EP1330606B1 - Mechanical kinetic vacuum pump - Google Patents

Mechanical kinetic vacuum pump Download PDF

Info

Publication number
EP1330606B1
EP1330606B1 EP01974146A EP01974146A EP1330606B1 EP 1330606 B1 EP1330606 B1 EP 1330606B1 EP 01974146 A EP01974146 A EP 01974146A EP 01974146 A EP01974146 A EP 01974146A EP 1330606 B1 EP1330606 B1 EP 1330606B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
mechanical kinetic
rotor
pump
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01974146A
Other languages
German (de)
French (fr)
Other versions
EP1330606A1 (en
Inventor
Heinrich Engländer
Michael Froitzheim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leybold GmbH
Original Assignee
Oerlikon Leybold Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Leybold Vacuum GmbH filed Critical Oerlikon Leybold Vacuum GmbH
Publication of EP1330606A1 publication Critical patent/EP1330606A1/en
Application granted granted Critical
Publication of EP1330606B1 publication Critical patent/EP1330606B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/20Manufacture essentially without removing material
    • F05D2230/22Manufacture essentially without removing material by sintering
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/125Magnesium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/17Alloys
    • F05D2300/173Aluminium alloys, e.g. AlCuMgPb

Definitions

  • the invention relates to a mechanical kinetic vacuum pump with a rotor consisting of an aluminum alloy.
  • the mechanical kinetic vacuum pumps by definition include gas ring pumps, turbo vacuum pumps (axial, radial) and molecular / turbomolecular pumps. They are able to mechanically transport the gas particles to be delivered in the area of the molecular flow (pressures less than 10 -3 mbar). In addition, molecular pumps are still capable of conveying gases in the region of the Knudsen flow (10 -3 to 1 mbar). Preferably used mechanical kinetic vacuum pumps often have a turbomolecular pumping stage and an adjoining molecular pumping stage (compound or hybrid pump), since such a pump is capable of compressing gases up to the region of the viscous flow.
  • Turbomolecular vacuum pumps and compound pumps are used in manufacturing processes in the semiconductor industry.
  • the procedures used here - etching, coating or the like - can only be carried out in a vacuum.
  • the vacuum pumps mentioned have the task of evacuating the vacuum chambers before the start of the processes and maintain the desired low pressures during the course of the processes.
  • Turbomolecular vacuum pumps are operated at high speeds (up to 100,000 revolutions / min).
  • the rotors are made of a light metal, usually from a melt-metallurgically produced aluminum alloy ( DE 2923632 A1 ).
  • the alloy is adjusted so that the rotors have the highest possible heat resistance and creep rupture strength.
  • the creep rupture strength decreases with increasing rotor temperature. In the aluminum alloys used so far, an acceptable creep rupture strength results if the rotor temperatures do not exceed the value of 120 ° C.
  • the semiconductor components located in the vacuum chamber assume elevated temperatures. Associated with this is an increase in temperature of the gases to be delivered by the vacuum pumps. These gases in particular cause a temperature increase of the rotors of the connected vacuum pumps. This increase in temperature adversely affects the creep strength mentioned.
  • the bearings must not take high temperatures due to the presence of a lubricant.
  • the operation of mechanical bearings itself is associated with heat generation.
  • the drive motor of the pump is part of the stator and arranged in the vicinity of the bearings. In the phases in which it is operated under load, it forms itself a source of heat. In this case, a partial transport of heat between the rotor and stator via the gas is possible due to the increased density. The removal of significant amounts of heat through the mechanical bearings would only be possible with intensive cooling of the stator bearing parts.
  • the present invention has for its object to improve the hot and creep strength of a friction vacuum pump of the type mentioned. According to the invention this object is achieved by the characterizing features of the claims.
  • Aluminum alloys powder-metallurgically are known per se. They are produced in such a way that the melt consisting of the alloy constituents by means of Dü sprayed on a cold surface. Compared to the production of aluminum alloys by fusion metallurgy, a very rapid solidification of the melt takes place, as a result of which the alloy acquires a new microstructure with altered properties. In particular, spray-compacted aluminum alloys, the main alloying constituent of which is copper, have a substantially higher strength than a molten-metallurgically produced aluminum alloy.
  • DISPAL Materials of the type according to the invention are marketed under the name DISPAL (eg DISPAL S 690 and S 691).
  • DISPAL eg DISPAL S 690 and S 691.
  • copper In addition to the aluminum they contain 3.8 to 5.6% by weight of copper and further alloying constituents, such as magnesium, manganese, zirconium, silver and / or titanium with proportions between 0.1 and 1 wt .-%.

