EP1328223A2 - Set aus teilen mit einem zentralen venenkatheter mit temperaturkontrollsystem - Google Patents

Set aus teilen mit einem zentralen venenkatheter mit temperaturkontrollsystem

Info

Publication number
EP1328223A2
EP1328223A2 EP01975480A EP01975480A EP1328223A2 EP 1328223 A2 EP1328223 A2 EP 1328223A2 EP 01975480 A EP01975480 A EP 01975480A EP 01975480 A EP01975480 A EP 01975480A EP 1328223 A2 EP1328223 A2 EP 1328223A2
Authority
EP
European Patent Office
Prior art keywords
heat exchange
catheter
kit
patient
central venous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01975480A
Other languages
English (en)
French (fr)
Other versions
EP1328223A4 (de
Inventor
Scott M. Evans
Anthony C. Aliberto
William J. Worthen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alsius Corp
Original Assignee
Alsius Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alsius Corp filed Critical Alsius Corp
Publication of EP1328223A2 publication Critical patent/EP1328223A2/de
Publication of EP1328223A4 publication Critical patent/EP1328223A4/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/002Packages specially adapted therefor ; catheter kit packages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F7/00Heating or cooling appliances for medical or therapeutic treatment of the human body
    • A61F7/12Devices for heating or cooling internal body cavities
    • A61F7/123Devices for heating or cooling internal body cavities using a flexible balloon containing the thermal element
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/36General characteristics of the apparatus related to heating or cooling
    • A61M2205/366General characteristics of the apparatus related to heating or cooling by liquid heat exchangers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/06Packaging for specific medical equipment

