EP1319249A2 - Module, especially a wafer module - Google Patents

Module, especially a wafer module

Info

Publication number
EP1319249A2
EP1319249A2 EP01984504A EP01984504A EP1319249A2 EP 1319249 A2 EP1319249 A2 EP 1319249A2 EP 01984504 A EP01984504 A EP 01984504A EP 01984504 A EP01984504 A EP 01984504A EP 1319249 A2 EP1319249 A2 EP 1319249A2
Authority
EP
European Patent Office
Prior art keywords
functional elements
recess
functional
assembly
agent layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01984504A
Other languages
German (de)
French (fr)
Inventor
Klaus Breitschwerdt
Hans Artmann
Wilhelm Frey
Karsten Funk
Juergen Neumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1319249A2 publication Critical patent/EP1319249A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/3205Shape
    • H01L2224/32057Shape in side view
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/83139Guiding structures on the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/8314Guiding structures outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8312Aligning
    • H01L2224/83136Aligning involving guiding structures, e.g. spacers or supporting members
    • H01L2224/83138Aligning involving guiding structures, e.g. spacers or supporting members the guiding structures being at least partially left in the finished device
    • H01L2224/83141Guiding structures both on and outside the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8338Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/83385Shape, e.g. interlocking features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8385Bonding techniques using a polymer adhesive, e.g. an adhesive based on silicone, epoxy, polyimide, polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0657Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01023Vanadium [V]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01052Tellurium [Te]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01061Promethium [Pm]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01082Lead [Pb]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/07802Adhesive characteristics other than chemical not being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/1015Shape
    • H01L2924/10155Shape being other than a cuboid
    • H01L2924/10158Shape being other than a cuboid at the passive surface

Definitions

  • the invention relates to an assembly, in particular afer assembly, with two opposite functional elements which are operatively connected to one another by means of an intermediate, pressure-deformable connecting means rail, according to the preamble of claim 1.
  • Functional elements particularly in the form of silicon wafers.
  • the seal glass is used as a pressure-formable paste in the screen printing process. Ren applied to a connecting surface of at least one functional element (wafer).
  • the two functional elements are then pressed together at an operating temperature of approximately 430 ° C at their connecting surfaces with the interposed, melted seal glass layer. Due to the surface forces that arise between the respective connection surface and the seal glass, there is an operative connection between the two functional elements with the formation of a wafer assembly.
  • the quality of an active connection obtained in this way depends in particular on the operating parameters seal glass temperature and contact pressure of the two functional elements (wafers) to be connected.
  • the known seal glass is provided with a plurality of filler particles of different sizes.
  • the minimally adjustable gap height between the functional elements connected to one another depends on the maximum size of the filler particles contained in the seal glass.
  • minimal gap heights between two opposite and functionally connected functional elements of a wafer assembly have been adjustable in the order of magnitude of approximately 10 ⁇ ⁇ 5 ⁇ m using seal glass as the connecting means.
  • this gap height value is too large or its setting tolerance is too imprecise.
  • the assembly according to the invention of the type mentioned at the outset is characterized in that at least one functional element is surface-structured to form a respective depression and the operative connection is present exclusively in the area of the depression.
  • the pressure-deformable connecting means for example seal glass
  • the operative connection between the two functional elements takes place exclusively in this area, one that is independent of the physical and material properties or parameters of the connecting means and reproducible operative connection between the functional elements to produce an assembly.
  • the geometric configuration of the assembly is therefore not restricted by a minimally adjustable gap height between the functionally connected functional elements in an area outside the recess.
  • the surface structuring on the connecting surface of a functional element can be carried out in a manner known per se by means of a wet or dry chemical structuring method, such as for example by "plasma trench", with the formation of a Vex deepening (cavern).
  • the connecting means for example seal glass
  • the operative connection that forms in the area of the recess between the opposite functional elements is therefore a type of form-fitting connection. With such a positive connection, any gap height between the functionally connected functional elements can advantageously be set greater than or equal to zero.
  • the connecting agent layer applied to a functional element in the region of the depression, prior to its pressure deformation by means of a mutual approximation of the two functional elements has a height which is greater than the sum of the depth of the depression and a permanent distance to be set between the functional elements and one Area outside of the well. This ensures that the connecting means in the area of the recess is in operative connection with both functional elements that are to be mutually approximated, and thus ensures a reliable operative connection between the same.
  • the minimum, permanent connection means receiving volume of the functional elements is greater than or equal to the material volume of the non-pressure-corrected connection means layer. This ensures that the connecting means is in contact with one another during its compression term approach of the two opposite functional elements unhindered in the correspondingly reducing connector receptacle volume in particular can expand or expand laterally until the minimum, remaining connector receptacle volume is set with maximum mutual approach of the functional elements.
  • the two functional elements can thus be approached without hindrance, while at the same time geometrically adapting the pressure-deforming connecting means to the correspondingly reducing connecting means receiving volume in the region of the recess. A maximum approximation of the two functional elements is achieved when a direct contact connection is established between the connecting surfaces thereof outside the region of the depression.
  • the minimum connection means receiving volume is the volume of the
  • a non-surface structured functional element with a flat connecting surface can be approximated to the opposite, surface structured functional element until there is direct surface contact between the two connecting surfaces (gap height equal to zero) outside the area of the depression.
  • the two functional elements each have a recess lying opposite one another, the minimum connection means receiving volume being the sum of the individual volumes of the recesses. gen is.