Abstract

The invention relates to a mechanical kinetic vacuum pump comprising a rotor made of an alloy. The aim of the invention is to increase the resistance thereof to heat and creep. The rotor material is a light metal alloy produced from a powder metallurgical light metal alloy.

Description

Die Erfindung bezieht sich auf eine mechanische kinetische Vakuumpumpe mit einem aus einer Aluminium-Legierung bestehenden Rotor.The invention relates to a mechanical kinetic vacuum pump with a rotor consisting of an aluminum alloy.

Zu den mechanischen kinetischen Vakuumpumpen gehören definitionsgemäß Gasringpumpen, Turbovakuumpumpen (axial, radial) und Molekular-/Turbomolekularpumpen. Sie sind in der Lage, im Bereich der Molekularströmung (Drücke kleiner 10-3 mbar) die zu fördernden Gasteilchen mechanisch zu transportieren. Molekularpumpen sind darüber hinaus noch in der Lage, Gase im Bereich der Knudsenströmung (10-3 bis 1 mbar) zu fördern. Bevorzugt eingesetzte mechanische kinetische Vakuumpumpen weisen häufig eine Turbomolekularpumpstufe und eine sich daran anschließende Molekularpumpstufe auf (Compound- oder Hybridpumpe), da eine solche Pumpe in der Lage ist, Gase bis in den Bereich der viskosen Strömung zu verdichten.The mechanical kinetic vacuum pumps by definition include gas ring pumps, turbo vacuum pumps (axial, radial) and molecular / turbomolecular pumps. They are able to mechanically transport the gas particles to be delivered in the area of the molecular flow (pressures less than 10 -3 mbar). In addition, molecular pumps are still capable of conveying gases in the region of the Knudsen flow (10 -3 to 1 mbar). Preferably used mechanical kinetic vacuum pumps often have a turbomolecular pumping stage and an adjoining molecular pumping stage (compound or hybrid pump), since such a pump is capable of compressing gases up to the region of the viscous flow.

Turbomolekularvakuumpumpen und Compoundpumpen werden bei Fertigungsprozessen in der Halbleiterindustrie eingesetzt. Die dabei angewendeten Verfahren - Ätzen, Beschichten o. dgl. - können nur im Vakuum durchgeführt werden. Die genannten Vakuumpumpen haben die Aufgabe, die Vakuumkammern vor dem Beginn der Prozesse zu evakuieren und während des Ablaufs der Prozesse die gewünschten niedrigen Drücke aufrechtzuerhalten.Turbomolecular vacuum pumps and compound pumps are used in manufacturing processes in the semiconductor industry. The procedures used here - etching, coating or the like - can only be carried out in a vacuum. The vacuum pumps mentioned have the task of evacuating the vacuum chambers before the start of the processes and maintain the desired low pressures during the course of the processes.

Turbomolekularvakuumpumpen werden mit hohen Drehzahlen betrieben (bis zu 100000 Umdrehungen/min). Aus rotordynamischen Gründen bestehen die Rotoren aus einem Leichtmetall, üblicherweise aus einer schmelzmetallurgisch hergestellten Aluminiumlegierung ( DE 2923632 A1 ). Die Legierung ist so eingestellt, dass die Rotoren eine möglichst hohe Warmfestigkeit und Zeitstandfestigkeit haben. Die Zeitstandfestigkeit nimmt mit zunehmender Rotortemperatur ab. Bei den bisher eingesetzten Aluminiumlegierungen ergibt sich eine akzeptable Zeitstandfestigkeit, wenn die Rotortemperaturen den Wert von 120°C nicht überschreiten.Turbomolecular vacuum pumps are operated at high speeds (up to 100,000 revolutions / min). For rotordynamischen reasons, the rotors are made of a light metal, usually from a melt-metallurgically produced aluminum alloy ( DE 2923632 A1 ). The alloy is adjusted so that the rotors have the highest possible heat resistance and creep rupture strength. The creep rupture strength decreases with increasing rotor temperature. In the aluminum alloys used so far, an acceptable creep rupture strength results if the rotor temperatures do not exceed the value of 120 ° C.