Definitions

  • the invention relates to catheters used for access to the central venous blood supply of a patient.
  • central venous line catheters are typically used in ICU (intensive care unit) patients, particularly in those patients who have suffered a stroke or other brain traumatic event.
  • the central venous line catheters are typically about 8.5 - 12 French in size and consist of a soft, flexible multi-lumen structure extending 8-12 inches. They are usually introduced through the subclavian or jugular vein, and less preferably in the femoral vein of the patient, serving to provide the caretaker with easy and convenient access to the patient's central blood supply via the central venous system. In this manner general access to the central blood supply is gained, enabling for example delivery of drugs, infusion fluids or nutrition, along with the gathering of patient blood for blood gas analysis and the like.
  • fever is a common occurrence. Fever is particularly likely in neuro-ICU patients, and its onset can exacerbate detrimental effects in the brain.
  • Conventional therapies to control fever include treatment with acetaminophen (Tylenol ), cooling blankets, ice water bladder lavages, and ice baths. All of these approaches to cooling a patient require excessive time to cool the patient. Moreover, prior methods do not provide for precise control of patient cooling. As recognized herein, to optimize the advantage of cooling a patient, it is important to cool the patient relatively quickly in a controlled fashion.
  • the advantages of the above- referenced cooling catheters can be implemented into a central venous catheter configuration.
  • central venous catheters are commonly used in many ICU patients, including neuro-ICU patients, and with these combined recognitions, the present invention understands that it would be advantageous to provide a central venous catheter with the additional capability of cooling a patient. In doing so, the present invention satisfies the goals both of conventional central venous catheters as well as providing a means for effectively and precisely managing patient temperature in a single device.
  • the present invention overcomes the deficiencies of the prior art by providing a kit of parts comprising a central venous line catheter adapted to actively exchange heat with the body of the patient to thereby raise or lower body temperature as required, along with instructions for proper use of the central venous line catheter.
  • the central venous line catheter is provided with a heat exchange element disposed in heat exchange relationship with the blood of the patient.
  • the heat exchange element houses a circulating fluid therein, with the fluid being automatically cooled or warmed exteriorly of the patient's body in accordance with a patient temperature feedback scheme.
  • the present invention takes advantage of existing access to the venous system and a single incision, reducing the risk of additional complications.
  • the access typically through the subclavian, jugular or femoral veins, is to the central blood supply, via the central venous system, and is therefore particularly expedient, permitting efficient cooling or warming of patient body temperature.
  • the term central venous system generally relates to the portion of the venous system which returns blood to the right heart, including the inferior and superior vena cava.
  • a particular advantage of the invention is that the cooling function is performed efficiently in tandem with a procedure which is known to be likely attended by fever, thus anticipating such fever and facilitating its control.
  • the heat exchange relationship between the system and the central venous system of the patient can be maintained for a prolonged duration - for example, from about one hour to about twenty-nine days.
  • the central venous line catheter in accordance with the invention comprises a tubular structure defining a plurality of lumens. At least two of these lumens convey heat exchange fluid to a heat exchange element disposed at a distal, implantable end of the central venous line catheter, while the rest of the lumens serve to provide access to the central blood supply of the patient.
  • the heat exchange element is in fluid communication with a temperature control module via a tubing set which conveys the heat exchange fluid between the components.
  • the temperature control unit comprising a cooling and/or a heating device, operates in conjunction with a temperature controller to heat or cool the heat exchange fluid depending on a sensed temperature of the patient.
  • the heat exchanger element of the present invention can be made of metal such as steel, and it can assume an appropriate configuration, such as an accordion-like configuration.
  • the system of the invention operates to maintain patient temperature at a desired level. Any deviation from the desired level automatically triggers corrective action, such as circulating the cooled heat exchange fluid through the central venous line catheter to contend with the onset of fever. Additionally, the system is equipped with indicators which signal to the caretaker of the patient the sensed deviation, by for example sensing the increased workload of the system, in order to warn of adverse physiological changes besetting the patient.
  • the invention thus provides a system for controlling patient temperature using a central venous line catheter having a heat exchange element.
