA)
  • Fuel Cell (AREA)
EP03002476A 2002-02-06 2003-02-05 Matériaux reactifs nanostructurés Withdrawn EP1334955A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10204895A DE10204895B4 (de) 2002-02-06 2002-02-06 Verfahren zur Herstellung von Reaktivstoffen
DE10204895 2002-02-06

Publications (2)

Publication Number Publication Date
EP1334955A2 true EP1334955A2 (fr) 2003-08-13
EP1334955A3 EP1334955A3 (fr) 2012-06-13

Family

ID=27588435

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03002476A Withdrawn EP1334955A3 (fr) 2002-02-06 2003-02-05 Matériaux reactifs nanostructurés

Country Status (3)

Country Link
US (1) US6803244B2 (fr)
EP (1) EP1334955A3 (fr)
DE (1) DE10204895B4 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2921920A1 (fr) * 2007-10-05 2009-04-10 Saint Louis Inst Composition explosive comportant un premier materiau organique infiltre dans un second materiau microporeux
EP2173688A1 (fr) * 2007-07-06 2010-04-14 BAE Systems Bofors AB Procédé et dispositif pour mélanger et allumer une charge pyrotechnique
EP2469217A3 (fr) * 2010-12-26 2014-07-16 Rafael Advanced Defense Systems Ltd Train explosif sécurisé et armé

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2839505B1 (fr) * 2002-05-07 2005-07-15 Univ Claude Bernard Lyon Procede pour modifier les proprietes d'une couche mince et substrat faisant application du procede
US7942989B2 (en) * 2002-12-10 2011-05-17 The Regents Of The University Of California Porous silicon-based explosive
DE102004001510B4 (de) * 2004-01-09 2012-02-16 Horst Laucht Explosionsfähige Zusammensetzung, Verfahren zu deren Herstellung und Verwendung der explosionsfähigen Zusammensetzung
DE102004005687B4 (de) * 2004-02-05 2018-05-17 Trw Automotive Gmbh Gurtstraffersystem für Kraftfahrzeuge
DE102005011535B4 (de) * 2004-03-10 2010-05-12 Diehl Bgt Defence Gmbh & Co. Kg Mehrmodaler Sprengstoff
WO2006058349A1 (fr) * 2004-11-24 2006-06-01 The University Of Pretoria Dispositif detonateur
DE102005003579B4 (de) 2005-01-26 2010-11-04 Diehl Bgt Defence Gmbh & Co. Kg Pyrotechnischer Satz, Verfahren zu dessen Herstellung und seine Verwendung
MX2007009449A (es) * 2005-02-08 2007-09-21 Dyno Nobel Inc Unidades de retardo y metodos para fabricarlas.
WO2006094531A1 (fr) 2005-03-10 2006-09-14 Diehl Bgt Defence Gmbh & Co. Kg Explosif multimodal
WO2006121870A2 (fr) * 2005-05-09 2006-11-16 Vesta Research, Ltd. Particules de nanoeponges de silicium
DE102006019856A1 (de) * 2006-04-28 2007-11-08 Admedes Schuessler Gmbh Verfahren zum Bearbeiten von Werkstoffen unter Verwendung von porösem Silizium als Sprengstoff
WO2008137969A1 (fr) * 2007-05-08 2008-11-13 Vesta Research Ltd. Combustible flexible façonné et système énergétique l'utilisant
SE0701450L (sv) 2007-06-14 2008-03-11 Bae Systems Bofors Ab Pyroteknisk tändsats innefattande ett poröst material
US8257520B2 (en) * 2009-02-24 2012-09-04 Lawrence Livermore National Security, Llc Organized energetic composites based on micro and nanostructures and methods thereof
US8794152B2 (en) 2010-03-09 2014-08-05 Dyno Nobel Inc. Sealer elements, detonators containing the same, and methods of making
WO2013082634A2 (fr) * 2011-11-30 2013-06-06 Ael Mining Services Limited Formulation explosive de charge de base
RU2522362C1 (ru) * 2012-12-29 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана (МГТУ им. Н.Э. Баумана) Микроэлектромеханический взрыватель изохорический
RU2522323C1 (ru) * 2012-12-29 2014-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный технический университет имени Н.Э. Баумана" (МГТУ им. Н.Э. Баумана) Микроэлектромеханический взрыватель

