EP1332106A2 - Method for producing glass-silicon-glass sandwich structures - Google Patents

Method for producing glass-silicon-glass sandwich structures

Info

Publication number
EP1332106A2
EP1332106A2 EP01993578A EP01993578A EP1332106A2 EP 1332106 A2 EP1332106 A2 EP 1332106A2 EP 01993578 A EP01993578 A EP 01993578A EP 01993578 A EP01993578 A EP 01993578A EP 1332106 A2 EP1332106 A2 EP 1332106A2
Authority
EP
European Patent Office
Prior art keywords
glass
silicon substrate
silicon
substrate
anodic bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01993578A
Other languages
German (de)
French (fr)
Inventor
Steffen Howitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH
Original Assignee
GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH filed Critical GeSiM Gesellschaft fur Silizium-Mikrosysteme mbH
Publication of EP1332106A2 publication Critical patent/EP1332106A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B1/00Devices without movable or flexible elements, e.g. microcapillary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00349Creating layers of material on a substrate
    • B81C1/00357Creating layers of material on a substrate involving bonding one or several substrates on a non-temporary support, e.g. another substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2201/00Manufacture or treatment of microstructural devices or systems
    • B81C2201/01Manufacture or treatment of microstructural devices or systems in or on a substrate
    • B81C2201/0174Manufacture or treatment of microstructural devices or systems in or on a substrate for making multi-layered devices, film deposition or growing
    • B81C2201/019Bonding or gluing multiple substrate layers

Definitions

  • the invention relates to a method for producing irreversibly and aligned interconnected glass-silicon-glass sandwich structures, consisting of a lower and an upper glass substrate, and an intermediate silicon substrate, at least one of the substrates being provided with a 3-D depth structuring ,
  • EP 0 633 468 A2 describes a process for the production of three-dimensional microcapillaries for the production of complex microsystems, which allows the integration of singular sensor elements using special fluidic, mechanical, electrical interface elements, the so-called channel stoppers.
  • a disadvantage of this technology can be seen in the fact that the height of the microchannel cannot deviate from the specified thickness of the silicon substrate used, which is usually a few hundred micrometers, and therefore extremely small channel volumes of 150 ... 5 nl / cm can hardly be achieved are.
  • PCT / DE 00/00768 describes a manufacturing technology for manufacturing 3-D manifolds, which is based on the use of low-temperature cofiring ceramic (short: LTCC - ceramic) and names the possibility as a specific advantage Integrate intersecting fluidic and electrical functional levels in a compact module. Cons This technology means that channel systems with channel volumes below 2 ⁇ l / cm cannot be produced in this way and that the surface quality of the ceramic material is significantly poorer because of the porosity of the materials silicon and glass. For extreme low-volume applications, this method is therefore [generally not suitable.
  • SOI wafer material silicon on insulator
  • Si-Si fusion bond 1000 ° C. for several hours.
  • the disadvantage of the high material costs and the large additional technological expenditure in the production should be countered with the introduction of the production technology according to the invention.
  • the invention has for its object to provide an inexpensive manufacturing process, particularly with a view to the mass production of glass-silicon-glass sandwich structures, which is also suitable for applications in, for example, molecular biology or biotechnology. -.
  • the object on which the invention is based is achieved in that the silicon substrate is irreversibly connected to one of the glass substrates by anodic bonding before or after its 3-D deep structuring, the bond by means of grinding, etching and polishing methods of the glass and / or Silicon side is thinned to a predetermined final thickness and that the remaining silicon surface is subsequently connected to a second In glass substrate by anodic bonding.
  • subclaims 2 and 3 show two advantageous variants of the method according to the invention.
  • FIG. 1 shows:
  • the glass-silicon-glass sandwich structures according to the invention can be used, for example, as a microreaction space in chemical analysis, the status of the chemical reaction taking place in the microcapillary 4 being able to be queried online and, due to the transparent structure, preferably by means of optical detection methods.
  • the special feature of the manufacturing process according to the invention is that the manufacture of glass-silicon-glass sandwich structures is technically possible even with the smallest channel geometries or the smallest 3-D depth structuring and can also be carried out particularly economically and in bulk.
  • the SOG process is to be understood as a silicon-on-glass process, in which the silicon substrate 1 is either attached unstructured to a glass substrate 3 by anodic bonding and subsequently thinned (variant I), or the silicon substrate 1 is structured, then with the structured one Side is fixed on the glass substrate 2 by anodic bonding and subsequently thinned (variant II).
  • variant which variant can be used depends on the design and the required quality characteristics of the end product.
  • the masking of the silicon substrate 1 by Coatings are carried out, which has been applied to the surface of the silicon substrate 1 by spin coating from Fotopolyme.ren or by a CVD coating.
  • the deep etching by wet chemical or dry chemical, anisotropically working deep etching processes is used.
  • the masking of the silicon substrate 1 is necessary, which is done by means of structured photoresists, structured metal layers or also by structured inorganic insulator layers.
  • the structured metal layers can consist of aluminum. Si0 2 or Si 3 N 4 can be used as the inorganic insulator layers.
  • Variant I of the process for producing a glass-silicon-glass sandwich structure comprises the following steps:
  • the process comprises the following steps:
  • the typical lateral dimensions of the microcapillary 4 ie the length, width and height of the microchannel, can be any value from a few 5 ⁇ m.
  • the microcapillary can take any shape and can also be connected to a microreaction space or the like.
  • Such electrode systems can be transparent or non-transparent, but in any case they can be extremely thin.
  • holes 5 can be provided in one or both glass substrates 2, 3, which ensures access perpendicular to the course of the microchannel 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Micromachines (AREA)