Während der Durchführung der Halbleiterprozesse nehmen die sich in der Vakuumkammer befindenden Halbleiterbauteile erhöhte Temperaturen an. Damit verbunden ist eine Temperaturerhöhung der von den Vakuumpumpen zu fördernden Gase. Diese Gase bewirken insbesondere eine Temperaturerhöhung der Rotoren der angeschlossenen Vakuumpumpen. Diese Temperaturerhöhung beeinträchtigt die erwähnte Zeitstandfestigkeit.During the execution of the semiconductor processes, the semiconductor components located in the vacuum chamber assume elevated temperatures. Associated with this is an increase in temperature of the gases to be delivered by the vacuum pumps. These gases in particular cause a temperature increase of the rotors of the connected vacuum pumps. This increase in temperature adversely affects the creep strength mentioned.

Die Kühlung der Rotoren einer Molekular- oder Turbomolekularvakuumpumpe ist mit Schwierigkeiten verbunden. Zum einen befinden sich die Rotoren im Vakuum, so dass eine Wärmeabfuhr über die geförderten, ohnehin heissen Gase nicht stattfindet. Sind die Rotoren magnetgelagert, berühren sich ihre Lagerteile nicht. Eine Wärmeabfuhr über die Magnetlager ist deshalb ebenfalls nicht möglich. Sind mechanische Lager vorgesehen, kann Rotorwärme über die Lager abfliessen. Diesem Weg der Wärmeabfuhr sind jedoch enge Grenzen gesetzt. Zum einen sind die einander über die Wälzkörper berührenden Flächenbereiche von Rotor und Stator auf die nahezu punktförmigen Berührungsflächen der Wälzköprer in ihren Lagerringen beschränkt. Weiterhin dürfen die Lager wegen des Vorhandenseins eines Schmiermittels keine hohen Temperaturen annehmen. Auch ist der Betrieb mechanischer Lager selbst mit einer Wärmeerzeugung verbunden. Schließlich ist in aller Regel der Antriebsmotor der Pumpe Bestandteil des Stators und in der Nähe der Lager angeordnet. In den Phasen, in denen er unter Last betrieben wird, bildet er selbst eine Wärmequelle. In diesem Fall ist ein Teiltransport der Wärme zwischen Rotor und Stator über das Gas durch die erhöhte Dichte möglich. Die Abfuhr maßgebliche Wärmemengen über die mechanischen Lager wäre nur bei einer intensiven Kühlung der statorseitigen Lagerteile möglich.The cooling of the rotors of a molecular or turbomolecular vacuum pump is associated with difficulties. On the one hand, the rotors are in a vacuum, so that heat dissipation via the conveyed, anyway hot gases does not take place. Are the rotors magnetically stored, their bearing parts do not touch. A heat dissipation via the magnetic bearings is therefore also not possible. If mechanical bearings are provided, rotor heat can flow off the bearings. However, this way of heat removal are set narrow limits. On the one hand, the surface areas of the rotor and the stator which touch one another via the rolling bodies are limited to the almost punctiform contact surfaces of the rolling bodies in their bearing rings. Furthermore, the bearings must not take high temperatures due to the presence of a lubricant. Also, the operation of mechanical bearings itself is associated with heat generation. Finally, as a rule, the drive motor of the pump is part of the stator and arranged in the vicinity of the bearings. In the phases in which it is operated under load, it forms itself a source of heat. In this case, a partial transport of heat between the rotor and stator via the gas is possible due to the increased density. The removal of significant amounts of heat through the mechanical bearings would only be possible with intensive cooling of the stator bearing parts.