  • the central venous line catheter is provided with one or more lumens for providing access to the central blood supply of the patient, and with additional lumens for communicating heat exchange fluid to the heat exchange element.
  • Heat exchange fluid temperature is controlled through a feedback loop in which patient temperature is sensed and used to control a temperature control unit comprising a heating device and/or a cooling device in heat exchange relationship with the heat exchange fluid.
  • a tubing set transports the heat exchange fluid between the central venous line and the temperature control unit, with a pump serving to circulate the fluid in a closed fluid circuit in the system.
  • FIG. 1 is a schematic diagram showing a central venous line catheter temperature control system in accordance with the present invention
  • FIG. 2 is a schematic side elevational view of a central venous line catheter in accordance with the invention.
  • FIG. 3 is a schematic cross-sectional view taken along line 3-3 of FIG. 2;
  • FIG. 4 is a schematic cross-sectional view of a preferred arrangement of a catheter in accordance with the invention.
  • FIG. 5 is a schematic sectional view of the distal portion of the central venous line catheter of the invention.
  • FIG. 6 is a schematic side elevational view of a central venous line catheter in accordance with a second embodiment of the invention.
  • FIG. 7 is a schematic side elevational view of a central venous line catheter in accordance with a third embodiment of the invention.
  • FIG. 8 is a perspective view of one embodiment of the present anchor; and
  • FIG. 9 is a perspective view of the kit of parts in accordance with the invention.
  • FIG. 1 shows a temperature control system 10 in accordance with the invention.
  • a central venous line catheter 20 providing access to the central blood supply of the patient is disposed in heat exchange relationship with the patient.
  • Central venous line catheter 20 is provided with a circulating heat exchange fluid (not shown) whose temperature is automatically controlled in accordance with a feedback scheme in order to achieve a desired patient target temperature or temperature range.
  • the feedback schemes involves sensing patient temperature using a probe 54 whose output is provided to a temperature controller 55 housed in a temperature control module 50.
  • the temperature controller 55 determines whether the sensed temperature represents a deviation from the desired temperature or range and selectively activates a heat control unit 57 in order to heat or cool the heat exchange fluid depending on the direction of deviation.
  • the central venous line catheter 20 is a multi-lumen device, with at least two of the lumens being dedicated to heat exchange fluid flow to and from a heat exchange element of the catheter.
  • the other lumen(s) can have different uses, such as fluid infusion or drug delivery, or guidewire support, depending on the particular application.
  • the preferred number of lumens is 3 to 5, although other numbers are contemplated.
  • FIGS. 2-4 show in more detail the central venous line catheter 20, which is a substantially elongate structure of generally cylindrical shape adapted for insertion into the body of a patient, preferably into the subclavian or jugular veins.
  • Central venous line catheter 20 is formed of any known polymer material 23 defining its various lumens 32, 34, 42, 44 and 46.
  • a preferred material is polyurethane, although other materials, such as nylon, polyethylene and PEBAX, can also be used. Considerations in selecting the appropriate material 23 include biocompatibility, flexibility, temperature change compatibility, and resistance to buckling.
  • catheter 20 is provided with a heat exchange element such as fluid-carrying inflatable balloon 24 that is radially disposed around the width of the catheter.
  • Balloon 24 is disposed in the vicinity of flexible tip 21 and can be formed from a piece of sheet material 38 or extruded tubing formed into a molded balloon of the desired shape and size and then bound or otherwise fixed to the shaft 25 to form a cavity 36.
  • balloon 24 is shown to have a significantly larger diameter than shaft portion 25 of the catheter.
  • the diameter of the inflated balloon will be more than three times that of shaft 25.
  • the balloon diameter is four millimeters to ten millimeters (4mm- 10mm).
  • the diameter of the balloon is selected to be no more than 40%-60% of the diameter of a typical vena cava. It is to be appreciated that in some cases it may be desirable to maximize the dimension of the shaft 25 in order to facilitate heat exchange fluid flow. This will also minimize the volume of fluid in the balloon 24 and promote a more rapid heat exchange. It will be further appreciated that myriad balloon shapes can be utilized with the invention, including but not limited to spiral or fluted shapes, as disclosed in the aforementioned co-pending patent applications. The particular shape selected would depend on the application and the desired heat exchange and other characteristics.
  • the balloon 24 is made of urethane, nylon, or PET and is thin- walled, i.e., the balloon 24 has a wall thickness of less than three mils, and more preferably less than one and one-half mils. Also, the balloon 24 preferably is coated with an antimicrobial substance, as well as an anticlot substance, such as heparin. It is to be understood that the balloon 24 can extend the entire length of the portion of the central venous catheter that is intubated in the patient. Typically, this length is about 15 cm. Under such circumstances, the diameter of the balloon need .