  • an unimpeded, mutual approximation of the same can take place until a direct contact connection is established between the connecting surfaces outside the region of the depressions. It is thus possible to set all desired gap heights between the functional elements of the assembly in a relatively simple and reliable manner.
  • the height of the connecting agent layer applied to a functional element before its compression deformation is greater than the sum of the respective depth of the opposing depressions and a minimum distance to be set between the functional elements in an area outside the depressions.
  • wixd ensures that a reliable operative connection between the connecting means and the respective functional element is established within the corresponding Vex recess after the two functional elements have approached each other up to the desired minimum distance.
  • the recess is preferably rectangular or round or V-shaped in cross section.
  • the depression can be produced, for example, by means of a so-called “plasma trench method” on the connecting surface of a functional element, a depression, for example rectangular in cross section, being relatively simple and precise to manufacture in terms of production technology.
  • the connecting agent layer is advantageously a seal glass layer and the functional elements are made of silicon. Seal glass is particularly suitable as a connecting means for producing a vacuum-tight operative connection, for example between two silicon wafers, with the formation of a wafer assembly.
  • suitable connecting materials such as adhesive or soldering materials is also conceivable.
  • the functional elements can also be realized in other suitable materials. -
  • FIG. 1 shows a schematic illustration of an assembly according to the invention which is not fully operatively connected in accordance with a first embodiment
  • FIG. 2 shows a schematic illustration of the completely functionally connected assembly of FIG. 1;
  • FIG. 3 shows a schematic illustration of an assembly according to the invention which is not fully operatively connected in accordance with a second, alternative embodiment
  • FIG. 4 shows a schematic representation of the completely functionally connected assembly of FIG. 3;
  • FIG. 5 shows a schematic illustration of an assembly according to the invention which is not fully operatively connected in accordance with a third, alternative embodiment
  • FIG. 6 shows a schematic illustration of the completely functionally connected assembly of FIGS. 5 and 5
  • FIG. 7 shows a schematic illustration of a quex-cut functional element according to the invention with applied connecting means on an enlarged scale compared to FIGS. 1 to 6.
  • FIGS. 1 and 2 show an assembly 10, for example a wafer assembly, with two opposite functional elements 11, 12, which are operatively connected (FIG. 1) or operatively connected by means of an intermediate, pressure-deformable connecting agent layer 13
  • the functional elements 11, 12 can, for example, be silicon wafers, while a sealing glass, for example, is used as the connecting means for producing a vacuum-tight operative connection between the two functional elements 11, 12.
  • the functional element 11 has an essentially flat connecting surface 15, which is surface-structured to form a depression 14.
  • the depression 14 is essentially rectangular in cross section.
  • the functional element 12 has a completely flat, non-surface-structured connecting surface 15, on which the connecting agent layer 13 is applied within the area of the opposite recess 14 of the functional element 11. As shown in FIG. 2, the operative connection between the two functional elements 11, 12 takes place exclusively in the area of the depression 14 of the functional element 11.
  • the connecting surface 15 of the functional element 11 extending outside the area of the depression 14 is flat and can be connected to the corresponding connecting area 15 of the functional element 12 can be brought into contact without interference with corresponding pressure deformation of the bonding agent layer 13. It is thus advantageously possible to set any gap height in a module 10 between the connecting surfaces 15 outside of the area of the depression 14 without interference.
  • FIGS. 3 and 4 show a second, alternative embodiment of the assembly 10 according to the invention, the connecting agent layer 13 according to FIG. 3 being applied to a connecting surface 15 within a depression 14 before a complete operative connection is established between the two functional elements 11, 12 according to FIG ,
  • the connecting agent layer 13 is applied to the non-structured connecting surface 15 before a complete operative connection is established between the functional elements 11, 12 Service.
  • the further geometric structure of the second, alternative embodiment of FIGS. 3 and 4 corresponds to that of the first embodiment of FIGS. 1 and 2.
  • FIGS. 5 and 6 show a third, alternative embodiment with two functional elements 11, 12, the connecting surfaces 15 of which are each surface-structured to form a corresponding recess 14.
  • the connecting agent layer 13 is applied to a connecting surface 15 in the region of the mutually opposite recesses 14 before a complete operative connection is established between the functional elements 11, 12.
  • FIG. 6 shows that the operative connection between the functional elements 11, 12 by means of the connecting agent layer 13 takes place exclusively in the area of the two depressions 14.
  • All assemblies 10 according to FIGS. 2, 4 and 6 are characterized in that a freely selectable setting of the gap height between the connection surfaces 15 outside the region of the depressions 14 is independent of parameters of the connecting means (for example seal glass filler particle size) is possible.
  • a type of interlocking operative connection between the functional elements 11, 12 is created using the connecting agent layer 13 as the construction element.
  • the applied connecting agent layer 13 In order to ensure a reliable operative connection between the connecting agent layer 13 and the connecting surfaces 15 in the region of the depressions 14, the applied connecting agent layer 13 must have a height H before the pressure deformation thereof by means of a mutual approximation of the two functional elements 11, 12 is greater than the sum of the depth T of the depression 14 of the functional element 12 or 11 (exemplary embodiment according to FIGS. 3 and 1) and, if appropriate, the depth T of the further depression 14 of the functional element 11 or 12 (exemplary embodiment according to FIG. 5) and, if appropriate, a permanent minimum distance to be set between the functional elements 11, 12 in an area outside the depression 14 or the depressions 14 (see also FIG. 7).
  • the minimum connection means receiving volume of the functional elements 11, 12 is larger than the material volume of the non-compression-molded connection means layer (see FIGS. 1, 3 and 5). Furthermore, FIGS. 2, 4, 6 show that the cross-sectional area of the minimum connecting means receiving volume of the functional elements 11, 12 is not completely filled with connecting means after a complete, correct operative connection has been established between them. In this way, an undisturbed and freely selectable setting of a gap (not provided) between the functional elements 11, 12 outside the area of the recess 14 according to hex. position of the permanent operative connection between the same.

