EP1323170B1 - X-ray optical system - Google Patents

X-ray optical system Download PDF

Info

Publication number
EP1323170B1
EP1323170B1 EP01943167A EP01943167A EP1323170B1 EP 1323170 B1 EP1323170 B1 EP 1323170B1 EP 01943167 A EP01943167 A EP 01943167A EP 01943167 A EP01943167 A EP 01943167A EP 1323170 B1 EP1323170 B1 EP 1323170B1
Authority
EP
European Patent Office
Prior art keywords
ray
radiation
optical arrangement
arrangement according
ray optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01943167A
Other languages
German (de)
French (fr)
Other versions
EP1323170A2 (en
Inventor
Thomas Holz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1323170A2 publication Critical patent/EP1323170A2/en
Application granted granted Critical
Publication of EP1323170B1 publication Critical patent/EP1323170B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/06Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators

Definitions

  • the invention relates to an X-ray optical arrangement according to the preamble of claim 1. It can be special advantageous in X-ray analysis, e.g. in the X-ray diffractometry, reflectometry and / or the fluorescence analysis can be used.
  • X-ray analytics are for the most diverse Applications X-rays with high intensity, i.e. especially high photon density required. This can be done by focusing the x-rays be achieved. In many cases, however, it is cheaper X-radiation with very small divergence, in the best case, use as parallel X-rays to be able to.
  • the X-rays In X-ray analysis, it is also desired a high surface sensitivity of the X-radiation on surfaces to be analyzed or in fluidic Samples present on substrate slides are to reach.
  • the X-rays preferably grazing, i. with relative small angles of incidence up to a few degrees of incidence angles or a few tenths of a degree angle of incidence, i.e. near the critical angle of total reflection, on a sample or a corresponding substrate surface directed and consequently the radiation cross section according to 1 / sin ⁇ projected onto the sample surface becomes. It is desired the photon density ever Increase the area on the projection surface or to focus on a smaller projection screen.
  • the surface intensity and consequently also the photon density can be known by strong bundling parallel or nearly parallel X-rays are increased and consequently also the each locally detectable measurement signal of a sample increases become.
  • the spatial resolution of Measuring signals i. the most accurate assignment possible Measuring signals to the measuring location make high demands the test setup.
  • the X-ray optical arrangement according to the invention uses usual X-ray optical elements, like a suitable X-ray source, X-rays focusing and an X-ray reflecting Element.
  • the X-ray radiation of the X-ray source on the focusing element directed, which is a lens effect reaching element, but cheaper to a corresponding shaped reflector can act.
  • the of X-ray focused on this element is on directed an X-ray reflecting element, whose reflective surfaces are convex and is formed parabolic.
  • the reflective element Due to this surface shape of the reflective element can simultaneously bundling (compression) X-radiation and its parallel alignment be obtained with negligible divergence, the on a suitably arranged and aligned Surface of a sample or a substrate directed can be.
  • the convergent X-ray radiation with punctiform, elliptical or line-shaped cross section are, of course, the surface contour of the X-ray reflecting Element is adapted to this geometry.
  • linear Beam cross sections can be focused and the reflective element have cylinder symmetry.
  • At least the surface of the reflective element can be a single reflective layer, in In many cases, however, cheaper, a multilayer system exhibit.
  • the X-ray radiation from the focusing element can be directed onto the reflective element at an angle ⁇ the critical angle ⁇ c of the total reflection and the desired effect can be achieved.
  • the individual layers of the multilayer system taking into account the different angles of incidence of the x-rays, have a correspondingly adapted thickness distribution with which the respective angles of incidence ⁇ i and Bragg's for a predeterminable x-ray wavelength Satisfy equation on each surface element of the reflective element.
  • the gradient layers have a double-layer thickness that changes over the length.
  • the adjacent ones Single layers of a multilayer system point different X-ray optical refractive indices on.
  • the largest possible compression of the X-ray radiation can be obtained when focusing points F of focusing and reflective element with each other match, but at least in the immediate Are arranged close to each other.
  • the focusing element forms the X-ray source in a line focus, it is also advantageous the parabolic shape of the reflective element cylindrically symmetric to choose a linear To receive parallel radiation.
  • the signal-to-noise ratio be improved because with the reflective Element an additional monochromator is arranged in the beam path.
  • the dynamic Range of measurement can be increased, which is e.g. the information content of a measured reflectogram rises, possibly due to background signals covered diffraction orders are detected can.
  • the invention is based on an exemplary embodiment be explained.
  • Figure 1 becomes divergent X-radiation of an X-ray source 1 on a concave, elliptical or parabolic shape Surface, with for the X-ray radiation used reflective surface, in this case a Multilayer system, directed.
  • the x-ray radiation is reflected from there and at the same time on the convex, parabolic reflective surface of the directed to the reflective element, the from the reflective element 3 reflected x-ray radiation simultaneously compressed and aligned in parallel becomes.
  • the bundled parallel X-radiation can then for the different X-ray analysis techniques be used, wherein X-ray cross-sections in the range of less than 200 microns easily accessible are.
  • the reflective surface of the reflective Element 3 can also be a multilayer system, in which the layer thicknesses of the individual layers locally, according to the different angles of incidence the incident X-ray considered are, be present.
  • the parallel, reflected x-rays not only have a higher intensity, but they will also monochromatized.
  • the focused X-radiation predetermines different angles of incidence ⁇ i on the reflecting surface of the reflecting element 3, it is accordingly also necessary to use a corresponding gradient multilayer system which has a different period thickness d i at the corresponding X-ray wavelength corresponding to the respective angles of incidence.
  • the reflective Surface of the focusing element 2 a parabolic shape ( Figure 2), but it can also an elliptical contour ( Figure 1) are used.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

