EP1320890A2 - Radiation source and method for producing a lens mould - Google Patents

Radiation source and method for producing a lens mould

Info

Publication number
EP1320890A2
EP1320890A2 EP01956408A EP01956408A EP1320890A2 EP 1320890 A2 EP1320890 A2 EP 1320890A2 EP 01956408 A EP01956408 A EP 01956408A EP 01956408 A EP01956408 A EP 01956408A EP 1320890 A2 EP1320890 A2 EP 1320890A2
Authority
EP
European Patent Office
Prior art keywords
radiation source
semiconductor chips
radiation
microlenses
source according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01956408A
Other languages
German (de)
French (fr)
Inventor
Georg Bogner
Wolfgang Gramann
Patrick Kromotis
Werner Marchl
Werner Späth
Günter Waitl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1320890A2 publication Critical patent/EP1320890A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0012Arrays characterised by the manufacturing method
    • G02B3/0031Replication or moulding, e.g. hot embossing, UV-casting, injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00278Lenticular sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00365Production of microlenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses
    • G02B3/0056Arrays characterized by the distribution or form of lenses arranged along two different directions in a plane, e.g. honeycomb arrangement of lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01019Potassium [K]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/1901Structure
    • H01L2924/1904Component type
    • H01L2924/19041Component type being a capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • the invention relates to a radiation source with a multiplicity of semiconductor chips arranged next to one another.
  • the invention further relates to a method for producing a lens shape suitable for producing a field of microlenses.
  • Radiation sources such as, for example, luminescent diodes, generally have a semiconductor chip cast into a transparent lens body. It is also known to increase the radiation power of such radiation sources by providing a large number of semiconductor chips. Such radiation sources usually have condenser optics which consist of a lens. However, the radiation density of such radiation sources is often unsatisfactory when it is important to create a luminous radiation source with a small spatial extent.
  • the object of the invention is to create a radiation source of high radiance.
  • This object is achieved in that a field of lenses forming a hexagonal grid is arranged in the radiation direction in front of the semiconductor chips.
  • the hexagonal arrangement of the lenses enables a high areal density of the associated semiconductor chips to be achieved.
  • the radiance of the radiation source is correspondingly high. Since the lenses are usually formed by spherical segments, spherical segments with a large radius can be used for the lenses. be chosen. As a result, the radiation-emitting active layer of the semiconductor chips can for the most part be arranged within the egg strass associated with the respective sphere. This results in a high radiation yield with respect to the individual semiconductor chips.
  • the invention is also based on the object of providing a rational method for producing a lens shape which is suitable for producing a field of lenses.
  • This object is achieved in that the lens shape is molded on a set of balls held by a hexagonal frame.
  • the set of balls is, as it were, brought into a hexagonal lattice structure when the balls are close together. It is therefore sufficient to ensure that the socket is completely filled with the balls to be molded.
  • Figure 1 is a plan view of a semiconductor chip equipped and already bonded circuit board for the radiation source according to the invention
  • Figure 2 is an enlarged cross-sectional view of the circuit board of Figure 1;
  • Figure 3 is a plan view of a field of lenses
  • FIG. 4 shows a cross section through a casting mold that can be used to produce a microlens field
  • Figure 5 is a plan view of the casting mold from Figure 4.
  • FIG. 6 shows a cross section through a further device used for the production of the casting mold
  • FIG. 7 shows a cross section through the casting device used to produce the microlens field
  • Figure 8 is a diagram showing the radiation power as a function of the distance between the top edge of the semiconductor chip and the associated hemispherical microlens.
  • Figure 1 shows a plan view of a circuit board 1, which is made of Al 2 0 3 or Si.
  • circuit board 1 which is made of Al 2 0 3 or Si.
  • connection contacts 2 are formed, of which conductor tracks 3 to
  • Semiconductor chips 7 are attached to the chip contact areas 6 and bonded in rows in each case.
  • FIG. 2 shows an enlarged detail from a cross section through the printed circuit board 1 provided with microlenses 8. It can be seen that the semiconductor chips 7 are each attached to the chip contact surfaces 6 with an underside 9. The bond wires 5, which lead to an adjacent chip contact area 6 or to one of the contact points 4, are respectively attached to an upper side 10 of the semiconductor chips 7.
  • the microlenses 8 are hemispheres with a radius R.
  • the geometric center of the microlenses 8 is located at a distance .DELTA.x from the top of the semiconductor chips 7.
  • the distance .DELTA.x is selected so that the radiation in each case emitting active layer of the semiconductor chips 7 is located at least half within the Weierstrass' sphere with radius R / n, where n is the refractive index of the material used for the micro lens 8.
  • the centers of the egg strass 'spheres coincide with the centers of the microlenses 8. Radiation generated within the Weierstrass' sphere can exit the microlens 8.
  • microlenses 8 are expediently cast from synthetic resin.
  • the manufacturing process is carried out as follows:
  • a first mold plate 11 is produced, which, as shown in FIG. 4, has a central mandrel 12 with a hexagonal cross section which can be seen in FIG.
  • the mandrel 12 is arranged on a base 13.
  • Dowel pins 14 are located in the vicinity of the base 13.
  • a holding frame 15, which has depressions 16 on its inside, is also attached to the first mold plate 11.
  • the interior delimited by the holding frame 15 is filled with silicone. This forms a silicone frame 17, the one in the center
  • Cross section has hexagonal opening.
  • the silicone frame 17 engages in the recesses 16 and can therefore be simple Be attached together with the holding frame 15 to a second mold plate 19 shown in Figure 6.
  • the dowel pins 14 also present here serve to align the holding frame 15 and the silicone frame 17 on the second mold plate 19.
  • the silicone frame 17 comes to rest on the second mold plate 19 in such a way that the opening 18 of the silicone frame 17 with a socket 20 in the second Form plate 19 is aligned.
  • the frame 20 occupies the space of the base 13 of the first mold plate 11 with its side webs 21. It also has a hexagonal cross section. Beads 22 are placed in the holder 20 in a tightly lying manner.
  • the spheres 22 have a radius which essentially corresponds to the radius of the microlenses 8 to be produced. Since the holder 20 has a hexagonal cross section and since the beads 22 lie close together, the beads 22 are arranged according to a hexagonal lattice structure.
  • the opening 18 is then filled with silicone.
  • the casting device 23 has a suction nozzle 25, on which a base plate 26 is attached, which holds the circuit board 1.
  • a central suction opening 27 is provided, which leads to the printed circuit board 1.
  • the holding frame 15 with the microlens shape 24 is located above the base plate 26. Both are partially covered by a press plate 28, which is connected to the base plate 26 via a screw connection (not shown) and ensures the secure fit of the microlens shape 24 on the base plate 26.
  • the dowel pins 14 have left passages 29 in the microlens mold 24 which serve to introduce the synthetic resin into the cavity of the microlens mold 24 above the printed circuit board 1. It should be noted that the circuit board 1 is of course already provided with the semiconductor chips 3 under the microlens mold 24 and is fully bonded.
  • FIG. 8 shows a diagram in which the radiation power ⁇ is shown in a solid angle with a half opening angle of 60 °, that is to say an opening angle of 120 ° as a function of the distance ⁇ x.
  • the diameters of the microlens 8 were 500 ⁇ m, 600 ⁇ m and 700 ⁇ m. It is clear from FIG. 8 that the radiation power takes the greatest values in the detected solid angle at a distance ⁇ x of 0.1 mm. There is the radiation line power approximately twice as large as without microlenses 8. At this distance, a large part of the active layer of the semiconductor chip 7 also lies within the Weierstrass' see ball of the microlenses 8.
  • microlenses 8 For practical reasons, it can nevertheless be advantageous if a diameter of 700 ⁇ m is selected for the microlenses 8, since otherwise problems can occur when bonding the semiconductor chips 7 on the chip contact surfaces 6 and when bonding the bonding wires 5.
  • conventional casting resins shrink during curing, which is why the cured microlenses anyway are about 6% smaller than the corresponding shapes of the microlens mold 24.