Abstract

The module (10) is especially a wafer module and has two functional elements (11, 12) which lie opposite each other and which are functionally interconnected by a compression-deformable layer of a joining agent (13) located in-between them. The invention provides that at least one functional element (11; 12; 11, 12) is surface-structured in such a way as to form a depression (14) and that the functional connection lies exclusively in the area of this depression (14).

Description

Baugruppe, insbesondere afer-BaugruppeAssembly, in particular afer assembly
Die Erfindung bezieht sich auf eine Baugruppe, ins- besondere afer-Baugruppe, mit zwei gegenüberliegenden Funktionselementen, die mittels einer zwischenangeordneten, druckverformbaren Verbindungsmittelschient miteinander wirkverbunden sind, gemäß Oberbegriff des Anspruchs 1.The invention relates to an assembly, in particular afer assembly, with two opposite functional elements which are operatively connected to one another by means of an intermediate, pressure-deformable connecting means rail, according to the preamble of claim 1.
Stand der TechnikState of the art
Die Herstellung einer Wirkverbindung zwischen Scheiben aus Silicium (Wafer) mittels eines zwi- schenangeordneten, beispielsweise pastenartigen und somit druckverformbaren Klebers als Verbindungsmittel ist bereits bekannt. Derartig aufgebaute Baugruppen kommen insbesondere in der Elektronik beziehungsweise Mikrosystemtechnik zur Anwendung. In der Mikrosystemtechnik wird zur Herstellung von Wafer-Verbindungen häufig ein sogenanntes "Seal-Glas" als Verbindungsmittel eingesetzt, das ebenfalls an sich bekannt ist. Im Vergleich zu anderen Klebematerialien hat das Seal-Glas den Vorteil, dass es zur Herstellung einer vakuumdichten Verbindung vonThe production of an active connection between silicon wafers by means of an interposed, for example paste-like and thus pressure-deformable adhesive as a connecting means is already known. Assemblies constructed in this way are used in particular in electronics or microsystem technology. In microsystem technology, a so-called "seal glass" is often used as the connecting means for the production of wafer connections, which is also known per se. Compared to other adhesive materials, the seal glass has the advantage that it is used to create a vacuum-tight connection between
Funktionselementen, insbesondere in Form von Silicium-Scheiben (Wafer), geeignet ist. Das Seal-Glas wird als druckverformbare Paste im Siebdruckverfah- ren auf eine Verbindungsfläche wenigstens eines Funktionselements (Wafer) aufgebracht. Anschließend werden die zwei Funktionselemente bei einer Betriebstemperatur von circa 430°C an ihren Verbin- dungsflächen mit der zwischenangeordneten, aufgeschmolzenen Seal-Glas-Schicht zusammengepresst . Dabei ergibt sich aufgrund der sich einstellenden Oberflächenkräfte zwischen der jeweiligen Verbindungsflache und dem Seal-Glas eine Wirkverbindung zwischen den zwei Funktionselementen unter Ausbildung einer Wafer-Baugruppe . Die Qualität einer in dieser Weise erhaltenen Wirkverbindung hängt insbesondere von den Betriebsparametern Seal-Glas-Temperatur und Anpressdruck der zwei zu verbindenden Funktionselemente (Wafer) ab.Functional elements, particularly in the form of silicon wafers. The seal glass is used as a pressure-formable paste in the screen printing process. Ren applied to a connecting surface of at least one functional element (wafer). The two functional elements are then pressed together at an operating temperature of approximately 430 ° C at their connecting surfaces with the interposed, melted seal glass layer. Due to the surface forces that arise between the respective connection surface and the seal glass, there is an operative connection between the two functional elements with the formation of a wafer assembly. The quality of an active connection obtained in this way depends in particular on the operating parameters seal glass temperature and contact pressure of the two functional elements (wafers) to be connected.
Das an sich bekannte Seal-Glas ist mit einer Mehrzahl von Füllstof partikeln verschiedener Größe versehen. Nachteilhafterweise hängt die minimal einstellbare Spalthöhe zwischen den miteinander wirkverbundenen Funktionselementen von der maximalen Größe der im Seal-Glas enthaltenen Füllstoffpartikel ab. Beispielsweise sind bisher minimale Spalthöhen zwischen zwei gegenüberliegenden und wirkverbundenen Funktionselementen einer Wafer-Baugruppe in einer Größenordnung von circa 10 μ ± 5 μm unter Heranziehung von Seal-Glas als Verbindungsmittel einstellbar. Für bestimmte Anwendungsbereiche in der Mikrosystemtechnik ist dieser Spalthöhenwert zu groß beziehungsweise dessen Einstellungstoleranz zu ungenau. Vorteile der ErfindungThe known seal glass is provided with a plurality of filler particles of different sizes. Disadvantageously, the minimally adjustable gap height between the functional elements connected to one another depends on the maximum size of the filler particles contained in the seal glass. For example, minimal gap heights between two opposite and functionally connected functional elements of a wafer assembly have been adjustable in the order of magnitude of approximately 10 μ ± 5 μm using seal glass as the connecting means. For certain areas of application in microsystem technology, this gap height value is too large or its setting tolerance is too imprecise. Advantages of the invention
Die erfindungsgemäße Baugruppe der eingangs genannten Art ist dadurch gekennzeichnet, dass wenigstens ein Funktionselement unter Ausbildung einer jeweiligen Vertiefung oberflächenstrukturiert ist und die Wirkverbindung ausschließlich im Bereich der Vertiefung vorliegt. Hierdurch ist es möglich, zwei Funktionselemente mittels einer zwischenangeordne- ten, druckverformbaren Verbindungsmittelsσhicht wirkzuverbinden, wobei die beispielsweise ebenen Verbindungsflächen der Funktionselemente außerhalb des Bereichs der Vertiefung bis zum gegenseitigen Kontakt (Spalthöhe gleich Null) einander angenähext werden können. Da das druckverformbare Verbindungs- mittel, beispielsweise Seal-Glas, im Bereich einer Vertiefung der Oberflächenstrukturierung wenigstens eines Funktionselements angeordnet ist und die Wirkverbindung zwischen den zwei Funktionselementen ausschließlich in diesem Bereich erfolgt, kann eine von den physikalischen und materiellen Eigenschaften beziehungsweise Kenngrößen des Verbindungsmittels unabhängige und reproduzierbare Wirkverbindung zwischen den Funktionselementen zur Herstellung einer Baugruppe hergestellt werden. Die geometrische Ausgestaltung der Baugruppe ist somit nicht durch eine minimal einstellbare Spalthöhe zwischen den wirkverbundenen Funktionselementen in einem Bereich außerhalb der Vertiefung eingeschränkt. Dabei kann die Oberflächenstrukturierung auf der Verbindungsfläche eines Funktionselements in an sich bekannter Weise mittels eines nass- oder trockenchemischen Strukturierungsverfahrens, wie zum Beispiel durch "Plasma-Trench" , unter Ausbildung einer Vex- tiefung (Kaverne) hergestellt werden. Das Verbindungsmittel, beispielsweise Seal-Glas, kann ebenfalls nach einem bekannten Verfahren (Siebdruckverfahren) auf die Verbindungsfläche eines Funk- tionselements im Bereich der erzeugten Vertiefung aufgebracht werden. Bei der im Bereich der Vertiefung sich ausbildenden Wirkverbindung zwischen den sich gegenüberliegenden Funktionselementen handelt es sich somit um eine Art formschlüssige Verbin- düng. Vorteilhafterweise ist mittels einer derartigen formschlüssigen Verbindung eine beliebige Spalthöhe zwischen den wirkverbundenen Funktions- elementen größer oder gleich Null einstellbar.The assembly according to the invention of the type mentioned at the outset is characterized in that at least one functional