EP1319219B1 - Method for preventing counterfeiting or alteration of a printed or engraved surface - Google Patents
Method for preventing counterfeiting or alteration of a printed or engraved surface Download PDFInfo
- Publication number
- EP1319219B1 EP1319219B1 EP01964793A EP01964793A EP1319219B1 EP 1319219 B1 EP1319219 B1 EP 1319219B1 EP 01964793 A EP01964793 A EP 01964793A EP 01964793 A EP01964793 A EP 01964793A EP 1319219 B1 EP1319219 B1 EP 1319219B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- watermark
- image
- printed
- printing
- modulation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 57
- 230000004075 alteration Effects 0.000 title description 9
- 238000007639 printing Methods 0.000 claims description 41
- 239000000463 material Substances 0.000 claims description 14
- 238000002203 pretreatment Methods 0.000 abstract 1
- 239000000976 ink Substances 0.000 description 29
- 239000003086 colorant Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 9
- 230000003247 decreasing effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000008859 change Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000007645 offset printing Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000004806 packaging method and process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000013519 translation Methods 0.000 description 3
- 230000014616 translation Effects 0.000 description 3
- 230000000007 visual effect Effects 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000013598 vector Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000005034 decoration Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 235000021183 entrée Nutrition 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002304 perfume Substances 0.000 description 1
- 238000009512 pharmaceutical packaging Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 230000005236 sound signal Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/004—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using digital security elements, e.g. information coded on a magnetic thread or strip
-
- G—PHYSICS
- G07—CHECKING-DEVICES
- G07D—HANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
- G07D7/00—Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
- G07D7/005—Testing security markings invisible to the naked eye, e.g. verifying thickened lines or unobtrusive markings or alterations
- G07D7/0054—Testing security markings invisible to the naked eye, e.g. verifying thickened lines or unobtrusive markings or alterations involving markings the properties of which are altered from original properties
- G07D7/0056—Testing security markings invisible to the naked eye, e.g. verifying thickened lines or unobtrusive markings or alterations involving markings the properties of which are altered from original properties involving markings of altered colours
Definitions
- the present invention relates to a method for preventing the counterfeiting or alteration of a printed or engraved surface.
- Special ink prints use the particular chemical properties of the ink to provide a definite response to a particular action.
- fluorescent inks become very bright when illuminated by a particular wavelength, some inks are even invisible to natural light, other inks change color depending on their orientation or temperature (and may reveal by warming the paper with a finger), etc.
- Special inks have as a common point to be particularly expensive and require changes in the usual industrial production chain (additional mask for offset, for example).
- additional mask for offset for example.
- Codes using invisible inks unlike the two previous groups, hide digital information. These codes can be characters, barcodes, 2D codes, etc. In addition to its high cost and inherent to invisible inks, this system has two major drawbacks. On the one hand, because of the nature of the codes used, it is located on a certain part of the document or the packaging and it is therefore possible to destroy it without altering the entire surface. On the other hand, the codes used always have geometric peculiarities (bars, geometric figures, characters, etc.) clearly identifying them as anti-copy devices. This greatly facilitates the task of the pirate seeking to reveal and reproduce the ink. Moreover as soon as the pirate knows how to realize this reproduction, ipso facto holds the means of reproducing the code.
- the document EP 0 961 239 discloses a solution for embedding a watermark in an image such as a banknote image.
- the proposed solution is to modify by slight alterations of the ink color, the density or the texture of the surface of the banknote.
- the watermark will modulate the width or location of a line component that forms the image of the bill.
- One of the aims of the present invention is to overcome the disadvantages of known methods for preventing counterfeiting or alteration of printed or digitally engraved documents.
- the present invention relates to a method for preventing the counterfeiting or alteration of printed or engraved documents characterized by embedding a digital watermark in part or all of the document.
- the digital watermark technique also known as digital tattooing, is a technique for hiding information in a robust and imperceptible manner in multimedia data such as music, video, images, documents, etc.
- the information that is hidden is called the signature.
- This signature can be for example a number, a name or even an image.
- “Hide” has a very specific meaning in this context: for example in the case of an image, we will slightly change the color of some pixels, and in the case of music we will change the sound a little from time to time.