Abstract

The invention relates to a method for producing glass-silicon-glass sandwich structures which are connected irreversibly and in such a way that they are adjusted to correspond. Said structures consist of a bottom and a top glass substrate (2, 3) and a silicon substrate (1) in-between. At least one of the substrates (1; 2; 3) is provided with 3D depth structuring. The aim of the invention is to provide a low-cost production method, especially with a view to mass production of glass-silicon-glass sandwich structures. To this end, the silicon substrate (1) is irreversibly connected to one of the glass substrates (2; 3) before or after the 3D depth structuring. The bond is reduced to a predetermined end thickness from the glass and/or the silicon side by means of grinding, etching and polishing methods and the remaining silicon surface is then connected to a second glass substrate (3; 2) by anodic bonding.

Description

Verfahren zum Herstellen von Glas-Silizium-Glas Sandwichstrukturen Process for the production of glass-silicon-glass sandwich structures
Die Erfindung betrifft ein Verfahren zum Herstellen von irre- versibel und justiert miteinander verbundenen Glas-Silizium- Glas Sandwichstrukturen, bestehend aus einem unteren und einem oberen Glassubstrat, sowie einem dazwischenliegenden Siliziumsubstrat, wobei wenigstens eines der Substrate mit einer 3-D- Tiefenstrukturierung versehen ist.The invention relates to a method for producing irreversibly and aligned interconnected glass-silicon-glass sandwich structures, consisting of a lower and an upper glass substrate, and an intermediate silicon substrate, at least one of the substrates being provided with a 3-D depth structuring ,
Für die Herstellung von dreidimensionalen Glas-Silizium-Glas Sandwichstrukturen existieren bereits vielfältige technische Lösungen für die verschiedensten Anwendungsfälle.For the production of three-dimensional glass-silicon-glass sandwich structures, there are already a variety of technical solutions for a wide variety of applications.
So wird in EP 0 633 468 A2 ein Verfahren für die Herstellung dreidimensionaler Mikrokapillaren zur Herstellung komplexer Mikrosysteme beschrieben, welches unter Verwendung spezieller fluidisch, mechanisch, elektrischer Schnittstellenelemente, den sogenannten Kanalstoppern, die Integration singulärer Sensorelemente gestattet. Ein Nachteil dieser Technologie ist darin zu sehen, dass die Höhe des Mikrokanales nicht von der vorgegebenen Dicke des verwendeten Siliziumsubstrates, welches in der Regel einige hundert Mikrometer beträgt, abweichen kann und somit extrem kleine Kanalvolumina von 150...5 nl/cm kaum realisierbar sind.For example, EP 0 633 468 A2 describes a process for the production of three-dimensional microcapillaries for the production of complex microsystems, which allows the integration of singular sensor elements using special fluidic, mechanical, electrical interface elements, the so-called channel stoppers. A disadvantage of this technology can be seen in the fact that the height of the microchannel cannot deviate from the specified thickness of the silicon substrate used, which is usually a few hundred micrometers, and therefore extremely small channel volumes of 150 ... 5 nl / cm can hardly be achieved are.
In der PCT/DE 00/00768 wird eine Herstellungstechnologie zur Fertigung von 3-D-Manifolden beschrieben, die von der Verwendung der Low-Temperature-Cofiring-Ceramic (kurz : LTCC - Keramik) ausgeht und als spezifischen Vorteil die Möglichkeit benennt, sich kreuzende fluidische und elektrische Funktionsebenen in einen kompakten Modul zu integrieren. Nachteile die- ser Technologie sind, dass Kanalsysteme mit Kanalvolumen unter 2μl/cm auf diesem Wege nicht hergestellt werden können und dass die Oberflächengüte des keramischen Materials bezogen auf die Werkstoffe Silizium und Glas deutlich schlechter, weil poröser, ist. Für extreme low-volume Applikationen ist dieses Verfahren daher [grundsätzlich nicht geeignet.PCT / DE 00/00768 describes a manufacturing technology for manufacturing 3-D manifolds, which is based on the use of low-temperature cofiring ceramic (short: LTCC - ceramic) and names the possibility as a specific advantage Integrate intersecting fluidic and electrical functional levels in a compact module. Cons This technology means that channel systems with channel volumes below 2μl / cm cannot be produced in this way and that the surface quality of the ceramic material is significantly poorer because of the porosity of the materials silicon and glass. For extreme low-volume applications, this method is therefore [generally not suitable.