element is surface-structured to form a respective depression and the operative connection is present exclusively in the area of the depression. This makes it possible to effectively connect two functional elements by means of an interposed, pressure-deformable connecting means, it being possible for the, for example, flat connecting surfaces of the functional elements outside the region of the depression to be in mutual contact with one another (gap height equal to zero). Since the pressure-deformable connecting means, for example seal glass, is arranged in the area of a deepening of the surface structuring of at least one functional element and the operative connection between the two functional elements takes place exclusively in this area, one that is independent of the physical and material properties or parameters of the connecting means and reproducible operative connection between the functional elements to produce an assembly. The geometric configuration of the assembly is therefore not restricted by a minimally adjustable gap height between the functionally connected functional elements in an area outside the recess. The surface structuring on the connecting surface of a functional element can be carried out in a manner known per se by means of a wet or dry chemical structuring method, such as for example by "plasma trench", with the formation of a Vex deepening (cavern). The connecting means, for example seal glass, can likewise be applied to the connecting surface of a functional element in the region of the depression produced by a known method (screen printing method). The operative connection that forms in the area of the recess between the opposite functional elements is therefore a type of form-fitting connection. With such a positive connection, any gap height between the functionally connected functional elements can advantageously be set greater than or equal to zero.
Mit Vorteil weist die auf ein Funktionselement im Bereich der Vertiefung aufgetragene Verbindungsmittelschicht vor deren Druckverformung mittels einer gegenseitigen Annäherung der zwei Funktionselemente eine Höhe auf, die größer ist als die Summe der Tiefe der Vertiefung und eines einzustellenden, bleibenden Mindestabstands zwischen den Funktions- elementen und einem Bereich außerhalb der Vertiefung. Hierdurch wird gewährleistet, dass das Verbindungsmittel im Bereich der Vertiefung mit bei- den, gegenseitig anzunähernden Funktionselementen in Wirkverbindung tritt und somit eine zuverlässige Wirkverbindung zwischen denselben gewährleistet.Advantageously, the connecting agent layer applied to a functional element in the region of the depression, prior to its pressure deformation by means of a mutual approximation of the two functional elements, has a height which is greater than the sum of the depth of the depression and a permanent distance to be set between the functional elements and one Area outside of the well. This ensures that the connecting means in the area of the recess is in operative connection with both functional elements that are to be mutually approximated, and thus ensures a reliable operative connection between the same.
Vorteilhafterweise ist1 das minimale, bleibende Ver- bindungsmittel-Aufnahmevolumen der Funktionselemente größer oder gleich dem Materialvolumen der nicht druckverf or ten Verbindungsmittelschicht . Dadurch wird gewährleistet , dass das Verbindungsmittel sich während seiner Druckverformung bei einer gegensei- tigen Annäherung der zwei gegenüberliegenden Funktionselemente ungehindert in dem sich entsprechend reduzierenden Verbindungsmittel-Aufnahmevolumen insbesondere seitlich ausdehnen beziehungsweise ausbreiten kann, bis das minimale, bleibende Verbindungsmittel-Aufnahmevolumen bei maximaler, gegenseitiger Annäherung der Funktionselemente eingestellt is . Die zwei Funktionselemente können somit ungehindert gegenseitig angenähert werden unter gleichzeitiger geometrischer Anpassung des sich druckverformenden Verbindungsmittels an das sich entsprechend reduzierende Verbindungsmittel-Auf- nahmevolumen im Bereich der Vertiefung. Eine maximale Annäherung der zwei Funktionselemente ist bei Herstellung einer direkten Kontaktverbindung zwischen den Verbindungsflächen derselben außerhalb des Bereichs der Vertiefung erreicht.Advantageously, 1 the minimum, permanent connection means receiving volume of the functional elements is greater than or equal to the material volume of the non-pressure-corrected connection means layer. This ensures that the connecting means is in contact with one another during its compression term approach of the two opposite functional elements unhindered in the correspondingly reducing connector receptacle volume in particular can expand or expand laterally until the minimum, remaining connector receptacle volume is set with maximum mutual approach of the functional elements. The two functional elements can thus be approached without hindrance, while at the same time geometrically adapting the pressure-deforming connecting means to the correspondingly reducing connecting means receiving volume in the region of the recess. A maximum approximation of the two functional elements is achieved when a direct contact connection is established between the connecting surfaces thereof outside the region of the depression.
Gemäß einer ersten Ausführungsform ist das minimale Verbindungsmittel-Aufnahmevolumen das Volumen derAccording to a first embodiment, the minimum connection means receiving volume is the volume of the
Vertiefung. In diesem Fall kann ein beispielsweise nicht oberflächenstrukturiertes Funktionselement mit ebener Verbindungsfläche störungsfrei soweit an das gegenüberliegende, oberflächenstrukturierte Funktionselement angenähert werden, bis ein direkter Oberflächenkontakt der zwei Verbindungsflächen (Spalthöhe gleich Null) außerhalb des Bereichs der Vertiefung vorliegt.Deepening. In this case, for example, a non-surface structured functional element with a flat connecting surface can be approximated to the opposite, surface structured functional element until there is direct surface contact between the two connecting surfaces (gap height equal to zero) outside the area of the depression.
Entsprechend einer weiteren, alternativen Ausführungsform weisen beide Funktionselemente jeweils eine, zueinander gegenüberliegende Vertiefung auf, wobei das minimale Verbindungsmittel-Aufnahmevolumen die Summe der Einzelvolumina der Vertiefun- gen ist. Auch bei dieser Ausführungsform mit zwei oberflächenstrukturierten Funktionselementen kann eine ungehinderte, gegenseitige Annäherung derselben bis zur Herstellung einer direkten Kontaktverbindung zwischen den Verbindungsflächen außerhalb des Bereichs der Vertiefungen erfolgen. Es lassen sich somit in verhältnismäßig einfacher und zuverlässiger Weise alle gewünschten Spalthöhen zwischen den Funktionselementen der Baugruppe einstellen.According to a further, alternative embodiment, the two functional elements each have a recess lying opposite one another, the minimum connection means receiving volume being the sum of the individual volumes of the recesses. gen is. In this embodiment, too, with two surface-structured functional elements, an unimpeded, mutual approximation of the same can take place until a direct contact connection is established between the connecting surfaces outside the region of the depressions. It is thus possible to set all desired gap heights between the functional elements of the assembly in a relatively simple and reliable manner.