- “Imperceptible” means that the modifications introduced are such that an individual can not distinguish the original data from the data signed by his own senses. For example, a signed image must look exactly the same as a normal image, a signed music must look perfectly normal, as well as a video or any other data. The whole problem is to make sure that a computer is able to detect this hidden information when it escapes our senses. There are also applications where a visible watermark is acceptable or even desirable. This allows in particular to further increase the robustness and visual control of the presence of a watermark. The principle that remains is that the watermark must not be visually disturbing.
- the "robustness" of a watermark means that one must be able to find the signature after any manipulation of signed data. Take for example the case of a signed image: it must be able to compress, print, scan or rotate without ever losing the signature.
- the technique of the digital watermark has so far been used for the purpose of finding the signature on a possible copy to prove the origin of the information present on the copy, thanks to the presence of the watermark that the we find on the copy. This involved in all cases the use of a robust watermark.
- the purpose of incorporating the digital watermark on the surface is different, since its presence is intended to prevent counterfeiting or alteration of the surface concerned, that is to say to allow to prove that it is the authentic surface if the watermark is present or that it is a copy or that the surface has been altered if the watermark is missing.
- the robustness of the watermark must be reduced so that a copy of the surface will result in a failure of the watermark reading. digital. This is called "fragile" watermark.
- a typical application is to prevent counterfeiting of securities such as banknotes.
- the watermark may be strong or fragile.
- Figure 1 the graph shows the variation of luminance of the pixels of an image according to their position X and for an identical position Y. The four peaks illustrate the effect of a symmetrical modulation of this signal obtained by increasing or decreasing its intensity locally.
- the Figure 2 gives an example of asymmetric modulation obtained by darkening the color of some pixels. This modulation can then be positive or negative depending on whether color is added or removed.
- the graph of the figure shows the luminance variation of the pixels of an image as a function of their position X and for an identical position Y. The two peaks illustrate the effect of an asymmetrical modulation of this signal obtained by decreasing only its intensity.
- the Figure 3 gives some examples of digital watermark images.
- Another object of the present invention is to propose a method for hiding and / or retrieving a digital watermark, characterized by the use of an asymmetrical modulation of the amplitude of a visible or invisible light component.
- FIG. 1 An example of symmetric modulation is illustrated in Figure 1 .
- the graph shows the luminance variation of the pixels of an image as a function of their X position and for an identical Y position.
- the four peaks illustrate the effect of a symmetrical modulation of this signal obtained by increasing or decreasing its intensity locally.
- FIG. 2 An example of asymmetric modulation is illustrated in Figure 2 .
- the graph shows the luminance variation of the pixels of an image as a function of their X position and for an identical Y position.
- the two peaks illustrate the effect of an asymmetrical modulation of this signal obtained by decreasing only its intensity.
- One way to achieve positive asymmetric modulation is to use an overprint technique by printing the watermark over the actual colors of the material and other information already printed and thus ignoring local color variations on the surface of that material.
- This approach imposes that the values of the color components of the material can only be darkened during the signature since additional ink is added. Mathematically, this corresponds to a positive asymmetric modulation of the color of the points.
- this approach can be applied to any printing process.
- Some specificities of watermark printing may depend on the printing process. The particular cases of offset and inkjet type printing for performing a positive modulation are detailed below.
- the Figure 4 illustrates the implementation of the above method using positive modulation with an offset type industrial printing technique in the case of simultaneous printing of the watermark.
- four-color printing 45 is performed (for example for a package 40) which means that four different ink colors are used for each of the yellow masks 41, cyan 42, magenta 43 and black 44.
- the digital watermark can With a single color, it is generally desirable to use for the watermark one of the colors already selected for standard printing.
- the Figure 4 shows how the different masks can then be applied.
- the watermark printing fully integrates into the standard industrial printing line and therefore does not induce any additional cost.
- the yellow mask can be used simultaneously for two different things: on the one hand it contains the yellow component of the image to print and on the other hand it contains the image of the watermark.
- the computer tools used during the flashing of the offset film make it easy to achieve this integration.