In dem Fachartikel „A 3-D microelectrode System for handling and caging single cells and particles", Biosen- sors&Bioelectronics 14 (1999) pp-247-256 sowie in der deutschen Patentanmeldung [Nr. 100 44 33.8] werden Herstellungstechniken für dreidimensionale Mikrokapillarsysteme beschrieben, die aus den Werkstoffen Glas und Photopolymer bestehen und für extreme low-volume Applikationen bis hinab in den Bereich von 350pl/cm Kanalvolumen anwendbar sind.The technical article "A 3-D microelectrode system for handling and caging single cells and particles", Biosensors & Bioelectronics 14 (1999) pp-247-256 and the German patent application [No. 100 44 33.8] describe manufacturing techniques for three-dimensional microcapillary systems , which consist of the materials glass and photopolymer and can be used for extreme low-volume applications down to the range of 350pl / cm channel volume.
Nachteil dieser dreidimensionalen Mikrokapillarsysteme ist die eingeschränkte chemische Resistenz der eingesetzten Polymere gegenüber chemisch aggressiven Medien, die relativ geringe Druckbelastbarkeit sowie eine hohe Seitenwandrauhigkeit .Disadvantages of these three-dimensional microcapillary systems are the limited chemical resistance of the polymers used to chemically aggressive media, the relatively low pressure resistance and high side wall roughness.
Für die Herstellung von 3-D-Mikrokapillarsystemen für Kanalvolumina kleiner 150...5 nl/cm steht ein SOI-Wafermaterial zur Verfügung (SOI: Silizium on Isolator). Dieses Material hat aufgrund der aufwendigen und langwierigen Herstellungstechnologie allerdings einen um den Faktor 10 höheren Preis als konventionelles Siliziummaterial. Um eine SOI-Struktur herstellen zu können, ist ein Opfersubstrat erforderlich, was die Anwendung des Si-Si-Fusionsbondens bei 1000 °C über mehrere Stunden voraussetzt.An SOI wafer material (SOI: silicon on insulator) is available for the manufacture of 3-D microcapillary systems for channel volumes of less than 150 ... 5 nl / cm. However, due to the complex and lengthy manufacturing technology, this material is 10 times more expensive than conventional silicon material. In order to be able to produce an SOI structure, a sacrificial substrate is required, which requires the use of the Si-Si fusion bond at 1000 ° C. for several hours.
Dem Nachteil der hohen Materialkosten und des großen technologischen Mehraufwandes bei der Herstellung soll mit der Einführung der erfindungsgemäßen Herstellungstechnologie begegnet werden. Der Erfindung liegt die Aufgabe zugrunde, ein preiswertes Herstellungsverfahren, besonders mit Blick auf die Massenproduktion von Glas-Silizium-Glas Sandwichstrukturen geschaffen werden, das auch für Anwendungen beispielsweise in der Molekularbiologie bzw. Biotechnologie geeignet ist. -.The disadvantage of the high material costs and the large additional technological expenditure in the production should be countered with the introduction of the production technology according to the invention. The invention has for its object to provide an inexpensive manufacturing process, particularly with a view to the mass production of glass-silicon-glass sandwich structures, which is also suitable for applications in, for example, molecular biology or biotechnology. -.
Die der Erfindung zugrundeliegende Aufgabenstellung wird dadurch 'gelöst, dass das Siliziumsubstrat vor oder nach dessen 3- D-Tiefenstrukturierung mit einem der Glassubstrate durch anodisches Bonden irreversibel verbunden wird, der Verbund mittels Schleif-, Ätz- und Polierverfahren von der Glas- und/oder Siliziumseite auf eine vorgegebene Enddicke abgedünnt wird und dass nachfolgend die verbleibende Siliziumoberfläche mit einem zweite In Glassubstrat durch anodisches Bonden verbunden wird.The object on which the invention is based is achieved in that the silicon substrate is irreversibly connected to one of the glass substrates by anodic bonding before or after its 3-D deep structuring, the bond by means of grinding, etching and polishing methods of the glass and / or Silicon side is thinned to a predetermined final thickness and that the remaining silicon surface is subsequently connected to a second In glass substrate by anodic bonding.
Der besondere Vorteil dieses Verfahrens ist darin zu sehen, dass die Herstellung von Glas-Silizium-Glas Sandwichstrukturen selbst mit kleinst möglicher Tiefenstrukturierung technisch möglich ist und zudem besonders kostengünstig und im Massenverfahren durchgeführt werden kann.The particular advantage of this method can be seen in the fact that the production of glass-silicon-glass sandwich structures is technically possible even with the smallest possible deep structuring and, moreover, can be carried out in a particularly cost-effective manner and in a mass process.
Ein weiterer Vorteil ist darin zusehen, dass es möglich ist, an der Dicke der Substrate bzw. des Verbundes vor dessen endgültiger Fertigstellung mittels mechanisch-chemischer Verfahren Änderungen vornehmen kann, ohne dass ein Opfersubstrat, wie bei der eingangs beschriebenen SOI-Technik, verwendet werden muss.Another advantage can be seen in the fact that it is possible to make changes to the thickness of the substrates or the composite before its final completion by means of mechanical-chemical processes, without using a sacrificial substrate, as in the SOI technology described at the outset got to.