Mit Vorteil ist die Höhe der auf einem Funktions- element aufgetragenen Verbindungsmittelschicht vor deren Druckverformung größer als die Summe der jeweiligen Tiefe der gegenüberliegenden Vertiefungen und eines einzustellenden, bleibenden Mindestab- stands zwischen den Funktionselementen in einem Bereich außerhalb der Vertiefungen. Hierdurch wixd bei der Ausführungsform mit zwei oberflächenstrukturierten Funktionselementen gewährleistet, dass sich nach gegenseitiger Annäherung der zwei Funktionselemente bis auf den gewünschten bleibenden Mindestabstand eine zuverlässige Wirkverbindung zwischen dem Verbindungsmittel und dem jeweiligen Funktionselement innerhalb der entsprechenden Vex- tiefung einstellt.Advantageously, the height of the connecting agent layer applied to a functional element before its compression deformation is greater than the sum of the respective depth of the opposing depressions and a minimum distance to be set between the functional elements in an area outside the depressions. In this way, in the embodiment with two surface-structured functional elements, wixd ensures that a reliable operative connection between the connecting means and the respective functional element is established within the corresponding Vex recess after the two functional elements have approached each other up to the desired minimum distance.
Vorzugsweise ist die Vertiefung im Querschnitt rechteckig oder rund oder V-förmig ausgebildet. Die Vertiefung kann beispielsweise mittels eines soge- nannten "Plasma-Trench-Verfahrens" auf der Verbindungsfläche eines Funktionselements erzeugt werden, wobei eine im Querschnitt beispielsweise rechteckige Vertiefung fertigungstechnisch verhältnismäßig einfach und präzise herstellbar ist. Vorteilhafterweise ist die Verbindungsmittelschicht eine Seal-Glas-Schicht und sind die Funktionselemente aus Silicium hergestellt. Seal-Glas ist als Verbindungsmittel besonders geeignet, eine vakuurn- dichte Wirkverbindung, beispielsweise zwischen zwei Silicium-Scheiben (Wafer) , unter Ausbildung einer Wafer-Baugruppe herzustellen. Jedoch ist auch der Einsatz von anderen geeigneten Verbindungsmaterialien wie beispielsweise Kleb- oder Lötmaterialien denkbar. Die Funktionselemente sind ebenfalls in anderen geeigneten Materialien realisierbar. -The recess is preferably rectangular or round or V-shaped in cross section. The depression can be produced, for example, by means of a so-called “plasma trench method” on the connecting surface of a functional element, a depression, for example rectangular in cross section, being relatively simple and precise to manufacture in terms of production technology. The connecting agent layer is advantageously a seal glass layer and the functional elements are made of silicon. Seal glass is particularly suitable as a connecting means for producing a vacuum-tight operative connection, for example between two silicon wafers, with the formation of a wafer assembly. However, the use of other suitable connecting materials such as adhesive or soldering materials is also conceivable. The functional elements can also be realized in other suitable materials. -
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus der Beschreibung.Further advantageous embodiments of the invention result from the description.
Zeichnungendrawings
Die Erfindung wird nachfolgend in mehreren Ausführungsbeispielen anhand einer zugehörigen Zeichnung näher erläutert. Es zeigen:The invention is explained in more detail below in several exemplary embodiments with the aid of an associated drawing. Show it:
Figur 1 eine schematische Darstellung einer ex- findungsgemäßen, nicht vollständig wirkverbundenen Baugruppe entsprechend einer ersten Ausführungsform;FIG. 1 shows a schematic illustration of an assembly according to the invention which is not fully operatively connected in accordance with a first embodiment;
Figur 2 eine schematische Darstellung der vollständig wirkverbundenen Baugruppe der Figur 1;FIG. 2 shows a schematic illustration of the completely functionally connected assembly of FIG. 1;
Figur 3 eine schematische Darstellung einer er- findungsgemäßen, nicht vollständig wirkverbundenen Baugruppe entsprechend einer zweiten, alternativen Ausführungsform; Figur 4 eine schematische Darstellung der vollständig wirkverbundenen Baugruppe der Figur 3 ;FIG. 3 shows a schematic illustration of an assembly according to the invention which is not fully operatively connected in accordance with a second, alternative embodiment; FIG. 4 shows a schematic representation of the completely functionally connected assembly of FIG. 3;
Figur 5 eine schematische Darstellung einer er- findungsgemäßen, nicht vollständig wirkverbundenen Baugruppe entsprechend einer dritten, alternativen Ausführungsform;FIG. 5 shows a schematic illustration of an assembly according to the invention which is not fully operatively connected in accordance with a third, alternative embodiment;
Figur 6 eine schematische Darstellung der vollständig wirkverbundenen Baugruppe der Fi- gur 5 undFIG. 6 shows a schematic illustration of the completely functionally connected assembly of FIGS. 5 and 5
Figur 7 eine schematische Darstellung eines quex- geschnittenen, erfindungsgemäßen Funktionselements mit aufgetragenem Verbin- dungsmittel in im Vergleich zu den Figuren 1 bis 6 vergrößertem Maßstab.FIG. 7 shows a schematic illustration of a quex-cut functional element according to the invention with applied connecting means on an enlarged scale compared to FIGS. 1 to 6.
Beschreibung der ErfindungDescription of the invention
Die Figuren 1 und 2 zeigen eine Baugruppe 10, beispielsweise eine Wafer-Baugruppe, mit zwei gegenüberliegenden Funktionselementen 11, 12, die mittels einer zwischenangeordneten, druckverformbaren Verbindungsmittelschicht 13 miteinander wirkzuvex- binden (Figur 1) beziehungsweise wirkverbundenFIGS. 1 and 2 show an assembly 10, for example a wafer assembly, with two opposite functional elements 11, 12, which are operatively connected (FIG. 1) or operatively connected by means of an intermediate, pressure-deformable connecting agent layer 13
(Figur 2) sind. Die Funktionselemente 11, 12 können beispielsweise Silicium-Scheiben (Wafer) sein, während als Verbindungsmittel beispielsweise ein Seal- Glas herangezogen wird zur- Herstellung einer vaku- umdichten Wirkverbindung zwischen den zwei Funktionselementen 11, 12. Das Funktionselement 11 weist eine im Wesentlichen ebene Verbindungsfläche 15 auf, welche oberflächenstrukturiert ist unter Ausbildung einer Vertiefung 14. Die Vertiefung 14 ist im Querschnitt im Wesentlichen rechteckig ausgebildet. Das Funktionselernent 12 weist eine vollständig ebene, nicht oberflächenstrukturierte Verbindungs- flache 15 auf, .auf welcher innerhalb des Bereichs der gegenüberliegenden Vertiefung 14 des Funktionselements 11 die Verbindungsmittelschicht 13 aufge,- tragen ist. Wie in Figur 2 dargestellt, erfolgt die Wirkverbindung zwischen den zwei Funktionselementen 11, 12 ausschließlich im Bereich der Vertiefung 14 des Funktionselements 11. Die außerhalb des Bereichs der Vertiefung 14 sich erstreckende Verbindungsfläche 15 des Funktionselements 11 ist eben ausgebildet und kann mit der entsprechenden Verbindungsfläche 15 des Funktionselements 12 störungs- frei unter entsprechender Druckverformung der Vex- bindungsmittelschicht 13 in Berührungskontakt gebracht werden. Es ist somit vorteilhafterweise möglich, jede beliebige Spalthöhe in einer Baugruppe 10 zwischen den Verbindungsflächen 15 außerhalb des Bereichs der Vertiefung 14 störungsfrei einzustellen.(Figure 2) are. The functional elements 11, 12 can, for example, be silicon wafers, while a sealing glass, for example, is used as the connecting means for producing a vacuum-tight operative connection between the two functional elements 11, 12. The functional element 11 has an essentially flat connecting surface 15, which is surface-structured to form a depression 14. The depression 14 is essentially rectangular in cross section. The functional element 12 has a completely flat, non-surface-structured connecting surface 15, on which the connecting agent layer 13 is applied within the area of the opposite recess 14 of the functional element 11. As shown in FIG. 2, the operative connection between the two functional elements 11, 12 takes place exclusively in the area of the depression 14 of the functional element 11. The connecting surface 15 of the functional element 11 extending outside the area of the depression 14 is flat and can be connected to the corresponding connecting area 15 of the functional element 12 can be brought into contact without interference with corresponding pressure deformation of the bonding agent layer 13. It is thus advantageously possible to set any gap height in a module 10 between the connecting surfaces 15 outside of the area of the depression 14 without interference.