Aus der JP-U-3034699 ist es bekannt, die pumpaktiven Flächen einer mechanisch kinetischen Vakuumpumpe teilweise mit einem Überzug hoher Wärmeimmission zu beschichten. Maßnahmen dieser Art sind aufwendig und deshalb kostspielig.From the JP-U-3034699 It is known to partially coat the pump-active surfaces of a mechanical kinetic vacuum pump with a coating of high heat immission. Measures of this type are complex and therefore expensive.

Aus der internationalen Patentanmeldung WO 99/57441 ist eine gattungsbildende für den Einsatz bei Halbleiterprozessen bestimmte mechanisch kinetische Vakuumpumpe bekannt. Sie ist als Turbomolekularvakuumpumpe ausgebildet. Um das Ziel zu erreichen, die Dauer von Halbleiterprozessen zu reduzieren, wird die Aufgabe gestellt, das Saugvermögen der Pumpe zu verbessern. Dabei soll sich die Größe der Pumpe nicht ändern. Zur Lösung dieser Aufgabe wird die Verwendung eines festeren und für höhere Temperaturen geeigneten Werkstoffes vorzugsweise für den Rotor vorgeschlagen, und zwar ein Werkstoff, bestehend aus einem Metall als Basismaterial und nicht-metallischen, der Verstärkung des Basismateriales dienenden Zusätzen, wie z.B. Keramik. Dieser Werkstoff soll es erlauben, die Drehzahl der Rotoren zu erhöhen, um dadurch die mit einer Steigerung der Wärmebelastung verbundene Erhöhung des Saugvermögens zu erreichen, ohne die Größe der Pumpe zu ändern. Die spanende Bearbeitung der vorgeschlagenen Werkstoffe ist jedoch wegen ihres erhöhten Anteils an Hartstoffpartikeln mit Problemen verbunden. Rotoren für Turbomolekularvakuumpumpen einschließlich der Vielzahl ihrer Schaufeln werden üblicherweise aus dem vollen gedreht/gefräst. Der mit der Herstellung eines Rotors verbundene Zerspanungsgrad liegt bei bis zu 80 %. Die Herstellung der Rotoren aus dem vorgeschlagenen Werkstoff ist deshalb aufwendig und kostspielig.From the international patent application WO 99/57441 is a generic forming intended for use in semiconductor processes mechanical kinetic vacuum pump known. It is designed as a turbomolecular vacuum pump. In order to achieve the goal of reducing the duration of semiconductor processes, the task is set, the pumping speed of the Pump to improve. The size of the pump should not change. To solve this problem, the use of a firmer and more suitable for higher temperatures material is preferably proposed for the rotor, namely a material consisting of a metal as a base material and non-metallic, the reinforcement of the base material serving additives, such as ceramic. This material should allow to increase the speed of the rotors, thereby achieving the increase of the pumping capacity associated with an increase of the heat load, without changing the size of the pump. However, the machining of the proposed materials is associated with problems because of their increased proportion of hard material particles. Rotors for turbomolecular vacuum pumps, including the multiplicity of their blades, are usually rotated / milled from the solid one. The degree of machining associated with the manufacture of a rotor is up to 80%. The production of the rotors from the proposed material is therefore complicated and expensive.

Zum Stand der Technik gehört noch der Inhalt der US-A-5 529 748 . Sie offenbart eine Aluminiumlegierung, deren mit Herstellprozessen verbundene Bearbeitbarkeit durch den Wegfall von Magnesiumbestandteilen wesentlich verbessert wird.To the state of the art is still the content of US-A-5 529 748 , It discloses an aluminum alloy whose workability associated with manufacturing processes is substantially improved by the elimination of magnesium constituents.

Der vorliegenden Erfindung liegt die Aufgabe zugrunde, die Warm- und Zeitstandfestigkeit einer Reibungsvakuumpumpe der eingangs genannten Art zu verbessern. Erfindungsgemäß wird diese Aufgabe durch die kennzeichnenden Merkmale der Patentansprüche gelöst.The present invention has for its object to improve the hot and creep strength of a friction vacuum pump of the type mentioned. According to the invention this object is achieved by the characterizing features of the claims.