The invention relates to an X-ray optics arrangement having an X-ray source, one element focussing X-rays and one element reflecting X-rays for the generation of a parallel X-radiation having a small beam cross section of high photon flux density. To solve this problem the X-radiation of the X-ray source is directed with the focussing element upon the convex, parabolic and reflecting surface of the reflecting element, and allowed to be advantageously employed in the X-ray analysis, e.g. with the X-ray diffraction measurement, reflectometry and/or fluoro-chemical analysis.

Description

Die Erfindung betrifft eine röntgenoptische Anordnung nach dem Oberbegriff des Anspruchs 1. Sie kann besonders vorteilhaft in der Röntgenanalytik, z.B. bei der Röntgendiffraktometrie, der Reflektometrie und/oder der Fluoreszenzanalyse eingesetzt werden.The invention relates to an X-ray optical arrangement according to the preamble of claim 1. It can be special advantageous in X-ray analysis, e.g. in the X-ray diffractometry, reflectometry and / or the fluorescence analysis can be used.

In der Röntgenanalytik werden für die verschiedensten Applikationen Röntgenstrahlung mit hoher Intensität, d.h. insbesondere hoher Photonendichte gefordert. Dies kann durch eine Fokussierung der Röntgenstrahlen erreicht werden. In vielen Fällen ist es jedoch günstiger, Röntgenstrahlung mit sehr kleiner Divergenz, im besten Fall, als parallele Röntgenstrahlung einsetzen zu können.In the X-ray analytics are for the most diverse Applications X-rays with high intensity, i.e. especially high photon density required. This can be done by focusing the x-rays be achieved. In many cases, however, it is cheaper X-radiation with very small divergence, in the best case, use as parallel X-rays to be able to.

In der Röntgenanalytik kann es aber auch erforderlich sein, die Röntgenstrahlung zu monochromatisieren, um bestimmte Analysen durchführen zu können.It may also be necessary in X-ray analysis be to monochromatize the x-rays to to carry out certain analyzes.

In der Röntgenanalytik ist es außerdem gewünscht, eine hohe Oberflächensensitivität der Röntgenstrahlung auf zu analysierenden Oberflächen oder in fluidischen Proben, die auf Substratträgern vorhanden sind, zu erreichen. In diesen Fällen wird die Röntgenstrahlung bevorzugt streifend, d.h. mit relativ kleinen Einfallswinkeln bis maximal wenigen Grad Einfallswinkeln bzw. wenigen zehntel Grad Einfallswinkel, d.h. nahe dem Grenzwinkel der Totalreflexion, auf eine Proben- bzw. eine entsprechende Substratoberfläche gerichtet und demzufolge der Strahlungsquerschnitt gemäß 1/sin  auf die Probenfläche projiziert wird. Es ist erwünscht, die Photonendichte je Fläche auf der Projektionsfläche weiter zu erhöhen bzw. auf eine kleinere Projektionsfläche zu konzentrieren. Die Oberflächenintensität und demzufolge auch die Photonendichte kann bekanntermaßen durch starke Bündelung paralleler bzw. annähernd paralleler Röntgenstrahlen erhöht werden und demzufolge auch das jeweils lokal erfassbare Messsignal einer Probe vergrößert werden. Insbesondere die Ortsauflösung der Messsignale, d.h. die möglichst genaue Zuordnung der Messsignale zum Messort stellt hohe Anforderungen an den Messaufbau.In X-ray analysis, it is also desired a high surface sensitivity of the X-radiation on surfaces to be analyzed or in fluidic Samples present on substrate slides are to reach. In these cases, the X-rays preferably grazing, i. with relative small angles of incidence up to a few degrees of incidence angles or a few tenths of a degree angle of incidence, i.e. near the critical angle of total reflection, on a sample or a corresponding substrate surface directed and consequently the radiation cross section according to 1 / sin  projected onto the sample surface becomes. It is desired the photon density ever Increase the area on the projection surface or to focus on a smaller projection screen. The surface intensity and consequently also the photon density can be known by strong bundling parallel or nearly parallel X-rays are increased and consequently also the each locally detectable measurement signal of a sample increases become. In particular, the spatial resolution of Measuring signals, i. the most accurate assignment possible Measuring signals to the measuring location make high demands the test setup.