Abstract

The invention relates to a radiation source, which has an assembly of semiconductor chips that are positioned beneath a field of micro-lenses (8) arranged in a hexagonal lattice structure. The radiation source is characterised by a high radiation output and a high radiation density.

Description

Beschreibungdescription
Strahlungsquelle und Verfahren zur Herstellung einer LinsenformRadiation source and method of making a lens shape
Die Erfindung betrifft eine Strahlungsquelle mit einer Vielzahl von nebeneinander angeordneten Strahlung emittierenden Halbleiterchips .The invention relates to a radiation source with a multiplicity of semiconductor chips arranged next to one another.
Die Erfindung betrifft ferner ein Verfahren zur Herstellung einer zur Fertigung eines Feldes von Mikrolinsen geeigneten Linsenform.The invention further relates to a method for producing a lens shape suitable for producing a field of microlenses.
Strahlungsquellen, wie beispielsweise Lumineszenzdioden, wei- sen im allgemeinen einen in einen transparenten Linsenkörper eingegossenen Halbleiterchip auf. Es ist auch bekannt, die Strahlungsleistung derartiger Strahlungsquellen durch das Vorsehen einer Vielzahl von Halbleiterchips zu steigern. Derartige Strahlungsquellen verfügen üblicherweise über eine Kondensoroptik, die aus einer Linse besteht. Die Strahldichte derartiger Strahlungsquellen ist allerdings häufig unbefriedigend, wenn es darauf ankommt, eine leuchtkräftige Strahlungsquelle mit geringer räumlicher Ausdehnung zu schaffen.Radiation sources, such as, for example, luminescent diodes, generally have a semiconductor chip cast into a transparent lens body. It is also known to increase the radiation power of such radiation sources by providing a large number of semiconductor chips. Such radiation sources usually have condenser optics which consist of a lens. However, the radiation density of such radiation sources is often unsatisfactory when it is important to create a luminous radiation source with a small spatial extent.
Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Strahlungsquelle hoher Strahldichte zu schaffen.Starting from this prior art, the object of the invention is to create a radiation source of high radiance.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß in Ab- Strahlrichtung vor den Halbleiterchips ein Feld von ein hexagonales Gitter bildenden Linsen angeordnet ist .This object is achieved in that a field of lenses forming a hexagonal grid is arranged in the radiation direction in front of the semiconductor chips.
Durch die hexagonale Anordnung der Linsen läßt sich eine hohe Flächendichte der zugeordneten Halbleiterchips erzielen. Dem- entsprechend hoch ist die Strahldichte der Strahlungsquelle. Da die Linsen üblicherweise von Sphärensegmenten gebildet werden, können für die Linsen Sphärensegmente mit großem Ra- dien gewählt werden. Dadurch kann die Strahlung emittierende aktive Schicht der Halbleiterchips zum großen Teil innerhalb der der jeweiligen Sphäre zugeordneten eierstrass 'sehen Kugel angeordnet werden. Dadurch ergibt sich eine hohe Strah- lungsausbeute bezüglich der einzelnen Halbleiterchips.The hexagonal arrangement of the lenses enables a high areal density of the associated semiconductor chips to be achieved. The radiance of the radiation source is correspondingly high. Since the lenses are usually formed by spherical segments, spherical segments with a large radius can be used for the lenses. be chosen. As a result, the radiation-emitting active layer of the semiconductor chips can for the most part be arranged within the egg strass associated with the respective sphere. This results in a high radiation yield with respect to the individual semiconductor chips.
Der Erfindung liegt ferner die Aufgabe zugrunde, ein rationelles Verfahren zur Herstellung einer zur Fertigung eines Feldes von Linsen geeigneten Linsenform zu schaffen.The invention is also based on the object of providing a rational method for producing a lens shape which is suitable for producing a field of lenses.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Linsenform an einer von einer hexagonalen Fassung gehaltenen Schar von Kugeln abgeformt wird.This object is achieved in that the lens shape is molded on a set of balls held by a hexagonal frame.
Durch die hexagonale Fassung wird die Schar von Kugeln gewissermaßen von selbst in eine hexagonale Gitterstruktur gebracht, wenn die Kugeln dicht an dicht liegen. Es genügt daher dafür zu sorgen, daß die Fassung vollständig mit den abzuformenden Kugeln gefüllt ist.Thanks to the hexagonal frame, the set of balls is, as it were, brought into a hexagonal lattice structure when the balls are close together. It is therefore sufficient to ensure that the socket is completely filled with the balls to be molded.
Weitere zweckmäßige Ausgestaltungen der Erfindung sind Gegenstand der abhängigen Ansprüche.Further expedient refinements of the invention are the subject of the dependent claims.
Nachfolgend wir die Erfindung im einzelnen anhand der beige- fügten Zeichnung erläutert. Es zeigen:The invention is explained in more detail below with reference to the attached drawing. Show it:
Figur 1 eine Aufsicht auf eine mit Halbleiterchips bestückte und bereits gebondete Leiterplatte für die Strahlungsquelle gemäß der Erfindung;Figure 1 is a plan view of a semiconductor chip equipped and already bonded circuit board for the radiation source according to the invention;
Figur 2 eine vergrößerte Querschnittansicht der Leiterplatte aus Figur 1;Figure 2 is an enlarged cross-sectional view of the circuit board of Figure 1;