Die Figuren 3 und 4 zeigen eine zweite, alternative Ausführungsform der erfindungsgemäßen Baugruppe 10, wobei die Verbindungsmittelschicht 13 gemäß Figur 3 innerhalb einer Vertiefung 14 auf eine Verbindungsfläche 15 aufgetragen ist, bevor eine vollständige Wirkverbindung zwischen den zwei Funktionselementen 11, 12 entsprechend Figur 4 hergestellt wird. Im Gegensatz hierzu ist bei der ersten Ausführungsfoxm gemäß Figur 1 die Verbindungsmittelschicht 13 vor Herstellung einer vollständigen Wirkverbindung zwischen den Funktionselementen 11, 12 auf der nicht strukturierten Verbindungsfläche 15 aufgetragen worden. Der weitere geometrische Aufbau der zweiten, alternativen Ausführungsform der Figuren 3 und 4 entspricht demjenigen der ersten Ausführungsfoxm der Figuren 1 und 2.FIGS. 3 and 4 show a second, alternative embodiment of the assembly 10 according to the invention, the connecting agent layer 13 according to FIG. 3 being applied to a connecting surface 15 within a depression 14 before a complete operative connection is established between the two functional elements 11, 12 according to FIG , In contrast to this, in the first embodiment according to FIG. 1, the connecting agent layer 13 is applied to the non-structured connecting surface 15 before a complete operative connection is established between the functional elements 11, 12 Service. The further geometric structure of the second, alternative embodiment of FIGS. 3 and 4 corresponds to that of the first embodiment of FIGS. 1 and 2.
Die.Figuren 5 und 6 zeigen eine dritte, alternative Ausführungsform mit zwei Funktionselementen 11, 12, deren Verbindungsflächen 15 jeweils unter Ausbildung einer entsprechenden Vertiefung 14 oberflä- chenstrukturiert sind. Entsprechend Figur 5 ist die Verbindungsmittelschicht 13 auf einer Verbindungs- fläche 15 im Bereich der zueinander gegenüberliegenden Vertiefungen 14 aufgetragen vor Herstellung einer vollständigen Wirkverbindung zwischen den Funktionselementen 11, 12. Figur 6 zeigt, dass die Wirkverbindung zwischen den Funktionselementen 11, 12 mittels der Verbindungsmittelschicht 13 ausschließlich im Bereich der zwei Vertiefungen 14 erfolgt.FIGS. 5 and 6 show a third, alternative embodiment with two functional elements 11, 12, the connecting surfaces 15 of which are each surface-structured to form a corresponding recess 14. According to FIG. 5, the connecting agent layer 13 is applied to a connecting surface 15 in the region of the mutually opposite recesses 14 before a complete operative connection is established between the functional elements 11, 12. FIG. 6 shows that the operative connection between the functional elements 11, 12 by means of the connecting agent layer 13 takes place exclusively in the area of the two depressions 14.
Alle Baugruppen 10 gemäß den Figuren 2, 4 und 6 zeichnen sich dadurch aus, dass eine frei wählbaxe und von Kenngrößen des Verbindungsmittels (zum Beispiel Seal-Glas-Füllstoffpartikelgröße) unabhängige Einstellung der Spalthöhe zwischen den Verbindungs- flächen 15 außerhalb des Bereichs der Vertiefungen 14 möglich ist. Aufgrund der geometrischen Strukturierung der Verbindungsfläche wenigstens eines Funktionselements wird unter Heranziehung der Ver- bindungsmittelschicht 13 als Konstruktionselement eine Art formschlüssige Wirkverbindung zwischen den Funktionselementen 11, 12 erzeugt. Um eine zuverlässige Wirkverbindung zwischen der Verbindungsmittelschicht 13 und den Verbindungs- flächen 15 im Bereich der Vertiefungen 14 zu gewährleisten, muss die aufgetragene Verbindungsmit- telschicht 13 vor deren Druckverformung mittels einer gegenseitigen Annäherung der zwei Funktions- elemente 11, 12 eine Höhe H aufweisen, die größer ist als die Summe der Tiefe T der Vertiefung 14 des Funktionselements 12 -beziehungsweise 11- (Ausfüh- rungsbeispiel gemäß Figuren 3 beziehungsweise 1) und gegebenenfalls der Tiefe T der weiteren Vertiefung 14 des Funktionselements 11 -beziehungsweise 12- (Ausführungsbeispiel gemäß Figur 5) sowie gegebenenfalls eines einzustellenden, bleibenden Min- destabstands zwischen den Funktionselementen 11, 12 in einem Bereich außerhalb der Vertiefung 14 beziehungsweise der Vertiefungen 14 (siehe auch Figur 7) .All assemblies 10 according to FIGS. 2, 4 and 6 are characterized in that a freely selectable setting of the gap height between the connection surfaces 15 outside the region of the depressions 14 is independent of parameters of the connecting means (for example seal glass filler particle size) is possible. On the basis of the geometric structuring of the connection surface of at least one functional element, a type of interlocking operative connection between the functional elements 11, 12 is created using the connecting agent layer 13 as the construction element. In order to ensure a reliable operative connection between the connecting agent layer 13 and the connecting surfaces 15 in the region of the depressions 14, the applied connecting agent layer 13 must have a height H before the pressure deformation thereof by means of a mutual approximation of the two functional elements 11, 12 is greater than the sum of the depth T of the depression 14 of the functional element 12 or 11 (exemplary embodiment according to FIGS. 3 and 1) and, if appropriate, the depth T of the further depression 14 of the functional element 11 or 12 (exemplary embodiment according to FIG. 5) and, if appropriate, a permanent minimum distance to be set between the functional elements 11, 12 in an area outside the depression 14 or the depressions 14 (see also FIG. 7).
Wie in den Figuren 2, 4 und 6 dargestellt, ist das minimale Verbindungsmittel-Aufnahmevolumen der Funktionselemente 11, 12 größer als das Materialvolumen der nicht druckverformten Verbindungsmittel- Schicht (siehe Figuren 1, 3 und 5) . Ferner zeigen die Figuren 2, 4, 6, dass die Querschnittsfläche des minimalen Verbindungsmittel-Aufnahmevolumens der Funktionselemente 11, 12 nach Herstellung einer kompletten, korrekten WirkVerbindung zwischen denselben nicht vollständig mit Verbindungsmittel aus- gefüllt ist. Hierdurch wird eine ungestörte und frei wählbare Einstellung eines Spalts (nicht daxgestellt) zwischen den Funktionselementen 11, 12 außerhalb des Bereichs der Vertiefung 14 nach Hex- stellung der bleibenden Wirkverbindung zwischen denselben ermöglicht . As shown in FIGS. 2, 4 and 6, the minimum connection means receiving volume of the functional elements 11, 12 is larger than the material volume of the non-compression-molded connection means layer (see FIGS. 1, 3 and 5). Furthermore, FIGS. 2, 4, 6 show that the cross-sectional area of the minimum connecting means receiving volume of the functional elements 11, 12 is not completely filled with connecting means after a complete, correct operative connection has been established between them. In this way, an undisturbed and freely selectable setting of a gap (not provided) between the functional elements 11, 12 outside the area of the recess 14 according to hex. position of the permanent operative connection between the same.