Üblicherweise werden entsprechend klein dimensionierte Blenden in den Strahlengang der Röntgenstrahlung angeordnet, so dass nur ein Teil der Röntgenstrahlung durch die Blendenöffnung zum Messort gelangen kann und so eine lokal definierte Zuordnung des Messsignals zum Messort erreicht wird. Selbstverständlich bedingt der Einsatz solcher Blenden Intensitätsverluste der Röntgenstrahlung, die zur Messung nicht ausgenutzt werden können. Darunter leidet die Messgenauigkeit bzw. es muss eine Erhöhung der erforderlichen Messzeit in Kauf genommen werden, was für viele Anwendungsfälle nicht gewünscht ist bzw. auch Messungen unmöglich macht.Usually, correspondingly small-sized Apertures in the beam path of the X-ray radiation arranged so that only part of the X-rays through the aperture to reach the site and so a locally defined assignment of the measurement signal is reached to the measuring location. Of course requires the use of such screens intensity losses the X-rays that are not for measurement can be exploited. This suffers the accuracy of measurement or it must be an increase in the required Measuring time can be accepted, which for many Use cases is not desired or even measurements impossible.

Die genannten Nachteile konnten auch mit röntgenoptischen Aufbauten, bei denen Multischichtsysteme mit an konkave Krümmungen angepassten Periodendicken, die beispielsweise in DE 44 43 853 A1 beschrieben sind, nicht vollständig beseitigt werden und es ist nicht gelungen, den Strahlquerschnitt der Röntgenstrahlung soweit zu reduzieren, daß die in Folge der erforderlichen Blenden auftretenden Intensitätsverluste, nach wie vor, zwar in verringerter Form auftreten.The mentioned disadvantages could also with X-ray optical Constructions in which multilayer systems with concave curvatures adapted period thicknesses, the are described for example in DE 44 43 853 A1, not completely eliminated and it is not succeeded, the beam cross section of the X-ray radiation reduce so much that in consequence of the required Iris occurring intensity losses, after as before, although occur in a reduced form.

Insbesondere in der Halbleitertechnik schreitet die Miniaturisierung stark voran und der Schritt aus dem Micro- und den Nanobereich erfordert von der Analytik Möglichkeiten, um bestimmte Elemente und Verbindungen mit hoher Messgenauigkeit, bei gleichzeitig hoher Ortsauflösung in kurzer Zeit analysieren zu können.In particular, in semiconductor technology the Miniaturization is progressing strongly and the step out of the Micro- and nanoscale requires analytics Ways to make certain elements and connections with high measuring accuracy, at the same time high To analyze spatial resolution in a short time.

Es ist daher Aufgabe der Erfindung eine röntgenoptische Anordnung zur Verfügung zu stellen, mit der parallele, zumindest jedoch annähernd parallele Röntgenstrahlung mit kleinem Strahlquerschnitt und entsprechend hoher Photonendichte zur Verfügung gestellt werden kann.It is therefore an object of the invention an X-ray optical To provide arrangement with the parallel, but at least approximately parallel X-rays with small beam cross section and accordingly high photon density provided can be.

Erfindungsgemäß wird diese Aufgabe mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Ausgestaltungsformen und Weiterbildungen der Erfindung, können mit den in den untergeordneten Ansprüchen genannten Merkmalen erreicht werden.According to the invention, this object is achieved with the features of claim 1. Advantageous embodiments and further developments of the invention can, with the features mentioned in the subordinate claims be achieved.

Die erfindungsgemäße röntgenoptische Anordnung verwendet übliche röntgenoptische Elemente, wie eine geeignete Röntgenstrahlquelle, ein Röntgenstrahlen fokussierendes und ein Röntgenstrahlen reflektierendes Element. Dabei wird die Röntgenstrahlung der Röntgenstrahlquelle auf das fokussierende Element gerichtet, wobei es sich um ein einen Linseneffekt erreichendes Element, günstiger jedoch um einen entsprechend geformten Reflektor handeln kann. Die von diesem Element fokussierte Röntgenstrahlung ist auf ein Röntgenstrahlung reflektierendes Element gerichtet, dessen reflektierende Oberflächen konvex und parabelförmig ausgebildet ist.The X-ray optical arrangement according to the invention uses usual X-ray optical elements, like a suitable X-ray source, X-rays focusing and an X-ray reflecting Element. The X-ray radiation of the X-ray source on the focusing element directed, which is a lens effect reaching element, but cheaper to a corresponding shaped reflector can act. The of X-ray focused on this element is on directed an X-ray reflecting element, whose reflective surfaces are convex and is formed parabolic.

