EP1324281A1 - Method and apparatus for classifying currency articles - Google Patents

Method and apparatus for classifying currency articles Download PDF

Info

Publication number
EP1324281A1
EP1324281A1 EP02258577A EP02258577A EP1324281A1 EP 1324281 A1 EP1324281 A1 EP 1324281A1 EP 02258577 A EP02258577 A EP 02258577A EP 02258577 A EP02258577 A EP 02258577A EP 1324281 A1 EP1324281 A1 EP 1324281A1
Authority
EP
European Patent Office
Prior art keywords
measurements
classification
stage
article
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02258577A
Other languages
German (de)
French (fr)
Inventor
Katharine Louise King
Jack Sharman
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crane Payment Innovations Inc
Original Assignee
Mars Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP01310949A external-priority patent/EP1324280A1/en
Application filed by Mars Inc filed Critical Mars Inc
Priority to EP02258577A priority Critical patent/EP1324281A1/en
Publication of EP1324281A1 publication Critical patent/EP1324281A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • This invention relates to methods and apparatus for classifying articles of currency.
  • the invention will be primarily described in the context of validating coins but is applicable also in other areas, such as banknote validation.
  • One common technique involves "windows" or target ranges each associated with a particular measurement. If all the measurements fall within the respective windows associated with a particular denomination, then the article is classed as having that denomination.
  • each target class is associated with a stored set of data which, in effect, forms an inverse co-variance matrix.
  • the data represents the correlation between the different measurements of the article.
  • n resultsant values are combined with the n x n inverse co-variance matrix to derive a Mahalanobis distance measurement D which represents the similarity between the measured article and the mean of a population of such articles used to derive the data set.
  • D represents the similarity between the measured article and the mean of a population of such articles used to derive the data set.
  • GB-A-2250848 discloses a technique for validating based on calculation of Mahalanobis distances.
  • WO 96/36022 discloses the use of Mahalanobis distances for checking authenticity so that adjustment of acceptance parameters will take place only if an accepted currency article is highly likely to have been validated correctly.
  • a measured article belongs to one of a number of different target classes on the basis of a plurality of measurements
  • several stages of classification are used, together with data derived from an analysis of correlations between those measurements for different target classes to determine whether the tested article is likely to belong to any one of those target classes.
  • a first stage uses a first subset of the measurements and a subset of the data.
  • a second classification stage carries out a similar operation, using different subsets of data and measurements.
  • a third classification stage uses a further measurement subset, which may include measurements which were used in different earlier stages, and a further subset of data.
  • a complete set of classification stages examines the relationships between multiple properties to determine whether they correspond to the correlations expected of different target classes, but this determination is split into several successive stages.
  • Each stage uses only some of the measurements together with part of the data representing correlations between the full set of measurements. Although the data part may not be an accurate representation of the expected correlation between the measurements of the subset (because it is taken from data representing correlation involving additional measurements), nevertheless it can be used to provide effective discrimination. This can have a number of advantages.
  • the earlier stages of the calculations can be carried out before the derivation of the measurements which are needed for the later stages of the calculation. In this way, a greater overall amount of time is provided for the processing of the measurements.
  • a coin validator 2 includes a test section 4 which incorporates a ramp 6 down which coins, such as that shown at 8, are arranged to roll. As the coin moves down the ramp 6, it passes in succession three sensors, 10, 12 and 14. The outputs of the sensors are delivered to an interface circuit 16 to produce digital values which are read by a processor 18. Processor 18 determines whether the coin is valid, and if so the denomination of the coin. In response to this determination, an accept/reject gate 20 is either operated to allow the coin to be accepted, or left in its initial state so that the coin moves to a reject path 22. If accepted, the coin travels by an accept path 24 to a coin storage region 26. Various routing gates may be provided in the storage region 26 to allow different denominations of coins to be stored separately.
  • each of the sensors comprises a pair of electromagnetic coils located one on each side of the coin path so that the coin travels therebetween.
  • Each coil is driven by a self-oscillating circuit. As the coin passes the coil, both the frequency and the amplitude of the oscillator change.
  • the physical structures and the frequency of operation of the sensors 10, 12 and 14 are so arranged that the sensor outputs are predominantly indicative of respective different properties of the coin (although the sensor outputs are to some extent influenced by other coin properties).
  • the senor 10 is operated at 60 KHz.
  • the shift in the frequency of the sensor as the coin moves past is indicative of coin diameter, and the shift in amplitude is indicative of the material around the outer part of the coin (which may differ from the material at the inner part, or core, if the coin is a bicolour coin).
  • the sensor 12 is operated at 400 KHz.
  • the shift in frequency as the coin moves past the sensor is indicative of coin thickness and the shift in amplitude is indicative of the material of the outer skin of the central core of the coin.
  • the sensor 14 is operated at 20 KHz.
  • the shifts in the frequency and amplitude of the sensor output as the coin passes are indicative of the material down to a significant depth within the core of the coin.
  • FIG. 1 schematically illustrates the processing of the outputs of the sensors.
  • the sensors 10, 12 and 14 are shown in section I of Figure 2.
  • the outputs are delivered to the interface circuit 16 which performs some preliminary processing of the outputs to derive digital values which are handled by the processor 18 as shown in sections II, III, IV and V of Figure 2.
  • the processor 18 stores the idle values of the frequency and the amplitude of each of the sensors, i.e. the values adopted by the sensors when there is no coin present.
  • the procedure is indicated at blocks 30.
  • the circuit also records the peak of the change in the frequency as indicated at 32, and the peak of the change in amplitude as indicated at 33.
  • Processor 18 is therefore arranged to record the value of the first frequency and amplitude peaks at 32' and 33' respectively, and the second (negative) frequency and amplitude peaks at 32" and 33" respectively.
  • each algorithm takes a peak value and the corresponding idle value to produce a normalised value, which is substantially independent of temperature variations.
  • the algorithm may be arranged to determine the ratio of the change in the parameter (amplitude or frequency) to the idle value.
  • the processor 18 may be arranged to use calibration data which is derived during an initial calibration of the validator and which indicates the extent to which the sensor outputs of the validator depart from a predetermined or average validator. This calibration data can be used to compensate for validator-to-validator variations in the sensors.
  • the processor 18 stores the eight normalised sensor outputs as indicated at blocks 36. These are used by the processor 18 during the processing stage V which determines whether the measurements represent a genuine coin, and if so the denomination of that coin.
  • Figure 2 sets out how the sensor outputs are obtained and processed, it does not indicate the sequence in which these operations are performed.