Figur 3 eine Aufsicht auf ein Feld von Linsen; Figur 4 einen Querschnitt durch eine zur Herstellung einer für die Fertigung eines Mikrolinsenfeldes verwendbaren Abgußform;Figure 3 is a plan view of a field of lenses; FIG. 4 shows a cross section through a casting mold that can be used to produce a microlens field;
Figur 5 ein Aufsicht auf die Abgußform aus Figur 4;Figure 5 is a plan view of the casting mold from Figure 4;
Figur 6 einen Querschnitt durch eine weitere für die Fertigung der Abgußform verwendete Vorrichtung;FIG. 6 shows a cross section through a further device used for the production of the casting mold;
Figur 7 einen Querschnitt durch die zur Herstellung des Mikrolinsenfeldes verwendete Gießvorrichtung; undFIG. 7 shows a cross section through the casting device used to produce the microlens field; and
Figur 8 ein Diagramm, das die Strahlungsleistung in Abhängigkeit vom Abstand zwischen der Oberkante des Halbleiterchips und der zugeordneten halbkugelförmigen Mikrolinse zeigt.Figure 8 is a diagram showing the radiation power as a function of the distance between the top edge of the semiconductor chip and the associated hemispherical microlens.
Figur 1 zeigt eine Aufsicht auf eine Leiterplatte 1, die aus Al203 oder Si hergestellt ist. Auf der Leiterplatte 1 sind Anschlußkontakte 2 ausgebildet, von denen Leiterbahnen 3 zuFigure 1 shows a plan view of a circuit board 1, which is made of Al 2 0 3 or Si. On the circuit board 1, connection contacts 2 are formed, of which conductor tracks 3 to
Kontaktstellen 4 führen, an denen Bonddrähte 5 angebracht sind, die unter anderem zu Chipkontaktflächen 6 führen. Auf den Chipkontaktflächen 6 sind Halbleiterchips 7 angebracht und jeweils zeilenweise in Reihe gebondet .Lead contact points 4, on which bond wires 5 are attached, which lead to chip contact surfaces 6, among other things. Semiconductor chips 7 are attached to the chip contact areas 6 and bonded in rows in each case.
In Figur 2 ist ein vergrößerter Ausschnitt aus einem Querschnitt durch die mit Mikrolinsen 8 versehene Leiterplatte 1 dargestellt. Man erkennt, daß die Halbleiterchips 7 mit einer Unterseite 9 jeweils an den Chipkontaktflächen 6 angebracht sind. Auf einer Oberseite 10 der Halbleiterchips 7 sind jeweils die Bonddrähte 5 angebracht, die zu einer benachbarten Chipkontaktfläche 6 oder einer der Kontaktstellen 4 führen.FIG. 2 shows an enlarged detail from a cross section through the printed circuit board 1 provided with microlenses 8. It can be seen that the semiconductor chips 7 are each attached to the chip contact surfaces 6 with an underside 9. The bond wires 5, which lead to an adjacent chip contact area 6 or to one of the contact points 4, are respectively attached to an upper side 10 of the semiconductor chips 7.
Die Mikrolinsen 8 sind Halbkugeln mit einem Radius R. Der geometrische Mittelpunkt der Mikrolinsen 8 befindet sich in einem Abstand Δx von der Oberseite der Halbleiterchips 7. Der Abstand Δx ist so gewählt, daß sich jeweils die Strahlung emittierende aktive Schicht der Halbleiterchips 7 wenigstens zur Hälfte innerhalb der Weierstrass ' sehen Kugel mit Radius R/n befindet, wobei n der Brechungsindex des für die Mikro- linse 8 verwendeten Materials ist. Die Zentren der eier- strass' sehen Kugeln decken sich mit den Zentren der Mikrolinsen 8. Innerhalb der Weierstrass ' sehen Kugel erzeugte Strahlung kann die Mikrolinse 8 verlassen. Es ist daher von Vorteil, wenn jeweils ein möglichst großer Teil der aktiven Schichten der Halbleiterchips 7 innerhalb der Weier- strass 'sehen Kugel zu liegen kommt. Es besteht daher ein Interesse daran, den Radius der Mikrolinsen 8 möglichst groß zu wählen. Dem steht entgegen, daß dann auch der Abstand zwischen den Halbleiterchips 7 entsprechend groß gewählt werden muß. Ein großer Abstand zwischen den Halbleiterchips 7 hat jedoch eine geringe Strahldichte zur Folge. Man ist daher bestrebt, den Abstand zwischen den Mikrolinsen 8 so gering wie möglich zu halten. Die in Figur 3 dargestellte Anordnung der Mikrolinsen 8 in einer hexagonalen Gitterstruktur ist die dichteste mögliche Anordnung der Mikrolinsen 8 und ermög- licht, eine hohe Strahlungsleistung bei gleichzeitig großer Strahldichte zu erzielen.The microlenses 8 are hemispheres with a radius R. The geometric center of the microlenses 8 is located at a distance .DELTA.x from the top of the semiconductor chips 7. The distance .DELTA.x is selected so that the radiation in each case emitting active layer of the semiconductor chips 7 is located at least half within the Weierstrass' sphere with radius R / n, where n is the refractive index of the material used for the micro lens 8. The centers of the egg strass 'spheres coincide with the centers of the microlenses 8. Radiation generated within the Weierstrass' sphere can exit the microlens 8. It is therefore advantageous if as large a part of the active layers of the semiconductor chips 7 as possible comes to lie within the ball of Weierstrasse. There is therefore an interest in making the radius of the microlenses 8 as large as possible. This is contrary to the fact that the distance between the semiconductor chips 7 must then be chosen to be correspondingly large. However, a large distance between the semiconductor chips 7 results in a low radiance. The aim is therefore to keep the distance between the microlenses 8 as small as possible. The arrangement of the microlenses 8 shown in FIG. 3 in a hexagonal lattice structure is the closest possible arrangement of the microlenses 8 and enables a high radiation power to be achieved with a simultaneously high radiation density.