Durch diese Oberflächenform des reflektierenden Elementes kann gleichzeitig eine Bündelung (Kompression) der Röntgenstrahlung und deren parallele Ausrichtung mit vernachlässigbarer Divergenz erhalten werden, die auf eine entsprechend angeordnete und ausgerichtete Oberfläche einer Probe bzw. eines Substrates gerichtet werden kann.Due to this surface shape of the reflective element can simultaneously bundling (compression) X-radiation and its parallel alignment be obtained with negligible divergence, the on a suitably arranged and aligned Surface of a sample or a substrate directed can be.

Je nach Form des fokussierenden Elementes kann die konvergente Röntgenstrahlung mit punktförmigem, elliptischem oder linienförmigem Querschnitt erzeugt werden, wobei selbstverständlich auch die Oberflächenkontur des die Röntgenstrahlung reflektierenden Elementes dieser Geometrie angepasst ist. Für linienförmige Strahlquerschnitte können das fokussierende und das reflektierende Element Zylindersymmetrie besitzen.Depending on the shape of the focusing element, the convergent X-ray radiation with punctiform, elliptical or line-shaped cross section are, of course, the surface contour of the X-ray reflecting Element is adapted to this geometry. For linear Beam cross sections can be focused and the reflective element have cylinder symmetry.

Für viele Einsatzfälle ändert sich die Funktion der eingesetzten Blende und sie dient zur Streulichtunterdrückung. Sind jedoch im Einzelfall nach wie vor Blenden erforderlich, um die Ortsauflösung zu erhöhen, wird ein wesentlich geringerer Teil der Röntgenintensität von den Blenden ausgeblendet, da die Photonendichte in der entsprechend komprimierten Röntgenstrahlung erheblich höher ist, als dies bei bekannten Lösungen der Fall ist. So kann ein Intensitätsgewinn größer 2 erreicht werden. For many applications, the function of the used aperture and it is used for stray light suppression. However, in individual cases are still Apertures required to increase the spatial resolution, becomes a much smaller part of the X-ray intensity hidden from the aperture, because the photon density in the correspondingly compressed X-radiation is considerably higher than that of known Solutions is the case. So can an increase in intensity greater than 2 can be achieved.

Zumindest die Oberfläche des reflektierenden Elementes kann eine einzelne reflektierende Schicht, in vielen Fällen jedoch günstiger, ein Multischichtsystem aufweisen.At least the surface of the reflective element can be a single reflective layer, in In many cases, however, cheaper, a multilayer system exhibit.

Wird lediglich eine einzelne reflektierende Schicht oder ein reflektierendes Element, das aus einem entsprechend geeigneten Material besteht, verwendet, kann die Röntgenstrahlung vom fokussierenden Element mit einem Winkel ≤ dem Grenzwinkel c der Totalreflexion auf das reflektierende Element gerichtet und der gewünschte Effekt erreicht werden.If only a single reflective layer or a reflective element made of a suitably suitable material is used, the X-ray radiation from the focusing element can be directed onto the reflective element at an angle ≦ the critical angle  c of the total reflection and the desired effect can be achieved.

In vielen Fällen ist es jedoch günstiger, ein Gradienten-Multischichtsystem zu verwenden, bei dem die einzelnen Schichten des Multischichtsystems, die unterschiedlichen Einfallswinkel der Röntgenstrahlen berücksichtigend, eine entsprechend angepasste Dikkenverteilung aufweisen, mit denen die jeweiligen Einfallswinkel i, bei einer vorgebbaren Röntgenstrahlungswellenlänge die Braggsche Gleichung auf jedem Flächenelement des reflektierenden Elementes erfüllen. Die Gradientenschichten weisen eine sich über die Länge verändernde Doppelschichtdicke auf.In many cases, however, it is more favorable to use a gradient multilayer system in which the individual layers of the multilayer system, taking into account the different angles of incidence of the x-rays, have a correspondingly adapted thickness distribution with which the respective angles of incidence  i and Bragg's for a predeterminable x-ray wavelength Satisfy equation on each surface element of the reflective element. The gradient layers have a double-layer thickness that changes over the length.

Dadurch kann eine weitere Erhöhung der Photonendichte und auch eine verbesserte Monochromatisierung der Röntgenstrahlung erreicht werden. Die jeweils benachbarten Einzelschichten eines Multischichtsystems weisen unterschiedliche röntgenoptische Brechungsindizes auf.This can further increase the photon density and also an improved monochromatization of X-radiation can be achieved. The adjacent ones Single layers of a multilayer system point different X-ray optical refractive indices on.

Eine möglichst große Kompression der Röntgenstrahlung kann erreicht werden, wenn die Fokuspunkte F von fokussierendem und reflektierendem Element miteinander übereinstimmen, zumindest jedoch in unmittelbarer Nähe zueinander angeordnet sind.The largest possible compression of the X-ray radiation can be obtained when focusing points F of focusing and reflective element with each other match, but at least in the immediate Are arranged close to each other.

Bildet das fokussierende Element die Röntgenstrahlquelle in einem Linienfokus ab, ist es weiterhin vorteilhaft, die Parabelform des reflektierenden Elementes zylindersymmetrisch zu wählen, um eine linienförmige Parallelstrahlung zu erhalten.The focusing element forms the X-ray source in a line focus, it is also advantageous the parabolic shape of the reflective element cylindrically symmetric to choose a linear To receive parallel radiation.