  • some of the normalised sensor values obtained at stage IV will be derived before other normalised sensor values, and possibly even before the coin reaches some of the sensors.
  • the normalised sensor values S 1f1 , S 1a1 derived from the outputs of sensor 10 will be available before the normalised outputs S 2f1 , S 2a1 derived from sensor 12, and possibly before the coin has reached sensor 12.
  • blocks 38 represent the comparison of the normalised sensor outputs with predetermined ranges associated with respective target denominations. This procedure of individually checking sensor outputs against respective ranges is conventional.
  • Block 40 indicates that the two normalised outputs of sensor 10, S 1f1 and S 1a1 , are used to derive a value for each of the target denominations, each value indicating how close the sensor outputs are to the mean of a population of that target class.
  • the value is derived by performing part of a Mahalanobis distance calculation.
  • the normalised outputs used in the two partial Mahalanobis calculations performed in blocks 40 and 42 are combined with other data to determine how close the relationships between the outputs are to the expected mean of each target denomination. This further calculation takes into account expected correlations between each of the sensor outputs S 1f1 , S 1a1 from sensor 10 with each of the two sensor outputs S 2f1 , S 2a1 taken from sensor 12. This will be explained in further detail below.
  • This procedure will employ an inverse co-variance matrix which represents the distribution of a population of coins of a target denomination, in terms of four parameters represented by the two measurements from the sensor 10 and the first two measurements from the sensor 12.
  • M mat1,1 mat1,2 mat1,3 mat1,4 mat2,1 mat2,2 mat2,3 mat2,4 mat3,1 mat3,2 mat3,3 mat3,4 mat4,1 mat4,2 mat4,3 mat4,4
  • the procedure illustrated in Figure 3 starts at step 300, when a coin is determined to have arrived at the testing section.
  • the program proceeds to step 302, whereupon it waits until the normalised sensor outputs S 1f1 and S 1a1 from the sensor 10 are available.
  • step 304 a first set of calculations is performed. The operation at step 304 commences before any normalised sensor outputs are available from sensor 12.
  • the resulting value is compared with a threshold for each target denomination. If the value exceeds the threshold, then at step 306 that target denomination is disregarded for the rest of the processing operations shown in Figure 3.
  • this partial Mahalanobis distance calculation uses only the four terms in the top left section of the inverse co-variance matrix M.
  • step 306 the program checks at step 308 to determine whether there are any remaining target classes following elimination at step 306. If not, the coin is rejected at step 310.
  • step 312 the program proceeds to step 312, to wait for the first two normalised outputs S 2f1 and S 2a1 from the sensor 12 to be available.
  • This calculation therefore uses the four parameters in the bottom right of the inverse co-variance matrix M.
  • the calculated values D2 are summed with the values D1 and the (D1 + D2) values are compared with respective thresholds for each of the target denominations and if the threshold is exceeded that target denomination is eliminated.
  • the program may compare just D2 with appropriate thresholds.
  • step 320 the program performs a further calculation using the elements of the inverse co-variance matrix M which have not yet been used, i.e. the cross-terms at the bottom left and top right of the matrix M.
  • the program compares a value dependent on DX with respective thresholds for each remaining target denomination and eliminates that target denomination if the threshold is exceeded.
  • the value used for comparison may be DX (in which case it could be positive or negative).
  • the value is D1 + D2 + DX.
  • the latter sum represents a full four-parameter Mahalanobis distance taking into account all cross-correlations between the four parameters being measured.
  • step 326 the program determines whether there are any remaining target denominations, and if so proceeds to step 328.
  • the program calculates a value DP as follows: where ⁇ 1 ... ⁇ 8 represent the eight normalised measurements S i,j,k and a 1 ....a 8 are stored co-efficients for the target denomination.
  • the values DP are then at step 330 compared with respective ranges for each remaining target class and any remaining target classes are eliminated depending upon whether or not the value falls within the respective range.
  • step 334 it is determined whether there is only one remaining target denomination. If so, the coin is accepted at step 336.
  • the accept gate is opened and various routing gates are controlled in order to direct the coin to an appropriate destination. Otherwise, the program proceeds to step 310 to reject the coin.
  • the step 310 is also reached if all target denominations are found to have been eliminated at step 308, 318 or 326.
  • the program selectively uses either the measurements S 2f1 and S 2a1 (representing the first peak from the second sensor) or the measurements S 2f2 and S 2a2 (representing the second peak from the second sensor), depending upon the target class.
  • each n-parameter Mahalanobis distance calculation (where n is the number of measurements) is split into several stages, each involving a subset of the measurements (i.e. less than n). This means that the sub-calculation performed at that stage uses data which is different from the data which would be used if it were derived from correlations between only the subset of measurements. Accordingly, the result (e.g. D1, D2 or D4) of each individual stage is not a true Mahalanobis distance. Nevertheless, it is a useful discriminator.
  • this procedure differs from known hierarchical classifiers. There is also a further difference, in that, in known hierarchial classifiers, the type of test performed at each stage will depend on the remaining target classes. In the present embodiment, however, the same type of test (i.e. the same predetermined subset of properties) is examined at each of steps 304, 314 and 320, irrespective of the remaining target classes.
  • the number of calculations performed at stages 304, 314 and 320 progressively decreases as the number of target denominations is reduced. Therefore, the overall number of calculations performed as compared with a system in which a full four-parameter Mahalanobis distance calculation is carried out for all target denominations is substantially reduced, without affecting discrimination performance. Furthermore, the first calculation at step 304 can be commenced before all the relevant measurements have been made.
  • the sequence described with reference to Figure 3 is preferred because the calculated values for measurements ⁇ 3 and ⁇ 4 are likely to eliminate more target classes than the cross-terms.
  • all the target classes relate to articles which the validator is intended to accept. It would be possible additionally to have target classes which relate to known types of counterfeit articles.
  • the procedure described above would be modified such that, at step 334, the processor 18 would determine (a) whether there is only one remaining target class, and if so (b) whether this target class relates to an acceptable denomination. The program would proceed to step 336 to accept the coin only if both of these tests are passed; otherwise, the coin will be rejected at step 310.
  • the acceptance data can be derived in a number of ways.
  • each mechanism could be calibrated by feeding a population of each of the target classes into the apparatus and reading the measurements from the sensors, in order to derive the acceptance data.
  • the data is derived using a separate calibration apparatus of very similar construction, or a number of such apparatuses in which case the measurements from each apparatus can be processed statistically to derive a nominal average mechanism. Analysis of the data will then produce the appropriate acceptance data for storing in production validators. If, due to manufacturing tolerances, the mechanisms behave differently, then the data for each mechanism could be modified in a calibration operation. Alternatively, the sensor outputs could be adjusted by a calibration operation.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)