- FIG. 5 Another possible alternative is to use a separate mask for the watermark as shown on the Figure 5 .
- the watermark is overprinted during an additional step with a mask and possibly an ink of its own (here magenta).
- the mask 51 then defines the points of the watermark that are printed over the previously printed material 50.
- This method although more expensive to implement by the printer, has the advantage of being able to easily change the watermark during the production. This allows for example to apply a watermark identifying different countries of sale to a series of identical packaging. It should be noted that when non-covering type inks are used, it is also possible to print the final image over the digital watermark, as shown in the illustration. Figure 6 .
- the watermark being printed beforehand on the material, the final image being superimposed during an additional step.
- the yellow masks 61, cyan 62, magenta 63 and black 64 are used to overprint the pattern. Since the ink is transparent, the watermark 60 located under the pattern can still be detected in the final result 65.
- FIG. 7 Another usable printing method is of inkjet type as illustrated by the Figure 7 .
- the illustration shows an example of an ink jet printing system using four colors, yellow 71, cyan 72, magenta 73 and black 74, their print heads 75 and the printed material 70.
- the watermark is overprinted on the material.
- the implementation of an ink jet printer for printing a watermark is particularly simple in that the vast majority of printer drivers automatically manage the color mixing to obtain a particular hue. The step of quadrichromic decomposition is therefore most often useless. It should be noted, however, that, depending on the drivers and printers, it may sometimes be desirable to choose a watermark color corresponding to the fundamental colors of the printer, in order to avoid getting raster colors or problems with the printer. alignment between dots of different colors.
- watermark printing can be simultaneous with information or patterns intended to be printed normally. It is also possible to print the watermark separately, over or under the final pattern.
- text can be overprinted on the signed material itself, this text possibly being linked to the watermark.
- the key figures of a contract can thus be hidden in the watermark of the paper and thus make it possible to guarantee its integrity.
- Watermark 1 is visible.
- the lower visibility of the watermark 2 is obtained by simultaneously decreasing the density and the size of the points.
- the watermark 3 further includes a lightening.
- the main difficulty lies in the ability to find the asymmetrical watermark.
- most tattooing techniques can extract information from the signed image without using the original image. Some techniques first make a prediction of what the original image was from the signed image and can then infer what the signature is. This technique is still applicable in the present case. In the case where the material has a uniform and known initial color, it is possible to suppress this prediction. This is particularly the case of a blank sheet of paper. This makes it possible to increase the reliability of the detection and thus to reduce the visibility of the watermark to the extreme limit of sensitivity of an optical scanner. Consequently, it makes it very difficult to duplicate the signed material, for example by photocopying: in fact, the losses inherent in any reproduction system generally weaken. this signature below the detectability threshold.
- An application consists of including such a watermark on papers that you want to avoid copying, such as banknotes for example.
- One embodiment consists in using as a basis a symmetric amplitude modulation spatial type digital watermark algorithm, for example that described in [1].
- vs k ⁇ ' vs k + v . b . at k
- the set of points defined by vba (k) constitutes the watermark ( Figure 8 , step 84) which is added to the original image c (k) to give the signed image c (k) '. It is the latter which is then printed according to the present invention.
- the Figure 8 gives a block diagram of the complete process: the set of points constituting the watermark 85 is calculated 84 from the value of the bit to hide 81 and the key 82 defining the random sequence a (k). The value of the points being positive or negative, as defined by equation (1).
- the equation (2) is equivalent to thresholding the values of the watermark 85 by keeping only the positive values and then adding these values 87 to the image to be signed 83 to obtain the signed image 89.
- this technique is called "asymmetrical amplitude modulation”.
- the sign of the modulation ba (k) being positive, the modulation is said to be positive.
- the method can be further improved by operating in such a way that the watermark dominates over the values of the original mask.
- M is the maximum value allowed by the mask, that is to say the value corresponding to the color of the document before signature.
- the equation clearly shows the positive modulation with respect to zero and also illustrates the fact that at the positions where the watermark is hidden, the underlying image is not taken into account (dominance of the watermark on the original values).
- This method has the advantage that the effective number of points contributing to the watermark increases, up to a factor of 2 in the best case.