Weitere Ausgestaltungen gehen aus den zugehörigen Unteransprüchen hervor. Insbesondere zeigen die Unteransprüche 2 und 3 zwei vorteilhafte Varianten des erfindungsgemäßen Verfahrens. In den zugehörigen Zeichnungsfiguren zeigen:Further configurations emerge from the associated subclaims. In particular, subclaims 2 and 3 show two advantageous variants of the method according to the invention. In the associated drawing figures show:
Fig. 1 die Zielstruktur einer erfindungsgemäß hergestellten Glas-Silizium-Glas Sandwichstruktur ;1 shows the target structure of a glass-silicon-glass sandwich structure produced according to the invention;
Fig. 2 die wichtigsten SOG-Prozess-Sequenzen für eine Vari- ι ante I zur Herstellung einer Glas-Silizium-Glas Sandwichstruktur; und2 shows the most important SOG process sequences for a variant I for producing a glass-silicon-glass sandwich structure; and
Fig. 3 die wichtigsten SOG-Prozess-Sequenzen für eine Variante II zur Herstellung einer Glas-Silizium-Glas Sandwichstruktur.3 shows the most important SOG process sequences for a variant II for producing a glass-silicon-glass sandwich structure.
Die erfindungsgemäßen Glas-Silizium-Glas Sandwichstrukturen können beispielsweise als Mikroreaktionsraum in der chemischen Analytik eingesetzt werden, wobei der Status der in der Mikrokapillare 4 ablaufenden chemischen Reaktion online und aufgrund des transparenten Aufbaus vorzugsweise mittels optischer Detek- tionsverfahren abgefragt werden kann.The glass-silicon-glass sandwich structures according to the invention can be used, for example, as a microreaction space in chemical analysis, the status of the chemical reaction taking place in the microcapillary 4 being able to be queried online and, due to the transparent structure, preferably by means of optical detection methods.
Die Besonderheit des erfindungsgemäßen Herstellungsverfahrens (SOG-Verfahren) besteht darin, dass die Herstellung von Glas- Silizium-Glas Sandwichstrukturen selbst mit kleinsten Kanalgeometrien bzw. kleinsten 3-D-Tiefenstrukturierungem technisch möglich ist und zudem besonders kostengünstig und im Massenverfahren durchgeführt werden kann. Unter SOG-Verfahren ist ein Silicon-on-Glass-Verfahren zu verstehen, bei dem das Siliziumsubstrat 1 entweder unstrukturiert auf einem Glassubstrat 3 durch anodisches Bonden befestigt und nachfolgend abgedünnt wird (Variante I), oder das Siliziumsubstrat 1 strukturiert, anschließend mit der strukturierten Seite auf dem Glassubstrat 2 durch anodisches Bonden befestigt und nachfolgend abgedünnt wird (Variante II) . Welche Variante zur Anwendung kommen kann, hängt vom Design und den geforderten Qualitätsmerkmalen des Endproduktes ab. die Maskierung des Siliziumsubstrates 1 durch Beschichtungen erfolgt, die durch Spincoating von Fotopolyme.ren oder durch eine CVD-Beschichtung auf der Oberfläche des Siliziumsubstrates 1 aufgebracht worden ist.The special feature of the manufacturing process according to the invention (SOG process) is that the manufacture of glass-silicon-glass sandwich structures is technically possible even with the smallest channel geometries or the smallest 3-D depth structuring and can also be carried out particularly economically and in bulk. The SOG process is to be understood as a silicon-on-glass process, in which the silicon substrate 1 is either attached unstructured to a glass substrate 3 by anodic bonding and subsequently thinned (variant I), or the silicon substrate 1 is structured, then with the structured one Side is fixed on the glass substrate 2 by anodic bonding and subsequently thinned (variant II). Which variant can be used depends on the design and the required quality characteristics of the end product. the masking of the silicon substrate 1 by Coatings are carried out, which has been applied to the surface of the silicon substrate 1 by spin coating from Fotopolyme.ren or by a CVD coating.
Für die Strukturierung des Siliziumsubstrates 1 wird das Tiefenätzen durch nasschemische oder trockenchemische, anisotrop arbeitende Tiefenätzverfahren verwendet. Dazu ist die Maskierung 'des Siliziumsubstrates 1 erforderlich, was mittels strukturierter Photolacke, strukturierter Metallschichten oder auch durch strukturierte anorganische Isolatorschichten erfolgt. Die strukturierten Metallschichten können aus Aluminium bestehen. Als anorganische Isolatorschichten können Si02 oder Si3N4 verwendet werden.For the structuring of the silicon substrate 1, the deep etching by wet chemical or dry chemical, anisotropically working deep etching processes is used. For this purpose, the masking of the silicon substrate 1 is necessary, which is done by means of structured photoresists, structured metal layers or also by structured inorganic insulator layers. The structured metal layers can consist of aluminum. Si0 2 or Si 3 N 4 can be used as the inorganic insulator layers.
Das Verfahren zur Herstellung einer Glas-Silizium-Glas Sandwichstruktur umfasst dabei in der Variante I folgende Schritte:Variant I of the process for producing a glass-silicon-glass sandwich structure comprises the following steps:
a) anodisches Bonden des Siliziumsubstrates 1 mit einer Dicke von deutlich über 15 μm auf einem ersten Glassubstrat 3,a) anodic bonding of the silicon substrate 1 with a thickness of significantly more than 15 μm on a first glass substrate 3,
b) Abdünnen des Silizumsubstrates 1 auf einen Zielwert von X+30 μm, und anschließendes Feinstpolieren des Siliziumsubstrates 1 auf den vorgesehenen Zielwert,b) thinning the silicon substrate 1 to a target value of X + 30 μm, and then finely polishing the silicon substrate 1 to the intended target value,
c) Maskierung des Siliziumsubstrates 1 und Photolithografie zur Vorbereitung des nachfolgenden Tiefenätzens,c) masking the silicon substrate 1 and photolithography in preparation for the subsequent deep etching,
d) anisotropes Tiefenätzen des Siliziumsubstrates 1 zur Fertigstellung der im Siliziumsubstrat vorgesehenen Struktur, undd) anisotropic deep etching of the silicon substrate 1 to complete the structure provided in the silicon substrate, and
e) anodisches Bonden eines zweiten Glassubstrates 2 auf dem Siliziumsubstrat 1. Nach der Variante II umfasst das Verfahren folgende Schritte:e) anodic bonding of a second glass substrate 2 on the silicon substrate 1. According to variant II, the process comprises the following steps:
a) Maskieren des Siliziumsubstrates 1 in der unbearbeiteten Ausgangsdicke zur Vorbereitung des Tiefenätzens,a) masking the silicon substrate 1 in the unprocessed initial thickness in preparation for the deep etching,
b) anschließendes anisotropes Tiefenätzen des Siliziumsubstrates 1,b) subsequent anisotropic deep etching of the silicon substrate 1,
c) Verbinden des Siliziumsubstrates 1 mit einem Glassubstrat 2 durch anodisches Bonden,c) connecting the silicon substrate 1 to a glass substrate 2 by anodic bonding,
d) Abdünnen des Siliziumsubstrates 1 auf einen Zielwert von X+30 μm und anschließendes Feinstpolieren des Siliziumsubstrates auf den vorgegebenen Zielwert,d) thinning the silicon substrate 1 to a target value of X + 30 μm and then finely polishing the silicon substrate to the predetermined target value,
e) Befestigen eines zweiten Glassubstrates 3 am Siliziumsubstrat 1 durch anodisches Bonden.e) attaching a second glass substrate 3 to the silicon substrate 1 by anodic bonding.
Bei beiden Varianten können die typischen lateralen Abmessungen der Mikrokapillare 4, d.h. Länge, Breite und Höhe des Mikroka- nales, von einigen 5 μm aufwärts jeden Wert betragen. Die Mikrokapillare kann dabei beliebige Formen annehmen und auch mit einem Mikroreaktionsraum, o. dgl. verbunden werden. Auch besteht grundsätzlich die Möglichkeit, im Siliziumsubstrat 1 gleichzeitig auch elektronische Funktionsbausteine bzw. Baugruppen mit den üblichen Mitteln der Mikroelektronik zu integrieren. Weiterhin besteht bei beiden Varianten zusätzlich die Möglichkeit, das Glassubstrat 2 (Top Glas) und das Glassubstrat 3 (Down oder Bottom Glas) vor oder nach dem anodischen Bonden, außerhalb oder innerhalb des Bondinterfaces mit geeigneten Elektrodensystemen zu versehen. Solche Elektrodensysteme können transparent oder intransparent, in jedem Fall aber extrem dünn sein. Zur Ankopplung der Fluide in die Mikrokapillare 4 können Bohrungen 5 in einem oder beiden Glassubstraten 2, 3 befindlich vorgesehen werden, womit ein Zugang senkrecht zum Verlauf des Mikrokanales 4 gewährleistet ist. Es ist aber ebenso möglich, Fluide seitlich in den Verbund und zwar über den stirnseitig geöffneten Kanal am Siliziumsubstrat 1 einzukoppeln, womit der Zugang parallel zur Ebene des Mikrokanales 4 gewährleistet werden kann. In both variants, the typical lateral dimensions of the microcapillary 4, ie the length, width and height of the microchannel, can be any value from a few 5 μm. The microcapillary can take any shape and can also be connected to a microreaction space or the like. In principle, there is also the possibility of simultaneously integrating electronic function modules or assemblies in the silicon substrate 1 using the usual means of microelectronics. In addition, with both variants it is also possible to provide the glass substrate 2 (top glass) and the glass substrate 3 (down or bottom glass) with suitable electrode systems before or after the anodic bonding, outside or inside the bond interface. Such electrode systems can be transparent or non-transparent, but in any case they can be extremely thin. For coupling the fluids into the microcapillary 4, holes 5 can be provided in one or both glass substrates 2, 3, which ensures access perpendicular to the course of the microchannel 4. However, it is also possible to couple fluids laterally into the composite, specifically via the channel on the silicon substrate 1 that is open at the end, so that access can be guaranteed parallel to the plane of the microchannel 4.
Verfahren zum Herstellen von Glas-Silizium-Glas SandwichstrukturenProcess for the production of glass-silicon-glass sandwich structures
BezugszeichenlisteLIST OF REFERENCE NUMBERS
Siliziumsubstrat GlasSubstrat (Top Glas) Glassubstrat (Bottom Glas] Mikrokapillare Bohrung Silicon substrate glass substrate (top glass) glass substrate (bottom glass) microcapillary bore