Neben den bereits erwähnten Vorteilen, kann mit der erfindungsgemäßen röntgenoptischen Anordnung auch bei kleinen Einfallswinkeln der Röntgenstrahlung auf die Proben eine höhere Ortsauflösung der Messsignale erreicht werden, da bei annähernd gleicher Photonenzahl die projizierte Fläche auf der Probe verkleinert wird.In addition to the already mentioned advantages, can with the X-ray optical arrangement according to the invention also at small angles of incidence of X-rays on the Samples achieved a higher spatial resolution of the measurement signals be, because at approximately the same number of photons reduces the projected area on the sample becomes.

Generell kann mit der Erfindung auch das Signal-Rauschverhältnis verbessert werden, da mit dem reflektierenden Element ein zusätzlicher Monochromator im Strahlengang angeordnet ist.In general, with the invention, the signal-to-noise ratio be improved because with the reflective Element an additional monochromator is arranged in the beam path.

Neben der Verkürzung der Messzeit kann auch der dynamische Bereich der Messung erhöht werden, was z.B. den Informationsgehalt eines gemessenen Reflektogramms ansteigen lässt, da eventuell durch Untergrundsignale verdeckte Beugungsordnungen erfasst werden können.In addition to shortening the measurement time can also be the dynamic Range of measurement can be increased, which is e.g. the information content of a measured reflectogram rises, possibly due to background signals covered diffraction orders are detected can.

Durch translatorische Bewegung und/oder Verschwenkung um bestimmte Wegstrecken und Winkel des fokussierenden und/oder reflektierenden Elementes kann die Röntgenstrahlung auf bestimmte kleine Messorte/-flächen gerichtet werden. By translational movement and / or pivoting around certain distances and angles of the focusing and / or reflective element, the X-radiation on certain small measuring locations / areas be directed.

Nachfolgend soll die Erfindung anhand eines Ausführungsbeispieles erläutert werden.The invention is based on an exemplary embodiment be explained.

Dabei zeigen:Showing:

Figur 1:FIG. 1:
schematisch ein Beispiel einer röntgenoptischen Anordnung nach der Erfindung bei der divergente Röntgenstrahlung einer Röntgenstrahlungsquelle auf ein fokussierendes Element gerichtet und in Parallelstrahlung mit kleinerem Strahlquerschnitt umgewandelt wird undschematically an example of an X-ray optical Arrangement according to the invention in the divergent X-radiation of an X-ray source on a focusing Element directed and in parallel radiation converted with smaller beam cross section will and
Figur 2:FIG. 2:
in schematischer Form ein Beispiel einer Anordnung, bei der parallele Röntgenstrahlung auf ein fokussierendes Element gerichtet und in Parallelstrahlung mit deutlich kleinerem Strahlquerschnitt umgewandelt wird.in schematic form an example of a Arrangement, in the case of the parallel X-ray radiation directed to a focusing element and in parallel with clearly converted smaller beam cross section becomes.

Bei dem in Figur 1 gezeigten Beispiel wird divergente Röntgenstrahlung einer Röntgenstrahlungsquelle 1 auf eine konkave, in Ellipsen- oder Parabelform ausgebildete Oberfläche, mit für die verwendete Röntgenstrahlung reflektierender Oberfläche, in diesem Fall ein Multischichtsystem, gerichtet. Die Röntgenstrahlung wird von dort reflektiert und gleichzeitig auf die konvexe, parabelförmige reflektierende Oberfläche des reflektierenden Elementes gerichtet, wobei die vom reflektierenden Element 3 reflektierte Röntgenstrahlung gleichzeitig verdichtet und parallel ausgerichtet wird. Die so gebündelte parallele Röntgenstrahlung kann dann für die verschiedenen Röntgenanalysetechniken eingesetzt werden, wobei Röntgenstrahlquerschnitte im Bereich kleiner 200 µm ohne weiteres erreichbar sind.In the example shown in Figure 1 becomes divergent X-radiation of an X-ray source 1 on a concave, elliptical or parabolic shape Surface, with for the X-ray radiation used reflective surface, in this case a Multilayer system, directed. The x-ray radiation is reflected from there and at the same time on the convex, parabolic reflective surface of the directed to the reflective element, the from the reflective element 3 reflected x-ray radiation simultaneously compressed and aligned in parallel becomes. The bundled parallel X-radiation can then for the different X-ray analysis techniques be used, wherein X-ray cross-sections in the range of less than 200 microns easily accessible are.