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191535A (en) * 1959-05-25 1965-06-29 Dow Chemical Co Solid cellular metallic propellants
US3259532A (en) * 1963-07-24 1966-07-05 Reynolds Metals Co Combustion system comprising sponge metal, liquid oxygen, and finely divided carbon
US4989515A (en) * 1989-08-08 1991-02-05 The United States Of America As Represented By The United States Department Of Energy Ignitor with stable low-energy thermite igniting system
EP0764621A2 (fr) * 1995-09-25 1997-03-26 Morton International, Inc. Compositions à base de thermite consolidée et procédé de production
WO2001038265A1 (fr) * 1999-11-23 2001-05-31 Technanogy, Llc. Agent propulseur a vitesse de combustion variable
WO2001038264A1 (fr) * 1999-11-23 2001-05-31 Technanogy, Llc Composition et methode de preparation d'une matrice a comburant contenant des particules metalliques dispersees
DE10011253A1 (de) * 2000-03-08 2001-09-13 Juergen Carstensen Kontrollierte Porenätzung in Halbleitern
WO2001094276A2 (fr) * 2000-06-02 2001-12-13 The Regents Of The University Of California Synthese de materiau energetique a base d'oxyde metallique faisant appel a la chimie sol-gel
DE10162413A1 (de) * 2001-12-19 2003-07-10 Bosch Gmbh Robert Integriertes Spreng- oder Zündelement und dessen Verwendung

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9216517D0 (en) * 1992-08-04 1992-09-23 Ici Plc Pyrotechnic sheet material
US5885321A (en) * 1996-07-22 1999-03-23 The United States Of America As Represented By The Secretary Of The Navy Preparation of fine aluminum powders by solution methods
WO1999012640A1 (fr) * 1997-09-09 1999-03-18 Select Release, L.C. Particules enrobees, procedes de fabrication et d'utilisation
US6203864B1 (en) * 1998-06-08 2001-03-20 Nec Corporation Method of forming a heterojunction of a carbon nanotube and a different material, method of working a filament of a nanotube
US6915964B2 (en) * 2001-04-24 2005-07-12 Innovative Technology, Inc. System and process for solid-state deposition and consolidation of high velocity powder particles using thermal plastic deformation

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191535A (en) * 1959-05-25 1965-06-29 Dow Chemical Co Solid cellular metallic propellants
US3259532A (en) * 1963-07-24 1966-07-05 Reynolds Metals Co Combustion system comprising sponge metal, liquid oxygen, and finely divided carbon
US4989515A (en) * 1989-08-08 1991-02-05 The United States Of America As Represented By The United States Department Of Energy Ignitor with stable low-energy thermite igniting system
EP0764621A2 (fr) * 1995-09-25 1997-03-26 Morton International, Inc. Compositions à base de thermite consolidée et procédé de production
WO2001038265A1 (fr) * 1999-11-23 2001-05-31 Technanogy, Llc. Agent propulseur a vitesse de combustion variable
WO2001038264A1 (fr) * 1999-11-23 2001-05-31 Technanogy, Llc Composition et methode de preparation d'une matrice a comburant contenant des particules metalliques dispersees
DE10011253A1 (de) * 2000-03-08 2001-09-13 Juergen Carstensen Kontrollierte Porenätzung in Halbleitern
WO2001094276A2 (fr) * 2000-06-02 2001-12-13 The Regents Of The University Of California Synthese de materiau energetique a base d'oxyde metallique faisant appel a la chimie sol-gel
DE10162413A1 (de) * 2001-12-19 2003-07-10 Bosch Gmbh Robert Integriertes Spreng- oder Zündelement und dessen Verwendung