Die Mikrolinsen 8 werden zweckmäßigerweise aus Kunstharz gegossen. Das Herstellungsverfahren wird wie folgt durchge- führt:The microlenses 8 are expediently cast from synthetic resin. The manufacturing process is carried out as follows:
Zunächst wird eine erste Formplatte 11 hergestellt, die, wie in Figur 4 gezeigt, einen zentralen Dorn 12 mit einem in Figur 5 erkennbaren hexagonalen Querschnitt aufweist. Der Dorn 12 ist auf einem Sockel 13 angeordnet. In der Nähe des Sok- kels 13 befinden sich Paßstifte 14. Auf der ersten Formplatte 11 ist ferner ein Halterahmen 15 angebracht, der auf seiner Innenseite Vertiefungen 16 aufweist. Der vom Halterahmen 15 begrenzte Innenraum wird mit Silikon gefüllt. Dabei bildet sich ein Silikonrahmen 17, der in seinem Zentrum eine imFirst, a first mold plate 11 is produced, which, as shown in FIG. 4, has a central mandrel 12 with a hexagonal cross section which can be seen in FIG. The mandrel 12 is arranged on a base 13. Dowel pins 14 are located in the vicinity of the base 13. A holding frame 15, which has depressions 16 on its inside, is also attached to the first mold plate 11. The interior delimited by the holding frame 15 is filled with silicone. This forms a silicone frame 17, the one in the center
Querschnitt hexagonale Öffnung aufweist. Der Silikonrahmen 17 greift in die Vertiefungen 16 ein und kann daher auf einfache Weise zusammen mit dem Halterahmen 15 an einer in Figur 6 dargestellten zweiten Formplatte 19 angebracht werden. Die auch hier vorhandenen Paßstifte 14 dienen der Ausrichtung des Halterahmens 15 und des Silikonrahmens 17 auf der zweiten Formplatte 19. Dadurch kommt der Silikonrahmen 17 so auf der zweiten Formplatte 19 zu liegen, daß die Öffnung 18 des Silikonrahmens 17 mit einer Fassung 20 in der zweiten Formplatte 19 fluchtet. Die Fassung 20 nimmt mit ihren Seitenstegen 21 den Raum des Sockels 13 der ersten Formplatte 11 ein. Sie weist ferner ebenfalls einen hexagonalen Querschnitt auf. In die Fassung 20 werden Kügelchen 22 dicht liegend eingebracht. Die Kügelchen 22 weisen einen Radius auf, der im wesentlichen dem Radius der herzustellenden Mikrolinsen 8 entspricht. Da die Fassung 20 einen hexagonalen Querschnitt aufweist, und da die Kügelchen 22 dicht liegen, sind die Kügelchen 22 entsprechend einer hexagonalen Gitterstruktur angeordnet.Cross section has hexagonal opening. The silicone frame 17 engages in the recesses 16 and can therefore be simple Be attached together with the holding frame 15 to a second mold plate 19 shown in Figure 6. The dowel pins 14 also present here serve to align the holding frame 15 and the silicone frame 17 on the second mold plate 19. As a result, the silicone frame 17 comes to rest on the second mold plate 19 in such a way that the opening 18 of the silicone frame 17 with a socket 20 in the second Form plate 19 is aligned. The frame 20 occupies the space of the base 13 of the first mold plate 11 with its side webs 21. It also has a hexagonal cross section. Beads 22 are placed in the holder 20 in a tightly lying manner. The spheres 22 have a radius which essentially corresponds to the radius of the microlenses 8 to be produced. Since the holder 20 has a hexagonal cross section and since the beads 22 lie close together, the beads 22 are arranged according to a hexagonal lattice structure.
Anschließend wird die Öffnung 18 mit Silikon gefüllt. Es ergibt sich somit die in Figur 7 dargestellte, in einer Gieß- Vorrichtung 23 dargestellte Mikrolinsenform 24. Die Gießvorrichtung 23 weist einen Saugstutzen 25 auf, auf dem eine Grundplatte 26 angebracht ist, die die Leiterplatte 1 hält. Zu diesem Zweck ist eine zentrale Saugöffnung 27 vorgesehen, die zur Leiterplatte 1 führt. Oberhalb der Grundplatte 26 be- findet sich der Halterahmen 15 mit der Mikrolinsenform 24. Beide sind teilweise von einer Preßplatte 28 abgedeckt, die über eine nicht dargestellte Schraubverbindung mit der Grundplatte 26 verbunden ist und den sicheren Sitz der Mikrolinsenform 24 auf der Grundplatte 26 gewährleistet.The opening 18 is then filled with silicone. This results in the microlens mold 24 shown in FIG. 7, shown in a casting device 23. The casting device 23 has a suction nozzle 25, on which a base plate 26 is attached, which holds the circuit board 1. For this purpose, a central suction opening 27 is provided, which leads to the printed circuit board 1. The holding frame 15 with the microlens shape 24 is located above the base plate 26. Both are partially covered by a press plate 28, which is connected to the base plate 26 via a screw connection (not shown) and ensures the secure fit of the microlens shape 24 on the base plate 26.
Die Paßstifte 14 haben in der Mikrolinsenform 24 Durchführungen 29 hinterlassen, die dazu dienen, das Kunstharz in den Hohlraum der Mikrolinsenform 24 oberhalb der Leiterplatte 1 einzubringen . Es sei angemerkt, daß die Leiterplatte 1 unter der Mikrolinsenform 24 selbstverständlich bereits mit den Halbleiterchips 3 versehen und fertig gebondet ist.The dowel pins 14 have left passages 29 in the microlens mold 24 which serve to introduce the synthetic resin into the cavity of the microlens mold 24 above the printed circuit board 1. It should be noted that the circuit board 1 is of course already provided with the semiconductor chips 3 under the microlens mold 24 and is fully bonded.