- the new value of the points c (k) ' can be measured on the printed sheet using an optical scanner. Two cases then arise depending on whether the color of the material is uniform and known or not.
- the multiplicity of the modified points creates a redundancy making it possible to ensure the robustness of the technique to noise by statistical correlation.
- the Figure 9 is a block diagram describing the process: the signed image obtained by scanner is subtracted from the original image in order to restore the watermark. The bit constituting the signature is then calculated, optionally, an additional filtering step may be performed if visible information has been printed over the signed uniform image.
- the signed image 91 is previously filtered 92 in order to eliminate any noises (scratches, stains, text printed over the watermark, etc.).
- the resulting image 93 is then subtracted 94 from the original image 95 in order to extract the watermark 96.
- the value of the bit b is then found according to the standard watermark detection techniques, as described in the article [5] M. Kutter, "Watermarking resisting to translation, rotation, and scaling.”, Proceedings of SPIE International Symposium on Voice, Video, and Data Communications, November 1998 , which essentially consists of inverting equation (2) and statistically correlating the value of bit b found on several pixels k in order to guarantee good robustness to possible errors that may occur, for example, during the digital acquisition of the image .
- This method can be generalized to several bits b and can then code any digital information such as a number or a string of characters.
- the second case is illustrated by the block diagram of the figure Figure 10 where the original image is predicted from the signed image, the signed image is subtracted from the predicted image in order to render the watermark, the bit constituting the signature is then calculated.
- a denoising filter 105 for example of the Wiener type, is used to make a prediction 106 of the original image o (k) from the signed image 101.
- the difference 102 between these two images then constitutes the watermark 107 which can be decoded 103 using the key 108 to find the bit 104 in the same manner as before ( Figure 9 ). Since the prediction error is significantly greater than in the first case, the number of bits b coded in this way is systematically lower.
- the implementation of the detection requires an optical scanner capable of scanning the document on which the watermark is printed.
- the positioning on the scanner is never perfect, it is necessary to be able to find the information coded by the watermark after possible translations and rotations.
- a suitable technique is to use the method described by [5] which is based on a self-correlated watermark (to compensate for rotations) and an inter-correlation technique (to compensate for translations).
- the method can also be applied to other sectors than printing.
- a laser to engrave metal surfaces, stones, ceramics, etc., and thus encode a digital watermark.
- the applications concerned are, for example, parts of the automotive or aerospace industry or luxury articles in the jewelery or objects sectors. of values. It is also possible to hide watermarks on CD-ROMs or audio CDs, on the screen-printed side or on the engraved side (ink or laser).
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Editing Of Facsimile Originals (AREA)
- Image Processing (AREA)
- Credit Cards Or The Like (AREA)
- Paper (AREA)
- Dental Preparations (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Laminated Bodies (AREA)
- Printing Methods (AREA)
Abstract
Description
La présente invention concerne un procédé destiné à prévenir la contrefaçon ou l'altération d'une surface imprimée ou gravée.The present invention relates to a method for preventing the counterfeiting or alteration of a printed or engraved surface.
Les systèmes usuels destinés à prévenir la contrefaçon ou l'altération de documents imprimés ou gravés peuvent être classés en différents groupes:
- les hologrammes, les impressions de motifs spéciaux
- les impressions avec encres spéciales
- les codes utilisant des encres invisibles
- les systèmes à puce
- holograms, special pattern prints
- prints with special inks
- codes using invisible inks
- smart systems
Les hologrammes, motifs spéciaux et autres décorations sont difficiles à reproduire car leur réalisation nécessite un équipement spécial. Ils sont spécialement conçus pour interférer avec les systèmes de photocopie classique de telle sorte que la copie soit visiblement différente de l'original. Ces systèmes peuvent être contrôlés visuellement sans l'aide de dispositifs particuliers mais présentent l'inconvénient d'être coûteux, assez connus pour être reproduits sans problèmes par des experts en contrefaçon, et finalement leur visibilité nuit à l'esthétique de l'objet protégé (emballage de parfum par exemple). Leur visibilité est également la raison de leur efficacité limitée dans la mesure où un pirate peut facilement identifier l'élément de sécurité, soit pour le copier, soit pour l'effacer physiquement.Holograms, special patterns and other decorations are difficult to reproduce as they require special equipment. They are specially designed to interfere with conventional photocopying systems so that the copy is visibly different from the original. These systems can be visually controlled without the aid of particular devices but have the disadvantage of being expensive, sufficiently known to be reproduced without problems by counterfeit experts, and finally their visibility is detrimental to the aesthetics of the protected object. (perfume packaging for example). Their visibility is also the reason for their limited effectiveness in that an attacker can easily identify the security element, either to copy it or physically delete it.