Pulvermetallurgisch (oder auch durch Sprühkompaktieren) hergestellte Aluminiumlegierungen sind an sich bekannt. Ihre Herstellung erfolgt in der Weise, dass die aus den Legierungsbestandteilen bestehende Schmelze mittels Dü sen auf eine kalte Oberfläche gesprüht wird. Im Vergleich zur schmelzmetallurgischen Herstellung von Aluminium-Werkstoffen findet ein sehr schnelles Erstarren der Schmelze statt, wodurch die Legierung ein neues Gefüge mit veränderten Eigenschaften erhält. Durch Sprühkompaktieren hergestellte Aluminiumlegierungen, deren Hauptlegierungsbestandteil Kupfer ist, haben vor allem eine wesentlich höhere Festigkeit als eine schmelzmetallurgisch hergestellte Aluminiumlegierung.Aluminum alloys powder-metallurgically (or also spray-compacted) are known per se. They are produced in such a way that the melt consisting of the alloy constituents by means of Dü sprayed on a cold surface. Compared to the production of aluminum alloys by fusion metallurgy, a very rapid solidification of the melt takes place, as a result of which the alloy acquires a new microstructure with altered properties. In particular, spray-compacted aluminum alloys, the main alloying constituent of which is copper, have a substantially higher strength than a molten-metallurgically produced aluminum alloy.

Die Verwendung des beschriebenen Werkstoffes für Rotoren der hier betroffenen Vakuumpumpen erlaubt die Herstellung von Pumpen dieser Art mit höherer Zeitstandfestigkeit. Wenn die vorerwähnte Temperaturgrenze (120°C) nicht überschritten wird, können die (bisher) maximalen Drehzahlen maßgeblich erhöht werden. Darüber hinaus besteht die Möglichkeit, die bisherige, maximal zulässige Temperatur zu erhöhen, z.B. bis auf 135° C und mehr, ohne die Drehzahlen reduzieren zu müssen, die bisher bis 120° C zulässig waren.The use of the described material for rotors of the vacuum pumps involved here makes it possible to produce pumps of this type with a higher creep rupture strength. If the above-mentioned temperature limit (120 ° C) is not exceeded, the (so far) maximum speeds can be significantly increased. In addition, it is possible to increase the previous maximum allowable temperature, e.g. up to 135 ° C and more, without having to reduce the speeds that were previously allowed to 120 ° C.

Es ist bekannt, die aus schmelzmetallurgisch hergestellten Aluminium-Legierungen bestehenden Rotoren und Statoren von bei Halbleiterprozessen eingesetzten Molekular-/Turbomolekularpumpen zum Zwecke des Korrosionsschutzes mit Konversionsschichten (Umwandlung des oberflächennahen Aluminiums in Al2O3 z. B. durch Anodierung) auszurüsten. Da die Legierungsanteile des neuen Werkstoffs metallisch und relativ klein sind, besteht nach wie vor die vorteilhafte Möglichkeit der Aufbringung geschlossener Konversionsschichten. Der in der oben erwähnten internationalen Patentanmeldung vorgeschlagene Werkstoff lässt die Aufbringung zuverlässiger Konversionsschichten nicht mehr zu.It is known to equip the rotors and stators of melt-metallurgically produced aluminum alloys of molecular / turbomolecular pumps used in semiconductor processes for the purpose of corrosion protection with conversion layers (conversion of the near-surface aluminum into Al 2 O 3, eg by anodization). Since the alloying proportions of the new material are metallic and relatively small, there is still the advantageous possibility of applying closed conversion layers. The one proposed in the above-mentioned international patent application Material no longer allows the application of reliable conversion coatings.