Claims

Patentansprüche claims
1. Baugruppe, insbesondere Wafer-Baugruppe, mit zwei gegenüberliegenden Funktionselementen, die mittels einer zwischenangeordneten, druckverformbaren Verbindungsmittelschicht miteinander wirkvex- bunden sind, dadurch gekennzeichnet, dass wenigstens ein Funktionselement (11 ; 12 ; 11, 12) unter Ausbildung einer jeweiligen Vertiefung (14) oberflächenstrukturiert ist und die Wirkverbindung ausschließlich im Bereich der Vertiefung (14) vox- liegt.1. An assembly, in particular a wafer assembly, with two opposite functional elements which are operatively connected to one another by means of an interposed, pressure-deformable connecting agent layer, characterized in that at least one functional element (11; 12; 11, 12) forms a respective recess (14 ) is surface structured and the active connection lies exclusively in the area of the recess (14).
2. Baugruppe nach Anspruch 1, dadurch gekennzeichnet, dass die auf ein Funktionselement (12) im Bereich der Vertiefung (14) aufgetragene Verbindungs- mittelschicht (13) vor deren Druckverformung mittels einer gegenseitigen Annäherung der zwei Funktionselemente (11,12) eine Höhe (H) aufweist, die größer ist als die Summe der Tiefe (T) der Vertiefung (14) und eines einzustellenden, bleibenden Mindestabstands zwischen den Funktionselementen (11,12) und einem Bereich außerhalb ,der Vertiefung (14) .2. An assembly according to claim 1, characterized in that the connecting agent layer (13) applied to a functional element (12) in the region of the depression (14) before its pressure deformation by means of a mutual approximation of the two functional elements (11, 12) has a height ( H), which is greater than the sum of the depth (T) of the recess (14) and a permanent minimum distance to be set between the functional elements (11, 12) and an area outside the recess (14).
3. Baugruppe nach einem der vorhergehenden Ansprü- ehe, dadurch gekennzeichnet, dass das minimale Vex- bindungsmittel-Aufnahmevolumen der Funktionselemente (11,12) größer oder gleich dem Materialvolumen der nicht druckverformten Verbindungsmittel- schicht (13) ist. 3. Assembly according to one of the preceding claims, characterized in that the minimum volume of the binding agent receiving the functional elements (11, 12) is greater than or equal to the material volume of the non-compression-molded connecting layer (13).
4. Baugruppe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das minimale Verbindungsmittel-Aufnahmevolumen das Volumen der Vertiefung (14) ist.4. Assembly according to one of the preceding claims, characterized in that the minimum connection means receiving volume is the volume of the recess (14).
5. Baugruppe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass beide Funktions- elemente (11,12) jeweils eine, zueinander gegenüberliegende Vertiefung (14) aufweisen und das mi- nimale Verbindungsmittel-Aufnahmevolumen die Summe der Einzelvolumina der Vertiefungen (14) ist.5. Assembly according to one of the preceding claims, characterized in that the two functional elements (11, 12) each have a recess (14) lying opposite one another and the minimum connection means receiving volume is the sum of the individual volumes of the recesses (14) ,
6. Baugruppe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Höhe (H) der auf einem Funktionselement (11,12) aufgetragenen Verbindungsmittelschicht (13) vor deren Druckverformung größer ist als die Summe der jeweiligen Tiefe (T) der gegenüberliegenden Vertiefungen (14) und eines einzustellenden, bleibenden Mindestab- Stands zwischen den Funktionselementen (11,12) in einem Bereich außerhalb der Vertiefungen (14).6. Module according to one of the preceding claims, characterized in that the height (H) of the connecting agent layer (13) applied to a functional element (11, 12) before its pressure deformation is greater than the sum of the respective depth (T) of the opposite depressions ( 14) and a minimum distance to be set between the functional elements (11, 12) in an area outside the depressions (14).
7. Baugruppe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vertiefung (14) im Querschnitt rechteckig oder rund oder V-förmig ausgebildet ist.7. Module according to one of the preceding claims, characterized in that the recess (14) is rectangular or round or V-shaped in cross section.
8. Baugruppe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Verbindungs- mittelschicht (13) eine Seal-Glas-Schicht ist und die Funktionselemente (11,12) aus Silicium hergestellt sind. 8. Assembly according to one of the preceding claims, characterized in that the connecting agent layer (13) is a seal glass layer and the functional elements (11, 12) are made of silicon.
EP01984504A 2000-08-03 2001-07-20 Module, especially a wafer module Withdrawn EP1319249A2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10037821 2000-08-03
DE10037821A DE10037821A1 (en) 2000-08-03 2000-08-03 Assembly, in particular wafer assembly
PCT/DE2001/002758 WO2002013268A2 (en) 2000-08-03 2001-07-20 Module, especially a wafer module

Publications (1)

Publication Number Publication Date
EP1319249A2 true EP1319249A2 (en) 2003-06-18

Family

ID=7651178

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01984504A Withdrawn EP1319249A2 (en) 2000-08-03 2001-07-20 Module, especially a wafer module

Country Status (5)