Abstract

Articles of currency, for example coins, are validated by calculating a Mahalanobis distance associated with a plurality of properties in successive stages, the results at each stage being used to reduce a number of target classes, and hence the number of calculations required, in the successive stage or stages. Preliminary stages may represent Mahalanobis distance calculations for a sub-set of the measurements represented by the final Mahalanobis distance calculation. Thus, the Mahalanobis distance calculation can be started before some of the measurement parameters required for the later stages are available.

Description

  • This invention relates to methods and apparatus for classifying articles of currency. The invention will be primarily described in the context of validating coins but is applicable also in other areas, such as banknote validation.
  • Various techniques exist for determining whether a currency article such as a coin is genuine, and if so its denomination. Generally speaking, these techniques involve taking a number of measurements of the article, and determining whether all the measurements fall within ranges which would be expected if the article belongs to a particular target denomination, or target class. One common technique involves "windows" or target ranges each associated with a particular measurement. If all the measurements fall within the respective windows associated with a particular denomination, then the article is classed as having that denomination.
  • It has been recognised that this can produce problems in that it can result either in a non-genuine article being incorrectly judged as being genuine and belonging to one particular denomination, or, depending upon the sizes of the windows, a genuine article could be mis-classified as a non-genuine article.
  • In the past, there have been disclosed a number of techniques for dealing with this problem by taking into account not only the expected values of the respective measurements for a particular target class, but also the expected correlation between those measurements. Examples of prior art which relies upon such correlations are disclosed in WO-A-91/06074 and WO-A-92/18951.
  • One technique which can be used for judging the authenticity of a currency article involves calculating a Mahalanobis distance. According to this technique, each target class is associated with a stored set of data which, in effect, forms an inverse co-variance matrix. The data represents the correlation between the different measurements of the article. Assuming that n measurements are made, then the n resultant values are combined with the n x n inverse co-variance matrix to derive a Mahalanobis distance measurement D which represents the similarity between the measured article and the mean of a population of such articles used to derive the data set. By comparing D with a threshold, it is possible to determine the likelihood of the article belonging to the target denomination.
  • This provides a very effective way of authenticating and denominating coins. GB-A-2250848 discloses a technique for validating based on calculation of Mahalanobis distances. WO 96/36022 discloses the use of Mahalanobis distances for checking authenticity so that adjustment of acceptance parameters will take place only if an accepted currency article is highly likely to have been validated correctly.
  • Although calculating Mahalanobis distances is very effective, it involves many calculations and therefore requires a fast processor and/or takes a large amount of time. It is to be noted that a separate data set, and hence a separate Mahalanobis distance calculation, is required for each target denomination. Furthermore, the time available for authenticating a coin is often very short, because the coin is moving towards an accept/reject gate and therefore the decision must be made and if appropriate the gate operated before the coin reaches the gate.
  • It would be desirable at least to mitigate these problems.
  • Aspects of the present invention are set out in the accompanying claims.
  • In accordance with a further aspect of the invention, in order to determine whether a measured article belongs to one of a number of different target classes on the basis of a plurality of measurements, several stages of classification are used, together with data derived from an analysis of correlations between those measurements for different target classes to determine whether the tested article is likely to belong to any one of those target classes. A first stage uses a first subset of the measurements and a subset of the data. A second classification stage carries out a similar operation, using different subsets of data and measurements. A third classification stage uses a further measurement subset, which may include measurements which were used in different earlier stages, and a further subset of data. Thus, a complete set of classification stages examines the relationships between multiple properties to determine whether they correspond to the correlations expected of different target classes, but this determination is split into several successive stages. Each stage uses only some of the measurements together with part of the data representing correlations between the full set of measurements. Although the data part may not be an accurate representation of the expected correlation between the measurements of the subset (because it is taken from data representing correlation involving additional measurements), nevertheless it can be used to provide effective discrimination. This can have a number of advantages.
  • By using this technique it is possible to carry out a preliminary test, the results of which will be dependent on the relationship between different measurements, and which can therefore be used to eliminate target denominations if the results show that the article does not belong to these target denominations. This means that succeeding stages in the calculation are carried out in respect of only some of the target classes, thus reducing the overall number of required calculations.