  • the diameter of the balloon can be 12 French, 10 French, or even as small as 7.5 French. More broadly, the balloon diameter, when the balloon extends along the entire length of the intubated portion of the catheter, can be 5 - 13 French. In an arrangement where multiple balloons are used as detailed below, these balloons can cover the entire length of the intubated portion of the catheter. That is, two balloons of about 7.5 cm each can be used, or three 5 cm balloons, etc.
  • a pair of lumens 32 and 34 are formed in catheter 20, with lumen 32 serving as an inflow channel supplying balloon 24 with heat exchange fluid which is circulated through the catheter 20, while lumen 34 serves as an outflow channel returning the heat exchange fluid from the balloon 24 to the catheter.
  • the particular heat exchange fluid selected is preferably biocompatible to avoid harm to the patient in the event of inadvertent rupture.
  • suitable viscosity, heat exchange and material compatibility characteristics can also be used. While less desired because it is not biocompatible, freon can alternatively be used.
  • Balloon 24 is in fluid communication with lumens 32 and 34 via a plurality of ports such as inlet port 26 and outlet port 28.
  • Heat exchange fluid circulated in catheter 20 passes from lumen 32 into cavity 36 through inlet port 26, then out of cavity 36 to lumen 34 through outlet port 28.
  • the heat exchange fluid which is remotely cooled outside the central venous line catheter 20, serves to provide a cold temperature fluid on the inner surface of the sheet material 38 which forms the walls of balloon 24.
  • a body fluid, such as blood flowing exteriorly of the balloon 24, heat transfer occurs across the sheet material 38, effectively cooling the body of the patient and countering the effects of a fever.
  • inlet port 26 is positioned distally of outlet port 28.
  • the lumens 32 and 34 are designed to maximize the volume of fluid flowing therethrough. This is accomplished by providing the lumens with crescent cross- sectional shapes so as to occupy circumferentially a maximum arc length in the catheter 20. This volume maximization, however, may be at the expense of thermal efficiency since the crescent cross-sectional shapes provide greater surface area for undesirable heat exchange with the exterior of the catheter 20 in the shaft portion 25. To obviate this, the preferred cross-sectional shape, shown in FIG. 4, more effectively isolates lumens 32 and 34 from the exterior of catheter 20 by the structural material 37 of the catheter.
  • outlet port 28 can be made larger than inlet port 26 to reduce the resistance encountered by the heat exchange fluid as it exits the balloon 24.
  • This relative size difference becomes particularly important when multiple balloons are provided in catheter 20 as is contemplated in accordance with an alternate embodiment of the invention.
  • a multiple balloon configuration is that the flow and temperature of the heat exchange fluid can be more easily controlled along the entire length of the heat exchange region of the catheter 20.
  • Catheter 20 is also provided with two or three lumens 42, 44 and 46 in addition to lumens 32 and 34.
  • Lumens 42, 44 and 46 can serve a multiplicity of functions, including infusion of drugs such as chemotherapy, fluids and nutrition, access to syringes for sampling, and accommodation of various sensors, such as thermistors to monitor the patient, thus generally providing access to the central blood supply as dictated by the particular application.
  • central lumen 44 may be made of a different diameter than side lumens 42 and 46 in order to better support a guidewire for instance.
  • the lumens extend substantially the full length of catheter 20, from proximal end portion 27 to distal end portion 22. The number of lumens provided can be varied depending on the particular application.
  • the heat exchange element does not necessarily need to be in the form of a balloon such as balloon 24. Rather, arrangements such as an array of flexible hollow fibers through which the heat exchange fluid is circulated can also be used, thus affording greater surface area for heat exchange interaction. Such an arrangement, along with other heat exchange element arrangements which can be used with the invention, is disclosed in the afore-mentioned co-pending patent application Serial No. 09/133,813, herein incorporated by reference in its entirety.
  • a hollow fiber heat exchange element configuration is shown in FIG. 7. Hollow fibers 58 receive fluid from inner heat exchange fluid lumen 62 and return this fluid to outer heat exchange fluid lumen 64 of catheter 20. Additional lumens such as lumen 66 are also provided to facilitate delivery of fluids and for other uses.
  • An important advantage of a hollow fiber heat exchange element arrangement is that it enables communication between the inner lumens, such as lumen 66, and the blood anywhere along the length of the heat exchange element, via for example port 68.
  • a tubing set 52 (FIG. 1) including coolant inlet and outlet fittings 52a, 52b (FIG. 2) conveys fluid between temperature control module 50 and catheter 20 in a closed fluid circuit through which the fluid is circulated, using known pumping means (not shown) such as for example a diaphragm pump, bladder pump, piston pump, peristaltic pump, etc. It is to be understood that the inlet and outlet fittings 52a, 52b establish pathways of fluid communication from the temperature control unit 57 to the lumens 32, 34, respectively of the catheter 20.