Claims

Verfahren zum Herstellen von Glas-Silizium-Glas SandwichstrukturenPatentansprüche Process for the manufacture of glass-silicon-glass sandwich structures
1. Verfahren zum Herstellen von irreversibel und justiert miteinander verbundenen Glas-Silizium-Glas Sandwichstrukturen, bestehend aus einem unteren und einem oberen Glassubstrat1. Method for producing irreversibly and aligned interconnected glass-silicon-glass sandwich structures, consisting of a lower and an upper glass substrate
(2, 3) , sowie einem dazwischenliegenden Siliziumsubstrat (1) , wobei wenigstens eines der Substrate (1; 2, 3) mit ei- • ner 3-D-Tiefenstrukturierung versehen ist, dadurch gekennzeichnet, dass das Siliziumsubstrat (1) vor oder nach dessen 3-D-Tiefenstrukturierung mit einem der Glassubstrate (2; 3) durch anodisches Bonden irreversibel verbunden wird, der Verbund mittels Schleif-, Ätz- und Polierverfahren von der Glas- und/oder Siliziumseite auf eine vorgegebene Enddicke abgedünnt wird und dass nachfolgend die verbleibende Siliziumoberfläche mit einem zweiten Glassubstrat (3; 2) durch anodisches Bonden verbunden wird.(2, 3), and an intermediate silicon substrate (1), at least one of the substrates (1; 2, 3) being provided with a 3-D depth structuring, characterized in that the silicon substrate (1) is in front of or after its 3-D depth structuring is irreversibly connected to one of the glass substrates (2; 3) by anodic bonding, the composite is thinned from the glass and / or silicon side to a predetermined final thickness by means of grinding, etching and polishing processes, and subsequently the remaining silicon surface is connected to a second glass substrate (3; 2) by anodic bonding.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , dass die Enddicke des Siliziumsubstrates (1) minimal 15 μm beträgt.2. The method according to claim 1, characterized in that the final thickness of the silicon substrate (1) is at least 15 microns.
3. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet , dass die Glas-Silizium-Glas-Sandwichstruktur durch folgende Verfahrensschritte hergestellt wird:3. The method according to claim 1 and 2, characterized in that the glass-silicon-glass sandwich structure is produced by the following process steps:
a) anodisches Bonden des Siliziumsubstrates (1) mit einer ' Dicke von deutlich über 15 μm auf einem ersten Glassubstrat (3) , b) Abdünnen des Silizumsubstrates (1) auf einen Zielwert von X+30 μm, und anschließendes Feinstpolieren des Siliziumsubstrates (1) auf den vorgesehenen Zielwert,a) anodic bonding of the silicon substrate (1) with a 'thickness of well over 15 μm on a first glass substrate (3), b) thinning the silicon substrate (1) to a target value of X + 30 μm, and then finely polishing the silicon substrate (1) to the intended target value,
c) Maskierung des Siliziumsubstrates (1) und Fotolithografie zur Vorbereitung des nachfolgenden Tiefenätzens,c) masking the silicon substrate (1) and photolithography in preparation for the subsequent deep etching,
d) anisotropes Tiefenätzen des Siliziumsubstrates (1) zur ! Fertigstellung der im Siliziumsubstrat vorgesehenend) anisotropic deep etching of the silicon substrate (1) for! Completion of those provided in the silicon substrate
Struktur,Structure,
e) anodisches Bonden eines zweiten Glassubstrates (2) auf dem Siliziumsubstrat (1) .e) anodic bonding of a second glass substrate (2) on the silicon substrate (1).
4. Verfahren nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die Glas-Silizium-Glas Sandwichstruktur durch folgende Verfahrensschritte hergestellt wird:4. The method according to claim 1 and 2, characterized in that the glass-silicon-glass sandwich structure is produced by the following process steps:
a) Maskieren des Siliziumsubstrates (1) in der unbearbeiteten Ausgangsdicke zur Vorbereitung des Tiefenätzens,a) masking the silicon substrate (1) in the unprocessed initial thickness in preparation for deep etching,
b) anschließendes anisotropes Tiefenätzen des Silizium- i Substrates (1) ,b) subsequent anisotropic deep etching of the silicon i substrate (1),
c) Verbinden des Siliziumsubstrates (1) mit einem Glassubstrat (2) durch anodisches Bonden,c) connecting the silicon substrate (1) to a glass substrate (2) by anodic bonding,