  • Alternatively, or additionally, the earlier stages of the calculations can be carried out before the derivation of the measurements which are needed for the later stages of the calculation. In this way, a greater overall amount of time is provided for the processing of the measurements.
  • An embodiment of the present invention will now be described by way of example with reference to the accompanying drawings, in which:
  • Figure 1 is a schematic diagram of a coin validator in accordance with the invention;
  • Figure 2 is a diagram to illustrate the way in which sensor measurements are derived and processed; and
  • Figure 3 is a flow chart showing an acceptance-determining operation of the validator.
  • Referring to Figure 1, a coin validator 2 includes a test section 4 which incorporates a ramp 6 down which coins, such as that shown at 8, are arranged to roll. As the coin moves down the ramp 6, it passes in succession three sensors, 10, 12 and 14. The outputs of the sensors are delivered to an interface circuit 16 to produce digital values which are read by a processor 18. Processor 18 determines whether the coin is valid, and if so the denomination of the coin. In response to this determination, an accept/reject gate 20 is either operated to allow the coin to be accepted, or left in its initial state so that the coin moves to a reject path 22. If accepted, the coin travels by an accept path 24 to a coin storage region 26. Various routing gates may be provided in the storage region 26 to allow different denominations of coins to be stored separately.
  • In the illustrated embodiment, each of the sensors comprises a pair of electromagnetic coils located one on each side of the coin path so that the coin travels therebetween. Each coil is driven by a self-oscillating circuit. As the coin passes the coil, both the frequency and the amplitude of the oscillator change. The physical structures and the frequency of operation of the sensors 10, 12 and 14 are so arranged that the sensor outputs are predominantly indicative of respective different properties of the coin (although the sensor outputs are to some extent influenced by other coin properties).
  • In the illustrated embodiment, the sensor 10 is operated at 60 KHz. The shift in the frequency of the sensor as the coin moves past is indicative of coin diameter, and the shift in amplitude is indicative of the material around the outer part of the coin (which may differ from the material at the inner part, or core, if the coin is a bicolour coin).
  • The sensor 12 is operated at 400 KHz. The shift in frequency as the coin moves past the sensor is indicative of coin thickness and the shift in amplitude is indicative of the material of the outer skin of the central core of the coin.
  • The sensor 14 is operated at 20 KHz. The shifts in the frequency and amplitude of the sensor output as the coin passes are indicative of the material down to a significant depth within the core of the coin.
  • Figure 2 schematically illustrates the processing of the outputs of the sensors. The sensors 10, 12 and 14 are shown in section I of Figure 2. The outputs are delivered to the interface circuit 16 which performs some preliminary processing of the outputs to derive digital values which are handled by the processor 18 as shown in sections II, III, IV and V of Figure 2.
  • Within section II, the processor 18 stores the idle values of the frequency and the amplitude of each of the sensors, i.e. the values adopted by the sensors when there is no coin present. The procedure is indicated at blocks 30. The circuit also records the peak of the change in the frequency as indicated at 32, and the peak of the change in amplitude as indicated at 33. In the case of sensor 12, it is possible that both the frequency and the amplitude change, as the coin moves past, in a first direction to a first peak, and in a second direction to a negative peak (or trough) and again in the first direction, before returning to the idle value. Processor 18 is therefore arranged to record the value of the first frequency and amplitude peaks at 32' and 33' respectively, and the second (negative) frequency and amplitude peaks at 32" and 33" respectively.
  • At stage III, all the values recorded at stage II are applied to various algorithms at blocks 34. Each algorithm takes a peak value and the corresponding idle value to produce a normalised value, which is substantially independent of temperature variations. For example, the algorithm may be arranged to determine the ratio of the change in the parameter (amplitude or frequency) to the idle value. Additionally, or alternatively, at this stage III the processor 18 may be arranged to use calibration data which is derived during an initial calibration of the validator and which indicates the extent to which the sensor outputs of the validator depart from a predetermined or average validator. This calibration data can be used to compensate for validator-to-validator variations in the sensors.
  • At stage IV, the processor 18 stores the eight normalised sensor outputs as indicated at blocks 36. These are used by the processor 18 during the processing stage V which determines whether the measurements represent a genuine coin, and if so the denomination of that coin. The normalised outputs are represented as Sijk where:
       i represents the sensor (1 = sensor 10, 2 = sensor 12 and 3 = sensor 14), j represents the measured characteristic (f = frequency, a = amplitude) and k indicates which peak is represented (1 = first peak, 2 = second (negative) peak).
  • It is to be noted that although Figure 2 sets out how the sensor outputs are obtained and processed, it does not indicate the sequence in which these operations are performed. In particular, it should be noted that some of the normalised sensor values obtained at stage IV will be derived before other normalised sensor values, and possibly even before the coin reaches some of the sensors. For example the normalised sensor values S1f1, S1a1 derived from the outputs of sensor 10 will be available before the normalised outputs S2f1, S2a1 derived from sensor 12, and possibly before the coin has reached sensor 12.