Werkstoffe der erfindungsgemäßen Art werden unter dem Namen DISPAL (z. B. DISPAL S 690 und S 691) auf dem Markt angeboten. Neben dem Aluminium enthalten sie
3,8 bis 5,6 Gew.-% Kupfer
sowie weitere Legierungsbestandteile, wie Magnesium, Mangan, Zirkon, Silber und/oder Titan mit Anteilen zwischen 0,1 und 1 Gew.-%.
Materials of the type according to the invention are marketed under the name DISPAL (eg DISPAL S 690 and S 691). In addition to the aluminum they contain
3.8 to 5.6% by weight of copper
and further alloying constituents, such as magnesium, manganese, zirconium, silver and / or titanium with proportions between 0.1 and 1 wt .-%.

Claims (2)

  1. Mechanical kinetic vacuum pump comprising a rotor made of an aluminum alloy, characterized in that the rotor material is an aluminum alloy manufactured by powder metallurgy, the main alloy constituent being copper, and that the share of copper amounts to 3 to 7 percent in weight.
  2. Pump according to claim 1, characterized in that the rotor material contains further alloy constituents, specifically magnesium, manganese, zircon, silver at shares of between 0.1 and 1 percent in weight.
EP01974146A 2000-10-28 2001-08-09 Mechanical kinetic vacuum pump Expired - Lifetime EP1330606B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10053664A DE10053664A1 (en) 2000-10-28 2000-10-28 Mechanical kinetic vacuum pump
DE10053664 2000-10-28
PCT/EP2001/009193 WO2002035100A1 (en) 2000-10-28 2001-08-09 Mechanical kinetic vacuum pump

Publications (2)

Publication Number Publication Date
EP1330606A1 EP1330606A1 (en) 2003-07-30
EP1330606B1 true EP1330606B1 (en) 2011-07-13

Family

ID=7661493

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01974146A Expired - Lifetime EP1330606B1 (en) 2000-10-28 2001-08-09 Mechanical kinetic vacuum pump

Country Status (5)

Country Link
US (1) US7097431B2 (en)
EP (1) EP1330606B1 (en)
JP (1) JP2004512463A (en)
DE (1) DE10053664A1 (en)
WO (1) WO2002035100A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151860A3 (en) * 2022-12-22 2023-04-05 Pfeiffer Vacuum Technology AG Vacuum pump

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003254285A (en) * 2002-02-28 2003-09-10 Boc Edwards Technologies Ltd Pump device
DE102004049543A1 (en) * 2004-10-12 2006-04-13 Man B & W Diesel Ag Rotor for radial compressor has outer region consisting of basic and additional materials forming gradient material
US20100199495A1 (en) * 2006-04-29 2010-08-12 Oerlikon Leybold Vacuum Gmbh Process for preparing rotors or stators of a turbomolecular pump
CN102428280A (en) * 2009-05-20 2012-04-25 爱德华兹有限公司 Regenerative vacuum pump with axial thrust balancing means
US9335296B2 (en) 2012-10-10 2016-05-10 Westinghouse Electric Company Llc Systems and methods for steam generator tube analysis for detection of tube degradation
DE102013219043A1 (en) 2013-09-23 2015-03-26 Oerlikon Leybold Vacuum Gmbh Alloys of rotors of a turbomolecular pump
DE102013219050B3 (en) * 2013-09-23 2015-01-22 Oerlikon Leybold Vacuum Gmbh High-performance rotors of a turbomolecular pump
EP3085964B1 (en) * 2015-04-21 2019-12-11 Pfeiffer Vacuum Gmbh Production of a vacuum pump part by metallic additive manufacturing
US11935662B2 (en) 2019-07-02 2024-03-19 Westinghouse Electric Company Llc Elongate SiC fuel elements
KR102523509B1 (en) 2019-09-19 2023-04-18 웨스팅하우스 일렉트릭 컴퍼니 엘엘씨 Apparatus and Method of Use for Performing In Situ Adhesion Testing of Cold Spray Deposits
GB2592043A (en) * 2020-02-13 2021-08-18 Edwards Ltd Axial flow vacuum pump
FR3111143B1 (en) * 2020-06-04 2022-11-18 Constellium Issoire High temperature performance aluminum copper magnesium alloy products