Auf die reflektierende Oberfläche des reflektierenden Elementes 3 kann ebenfalls ein Multischichtsystem, bei dem die Schichtdicken der einzelnen Schichten lokal, entsprechend den unterschiedlichen Einfallswinkeln der einfallenden Röntgenstrahlung berücksichtigt sind, vorhanden sein. In diesem Fall kann die parallele, reflektierte Röntgenstrahlung nicht nur eine höhere Intensität aufweisen, sondern sie wird außerdem monochromatisiert.On the reflective surface of the reflective Element 3 can also be a multilayer system, in which the layer thicknesses of the individual layers locally, according to the different angles of incidence the incident X-ray considered are, be present. In this case, the parallel, reflected x-rays not only have a higher intensity, but they will also monochromatized.

Bei dem in Figur 2 gezeigten Beispiel einer erfindungsgemäßen Anordnung wird Röntgenstrahlung mit geringer bzw. keiner Divergenz in paralleler Form auf die konkave, parabelförmige reflektierende Oberfläche eines fokussierenden Elementes 2 gerichtet. Von dieser Oberfläche wird die Röntgenstrahlung entsprechend reflektiert und gleichzeitig fokussiert und auf die Oberfläche des reflektierenden Elementes 3 gerichtet. Aus der Darstellung ist eindeutig erkennbar, dass der Strahlquerschnitt b', der vom reflektierenden Element 3 parallel reflektierten Röntgenstrahlung wesentlich kleiner als der Strahlquerschnitt b, der ursprünglich eingesetzten parallelen Röntgenstrahlung ist. Daraus folgt, dass bei hinreichend hoher Reflektivität von (2) und (3) die Photonendichte in der vom reflektierenden Element 3 reflektierten Röntgenstrahlung gegenüber der ursprünglichen Parallelstrahlung vergrößert worden ist.In the example shown in Figure 2 of an inventive Arrangement becomes X-ray with less or no divergence in parallel form the concave, parabolic reflective surface a focusing element 2 directed. Of this Surface is the X-ray radiation accordingly reflected and focused at the same time and on the Surface of the reflective element 3 directed. From the representation is clearly visible that the Beam cross section b ', that of the reflective element 3 parallel reflected X-rays significantly smaller than the beam cross-section b, the original used parallel X-radiation is. from that follows that with sufficiently high reflectivity of (2) and (3) the photon density in the of the reflective Element 3 reflected X-radiation opposite the original parallel radiation increased has been.

Vorteilhafterweise ist das reflektierende Element wieder mit einem Multischichtsystem an der reflektierenden Oberfläche versehen, wobei die Periodendicke d der Einzelschichten die Braggsche Gleichung λ = 2deff sin  erfüllen (deff = die die Dispersion berücksichtigende effektive Periodendicke).Advantageously, the reflective element is again provided with a multilayer system on the reflective surface, wherein the period thickness d of the individual layers satisfy the Bragg equation λ = 2d eff sin  (d eff = the effective period thickness taking into account the dispersion).

Da die fokussierte Röntgenstrahlung unterschiedliche Einfallswinkel i auf die reflektierende Oberfläche des reflektierenden Elementes 3 vorgibt, ist es demzufolge auch erforderlich, ein entsprechendes Gradienten-Multischichtsystem einzusetzen, das bei der entsprechenden Röntgenstrahlungswellenlänge den jeweiligen Einfallswinkeln entsprechend, eine unterschiedliche Periodendicke di aufweist.Since the focused X-radiation predetermines different angles of incidence  i on the reflecting surface of the reflecting element 3, it is accordingly also necessary to use a corresponding gradient multilayer system which has a different period thickness d i at the corresponding X-ray wavelength corresponding to the respective angles of incidence.

Möglichkeiten zur Ausbildung eines solchen Multischichtsystems sind in der unveröffentlichten DE 199 32 275 genannt, auf deren diesbezüglichen Offenbarungsgehalt voll umfänglich zurückgegriffen werden soll.Possibilities for the formation of such a multilayer system are in the unpublished DE 199 32 275, on their relevant disclosure be fully used should.

Sowohl in Figur 1, wie auch in Figur 2 ist dargestellt, dass die entsprechenden reflektierenden Oberflächen des fokussierenden Elementes 2 und des reflektierenden Elementes 3 so ausgebildet und die beiden Elemente 2 und 3 so zueinander angeordnet sind, dass deren Fokuspunkte F miteinander übereinstimmen.Both in Figure 1, as well as in Figure 2 is shown that the corresponding reflective surfaces the focusing element 2 and the reflective element 3 is formed and the two elements 2 and 3 are arranged to each other are that their focus points F coincide with each other.

Bei den Beispielen nach Figur 1 und 2 weist die reflektierende Oberfläche des fokussierenden Elementes 2 eine Parabelform (Figur 2) auf, es kann jedoch auch eine elliptische Kontur (Figur 1) eingesetzt werden.In the examples of Figures 1 and 2, the reflective Surface of the focusing element 2 a parabolic shape (Figure 2), but it can also an elliptical contour (Figure 1) are used.