  • Referring to section V of Figure 2, blocks 38 represent the comparison of the normalised sensor outputs with predetermined ranges associated with respective target denominations. This procedure of individually checking sensor outputs against respective ranges is conventional.
  • Block 40 indicates that the two normalised outputs of sensor 10, S1f1 and S1a1, are used to derive a value for each of the target denominations, each value indicating how close the sensor outputs are to the mean of a population of that target class. The value is derived by performing part of a Mahalanobis distance calculation.
  • In block 42, another two-parameter partial Mahalanobis calculation is performed, based on two of the normalised sensor outputs of the sensor 12, S2f1, S2a1 (representing the frequency and amplitude shift of the first peak in the sensor output).
  • At block 44, the normalised outputs used in the two partial Mahalanobis calculations performed in blocks 40 and 42 are combined with other data to determine how close the relationships between the outputs are to the expected mean of each target denomination. This further calculation takes into account expected correlations between each of the sensor outputs S1f1, S1a1 from sensor 10 with each of the two sensor outputs S2f1, S2a1 taken from sensor 12. This will be explained in further detail below.
  • At block 46, potentially all normalised sensor output values can be weighted and combined to give a single value which can be checked against respective thresholds for different target denominations. The weighting co-efficients, some of which may be zero, will be different for different target denominations.
  • The operation of the validator will now be described with reference to Figure 3.
  • This procedure will employ an inverse co-variance matrix which represents the distribution of a population of coins of a target denomination, in terms of four parameters represented by the two measurements from the sensor 10 and the first two measurements from the sensor 12.
  • Thus, for each target denomination there is stored the data for forming an inverse co-variance matrix of the form:
    M = mat1,1 mat1,2 mat1,3 mat1,4
    mat2,1 mat2,2 mat2,3 mat2,4
    mat3,1 mat3,2 mat3,3 mat3,4
    mat4,1 mat4,2 mat4,3 mat4,4
  • This is a symmetric matrix where mat x,y = mat y,x, etc. Accordingly, it is only necessary to store the following data:
    mat1,1 mat1,2 mat1,3 mat1,4
    mat2,2 mat2,3 mat2,4
    mat3,3 mat3,4
    mat4,4
  • For each target denomination there is also stored, for each property m to be measured, a mean value xm.
  • The procedure illustrated in Figure 3 starts at step 300, when a coin is determined to have arrived at the testing section. The program proceeds to step 302, whereupon it waits until the normalised sensor outputs S1f1 and S1a1 from the sensor 10 are available. Then, at step 304, a first set of calculations is performed. The operation at step 304 commences before any normalised sensor outputs are available from sensor 12.
  • At step 304, in order to calculate a first set of values, for each target class the following partial Mahalanobis calculation is performed: D 1 = mat 1,1·∂1·∂1 + mat 2,2·∂2·∂2 + 2·( mat 1,2·∂1·∂2) where ∂1 = S1f1-x 1 and ∂2 = S1a1-x 2, and x1 and x2 are the stored means for the measurements S1f1 and S1a1 for that target class.
  • The resulting value is compared with a threshold for each target denomination. If the value exceeds the threshold, then at step 306 that target denomination is disregarded for the rest of the processing operations shown in Figure 3.
  • It will be noted that this partial Mahalanobis distance calculation uses only the four terms in the top left section of the inverse co-variance matrix M.
  • Following step 306, the program checks at step 308 to determine whether there are any remaining target classes following elimination at step 306. If not, the coin is rejected at step 310.
  • Otherwise, the program proceeds to step 312, to wait for the first two normalised outputs S2f1 and S2a1 from the sensor 12 to be available.
  • Then, at step 314, the program performs, for each remaining target denomination, a second partial Mahalanobis distance calculation as follows: D 2 = mat3,3·∂3·∂3 + mat4,4·∂4·∂4 + 2·(mat3,4·∂3·∂4) where ∂3 = S2f1-x 3 and ∂4 = S2a1-x 4, and x 3 and x 4 are the stored means for the measurements S2f1 and S2a1 for that target class.
  • This calculation therefore uses the four parameters in the bottom right of the inverse co-variance matrix M.
  • Then, at step 316, the calculated values D2 are summed with the values D1 and the (D1 + D2) values are compared with respective thresholds for each of the target denominations and if the threshold is exceeded that target denomination is eliminated. Instead of comparing (D1 + D2) to the threshold, the program may compare just D2 with appropriate thresholds.
  • Assuming that there are still some remaining target denominations, as checked at step 318, the program proceeds to step 320. Here, the program performs a further calculation using the elements of the inverse co-variance matrix M which have not yet been used, i.e. the cross-terms at the bottom left and top right of the matrix M. The further calculation derives a value DX for each remaining target denomination as follows: DX = 2·( mat 1,3·∂1·∂3+ mat 1,4·∂1·∂4+ mat 2,3·∂2·∂3+ mat 2,4·∂2·∂4)
  • Then, at step 322, the program compares a value dependent on DX with respective thresholds for each remaining target denomination and eliminates that target denomination if the threshold is exceeded. The value used for comparison may be DX (in which case it could be positive or negative). Preferably however the value is D1 + D2 + DX. The latter sum represents a full four-parameter Mahalanobis distance taking into account all cross-correlations between the four parameters being measured.