Les impressions avec encres spéciales utilisent des propriétés chimiques particulières de l'encre pour fournir une réaction déterminée à une action particulière. Ainsi, les encres fluorescentes deviennent très lumineuses quand elles sont éclairées par une longueur d'onde particulière, certaines encres sont même invisibles à la lumière naturelle, d'autres encres changent de couleur en fonction de leur orientation ou de leur température (et peuvent se révéler en chauffant le papier avec un doigt), etc. Les encres spéciales ont comme point commun d'être particulièrement coûteuses et de nécessiter d'opérer des modifications dans la chaîne de production industrielle habituelle (masque supplémentaire pour l'offset par exemple). De plus, bien que plus robuste à la contrefaçon que le groupe précédent, il est également possible de reproduire leurs effets dans la mesure où le pirate peut contrôler par lui-même la fidélité de sa copie par rapport à l'original dès qu'il dispose du dispositif faisant réagir l'encre.Special ink prints use the particular chemical properties of the ink to provide a definite response to a particular action. Thus, fluorescent inks become very bright when illuminated by a particular wavelength, some inks are even invisible to natural light, other inks change color depending on their orientation or temperature (and may reveal by warming the paper with a finger), etc. Special inks have as a common point to be particularly expensive and require changes in the usual industrial production chain (additional mask for offset, for example). In addition, although more robust to counterfeiting than the previous group, it is also possible to reproduce their effects to the extent that the pirate can control by itself the fidelity of his copy compared to the original as soon as he has the device reacting the ink.
Les codes utilisant des encres invisibles, à la différences des deux groupes précédents, permettent de cacher une information numérique. Ces codes peuvent être des caractères, des codes barres, des codes 2D, etc. En plus de son coût élevé et propre aux encres invisibles, ce système a deux inconvénients majeurs. D'une part, du fait de la nature des codes utilisés, il est localisé sur une certaine partie du document ou de l'emballage et il est donc possible de le détruire sans altérer la totalité de la surface. D'autre part, les codes utilisés ont toujours des particularités géométriques (barres, figures géométriques, caractères, etc) les identifiant clairement comme des dispositifs anti-copie. Cela facilite grandement la tache du pirate cherchant à révéler et à reproduire l'encre. De plus dès que le pirate sait réaliser cette reproduction, il détient ipso facto le moyen de reproduire le code.Codes using invisible inks, unlike the two previous groups, hide digital information. These codes can be characters, barcodes, 2D codes, etc. In addition to its high cost and inherent to invisible inks, this system has two major drawbacks. On the one hand, because of the nature of the codes used, it is located on a certain part of the document or the packaging and it is therefore possible to destroy it without altering the entire surface. On the other hand, the codes used always have geometric peculiarities (bars, geometric figures, characters, etc.) clearly identifying them as anti-copy devices. This greatly facilitates the task of the pirate seeking to reveal and reproduce the ink. Moreover as soon as the pirate knows how to realize this reproduction, ipso facto holds the means of reproducing the code.
Finalement les systèmes basés sur des mémoires ou processeurs embarqués cumulent les inconvénients d'être très coûteux, inesthétiques et localisés. Leur application principale consiste plus à sécuriser une communication, ou à stocker dynamiquement une information plutôt qu'à distinguer un original d'une copie.Finally systems based on memories or embedded processors combine the disadvantages of being very expensive, unsightly and localized. Their main application is to secure a communication, or to dynamically store information rather than distinguish an original from a copy.