Abschließend wird durch die Durchführungen Gießharz eingefüllt. Dadurch wird der Raum zwischen der Mikrolinsenform 24 und der Leiterbahn 3 gefüllt und die Mikrolinsen 8 geformt .Finally, resin is poured in through the bushings. As a result, the space between the microlens mold 24 and the conductor track 3 is filled and the microlenses 8 are shaped.
In Figur 8 schließlich ist ein Diagramm dargestellt, in dem die Strahlungsleistung Φ in einen Raumwinkel mit einem halben Öffnungswinkel von 60°, also einem Öffnungswinkel von 120° in Abhängigkeit vom Abstand Δx dargestellt ist.Finally, FIG. 8 shows a diagram in which the radiation power Φ is shown in a solid angle with a half opening angle of 60 °, that is to say an opening angle of 120 ° as a function of the distance Δx.
Figur 8 enthält das Ergebnis von Rechnungen. Die Rechnungen wurden mit einem Halbleiterchip 7 mit der Grundfläche 200 μm x 200 μ und einer Höhe von 250 μm durchgeführt. Es wurde angenommen, daß der Halbleiterchip 70 % seiner Strahlungsleistung aus der Oberseite 10 emittiert. Weitere 30 % sollen aus den Seitenflächen des Halbleiterchips 7 austreten. Als Spek- trum wurde das Spektrum eines Schwarzkörpers bei 2000 K angenommen. Die Rechnungen wurden für zwei Arten von Gießharz durchgeführt, in denen der Halbleiterchip 7 eingebettet ist. Einmal für ein Gießharz mit einem Brechungsindex von n = 1,55, und ein weiteres Gießharz mit einem Brechungsindex von n = 1,87. Die berechneten Kurven 30, 31 und 33 geben jeweils die Ergebnisse für Mikrolinsen 8 mit den Radien 250 μm, 300 μm und 350 μm bei einem Brechungsindex von n = 1,55 wieder. Die Kurven 33, 34 und 35 geben die Ergebnisse für Mikrolinsen 8 mit den Radien 250 μm, 300 μm und 350 μ bei einem Brechungsindex von n = 1,78 des Gießharzes wieder. Eine LinieFigure 8 contains the result of calculations. The calculations were carried out using a semiconductor chip 7 with a base area of 200 μm x 200 μm and a height of 250 μm. It was assumed that the semiconductor chip emits 70% of its radiation power from the top 10. Another 30% should emerge from the side surfaces of the semiconductor chip 7. The spectrum of a blackbody at 2000 K was assumed to be the spectrum. The calculations were carried out for two types of casting resin in which the semiconductor chip 7 is embedded. One for a casting resin with a refractive index of n = 1.55, and another casting resin with a refractive index of n = 1.87. The calculated curves 30, 31 and 33 each show the results for microlenses 8 with the radii 250 μm, 300 μm and 350 μm with a refractive index of n = 1.55. Curves 33, 34 and 35 show the results for microlenses 8 with the radii 250 μm, 300 μm and 350 μ with a refractive index of n = 1.78 of the casting resin. A line
36 veranschaulicht schließlich die zu erwartenden Ergebnisse ohne Mikrolinse 8.36 finally illustrates the results to be expected without microlens 8.
Die Durchmesser der Mikrolinse 8 betrugen 500 μm, 600 μm und 700 μm. Anhand von Figur 8 wird deutlich, daß die Strahlungsleistung in dem erfaßten Raumwinkel bei einem Abstand Δx von 0,1 mm die größten Werte annimmt. Dort ist die Strahlungslei- stung in etwa doppelt so groß wie ohne Mikrolinsen 8. Bei diesem Abstand liegt auch ein Großteil der aktiven Schicht des Halbleiterchips 7 innerhalb der Weierstrass ' sehen Kugel der Mikrolinsen 8.The diameters of the microlens 8 were 500 μm, 600 μm and 700 μm. It is clear from FIG. 8 that the radiation power takes the greatest values in the detected solid angle at a distance Δx of 0.1 mm. There is the radiation line power approximately twice as large as without microlenses 8. At this distance, a large part of the active layer of the semiconductor chip 7 also lies within the Weierstrass' see ball of the microlenses 8.
Die Vorteile der hexagonalen Anordnung der Mikrolinsen 8 ergeben sich auch aus der folgenden Tabelle 1:The advantages of the hexagonal arrangement of the microlenses 8 also result from the following Table 1:
Tabelle 1:Table 1:
Anhand von Tabelle 1 wird deutlich, daß eine Vergrößerung des Radius der Mikrolinsen 8 nicht notwendigerweise zu einer Erhöhung der auf die Fläche bezogenen Strahlungsleistung führt. Denn aufgrund des größeren Radius der Mikrolinsen 8 wird zwar ein größerer Teil der aktiven Schicht der Halbleiterchips 7 innerhalb der Weierstrass ' sehen Kugel zu liegen kommen, aber dafür nimmt der Abstand der Halbleiterchips 7 zu, so daß die Leuchtdichte abnimmt.It can be seen from Table 1 that an increase in the radius of the microlenses 8 does not necessarily lead to an increase in the radiation power based on the area. Because due to the larger radius of the microlenses 8, a larger part of the active layer of the semiconductor chips 7 will come to lie within the Weierstrass' sphere, but instead the distance between the semiconductor chips 7 increases, so that the luminance decreases.
Aus praktischen Gründen kann es trotzdem von Vorteil sein, wenn für die Mikrolinsen 8 ein Durchmesser von 700 μm gewählt wird, da ansonsten Probleme beim Bonden der Halbleiterchips 7 auf den Chipkontaktflächen 6 und beim Bonden der Bonddrähte 5 auftreten können. Außerdem schrumpfen übliche Vergußharze beim Aushärten, weshalb die ausgehärteten Mikrolinsen ohnehin etwa 6% kleiner sind als die entsprechenden Formen der Mikrolinsenform 24. For practical reasons, it can nevertheless be advantageous if a diameter of 700 μm is selected for the microlenses 8, since otherwise problems can occur when bonding the semiconductor chips 7 on the chip contact surfaces 6 and when bonding the bonding wires 5. In addition, conventional casting resins shrink during curing, which is why the cured microlenses anyway are about 6% smaller than the corresponding shapes of the microlens mold 24.