Country Link
US (1) US20040084398A1 (en)
EP (1) EP1319249A2 (en)
JP (1) JP2004506325A (en)
DE (1) DE10037821A1 (en)
WO (1) WO2002013268A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPO902797A0 (en) * 1997-09-05 1997-10-02 Cortronix Pty Ltd A rotary blood pump with hydrodynamically suspended impeller
AUPP995999A0 (en) * 1999-04-23 1999-05-20 University Of Technology, Sydney Non-contact estimation and control system
AUPR514201A0 (en) * 2001-05-21 2001-06-14 Ventrassist Pty Ltd Staged implantation of ventricular assist devices
AU2003904032A0 (en) * 2003-08-04 2003-08-14 Ventracor Limited Improved Transcutaneous Power and Data Transceiver System
CA2541979A1 (en) 2003-10-09 2005-04-14 Ventracor Limited Magnetic driven impeller with hyrodynamic bearing
US20060083642A1 (en) 2004-10-18 2006-04-20 Cook Martin C Rotor stability of a rotary pump
US8152035B2 (en) * 2005-07-12 2012-04-10 Thoratec Corporation Restraining device for a percutaneous lead assembly
US20070142696A1 (en) 2005-12-08 2007-06-21 Ventrassist Pty Ltd Implantable medical devices
US20080133006A1 (en) * 2006-10-27 2008-06-05 Ventrassist Pty Ltd Blood Pump With An Ultrasonic Transducer
US20080200750A1 (en) * 2006-11-17 2008-08-21 Natalie James Polymer encapsulation for medical device
DE102007044806A1 (en) 2007-09-20 2009-04-02 Robert Bosch Gmbh Micromechanical component and method for producing a micromechanical component
TW201217010A (en) 2010-06-22 2012-05-01 Thoratec Corp Apparatus and method for modifying pressure-flow characteristics of a pump
US8905910B2 (en) 2010-06-22 2014-12-09 Thoratec Corporation Fluid delivery system and method for monitoring fluid delivery system
TW201225997A (en) 2010-08-20 2012-07-01 Thoratec Corp Assembly and method for stabilizing a percutaneous cable

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2959493A (en) * 1956-08-23 1960-11-08 Owens Illinois Glass Co Treating sealing edges of glass parts
DE2902002A1 (en) * 1979-01-19 1980-07-31 Gerhard Krause Three=dimensional integrated circuits - mfd. by joining wafer stack with contacts through conductive adhesive
US4954875A (en) * 1986-07-17 1990-09-04 Laser Dynamics, Inc. Semiconductor wafer array with electrically conductive compliant material
SE9100392D0 (en) * 1991-02-08 1991-02-08 Pharmacia Biosensor Ab A METHOD OF PRODUCING A SEALING MEANS IN A MICROFLUIDIC STRUCTURE AND A MICROFLUIDIC STRUCTURE COMPRISING SUCH SEALING MEANS
JPH04335566A (en) * 1991-05-10 1992-11-24 Sony Corp Semiconductor memory device
EP0610709B1 (en) * 1993-02-11 1998-06-10 Siemens Aktiengesellschaft Process of manufacturing tri-dimensional circuit devices
JP2661884B2 (en) * 1995-03-31 1997-10-08 東芝イーエムアイ株式会社 Method and apparatus for manufacturing bonded disk
FR2751467B1 (en) * 1996-07-17 1998-10-02 Commissariat Energie Atomique METHOD FOR ASSEMBLING TWO STRUCTURES AND DEVICE OBTAINED BY THE METHOD. MICROLASER APPLICATIONS
JP3834424B2 (en) * 1998-05-29 2006-10-18 株式会社東芝 Semiconductor device
FR2785449B1 (en) * 1998-10-29 2002-11-29 Commissariat Energie Atomique SUBSTRATE ASSEMBLY SYSTEM WITH CAVITY HANGING AREAS
US6406636B1 (en) * 1999-06-02 2002-06-18 Megasense, Inc. Methods for wafer to wafer bonding using microstructures

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0213268A2 *

Also Published As

Publication number Publication date
DE10037821A1 (en) 2002-02-21
WO2002013268A2 (en) 2002-02-14
US20040084398A1 (en) 2004-05-06
JP2004506325A (en) 2004-02-26
WO2002013268A3 (en) 2002-09-12

Similar Documents

Publication Publication Date Title
EP1319249A2 (en) Module, especially a wafer module
DE102012206869B4 (en) Micromechanical component and method for producing a micromechanical component
EP1661190B1 (en) Piezoactuator
EP2492415A2 (en) Floor panel with a wood material core, a decorative coating and locking profiles
WO2001045894A1 (en) Method for binding two parts of a vehicle seat
DE102008046776B4 (en) Composite metal sheet, method for joining metal sheets, and apparatus for joining metal sheets
WO2020011559A1 (en) Micromechanical pressure sensor device and corresponding production method
DE19522338B4 (en) Chip carrier assembly with a via
DE3403124C2 (en) Pressure sensor
EP1010973B1 (en) Capacitive measuring cells for measuring pressure and differential pressure and method for making same
WO1993017313A1 (en) Pressure difference sensor
AT510474B1 (en) SOLDER CONNECTION
DE19680345C5 (en) A filter assembly
DE19729785A1 (en) Capacitor arrangement and its manufacturing process
DE19706766B4 (en) attachment methods
DE102014210852B4 (en) Component with two semiconductor components which are connected to one another via a structured bonding connection layer and method for producing such a component
DE3703925A1 (en) METHOD FOR PRODUCING THE ELECTRICAL AND MECHANICAL CONNECTION OF TWO BODIES, IN PARTICULAR THE DIAPHRAGMAS AND THE CARRIER CASE OF A THICK FILM PRESSURE SENSOR, AND A DEVICE PRODUCED BY THIS METHOD
DE2534783C2 (en) Electro-optical display device
DE102012224225A1 (en) Flexible insertion pin for producing electrical interconnection between component and circuit board, has deformation zone whose connecting edges and contact edges abut on inner periphery of hole when insertion pin is located in hole
EP1649534A2 (en) Method for producing a fuel cell stack
DE102006059074A1 (en) Construction unit has two chips that are arranged one above other in connecting area by blocking or tilting microstructures in each other turned chip surfaces, which are mechanically and electrically connected
EP1528977B1 (en) Method for the production of a fixed connection between two layers of a multilayer system, and multilayer system
DE102015009144A1 (en) Construction element and method for its production
WO2022069242A1 (en) Press-in contact and method for producing same
WO2016055471A1 (en) Method and device for joining two material layers by means of high-frequency welding

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030312

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): CH DE FR IT LI

17Q First examination report despatched

Effective date: 20081024

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090305