Le document
L'un des buts de la présente invention est de remédier aux inconvénients des procédés connus permettant de prévenir la contrefaçon ou l'altération de documents imprimés ou gravés par voie numérique.One of the aims of the present invention is to overcome the disadvantages of known methods for preventing counterfeiting or alteration of printed or digitally engraved documents.
A cet effet, la présente invention concerne un procédé destiné à prévenir la contrefaçon ou l'altération de documents imprimés ou gravés caractérisé par l'incorporation d'un filigrane numérique dans une partie ou dans l'ensemble du document.For this purpose, the present invention relates to a method for preventing the counterfeiting or alteration of printed or engraved documents characterized by embedding a digital watermark in part or all of the document.
Selon l'invention, il est proposé une méthode d'impression d'un filigrane et d'une image sur une surface imprimée, ce filigrane étant auto-corrélé et contenant une information à cacher, cette méthode étant caractérisée par les étapes suivantes:
- réaliser un filigrane numérique vba(k) de type spatial en fonction du signe du bit b={-1,1} de l'information à cacher et de l'amplitude v de la modulation d'une composante de couleur ainsi que d'un générateur aléatoire a(k) défini par une clé, tel que la densité du filigrane soit de 2% ou moins,
- imprimer l'image c(k),
- imprimer par-dessus l'image c(k) le filigrane vba(k) pour des valeurs ba(k) > 0 uniquement afin d'obtenir une modulation asymétrique d'amplitude sur la surface à une résolution comprise entre 300 et 1200 dpi.
- to realize a spatial watermark vba (k) according to the sign of the bit b = {- 1,1} of the information to be hidden and the amplitude v of the modulation of a color component as well as of a random generator a (k) defined by a key, such that the density of the watermark is 2% or less,
- print the image c (k),
- print over the image c (k) the watermark vba (k) for values ba (k)> 0 only in order to obtain asymmetrical amplitude modulation on the surface at a resolution between 300 and 1200 dpi.
La technique du filigrane numérique, également connue sous le nom de tatouage numérique, est une technique permettant de cacher des informations de manière robuste et imperceptible dans des données multimédia telles que la musique, la vidéo, les images, les documents, etc. L'information qui est cachée s'appelle la signature. Cette signature peut être par exemple un numéro, un nom ou même une image. Après la protection des données multimédia avec un filigrane numérique on parle d'image signée, de vidéo signée, etc.The digital watermark technique, also known as digital tattooing, is a technique for hiding information in a robust and imperceptible manner in multimedia data such as music, video, images, documents, etc. The information that is hidden is called the signature. This signature can be for example a number, a name or even an image. After the protection of multimedia data with a digital watermark we speak of signed image, signed video, etc.
Jusqu'ici, la technique du filigrane numérique n'a été utilisée que dans le but de retrouver la signature sur une éventuelle copie, pour prouver l'origine de l'information.So far, the technique of the digital watermark has only been used for the purpose of finding the signature on a possible copy, to prove the origin of the information.
« Cacher » comporte un sens bien spécifique dans ce contexte : par exemple dans le cas d'une image, on changera légèrement la couleur de certains pixels, et dans le cas d'une musique on modifiera un peu le son de temps à autre."Hide" has a very specific meaning in this context: for example in the case of an image, we will slightly change the color of some pixels, and in the case of music we will change the sound a little from time to time.
« Imperceptible » veut dire que les modifications introduites sont telles qu'un individu ne peut pas distinguer les données originales des données signées par ses propres sens. Par exemple, une image signée doit avoir exactement la même apparence qu'une image normale, une musique signée doit sembler tout à fait normale, de même pour une vidéo ou n'importe quelle autre donnée. Tout le problème consiste à faire en sorte qu'un ordinateur soit capable de détecter cette information cachée alors qu'elle échappe à nos sens. Il existe aussi des applications où un filigrane visible est acceptable voire même souhaitable. Cela permet notamment d'augmenter encore la robustesse et un contrôle visuel de la présence d'un filigrane. Le principe qui demeure est que le filigrane ne doit pas être dérangeant visuellement."Imperceptible" means that the modifications introduced are such that an individual can not distinguish the original data from the data signed by his own senses. For example, a signed image must look exactly the same as a normal image, a signed music must look perfectly normal, as well as a video or any other data. The whole problem is to make sure that a computer is able to detect this hidden information when it escapes our senses. There are also applications where a visible watermark is acceptable or even desirable. This allows in particular to further increase the robustness and visual control of the presence of a watermark. The principle that remains is that the watermark must not be visually disturbing.