  • a temperature controller 55 which may be a microprocessor having appropriate information storage memory (not shown), is provided in temperature control module 50 and receives patient temperature signals from probe 54.
  • a temperature control unit 57 which may be a cooling device and/or a heating device in heat exchange relationship with the cooling fluid
  • temperature controller 55 automatically adjusts the temperature of the heat exchange fluid according to a desired target temperature or temperature range.
  • the target temperature or range can be entered using an input device such as keyboard 56.
  • a display device such as LCD 58 displays various parameters to provide indications of system operation and/or patient condition.
  • the target temperature is selected to be normal body temperature, and any deviation from this temperature, for example induced by the onset of fever, is sensed by the probe 54 and automatically corrected by the system of the invention. Temperature correction is effected by for example activating temperature control unit 57 of temperature control module 50. In cooling applications, temperature control unit 57 causes cooling of the circulating fluid and ultimately the cooling of the patient's core body temperature, which is monitored by probe 54. When normal temperature is achieved, the temperature control unit 57 can then be automatically switched off or its cooling effect reduced by the temperature controller 55. Suitable temperature control algorithms taking into account performance parameters of system components and system time constants are implemented by temperature controller 55 to effect accurate temperature control.
  • module 50 may also be provided with a heating device as part of the temperature control unit 57, which heating device can also be automatically activated, using feedback from probe 54, to for example prevent overshooting the desired target temperature or range, or even to induce hyperthermia in some situations.
  • probe 54 can be used to provide temperature feedback from any part of the patient's body, rectally for instance, or it can provide temperature information anywhere in the fluid circuit, which information can then be correlated to the patient's core temperature using known parameters such as heat conductivity of different portions of the system and patient data such as weight, height, age, etc. Additionally, more than one probe can be used to provide combinations of readings from the patient and/or from the system to improve accuracy under some circumstances.
  • the feedback scheme can be used to maintain desired temperature conditions for a patient.
  • the system can be used to control any temperature deviations from an acceptable temperature range, which may be a normothermic range, whereby probe 54 will trigger cooling or heating of the patient's body depending on this sensed deviation from the predetermined range.
  • this deviation is generally indicative of certain physiological activity of which the patient's caretaker should be apprised, the operation of the system can be used as an indication that this physiological activity is taking place.
  • the system cooling activity is then used to indicate to the caretaker, audibly or visibly using an alarm or other status indicator device (not shown) for instance, that the patient's body is attempting to enter a fever state.
  • Appropriate measures can then be taken. Parameters other than workload can be used to provide this indication, such as the slope of the temperature feedback along with the sign of the slope.
  • a direct indication of patient temperature as sensed by the probe 54 can be used. In this manner, use of the system for extended periods of time - for example, from about one hour to about twenty-nine or more days - is facilitated.
  • the central venous catheter 20 is connected to one or more central venous components 70, 72 (only two venous components shown in FIG. 1 for clarity of disclosure) via respective fittings 74, 76, 78 as appropriate (FIG. 2) to establish communication between the central venous components 70, 72 and selected lumens 42, 44, 46 of the catheter 20.
  • the central venous components 70, 72 can be established by one or more of: drug infusion sources, blood receptacles for receiving blood through the catheter 20, a guide wire, etc.
  • the catheter 20 includes an anchor configured for affixing the catheter 20 to the patient.
  • the anchor is established by a suture fitting 80.
  • the suture fitting 80 can be made integrally with the catheter 20, or it can be made as a separate plastic fitting and surroundingly engaged with the catheter 20.
  • the suture fitting 80 includes two eyes 82, 84 through which sutures can be positioned and engaged with the patient's skin or with a bandage or tape or other structure that has been fastened to the patient.
  • the present anchor can be established by a piece of tape 86, shown in FIG. 8, that can tape the catheter of the present invention to the patient.
  • the present anchor can include another fastening device such as a plate with adhesive surface that can be engaged with the patient, with the plate including structure configured for receiving the catheter of the present invention.
  • a fastening device such as a plate with adhesive surface that can be engaged with the patient, with the plate including structure configured for receiving the catheter of the present invention.