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2923632A1 (en) * 1979-06-11 1980-12-18 Leybold Heraeus Gmbh & Co Kg METHOD FOR PRODUCING A VAN RING FOR THE ROTOR OF A TUBOMOLECULAR PUMP AND A ROTOR EQUIPPED WITH VAN RINGS OF THIS TYPE
JPH0334699U (en) * 1989-08-07 1991-04-04
DE10210404A1 (en) * 2002-03-08 2003-09-18 Leybold Vakuum Gmbh Method for manufacturing the rotor of a friction vacuum pump and rotor manufactured using this method

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2654055B2 (en) * 1976-11-29 1979-11-08 Kernforschungsanlage Juelich Gmbh, 5170 Juelich Rotor and stator disks for turbo molecular pumps
DE3530910A1 (en) * 1984-08-31 1986-03-13 Hitachi, Ltd., Tokio/Tokyo METHOD FOR PRODUCING CASTING MOLDS
US5455003A (en) * 1988-08-18 1995-10-03 Martin Marietta Corporation Al-Cu-Li alloys with improved cryogenic fracture toughness
US5512241A (en) * 1988-08-18 1996-04-30 Martin Marietta Corporation Al-Cu-Li weld filler alloy, process for the preparation thereof and process for welding therewith
FR2636974B1 (en) * 1988-09-26 1992-07-24 Pechiney Rhenalu ALUMINUM ALLOY PARTS RETAINING GOOD FATIGUE RESISTANCE AFTER EXTENDED HOT HOLDING AND METHOD FOR MANUFACTURING SUCH PARTS
FR2651244B1 (en) * 1989-08-24 1993-03-26 Pechiney Recherche PROCESS FOR OBTAINING MAGNESIUM ALLOYS BY SPUTTERING.
GB2267912A (en) * 1992-06-15 1993-12-22 Secr Defence Metal matrix for composite materials
EP0600474B1 (en) * 1992-12-03 1997-01-29 Toyota Jidosha Kabushiki Kaisha High heat resisting and high abrasion resisting aluminum alloy
US5372499A (en) * 1993-08-24 1994-12-13 Daido Tokushuko Kabushiki Kaisha High-temperature gas blower impeller with vanes made of dispersion-strengthened alloy, gas blower using such impeller, and gas circulating furnace equipped with such gas blower
US5524699A (en) * 1994-02-03 1996-06-11 Pcc Composites, Inc. Continuous metal matrix composite casting
US5976214A (en) * 1994-04-14 1999-11-02 Sumitomo Electric Industries, Ltd. Slide member of sintered aluminum alloy and method of manufacturing the same
JP3331749B2 (en) * 1994-06-27 2002-10-07 松下電器産業株式会社 Vacuum pump
WO1996004409A1 (en) * 1994-08-01 1996-02-15 Franz Hehmann Selected processing for non-equilibrium light alloys and products
US5925315A (en) * 1995-02-14 1999-07-20 Caterpillar Inc. Aluminum alloy with improved tribological characteristics
JP3160504B2 (en) * 1995-09-05 2001-04-25 三菱重工業株式会社 Turbo molecular pump
US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
JP3301919B2 (en) * 1996-06-26 2002-07-15 株式会社神戸製鋼所 Aluminum alloy extruded material with excellent chip breaking performance
US5728638A (en) * 1996-08-21 1998-03-17 Bfd, Inc. Metal/ceramic composites containing inert metals
US6089843A (en) * 1997-10-03 2000-07-18 Sumitomo Electric Industries, Ltd. Sliding member and oil pump
JPH11117035A (en) * 1997-10-09 1999-04-27 Sumitomo Electric Ind Ltd Sliding member
US6095754A (en) * 1998-05-06 2000-08-01 Applied Materials, Inc. Turbo-Molecular pump with metal matrix composite rotor and stator
DE19915307A1 (en) * 1999-04-03 2000-10-05 Leybold Vakuum Gmbh Turbomolecular friction vacuum pump, with annular groove in region of at least one endface of rotor
DE19918229C2 (en) * 1999-04-22 2002-07-18 Daimler Chrysler Ag Method of manufacturing blanks for cylinder liners
DE19929952C1 (en) * 1999-06-29 2000-10-26 Daimler Chrysler Ag Oil pump toothed wheel used in I.C. engines is made of a powdered spray-compacted super-eutectic aluminum-silicon alloy
US6450772B1 (en) * 1999-10-18 2002-09-17 Sarcos, Lc Compact molecular drag vacuum pump