Claims

Patentansprüche claims
1. Strahlungsquelle mit einer Vielzahl von nebeneinander angeordneten Strahlung emittierenden Halbleiterchips (7), d a d u r c h g e k e n n z e i c h n e t, daß in Abstrahlrichtung vor den Halbleiterchips (7) ein Feld von ein hexagonales Gitter bildenden Linsen (8) angeordnet ist.1. radiation source with a plurality of juxtaposed radiation-emitting semiconductor chips (7), so that a field of lenses (8) forming a hexagonal grid is arranged in front of the semiconductor chips (7) in the radiation direction.
2. Strahlungsquelle nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß die Linsen (8) von Halbkugeln gebildet sind.2. Radiation source according to claim 1, d a d u r c h g e k e n n z e i c h n e t that the lenses (8) are formed by hemispheres.
3. Strahlungsquelle nach Anspruch 1 oder 2 , d a d u r c h g e k e n n z e i c h n e t, daß die Linsen (8) im hexagonal dichtesten Gitter angeordnet sind.3. Radiation source according to claim 1 or 2, so that the lenses (8) are arranged in the hexagonally closest grating.
4. Strahlungsquelle nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der Umriß des Gitters eine hexagonale Gestalt aufweist.4. Radiation source according to one of claims 1 to 3, d a d u r c h g e k e n n z e i c h n e t that the outline of the grating has a hexagonal shape.
5. Strahlungsquelle nach einem der Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß die Halbleiterchips (7) zeilenweise gebondet sind.5. Radiation source according to one of claims 1 to 4, d a d u r c h g e k e n n z e i c h n e t that the semiconductor chips (7) are bonded line by line.
6. Strahlungsquelle nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß Farbgruppen von Halbleiterchips (7) ihr Emissionsmaxi- ma bei unterschiedlichen Wellenlängen aufweisen.6. Radiation source according to one of claims 1 to 5, that the color groups of semiconductor chips (7) have their emission maxima at different wavelengths.
7. Strahlungsquelle nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß die Farbgruppen zeilenweise angeordnet sind. 7. Radiation source according to claim 6, characterized in that the color groups are arranged in rows.
8. Verfahren zur Herstellung einer zur Fertigung eines Feldes von Mikrolinsen (8) geeigneten Linsenform (24) , d a d u r c h g e k e n n z e i c h n e t, daß die Linsenform (24) an einer von einer hexagonalen Fassung (21) gehaltenen Schar von dichtliegenden Kugeln (22) abgeformt wird.8. A method for producing a lens mold (24) suitable for manufacturing a field of microlenses (8), so that the lens mold (24) is molded from a group of closely spaced balls (22) on a set of hexagonal frames (21).
9. Verfahren nach Anspruch 8 , d a d u r c h g e k e n n z e i c h n e t, daß die Linsenform (24) aus Silikon abgegossen wird. 9. The method according to claim 8, d a d u r c h g e k e n n z e i c h n e t that the lens mold (24) is cast from silicone.
EP01956408A 2000-08-04 2001-07-30 Radiation source and method for producing a lens mould Withdrawn EP1320890A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038213A DE10038213A1 (en) 2000-08-04 2000-08-04 Radiation source and method of making a lens mold
DE10038213 2000-08-04
PCT/DE2001/002874 WO2002013231A2 (en) 2000-08-04 2001-07-30 Radiation source and method for producing a lens mould

Publications (1)

Publication Number Publication Date
EP1320890A2 true EP1320890A2 (en) 2003-06-25

Family

ID=7651403

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956408A Withdrawn EP1320890A2 (en) 2000-08-04 2001-07-30 Radiation source and method for producing a lens mould

Country Status (7)