  • an anchor is desirable in a central venous catheter to hold the catheter on the patient, because a central venous catheter typically is intended for prolonged indwelling.
  • FIG. 9 is a schematic view of a kit of parts containing a central venous line catheter 20 and instructions for use 90 of same in accordance with the invention.
  • the kit of parts includes a package 92, having a box and a cover.
  • the box housing the catheter 20.
  • the cover including an interior.
  • the instructions for use 90 mount on the interior of the cover and can be in the form of a booklet, or a card or label which may be adhered to the package 92 comprising the kit or otherwise associated with the central venous line catheter 20.
  • the instructions for use 90 would be product-specific, depending on the particular model, size and application, and would instruct the operator of the catheter 20 on proper use of the catheter, for example including a description of the specifications of the catheter and the compatible equipment and materials with which its use is recommended. Warnings and precautions would also be included, along with contraindications, preparation procedures, and other medically important information.
  • the following represents an exemplary of a set of instructions for use in accordance with the invention:
  • the COOL LINETM Heat Exchange Catheter is a sterile, single use flexible 8.5F catheter designed for placement in the central venous circulation from an insertion site in the jugular, subclavian, or femoral veins.
  • the COOL LINETM catheter is to be connected to an ALSIUS single use disposable COOLGARDTM Tubing Set (supplied separately) and the COOLGARDTM System.
  • a dilator and guidewire are required for the percutaneous insertion of the COOL LINETM catheter.
  • Two lumens are available for infusion, measuring central venous pressure and sampling. Flow rates: Proximal port (blue) 1400 ml/hr. Distal Guidewire Port (brown) 2200 ml/hr.
  • the COOL LINETM blood contact surfaces are Duraflo® treated.
  • System is for reducing fever in neurointensive care unite patients.
  • Catheter should be placed via a jugular, subclavian, or femoral vein approach only.
  • catheter should be positioned so that the distal tip of catheter is in the superior vena cava above its junction with the right atrium and parallel to the vessel wall. X-ray examination should be used to ensure that the catheter is not in the right atrium or ventricle.
  • the distal tip of the catheter should be positioned at a level above either the azygos vein or the carina of the trachea, whichever is better visualized.
  • the catheter should be positioned so that the distal tip of catheter is in the inferior vena cava below its junction with the right atrium and parallel to the vessel wall.
  • Possible complications with central venous catheters include: atrial or ventricular perforation, cardiac tamponade, air embolism, catheter embolism, thoracic duct laceration, bacteremia, septicemia, thrombosis, inadvertent arterial puncture, hematoma formation, hemorrhage, nerve damage and dysrhythmias. 5. All Luer-Lock connections and covers must be securely tightened to prevent air embolism or fluid or blood loss.
  • Passage of the guidewire into the right heart can cause dysrhythmias, right bundle branch block, vessel wall, atrial or ventricular perforation.
  • Catheter should be routinely inspected for flow rate, security of dressing, correct catheter position and for secure Luer-Lock connection. Use centimeter markings to identify if the catheter position has changed.
  • Alcohol and acetone can weaken the structure of the polyurethane material. Care should therefore be taken when infusing drugs containing alcohol or when using alcohol or acetone when performing routine catheter care and maintenance. Alcohol should not be used to doctor the catheter. 13. Use are when infusing drugs that may be affected by cool temperatures (as low as 4°C).
  • Use of a syringe smaller than 10 ml to irrigate or declot an occluded catheter may cause intraluminal leakage or catheter rupture.
  • Fever may have infectious and/or non-infectious causes in patients. Mitigation of fever as a sign of possible infection necessitates daily, meticulous assessment for other signs of infection.
  • centimeter marks on the catheter as positioning reference points, advance catheter to final indwelling position.
  • Proximal radiopaque marker indicates proximal end of balloons to ensure that balloons reside completely in vessel. If catheter is malpositioned, reposition and reverify.
  • the Alsius suture tab and clip can also be used as an additional attachment point. Assure that catheter body is secure and does not slide.
  • COOL LINETM Catheter Ethylene oxide sterilized.
  • the COOL LINETM Catheter is supplied sterile for single use only and should not be resterilized. The package should be inspected prior to use to ensure that the sterility barrier has not been compromised.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Vascular Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Anesthesiology (AREA)
  • Hematology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • External Artificial Organs (AREA)
EP01975480A 2000-09-28 2001-09-27 Set aus teilen mit einem zentralen venenkatheter mit temperaturkontrollsystem Withdrawn EP1328223A4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US67111400A 2000-09-28 2000-09-28
US671114 2000-09-28
PCT/US2001/030250 WO2002026285A2 (en) 2000-09-28 2001-09-27 Kit of parts including a central venous line catheter having a temperature control system