  • At step 326 the program determines whether there are any remaining target denominations, and if so proceeds to step 328. Here, for each target denomination, the program calculates a value DP as follows:
    Figure 00120001
    where ∂1 ... ∂8 represent the eight normalised measurements Si,j,k and a1....a8 are stored co-efficients for the target denomination. The values DP are then at step 330 compared with respective ranges for each remaining target class and any remaining target classes are eliminated depending upon whether or not the value falls within the respective range. At step 334, it is determined whether there is only one remaining target denomination. If so, the coin is accepted at step 336. The accept gate is opened and various routing gates are controlled in order to direct the coin to an appropriate destination. Otherwise, the program proceeds to step 310 to reject the coin. The step 310 is also reached if all target denominations are found to have been eliminated at step 308, 318 or 326.
  • The procedure explained above does not take into account the comparison of the individual normalised measurements with respective window ranges at blocks 38 in Figure 2. The procedure shown in Figure 3 can be modified to include these steps at any appropriate time, in order to eliminate further the number of target denominations considered in the succeeding stages. There could be several such stages at different points within the program illustrated in Figure 3, each for checking different measurements. Alternatively, the individual comparisons could be used as a final boundary check to make sure that the measurements of a coin about to be accepted fall within expected ranges. As a further alternative, these individual comparisons could be omitted.
  • In a modified embodiment, at step 314 the program selectively uses either the measurements S2f1 and S2a1 (representing the first peak from the second sensor) or the measurements S2f2 and S2a2 (representing the second peak from the second sensor), depending upon the target class.
  • It will be appreciated that each n-parameter Mahalanobis distance calculation (where n is the number of measurements) is split into several stages, each involving a subset of the measurements (i.e. less than n). This means that the sub-calculation performed at that stage uses data which is different from the data which would be used if it were derived from correlations between only the subset of measurements. Accordingly, the result (e.g. D1, D2 or D4) of each individual stage is not a true Mahalanobis distance. Nevertheless, it is a useful discriminator.
  • It is to be noted that this procedure differs from known hierarchical classifiers. There is also a further difference, in that, in known hierarchial classifiers, the type of test performed at each stage will depend on the remaining target classes. In the present embodiment, however, the same type of test (i.e. the same predetermined subset of properties) is examined at each of steps 304, 314 and 320, irrespective of the remaining target classes.
  • There are a number of advantages to performing the Mahalanobis distance calculations in the manner set out above. It will be noted that the number of calculations performed at stages 304, 314 and 320 progressively decreases as the number of target denominations is reduced. Therefore, the overall number of calculations performed as compared with a system in which a full four-parameter Mahalanobis distance calculation is carried out for all target denominations is substantially reduced, without affecting discrimination performance. Furthermore, the first calculation at step 304 can be commenced before all the relevant measurements have been made.
  • The sequence can however be varied in different ways. For example, steps 314 and 320 could be interchanged, so that the cross-terms are considered before the partial Mahalanobis distance calculations for measurements ∂3 (= S2f1-x 3) and ∂4 (= S2a1-x 4) are performed. However, the sequence described with reference to Figure 3 is preferred because the calculated values for measurements ∂3 and ∂4 are likely to eliminate more target classes than the cross-terms.
  • In the arrangement described above, all the target classes relate to articles which the validator is intended to accept. It would be possible additionally to have target classes which relate to known types of counterfeit articles. In this case, the procedure described above would be modified such that, at step 334, the processor 18 would determine (a) whether there is only one remaining target class, and if so (b) whether this target class relates to an acceptable denomination. The program would proceed to step 336 to accept the coin only if both of these tests are passed; otherwise, the coin will be rejected at step 310.
  • Other distance calculations can be used instead of Mahalanobis distance calculations, such as Euclidean distance calculations.
  • The acceptance data, including for example the means xm and the elements of the matrix M, can be derived in a number of ways. For example, each mechanism could be calibrated by feeding a population of each of the target classes into the apparatus and reading the measurements from the sensors, in order to derive the acceptance data. Preferably, however, the data is derived using a separate calibration apparatus of very similar construction, or a number of such apparatuses in which case the measurements from each apparatus can be processed statistically to derive a nominal average mechanism. Analysis of the data will then produce the appropriate acceptance data for storing in production validators. If, due to manufacturing tolerances, the mechanisms behave differently, then the data for each mechanism could be modified in a calibration operation. Alternatively, the sensor outputs could be adjusted by a calibration operation.