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2923632A1 (en) * 1979-06-11 1980-12-18 Leybold Heraeus Gmbh & Co Kg METHOD FOR PRODUCING A VAN RING FOR THE ROTOR OF A TUBOMOLECULAR PUMP AND A ROTOR EQUIPPED WITH VAN RINGS OF THIS TYPE
JPH0334699U (en) * 1989-08-07 1991-04-04
DE10210404A1 (en) * 2002-03-08 2003-09-18 Leybold Vakuum Gmbh Method for manufacturing the rotor of a friction vacuum pump and rotor manufactured using this method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4151860A3 (en) * 2022-12-22 2023-04-05 Pfeiffer Vacuum Technology AG Vacuum pump

Also Published As

Publication number Publication date
WO2002035100A1 (en) 2002-05-02
EP1330606A1 (en) 2003-07-30
JP2004512463A (en) 2004-04-22
US7097431B2 (en) 2006-08-29
DE10053664A1 (en) 2002-05-08
US20040013529A1 (en) 2004-01-22

Similar Documents

Publication Publication Date Title
EP1330606B1 (en) Mechanical kinetic vacuum pump
KR100218984B1 (en) Highly ductile sintered aluminum alloy method for production thereof
EP1624081B1 (en) Aluminium alloy for tribologically stressed surfaces
EP1673490B1 (en) Component with a protective layer for the protection of the component against corrosion and oxidation at elevated temperatures
SE534273C2 (en) Steel product and manufacture of steel product through, among other things, sintering, high speed pressing and hot isost pressing
EP2013482B1 (en) Rotors or stators of a turbomolecular pump
JPH0136551B2 (en)
DE60206632T2 (en) Sintered tin-containing alloys based on cobalt
US10309229B2 (en) Nickel based alloy composition
KR100236817B1 (en) Aluminium alloy impeller and manufacturing method of the same
EP2122009A1 (en) Device for the protection of components having a flammable titanium alloy from titanium fire, and method for the production thereof
EP1462617B1 (en) Blading for an axial-flow turbomachine
EP1330605A1 (en) Mechanical kinetic vacuum pump with rotor and shaft
EP2853612B1 (en) High temperature niobium-bearing nickel superalloy
RU2287600C1 (en) Aluminum-base material
EP0171798A1 (en) High strength material produced by consolidation of rapidly solidified aluminum alloy particulates
Ravikumar et al. Effect of Cr addition on mechanical properties and wear rate of cast Al-Cu alloy
CN1218057C (en) High-temp Ni-Al self-lubricating material and preparation thereof
WO2010052052A1 (en) Rotor for a turbomachine
EP3266889A1 (en) Enhance ductility of gamma titanium aluminum alloys by reducing interstitial contents
DE102006031965A1 (en) Rotor for turbo molecular pump has rotor blades made from an aluminium alloy comprising aluminium, copper, manganese, magnesium cut and shaped by reforming
DE602005000580T2 (en) A method of manufacturing a body having a cellular structure by densifying coated metal powder
EP1462614B1 (en) Axial-flow thermal turbomachine
DE102005033588A1 (en) Radial turbine used as part of exhaust gas turbocharger for reciprocating piston engine comprises inlet coating arranged on inside of housing and comprising metallic matrix and lubricating or sliding additive
EP1464716B1 (en) Quasicrystalline Ti-Cr-Al-Si-O alloy and its use as a coating

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030319

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LEYBOLD VACUUM GMBH

17Q First examination report despatched

Effective date: 20080625

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON LEYBOLD VACUUM GMBH

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50115922

Country of ref document: DE

Effective date: 20110901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120430

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110713

26N No opposition filed

Effective date: 20120416

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111013

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50115922

Country of ref document: DE

Effective date: 20120416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110913

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111013

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141029

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50115922

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301