Bei dem Beispiel nach Figur 2, bei der parallele bzw. nahezu parallele Ausgangsröntgenstrahlung verwendet wird, gilt unter der Voraussetzung xA, xE

Figure 00090001
p/2 insbesondere die Gleichung b b' = Y E -Y A Y' E -Y' A = 2px E -2px A 2p'x' E -2p'x' A wobei die Parabelgleichungen Y=2px Y'=2p'x' zugrunde gelegt werden
bzw.In the example according to FIG. 2, in which parallel or nearly parallel output X-ray radiation is used, assuming x A , x E
Figure 00090001
p / 2 in particular the equation b b ' = Y e - Y A Y ' e - Y ' A = 2 px e - 2 px A 2 p'x ' e - 2 p'x ' A where the parabolic equations Y = 2 px Y ' = 2 p'x ' be based on
respectively.

Unter Verwendung von Strahlensatz und Parabelgleichung kann diese zu b b' = p p' Using ray-set and parabola equation, this may be too b b ' = p p '

vereinfacht werden, wobei p und p' die jeweiligen Parabelparameter von fokussierendem Element 2 und reflektierendem Element 3 sind.be simplified, where p and p 'the respective Parabola parameter of focusing element 2 and reflective element 3 are.

Daraus folgt, dass eine Erhöhung der Photonenflussdichte immer dann erreicht werden kann, wenn das mit dem Produkt der mittleren Reflektivitäten von fokussierendem Element 2 R(2) und reflektierendem Element 3 R(3) multiplizierte Verhältnis der Strahlquerschnitte R(2) * R(3) *b/b' > 1 wird.It follows that an increase in the photon flux density can always be achieved if that with the product of the center reflectivities of focusing Element 2 R (2) and reflective element 3 R (3) multiplied ratio of beam cross sections R (2) * R (3) * b / b '> 1 becomes.

Claims (10)

  1. X-ray optical arrangement having an x-ray source, an x-ray focusing element and an x-ray reflecting element for the purpose of producing parallel x-radiation with a small beam cross section and of high photon density, characterized in that the x-radiation of the x-ray source (1) is directed with the aid of the focusing element (2) onto the convex, parabolic and reflecting surface of the reflecting element (3).
  2. X-ray optical arrangement according to Claim 1,
    characterized in that a reflecting layer or a multilayer system is present on the surface of the reflecting element (3).
  3. X-ray optical arrangement according to Claim 1 or 2, characterized in that the individual layers of the multilayer system are gradient layers.
  4. X-ray optical arrangement according to Claim 1 or 2, characterized in that the x-radiation is directed onto the reflecting element (3) at an angle ≤ critical angle c of total reflection.
  5. X-ray optical arrangement according to one of Claims 1 to 3, characterized in that the x-radiation is directed onto the multilayer system with gradient layers at incidence angles i such that the Bragg equation is satisfied on each surface element of the reflecting element (3) for a prescribable x-radiation wavelength.
  6. X-ray optical arrangement according to one of Claims 1 to 5, characterized in that the focal points F of the focusing element (2) and of the reflecting element (3) correspond.
  7. X-ray optical arrangement according to one of Claims 1 to 6, characterized in that the focusing element (2) has a concave, parabolic or elliptical surface.
  8. X-ray optical arrangement according to one of Claims 1 to 7, characterized in that the parabolic shape of the reflecting element (3) is cylindrically symmetrical.
  9. X-ray optical arrangement according to one of Claims 1 to 8, characterized in that in each case, neighbouring individual layers of the multilayer system have different x-ray optical refractive indices.
  10. Use of an x-ray optical arrangement according to one of Claims 1 to 9 in x-ray diffractometry, reflectometry and/or x-ray fluorescence analysis.
EP01943167A 2000-06-05 2001-05-18 X-ray optical system Expired - Lifetime EP1323170B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10028970A DE10028970C1 (en) 2000-06-05 2000-06-05 X-ray optical arrangement for generating parallel X-rays
DE10028970 2000-06-05
PCT/DE2001/002043 WO2001094987A2 (en) 2000-06-05 2001-05-18 X-ray optical system

Publications (2)

Publication Number Publication Date
EP1323170A2 EP1323170A2 (en) 2003-07-02
EP1323170B1 true EP1323170B1 (en) 2005-08-03

Family

ID=7645490

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01943167A Expired - Lifetime EP1323170B1 (en) 2000-06-05 2001-05-18 X-ray optical system

Country Status (6)