Country Link
US (2) US7262437B2 (en)
EP (1) EP1320890A2 (en)
JP (2) JP2004506321A (en)
CN (2) CN101219568A (en)
DE (1) DE10038213A1 (en)
TW (1) TW538255B (en)
WO (1) WO2002013231A2 (en)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2329756A (en) 1997-09-25 1999-03-31 Univ Bristol Assemblies of light emitting diodes
DE10051159C2 (en) * 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED module, e.g. White light source
ES2378067T3 (en) 2002-05-08 2012-04-04 Phoseon Technology, Inc. High efficiency solid state light source and methods of use and manufacturing
WO2006072071A2 (en) 2004-12-30 2006-07-06 Phoseon Technology Inc. Methods and systems relating to light sources for use in industrial processes
US8063575B2 (en) 2002-07-04 2011-11-22 Tridonic Jennersdorf Gmbh Current supply for luminescent diodes
DE10230103B4 (en) * 2002-07-04 2012-10-31 Tridonic Ag Power supply for light-emitting diodes
CA2493130A1 (en) 2002-07-25 2004-02-05 Jonathan S. Dahm Method and apparatus for using light emitting diodes for curing
AU2003298561A1 (en) 2002-08-23 2004-05-13 Jonathan S. Dahm Method and apparatus for using light emitting diodes
RU2295174C2 (en) 2002-08-29 2007-03-10 Широ САКАИ Light-emitting device incorporating light-emitting components (alternatives)
US7300182B2 (en) * 2003-05-05 2007-11-27 Lamina Lighting, Inc. LED light sources for image projection systems
US7777235B2 (en) * 2003-05-05 2010-08-17 Lighting Science Group Corporation Light emitting diodes with improved light collimation
US7633093B2 (en) * 2003-05-05 2009-12-15 Lighting Science Group Corporation Method of making optical light engines with elevated LEDs and resulting product
US7095053B2 (en) * 2003-05-05 2006-08-22 Lamina Ceramics, Inc. Light emitting diodes packaged for high temperature operation
US7528421B2 (en) * 2003-05-05 2009-05-05 Lamina Lighting, Inc. Surface mountable light emitting diode assemblies packaged for high temperature operation
US7819550B2 (en) 2003-10-31 2010-10-26 Phoseon Technology, Inc. Collection optics for led array with offset hemispherical or faceted surfaces
US7964883B2 (en) * 2004-02-26 2011-06-21 Lighting Science Group Corporation Light emitting diode package assembly that emulates the light pattern produced by an incandescent filament bulb
EP1735844B1 (en) 2004-03-18 2019-06-19 Phoseon Technology, Inc. Use of a high-density light emitting diode array comprising micro-reflectors for curing applications
US20050225222A1 (en) * 2004-04-09 2005-10-13 Joseph Mazzochette Light emitting diode arrays with improved light extraction
MXPA06014522A (en) * 2004-06-15 2007-03-23 Henkel Corp High power led electro-optic assembly.
US7252408B2 (en) * 2004-07-19 2007-08-07 Lamina Ceramics, Inc. LED array package with internal feedback and control
JP3802910B2 (en) * 2004-09-13 2006-08-02 ローム株式会社 Semiconductor light emitting device
US20090057697A1 (en) * 2004-10-28 2009-03-05 Henkel Corporation Led assembly with led-reflector interconnect
US7821023B2 (en) 2005-01-10 2010-10-26 Cree, Inc. Solid state lighting component
US9793247B2 (en) 2005-01-10 2017-10-17 Cree, Inc. Solid state lighting component
US9070850B2 (en) 2007-10-31 2015-06-30 Cree, Inc. Light emitting diode package and method for fabricating same
DE102005041064B4 (en) * 2005-08-30 2023-01-19 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Surface-mountable optoelectronic component and method for its production
JP4521350B2 (en) * 2005-10-13 2010-08-11 オリンパス株式会社 Lens array mold and method for manufacturing lens array mold
TW200741134A (en) * 2005-12-12 2007-11-01 Koninkl Philips Electronics Nv Optical device for creating an illumination window
US9335006B2 (en) 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
US10295147B2 (en) * 2006-11-09 2019-05-21 Cree, Inc. LED array and method for fabricating same
US8115213B2 (en) 2007-02-08 2012-02-14 Phoseon Technology, Inc. Semiconductor light sources, systems, and methods
JP5193490B2 (en) 2007-04-20 2013-05-08 株式会社ミツトヨ Measuring method using tracking laser interferometer
JP2009099925A (en) * 2007-09-27 2009-05-07 Tokyo Electron Ltd Annealing apparatus
WO2009041466A1 (en) * 2007-09-27 2009-04-02 Tokyo Electron Limited Annealing apparatus
DE102007059548A1 (en) * 2007-09-28 2009-04-02 Osram Opto Semiconductors Gmbh Optoelectronic component and coupling-out lens for an optoelectronic component
TWI384651B (en) * 2008-08-20 2013-02-01 Au Optronics Corp A light emitting diodes structure and a light emitting diodes structure forming method
US9425172B2 (en) 2008-10-24 2016-08-23 Cree, Inc. Light emitter array
KR100998017B1 (en) * 2009-02-23 2010-12-03 삼성엘이디 주식회사 Lens for Light Emitting Diode Package and Light Emitting Diode Package Having The Same
US8678612B2 (en) 2009-04-14 2014-03-25 Phoseon Technology, Inc. Modular light source
US8653737B2 (en) 2009-04-14 2014-02-18 Phoseon Technology, Inc. Controller for semiconductor lighting device
BR112012005826A2 (en) * 2009-09-17 2016-08-09 Koninkl Philips Electronics Nv light emitting module, light emitting device and lighting device
US8657475B2 (en) 2009-10-14 2014-02-25 3M Innovative Properties Company Light source
US8465172B2 (en) 2009-12-17 2013-06-18 Phoseon Technology, Inc. Lighting module with diffractive optical element
JP5526876B2 (en) * 2010-03-09 2014-06-18 東京エレクトロン株式会社 Heating device and annealing device
US8669697B2 (en) 2010-03-11 2014-03-11 Phoseon Technology, Inc. Cooling large arrays with high heat flux densities
DE102010027875A1 (en) 2010-04-16 2011-10-20 Osram Opto Semiconductors Gmbh Optoelectronic component and method for producing an optoelectronic component
US8591078B2 (en) 2010-06-03 2013-11-26 Phoseon Technology, Inc. Microchannel cooler for light emitting diode light fixtures
CN203192853U (en) * 2010-10-26 2013-09-11 东芝照明技术株式会社 Light emitting device and illumination device
US9357592B2 (en) 2010-11-18 2016-05-31 Phoseon Technology, Inc. Light source temperature monitor and control
US9786811B2 (en) 2011-02-04 2017-10-10 Cree, Inc. Tilted emission LED array
US10842016B2 (en) 2011-07-06 2020-11-17 Cree, Inc. Compact optically efficient solid state light source with integrated thermal management
US8872137B2 (en) 2011-09-15 2014-10-28 Phoseon Technology, Inc. Dual elliptical reflector with a co-located foci for curing optical fibers
US9126432B2 (en) 2011-09-20 2015-09-08 Phoseon Technology, Inc. Differential Ultraviolet curing using external optical elements
EP2766762B1 (en) 2011-10-12 2019-07-17 Phoseon Technology, Inc. Multiple light collection and lens combinations with co-located foci for curing optical fibers
US8823279B2 (en) 2011-10-27 2014-09-02 Phoseon Technology, Inc. Smart FET circuit
US8931928B2 (en) 2011-11-01 2015-01-13 Phoseon Technology, Inc. Removable window frame for lighting module
US8851715B2 (en) 2012-01-13 2014-10-07 Phoseon Technology, Inc. Lamp ventilation system
US8888336B2 (en) 2012-02-29 2014-11-18 Phoseon Technology, Inc. Air deflectors for heat management in a lighting module
US8678622B2 (en) 2012-04-27 2014-03-25 Phoseon Technology, Inc. Wrap-around window for lighting module
CN104566210A (en) * 2013-10-25 2015-04-29 浚洸光学科技股份有限公司 Micro structure ranging method
CN103511975A (en) * 2013-10-25 2014-01-15 浙江晶日照明科技有限公司 Light-emitting device suitable for LED wash wall lamp
WO2020225195A1 (en) * 2019-05-09 2020-11-12 Signify Holding B.V. Improved thermal management in laser-based lighting using a truncated ball lens
US11149936B2 (en) * 2020-02-18 2021-10-19 Exposure Illumination Architects, Inc. Uniformly lit planar field of illumination
CN111169058B (en) * 2020-04-13 2020-07-03 成都菲斯特科技有限公司 Fresnel lens mold and preparation method thereof and preparation method of Fresnel lens