Claims (15)

  1. A method of determining whether an article of currency belongs to one of a plurality of target classes by deriving a plurality of measurements of the article and using those measurements in a correlation calculation to determine the extent to which the relationship between the measurements conforms to the correlation between these measurements in a population of the target class, the method comprising a plurality of successive classification stages, each classification stage performing a part only of at least one correlation calculation and using the result of that part of the correlation calculation to determine whether to eliminate the respective target class.
  2. A method of determining whether an article of currency belongs to any of a plurality of target classes by deriving n measurements of the article and processing these with data derived from the correlation between all these n measurements in respective target class populations, the method comprising a plurality of successive classification stages, each classification stage involving processing a subset of the n measurements with a subset of said data to obtain a result which determines whether respective target classes are to be eliminated.
  3. A method of determining whether an article of currency belongs to any of a plurality of target classes by deriving a plurality of measurements of the article and processing these with data derived from the correlation between these measurements in respective target class populations, the method comprising a plurality of successive classification stages, each for selecting at least one candidate target class, and each using a respective subset of the measurements, wherein the subsets used in the respective classification stages are predetermined and independent of the remaining candidate target classes, and wherein at least one classification stage uses a subset comprising a plurality of measurements each of which is also used in a respective different classification stage.
  4. A method of determining whether an article of currency belongs to any of a plurality of target classes by deriving a plurality of measurements of the article, the method comprising a plurality of successive classification stages, each for selecting at least one candidate target class, and each using a plurality of measurements and data derived from the correlation between these measurements in respective target class populations, wherein at least one classification stage uses a plurality of measurements each of which is also used in a respective different classification stage, and wherein at least one classification stage selects at least one candidate class on the basis of a discriminator calculated by combining values derived during both that stage and at least one previous stage.
  5. A method as claimed in claim 3 or 4, wherein each classification stage is used to eliminate target classes and thereby reduce the number of calculations required for the next classification stage.
  6. A method of determining whether an article of currency belongs to any of a plurality of target classes by deriving a plurality of measurements of the article and processing this with data derived from the correlation between these measurements in respective target class populations, the method comprising a plurality of successive classification stages, each for selecting at least one candidate target class, and each using a plurality of measurements, wherein the respective classification stages process different respective subsets of the measurements with said data and at least one classification stage uses a subset including a plurality of measurements each of which is also used in a respective different classification stage.
  7. A method as claimed in claim 6, wherein said at least one of the classification stages selects at least one candidate class on the basis of measurements all of which were used in previous classification stages.
  8. A method as claimed in any preceding claim, in which at least one measurement used during a classification stage is a measurement which was not available at the commencement of an earlier classification stage.
  9. A method as claimed in any preceding claim, wherein at least one classification stage selects at least one candidate class on the basis of a combination of values calculated during both that stage and a previous stage.
  10. A method as claimed in any preceding claim, wherein at least one classification stage calculates a set of Mahalanobis distances, each distance corresponding to a respective target class.
  11. A method as claimed in claim 10, wherein at least two classification stages perform respective parts of a Mahalanobis distance calculation for respective sets of measurements, and a further classification stage completes the Mahalanobis distance calculation.
  12. A method as claimed in claim 11, wherein the further classification stage involves step of summing the results of said at least two classification stages with a further value in order to derive a Mahalanobis distance.
  13. A method as claimed in any preceding claim, when used for validating coins.
  14. A method as claimed in any one of claims 1 to 12, when used for validating banknotes.
  15. Apparatus for determining whether an article belongs to one of a plurality of target classes, the apparatus being arranged to operate in accordance with a method of any preceding claim.
EP02258577A 2001-12-28 2002-12-12 Method and apparatus for classifying currency articles Withdrawn EP1324281A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02258577A EP1324281A1 (en) 2001-12-28 2002-12-12 Method and apparatus for classifying currency articles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP01310949 2001-12-28
EP01310949A EP1324280A1 (en) 2001-12-28 2001-12-28 Method and apparatus for classifying currency articles
EP02258577A EP1324281A1 (en) 2001-12-28 2002-12-12 Method and apparatus for classifying currency articles