d) Abdünnen des Siliziumsubstrates (1) auf einen Zielwert von X+30 μm und anschließendes Feinstpolieren des Sili- umsubstrates (1) auf den vorgegebenen Zielwert.d) Thinning of the silicon substrate (1) to a target value of X + 30 μm and subsequent fine polishing of the silicon substrate (1) to the specified target value.
e) Befestigen eines zweiten Glassubstrates (3) am Siliziumsubstrat (1) durch anodisches Bonden. e) attaching a second glass substrate (3) to the silicon substrate (1) by anodic bonding.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet , dass die Ausgangsdicke des Siliziumsubstrates (1) zwischen 300 und 1000 μm liegt.5. The method according to any one of claims 1 to 4, characterized in that the initial thickness of the silicon substrate (1) is between 300 and 1000 microns.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet , dass die Dicke des ersten und des zweiten Glassubstrates (2, 3) zwischen 200 ... 1000 μm liegt.6. The method according to any one of claims 1 to 5, characterized in that the thickness of the first and the second glass substrate (2, 3) is between 200 ... 1000 microns.
I . Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet , dass das Abdünnen des Siliziumsubstrates (1) mittels Grobbearbeitung durch mechanischen oder ätztechnischen Materialabtrag erfolgt.I. Method according to one of claims 1 to 6, characterized in that the silicon substrate (1) is thinned out by means of rough machining by mechanical or etching material removal.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet , dass der Materialabtrag nach der Grobbearbeitung durch einen Feinstpolierschritt vorgenommen wird.8. The method according to claim 7, characterized in that the material removal is carried out after the rough machining by a fine polishing step.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet , dass der Feinstpolierschritt durch ein chemisch-mechanisches Polieren vorgenommen wird.9. The method according to claim 8, characterized in that the fine polishing step is carried out by chemical-mechanical polishing.
10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet , dass die Maskierung des Siliziumsubstrates (1) durch Beschichtungen erfolgt, die durch Spincoating von Fotopolymeren oder durch eine CVD-Beschichtung auf der 0- berfläche des Siliziumsubstrates (1) aufgebracht worden ist.10. The method according to any one of claims 1 to 9, characterized in that the masking of the silicon substrate (1) is carried out by coatings which have been applied to the surface of the silicon substrate (1) by spin coating of photopolymers or by a CVD coating ,
II. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet , dass das Tiefenätzen des Siliziumsubstrates (1) durch nasschemische oder trockenchemische, anisotrop arbeitende Tiefenätzverfahren erfolgt. II. Method according to one of claims 1 to 10, characterized in that the deep etching of the silicon substrate (1) is carried out by wet chemical or dry chemical, anisotropic deep etching processes.
12. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet , dass die Maskierung des Siliziumsubstrates12. The method according to any one of claims 1 to 9, characterized in that the masking of the silicon substrate
(1) durch strukturierte Photolacke, strukturierte Metallschichten oder durch strukturierte anorganische Isolatorschichten erfolgt.(1) by structured photoresists, structured metal layers or by structured inorganic insulator layers.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die strukturierten Metallschichten aus Aluminium bestehen.13. The method according to claim 12, characterized in that the structured metal layers consist of aluminum.
14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass die anorganischen Isolatorschichten aus Si02 oder Si3N4 bestehen. 14. The method according to claim 12, characterized in that the inorganic insulator layers consist of Si0 2 or Si 3 N 4 .
EP01993578A 2000-11-07 2001-11-07 Method for producing glass-silicon-glass sandwich structures Withdrawn EP1332106A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10055155 2000-11-07
DE10055155 2000-11-07
PCT/DE2001/004141 WO2002038490A2 (en) 2000-11-07 2001-11-07 Method for producing glass-silicon-glass sandwich structures