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1203357A (en) 1968-12-13 1970-08-26 Rlm Res Corp Production of lenticular sheets for integral photography
US4022855A (en) * 1975-03-17 1977-05-10 Eastman Kodak Company Method for making a plastic optical element having a gradient index of refraction
US4165474A (en) * 1977-12-27 1979-08-21 Texas Instruments Incorporated Optoelectronic displays using uniformly spaced arrays of semi-sphere light-emitting diodes
JPS6179269A (en) 1984-09-26 1986-04-22 Hitachi Micro Comput Eng Ltd Optical communication equipment
JPS62262023A (en) 1986-05-09 1987-11-14 Hitachi Ltd Liquid crystal display device
JPS6332972A (en) 1986-07-26 1988-02-12 Mitsubishi Cable Ind Ltd Lamp
DE3827083A1 (en) 1988-08-10 1990-02-15 Telefunken Electronic Gmbh AREA SPOTLIGHT
JPH038204A (en) 1989-06-05 1991-01-16 Nippon Denyo Kk Led lamp device
JP2626305B2 (en) 1991-04-23 1997-07-02 日本ビクター株式会社 How to make a fly-eye lens plate stamper
JP2900000B2 (en) 1991-07-12 1999-06-02 タキロン株式会社 Light emitting display and method of manufacturing the same
US5439621A (en) * 1993-04-12 1995-08-08 Minnesota Mining And Manufacturing Company Method of making an array of variable focal length microlenses
US5396350A (en) * 1993-11-05 1995-03-07 Alliedsignal Inc. Backlighting apparatus employing an array of microprisms
US5528474A (en) 1994-07-18 1996-06-18 Grote Industries, Inc. Led array vehicle lamp
JP3818320B2 (en) 1994-09-09 2006-09-06 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴイ Method for producing a mold used for the production of optical elements having optical sub-elements arranged in a pattern with respect to each other and apparatus for carrying out such a method
JP2951858B2 (en) 1994-10-17 1999-09-20 シャープ株式会社 Projection type color liquid crystal display
US5600148A (en) 1994-12-30 1997-02-04 Honeywell Inc. Low power infrared scene projector array and method of manufacture
JPH08227603A (en) 1995-02-21 1996-09-03 Koito Mfg Co Ltd Display lamp for vehicle
DE19621148A1 (en) * 1996-05-14 1997-12-04 Magna Reflex Holding Gmbh Lighting element, especially e.g. for use in motor vehicles
JPH1012926A (en) * 1996-06-20 1998-01-16 Toyoda Gosei Co Ltd Full color emission diode lamp and display
EP0976589A4 (en) * 1997-03-18 2006-11-08 Acol Technologies S A Luminescent diode
JP4171933B2 (en) 1997-09-12 2008-10-29 ソニー株式会社 Planar lens manufacturing method
JP2001517875A (en) 1997-09-25 2001-10-09 ユニバーシティ オブ ブリストル Light irradiation device
US6339503B1 (en) * 1998-11-06 2002-01-15 Oni Systems Corp. Optical interconnect using microlens/minilens relay
US6665060B1 (en) * 1999-10-29 2003-12-16 Cytyc Corporation Cytological imaging system and method
DE10051159C2 (en) 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED module, e.g. White light source
US6715901B2 (en) * 2002-08-15 2004-04-06 Shi-Hwa Huang Image projector system having a light source that includes at least four light emitting diode modules

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0213231A2 *

Also Published As

Publication number Publication date
US7262437B2 (en) 2007-08-28
US20040026706A1 (en) 2004-02-12
WO2002013231A2 (en) 2002-02-14
CN101219568A (en) 2008-07-16
JP2007112134A (en) 2007-05-10
CN1447983A (en) 2003-10-08
JP2004506321A (en) 2004-02-26
CN100517706C (en) 2009-07-22
WO2002013231A3 (en) 2002-06-20
TW538255B (en) 2003-06-21
DE10038213A1 (en) 2002-03-07
US20070290383A1 (en) 2007-12-20

Similar Documents

Publication Publication Date Title
EP1320890A2 (en) Radiation source and method for producing a lens mould
DE19802347B4 (en) A stackable semiconductor substrate and stackable semiconductor device, and manufacturing methods thereof, and a semiconductor stackable module module manufacturing method
DE19720275B4 (en) Substrate for a semiconductor device, manufacturing method for the same and a stackable semiconductor device using the substrate
DE19845316C2 (en) Stackable ball grid array semiconductor package and method of making the same
DE102016119002B4 (en) OPTOELECTRONIC DEVICE AND METHOD FOR MANUFACTURING OPTOELECTRONIC DEVICE
DE102009015313B4 (en) display device
DE102015114849A1 (en) Method for producing light-emitting diode filaments and light-emitting filament
DE19854414A1 (en) Light emitting module
WO2008040297A1 (en) Optical element for a light-emitting diode, light-emitting diode, led arrangement and method for producing an led arrangement
DE102015115824A1 (en) Optoelectronic component
DE102014113844B4 (en) Method for producing an optoelectronic component and optoelectronic component
DE102015112556B4 (en) Video wall module and method for producing the same
DE102015118433A1 (en) Optoelectronic component and method for its production
DE3735489A1 (en) METHOD FOR THE PRODUCTION OF OPTOCOUPLERS
DE102011013369A1 (en) A method of manufacturing a plurality of semiconductor devices
WO2017194620A1 (en) Optoelectronic component and method for producing an optoelectronic component
DE102016108776A1 (en) Optical arrangement and display device
DE102018104382A1 (en) OPTOELECTRONIC COMPONENT AND MANUFACTURING METHOD
DE102017110850A1 (en) Optoelectronic component and method for producing an optoelectronic component
WO2020169448A1 (en) Optoelectronic component and method for producing an optoelectronic component
DE102016114277B4 (en) Light-emitting component
DE102019100794A1 (en) LASER DEVICE AND METHOD FOR PRODUCING A LASER DEVICE
WO2019076902A1 (en) Optoelectronic semiconductor chip and method for producing an optoelectronic semiconductor chip
DE102018104290A1 (en) OPTOELECTRONIC COMPONENT AND METHOD FOR PRODUCING AN OPTOELECTRONIC COMPONENT
DE102016105988A1 (en) Converter for partial conversion of a primary radiation and light-emitting component

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030123

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE FR GB LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

17Q First examination report despatched

Effective date: 20090224

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20090730