Publications (1)

Publication Number Publication Date
EP1324281A1 true EP1324281A1 (en) 2003-07-02

Family

ID=26077219

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02258577A Withdrawn EP1324281A1 (en) 2001-12-28 2002-12-12 Method and apparatus for classifying currency articles

Country Status (1)

Country Link
EP (1) EP1324281A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044092A1 (en) * 2005-09-15 2007-03-22 Giesecke & Devrient Gmbh Different currency banknotes denomination detecting method, involves assigning banknotes to different currency specific denomination detectors, and detecting denomination of banknotes using currency specific denomination detectors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238152A (en) * 1989-10-18 1991-05-22 Mars Inc Validating coins
GB2251111A (en) * 1990-09-24 1992-06-24 Roke Manor Research Calibration of coin validation apparatus
EP0779604A1 (en) * 1993-11-30 1997-06-18 Mars Incorporated Money validator
US5931277A (en) * 1995-05-09 1999-08-03 Mars, Incorporated Money validation system using acceptance criteria
US6092059A (en) * 1996-12-27 2000-07-18 Cognex Corporation Automatic classifier for real time inspection and classification

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2238152A (en) * 1989-10-18 1991-05-22 Mars Inc Validating coins
GB2251111A (en) * 1990-09-24 1992-06-24 Roke Manor Research Calibration of coin validation apparatus
EP0779604A1 (en) * 1993-11-30 1997-06-18 Mars Incorporated Money validator
US5931277A (en) * 1995-05-09 1999-08-03 Mars, Incorporated Money validation system using acceptance criteria
US6092059A (en) * 1996-12-27 2000-07-18 Cognex Corporation Automatic classifier for real time inspection and classification

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005044092A1 (en) * 2005-09-15 2007-03-22 Giesecke & Devrient Gmbh Different currency banknotes denomination detecting method, involves assigning banknotes to different currency specific denomination detectors, and detecting denomination of banknotes using currency specific denomination detectors

Similar Documents

Publication Publication Date Title
US6902049B2 (en) Apparatus for validating currency items, and method of configuring such apparatus
US5984074A (en) Method and apparatus for validating money
JP2649742B2 (en) Method and apparatus for improved coin, banknote and other currency acceptance and elimination of slugs or counterfeit money
US7014029B2 (en) Methods and systems for detecting coin fraud in coin-counting machines and other devices
US6830143B2 (en) Calibration of currency validators
CN101366061B (en) Detecting improved quality counterfeit media items
GB2300746A (en) Currency discriminators
US6886680B2 (en) Method and apparatus for classifying currency articles
US7198157B2 (en) Method and apparatus for classifying currency articles
JP2011023042A (en) Improved money item acceptor
EP1324281A1 (en) Method and apparatus for classifying currency articles
US5404987A (en) Method and apparatus for validating money
US7549525B2 (en) Money item acceptor with enhanced security
JP3423136B2 (en) Paper sheet identification method
JP2000242823A (en) Method and device for selecting coin
JP3670905B2 (en) Coin identification device
EP1434177A2 (en) Banknote validator
JPH1083472A (en) Method for identifying paper money

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

17P Request for examination filed

Effective date: 20031223

AKX Designation fees paid

Designated state(s): DE ES GB IT

17Q First examination report despatched

Effective date: 20050202

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEI, INC.

111Z Information provided on other rights and legal means of execution

Free format text: ATBEBGCHCYCZDEDKEEESFIFRGBGRIEITLUMCNLPTSESKTR

Effective date: 20061103

111Z Information provided on other rights and legal means of execution

Free format text: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

Effective date: 20070802

R11X Information provided on other rights and legal means of execution (corrected)

Free format text: AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

Effective date: 20070802

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MEI, INC.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150701