Publications (1)

Publication Number Publication Date
EP1332106A2 true EP1332106A2 (en) 2003-08-06

Family

ID=7662439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01993578A Withdrawn EP1332106A2 (en) 2000-11-07 2001-11-07 Method for producing glass-silicon-glass sandwich structures

Country Status (2)

Country Link
EP (1) EP1332106A2 (en)
WO (1) WO2002038490A2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL82960A0 (en) * 1986-06-30 1987-12-20 Rosemount Inc Differential pressure sensor
US4996627A (en) * 1989-01-30 1991-02-26 Dresser Industries, Inc. High sensitivity miniature pressure transducer
DE4318407A1 (en) 1993-06-03 1994-12-08 Rossendorf Forschzent Microcapillary with integrated chemical microsensors and process for their manufacture
DE4409068C2 (en) * 1994-03-14 1998-05-28 Hartmann & Braun Ag Bonding process and bond connection produced therewith
EP0975465A4 (en) * 1997-04-18 2000-05-10 Topaz Tech Inc Nozzle plate for an ink jet print head

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0238490A2 *

Also Published As

Publication number Publication date
WO2002038490A3 (en) 2002-08-15
WO2002038490A2 (en) 2002-05-16

Similar Documents

Publication Publication Date Title
DE4115046C2 (en)
EP1371092B1 (en) Method for structuring a flat substrate consisting of a glass-type material
DE102004027501A1 (en) Micromechanical device with several caverns and manufacturing process
DE102007026445A1 (en) Micromechanical component and method for producing a micromechanical component
DE102012206858A1 (en) A method of manufacturing an optical window device for a MEMS device
DE102011010899A1 (en) Method of creating a three-dimensional structure and three-dimensional structure
EP1854104A1 (en) Method for production of a thin-layer structure
DE102010029709B4 (en) Micromechanical component and method for producing a micromechanical component
EP1910219A1 (en) Microcomponent with nanostructured silicon surface, method for producing it, and connection arrangement comprising such microcomponents
DE102015101425B4 (en) Process for producing a component based on a structurable substrate with a three-dimensional membrane structure having pores in the nm range
WO2001007869A1 (en) Method for producing a torsion spring
WO2018068991A1 (en) Method for producing a stress-decoupled micromechanical pressure sensor
DE102011081033A1 (en) Method for producing a micromechanical structure and micromechanical structure
DE102009052234A1 (en) Wafer-level chip for liquid chromatography and process for its production
EP1332106A2 (en) Method for producing glass-silicon-glass sandwich structures
DE102010035606A1 (en) Fabricating microstructure with inner metal structure, comprises preparing substrate structure with internal fluid channel, introducing electrolyte solution into fluid channel, and forming internal metal structure
EP1406831B1 (en) Micromechanical cap structure and a corresponding production method
DE10118529C1 (en) Process for structuring a flat substrate made of glass-like material
DE102008043171A1 (en) Pressure sensor, in particular pressure sensor technology
DE102016216870B4 (en) Method for producing a micromechanical component with an exempted pressure sensor device
EP3043197B1 (en) Support system for microtechnology functional elements
DE102004020173B4 (en) Microstructured component and a method for producing a microstructured component
EP2653222A2 (en) Microstructured apparatus with optical surface quality and method for the production thereof
DE102005042656A1 (en) Micromechanical micro pump for dosing medicine, has substrates connected with each other by anodic bonds, where one substrate is made up of silicone and includes unstructured side and connected with other substrate at unstructured side
DE102007060785B4 (en) Method for producing a (multi) component based on ultra-planar metal structures

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030522

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20040311

RBV Designated contracting states (corrected)

Designated state(s): AT DE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040923