Publications (2)

Publication Number Publication Date
EP1328223A2 true EP1328223A2 (de) 2003-07-23
EP1328223A4 EP1328223A4 (de) 2006-02-01

Family

ID=24693181

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01975480A Withdrawn EP1328223A4 (de) 2000-09-28 2001-09-27 Set aus teilen mit einem zentralen venenkatheter mit temperaturkontrollsystem

Country Status (3)

Country Link
EP (1) EP1328223A4 (de)
AU (4) AU2001244462A1 (de)
WO (4) WO2002026176A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6051019A (en) 1998-01-23 2000-04-18 Del Mar Medical Technologies, Inc. Selective organ hypothermia method and apparatus
US7291127B2 (en) * 2003-07-28 2007-11-06 Boston Scientific Scimed, Inc. Variable manipulative strength catheter
US20180311071A1 (en) 2005-10-21 2018-11-01 Daniel R. BURNETT Method and apparatus for peritoneal oxygenation
US20070093697A1 (en) 2005-10-21 2007-04-26 Theranova, Llc Method and apparatus for detection of right to left shunting in the cardiopulmonary vasculature
WO2008124644A1 (en) 2007-04-05 2008-10-16 Velomedix, Inc Automated therapy system and method
WO2009009540A1 (en) 2007-07-09 2009-01-15 Velomedix, Inc. Hypothermia devices and methods
US8608696B1 (en) 2009-02-24 2013-12-17 North Carolina State University Rapid fluid cooling devices and methods for cooling fluids
US9622670B2 (en) 2010-07-09 2017-04-18 Potrero Medical, Inc. Method and apparatus for pressure measurement

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334142A (en) * 1991-09-09 1994-08-02 New York University Selective aortic perfusion system
EP1029520A1 (de) * 1999-02-19 2000-08-23 Alsius Corporation Zentralvenöser katheter mit temperaturregelungssystem

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4811847A (en) * 1988-03-14 1989-03-14 Reif Thomas H Urinary catheter package
US4925448A (en) * 1988-03-30 1990-05-15 The Cleveland Clinic Foundation Catheter package
US5049130A (en) * 1988-12-23 1991-09-17 Cardiovascular Imaging Systems, Inc. System and method for pressure filling of catheters
US5624392A (en) * 1990-05-11 1997-04-29 Saab; Mark A. Heat transfer catheters and methods of making and using same
CA2197415A1 (en) * 1996-02-29 1997-08-29 Kenneth C. Musgrave Catheter with improved tape down wing
JP2001513495A (ja) * 1997-08-08 2001-09-04 デューク ユニバーシティ 外科的処置を容易にする組成物、装置および方法
US6261312B1 (en) * 1998-06-23 2001-07-17 Innercool Therapies, Inc. Inflatable catheter for selective organ heating and cooling and method of using the same
US6231595B1 (en) * 1998-03-31 2001-05-15 Innercool Therapies, Inc. Circulating fluid hypothermia method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5334142A (en) * 1991-09-09 1994-08-02 New York University Selective aortic perfusion system
EP1029520A1 (de) * 1999-02-19 2000-08-23 Alsius Corporation Zentralvenöser katheter mit temperaturregelungssystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO0226285A2 *

Also Published As

Publication number Publication date
WO2002026285A3 (en) 2002-08-29
AU2001244462A1 (en) 2002-04-08
AU2001294800A1 (en) 2002-04-08
WO2002026307A1 (en) 2002-04-04
WO2002026175A1 (en) 2002-04-04
EP1328223A4 (de) 2006-02-01
AU2001244461A1 (en) 2002-04-08
WO2002026176A1 (en) 2002-04-04
WO2002026285A2 (en) 2002-04-04
AU2001246754A1 (en) 2002-04-08

Similar Documents

Publication Publication Date Title
US9259349B2 (en) Method for a central venous line catheter having a temperature control system
US20030060761A1 (en) Kit of parts including a heat exchange catheter for treating heart malady
CA2368243C (en) Central venous line catheter having temperature control system
US6645234B2 (en) Cardiovascular guiding catheter with heat exchange properties and methods of use
US6520933B1 (en) Central venous line cooling catheter having a spiral-shaped heat exchange member
US6299599B1 (en) Dual balloon central venous line catheter temperature control system
US6733517B1 (en) Angling introducer sheath for catheter having temperature control system
US6716236B1 (en) Intravascular catheter with heat exchange element having inner inflation element and methods of use
US6719724B1 (en) Central venous line catheter having multiple heat exchange elements and multiple infusion lumens
US20140031631A1 (en) Method and Apparatus for Inducing Therapeutic Hypothermia
EP1205167B1 (de) Zentralvenöser Katheter mit Temperaturregelungssystem
WO2002026285A2 (en) Kit of parts including a central venous line catheter having a temperature control system
KR20220072853A (ko) 주입 카테터 및 사용 방법들

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030423

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

A4 Supplementary search report drawn up and despatched

Effective date: 20051219

17Q First examination report despatched

Effective date: 20061214

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20070626