Country Link
US (1) US6724858B2 (en)
EP (1) EP1323170B1 (en)
JP (1) JP2003536081A (en)
AT (1) ATE301328T1 (en)
DE (2) DE10028970C1 (en)
WO (1) WO2001094987A2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403593B1 (en) * 2004-09-28 2008-07-22 Bruker Axs, Inc. Hybrid x-ray mirrors
US7991116B2 (en) * 2005-08-04 2011-08-02 X-Ray Optical Systems, Inc. Monochromatic x-ray micro beam for trace element mapping
JP2023510321A (en) * 2020-01-10 2023-03-13 アイピージー フォトニクス コーポレーション X-ray machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4684565A (en) * 1984-11-20 1987-08-04 Exxon Research And Engineering Company X-ray mirrors made from multi-layered material
FR2630832B1 (en) * 1988-04-29 1995-06-02 Thomson Csf MIRROR SYSTEM FOR GUIDING AN ELECTROMAGNETIC WAVE
JP3060624B2 (en) * 1991-08-09 2000-07-10 株式会社ニコン Multilayer reflector
JPH0720293A (en) * 1993-06-30 1995-01-24 Canon Inc X-ray mirror, x-ray aligner employing it and fabrication of device
BE1007607A3 (en) * 1993-10-08 1995-08-22 Philips Electronics Nv MULTI-LAYER MIRROR Graded Index.
US5646976A (en) * 1994-08-01 1997-07-08 Osmic, Inc. Optical element of multilayered thin film for X-rays and neutrons
JPH08146199A (en) * 1994-11-18 1996-06-07 Nikon Corp Parallel x-ray irradiation device
DE4443853A1 (en) * 1994-12-09 1996-06-13 Geesthacht Gkss Forschung X=ray source arrangement enabling parallelisation and monochromatisation
US5911858A (en) * 1997-02-18 1999-06-15 Sandia Corporation Method for high-precision multi-layered thin film deposition for deep and extreme ultraviolet mirrors
US6049588A (en) * 1997-07-10 2000-04-11 Focused X-Rays X-ray collimator for lithography
JPH1138192A (en) * 1997-07-17 1999-02-12 Nikon Corp Multiple layer film reflection mirror
US6041099A (en) * 1998-02-19 2000-03-21 Osmic, Inc. Single corner kirkpatrick-baez beam conditioning optic assembly
US6295164B1 (en) * 1998-09-08 2001-09-25 Nikon Corporation Multi-layered mirror

Also Published As

Publication number Publication date
DE10028970C1 (en) 2002-01-24
WO2001094987A3 (en) 2003-04-03
EP1323170A2 (en) 2003-07-02
US6724858B2 (en) 2004-04-20
US20020159562A1 (en) 2002-10-31
DE50106990D1 (en) 2005-09-08
WO2001094987A2 (en) 2001-12-13
ATE301328T1 (en) 2005-08-15
JP2003536081A (en) 2003-12-02

Similar Documents

Publication Publication Date Title
EP3428622B1 (en) Diffractive biosensor
DE3942385B4 (en) Grating displacement meter
DE102018205163A1 (en) Measuring device for measuring reflection properties of a sample in the extreme ultraviolet spectral range
DE112010001478T5 (en) X-ray device, method for using the X-ray device and X-ray irradiation method
DE4214069A1 (en) HIGH-RESOLUTION OPTICAL MICROSCOPE AND MASK FOR MAKING LIGHTING SPOT RAYS
DE102020216337A1 (en) Measuring device for measuring the reflection properties of a sample in the extreme ultraviolet spectral range
DE102009058244A1 (en) Device for the examination of an object, preferably a value document, using optical radiation
DE69118343T2 (en) Device for optically measuring the height of a surface
DE102009036383B3 (en) Apparatus and method for angle-resolved scattered light measurement
EP1436647B1 (en) Method for producing a scale, scale produced according to said method and a position measuring device
EP1323170B1 (en) X-ray optical system
EP1992915B1 (en) Position measuring device
EP1360699B1 (en) Device for x-ray analytical applications
DE69429959T2 (en) Optical system for a reflection measuring device with high sensitivity
DE202012102794U1 (en) Optics for beam measurement
DE4006618C2 (en) Device for decoupling measuring radiation from a laser beam
DE10146944A1 (en) measuring arrangement
DE102007062825A1 (en) Grid mirror for the online monitoring of a laser beam and monitoring device with it
EP1100092A2 (en) X-ray guiding device
DE69329763T2 (en) Electro-optical measuring device
DE102011077982B4 (en) Method and device for the optical analysis of a test object
EP1318524A2 (en) X-ray optical system and method for imaging a source
EP1511043B1 (en) X-ray optical arrangement for generating monochromatic X-rays
DE10140823B4 (en) Optical device for measuring pressure or force with a source of electromagnetic radiation and a pressure membrane or a spiral spring
DE102007049029A1 (en) Conversion layer e.g. fluorescence layer, for use in UV-color camera, has directional plates provided in layer and aligned to each other, where directional plates are formed from metal glass, black glass or graded index of refraction fiber

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020228

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FOERDERUNG DERANGEWAND

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050803

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50106990

Country of ref document: DE

Date of ref document: 20050908

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20051115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060103

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060518

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060504

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: FRAUNHOFER-GESELLSCHAFT ZUR FORDERUNG DER ANGEWAND

Effective date: 20060531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060531

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20200525

Year of fee payment: 20

Ref country code: FR

Payment date: 20200519

Year of fee payment: 20

Ref country code: NL

Payment date: 20200518

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200522

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50106990

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MK

Effective date: 20210517

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210517

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210517