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KOVALEV D ET AL: "Strong explosive interaction of hydrogenated porous silicon with oxygen at cryogenic temperatures", PHYSICAL REVIEW LETTERS, Bd. 87, Nr. 6, 6. August 2001 (2001-08-06) , Seiten 68301-1-68301-4, XP002674304, AMERICAN INSTITUTE OF PHYSICS INC. US *
MIKULEC F V ET AL: "Explosive nanocrystalline porous silicon and its use in atomic emission spectroscopy", ADVANCED MATERIALS, Bd. 14, Nr. 1, 4. Januar 2002 (2002-01-04) , Seiten 38-41, XP002674305, WILEY-VCH VERLAG DE DOI: 10.1002/1521-4095(20020104)14:1<38::AID-AD MA38>3.0.CO;2-Z *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2173688A1 (fr) * 2007-07-06 2010-04-14 BAE Systems Bofors AB Procédé et dispositif pour mélanger et allumer une charge pyrotechnique
EP2173688A4 (fr) * 2007-07-06 2012-07-25 Bae Systems Bofors Ab Procédé et dispositif pour mélanger et allumer une charge pyrotechnique
US8603271B2 (en) 2007-07-06 2013-12-10 Bae Systems Bofors Ab Method and device for mixing and initiating a pyrotechnic charge
FR2921920A1 (fr) * 2007-10-05 2009-04-10 Saint Louis Inst Composition explosive comportant un premier materiau organique infiltre dans un second materiau microporeux
EP2045230A3 (fr) * 2007-10-05 2009-12-30 Institut Franco-Allemand de Recherches de Saint-Louis Composition explosive comportant un premier matériau organique infiltré dans un second matériau microporeux
EP2469217A3 (fr) * 2010-12-26 2014-07-16 Rafael Advanced Defense Systems Ltd Train explosif sécurisé et armé

Also Published As

Publication number Publication date
US20030148569A1 (en) 2003-08-07
US6803244B2 (en) 2004-10-12
EP1334955A3 (fr) 2012-06-13
DE10204895B4 (de) 2004-07-29
DE10204895A1 (de) 2003-08-14

Similar Documents

Publication Publication Date Title
DE10204895B4 (de) Verfahren zur Herstellung von Reaktivstoffen
DE10204834B4 (de) Explosionsfähige Zusammensetzung und Verfahren zu deren Herstellung
Clement et al. Highly explosive nanosilicon‐based composite materials
Plessis A Decade of Porous Silicon as Nano‐Explosive Material
Martirosyan Nanoenergetic gas-generators: principles and applications
Berger Parameters influencing the pyrotechnic reaction
DE10162413B4 (de) Integriertes Spreng- oder Zündelement und dessen Verwendung
EP1335178B1 (fr) Dispositif microélectronique-pyrotechnique
DE20201938U1 (de) Nanostrukturierte Reaktivstoffe
US4094712A (en) Consolidated charges incorporating integral ignition compounds
DE2451370C2 (de) Elektrischer Zünder für hülsenlose Treibsätze und Verfahren zur Herstellung solcher Zünder
US7942988B2 (en) Shaped, flexible fuel and energetic system therefrom
DE19533487A1 (de) Anzündelemente und fein abstufbare Zündsätze
AT390787B (de) Verfahren zur herstellung eines sprengund/oder festtreibstoffes
US20060054256A1 (en) Explosive composition and method for production thereof
WO2006039892A2 (fr) Melange de matieres utilise comme melange d&#39;allumage a initiation thermique
DE10240096B3 (de) Verschlußelement für Druckbehälter
DE102006001838A1 (de) Verfahren zur Herstellung einer pyrotechnischen Zusammensetzung
Yang et al. Ultrafast spectroscopy of laser-initiated nanoenergetic materials
EP1856007A1 (fr) Explosif multimodal
DE1771176C3 (de) Sprengstoff mit einem Gehalt an Hydrazin und Hydraziniumnitrat und Verfahren zur Herstellung desselben
DE3710941A1 (de) Gepulstes chemisches lasersystem kurzer wellenlaenge
DE202006014442U1 (de) Mikroelektronisch-pyrotechnisches Bauteil
IE20080370A1 (en) A shaped, flexible fuel and energetic system
DE102012016431A1 (de) Anzünder für eine Sicherheitseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DIEHL BGT DEFENCE GMBH & CO.KG

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RIC1 Information provided on ipc code assigned before grant

Ipc: C06B 45/00 20060101AFI20120420BHEP

Ipc: C06B 33/00 20060101ALI20120420BHEP

Ipc: C06B 45/30 20060101ALI20120420BHEP

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RIC1 Information provided on ipc code assigned before grant

Ipc: C06B 45/30 20060101ALI20120508BHEP

Ipc: C06B 33/00 20060101ALI20120508BHEP

Ipc: C06B 45/00 20060101AFI20120508BHEP

AKY No designation fees paid
REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

REG Reference to a national code

Ref country code: DE

Ref legal event code: R108

Effective date: 20130220

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20121214