La «robustesse » d'un filigrane signifie que l'on doit pouvoir retrouver la signature après n'importe quelle manipulation de données signées. Prenons par exemple le cas d'une image signée : on doit pouvoir la comprimer, l'imprimer, la scanner ou la tourner sans jamais perdre la signature.The "robustness" of a watermark means that one must be able to find the signature after any manipulation of signed data. Take for example the case of a signed image: it must be able to compress, print, scan or rotate without ever losing the signature.
De nombreuses publications ont été faites sur les différentes techniques permettant de cacher un filigrane dans une image, dans une vidéo ou un signal audio. En ce qui concerne les images, ces dernières peuvent se classer en fonction de la technique utilisée pour le marquage : certaines opèrent des modifications directement dans le domaine spatial (voir par exemple [1]
Ces techniques peuvent également être utilisées pour le marquage de vidéo, moyennant certaines adaptations. D'autres techniques spécifiquement dédiées au marquage de vidéo sont aussi possibles en définissant de nouveaux domaines transformés comme les sous-bandes 3D ou les vecteurs de mouvements (par exemple, voir [3] brevet
Comme on l'a déjà mentionné, la technique du filigrane numérique a été jusqu'ici utilisée dans le but de retrouver la signature sur une éventuelle copie pour prouver l'origine des informations présentes sur la copie, grâce à la présence du filigrane que l'on retrouve sur la copie. Ceci impliquait dans tous les cas l'utilisation d'un filigrane robuste.As already mentioned, the technique of the digital watermark has so far been used for the purpose of finding the signature on a possible copy to prove the origin of the information present on the copy, thanks to the presence of the watermark that the we find on the copy. This involved in all cases the use of a robust watermark.
Dans le procédé de la présente invention, le but de l'incorporation du filigrane numérique sur la surface est différent, puisque sa présence est destinée à prévenir la contrefaçon ou l'altération de la surface concernée, c'est-à-dire de permettre d'apporter la preuve qu'il s'agit de la surface authentique si le filigrane est présent ou qu'il s'agit d'une copie ou que la surface a été altérée si le filigrane est absent. Dans le cas où le filigrane est incorporé à des fins d'authentification de la surface par rapport à des copies, la robustesse du filigrane doit être réduite de façon qu'une copie de la surface se traduise alors par un échec de la lecture du filigrane numérique. On parle alors de filigrane "fragile". Un exemple typique d'application consiste à empêcher la contrefaçon de papiers-valeurs comme les billets de banque. Dans le cas où le filigrane est incorporé afin d'éviter l'altération de tout ou partie de la surface, le filigrane peut être robuste ou fragile.In the method of the present invention, the purpose of incorporating the digital watermark on the surface is different, since its presence is intended to prevent counterfeiting or alteration of the surface concerned, that is to say to allow to prove that it is the authentic surface if the watermark is present or that it is a copy or that the surface has been altered if the watermark is missing. In the case where the watermark is incorporated for surface authentication purposes with respect to copies, the robustness of the watermark must be reduced so that a copy of the surface will result in a failure of the watermark reading. digital. This is called "fragile" watermark. A typical application is to prevent counterfeiting of securities such as banknotes. In the case where the watermark is incorporated in order to avoid the alteration of all or part of the surface, the watermark may be strong or fragile.
La liste suivante décrit un ensemble de caractéristiques présentes seulement de manière isolée dans les systèmes connus destinés à prévenir la contrefaçon ou l'altération de documents imprimés ou gravés mentionnés plus haut :
- Invisibilité
Le filigrane est imprimé en utilisant des couleurs et des résolution imperceptibles à l'oeil nu. Cela permet donc de protéger par exemple un emballage sans que son graphisme en soit altéré, ce qui est important pour des raisons marketing. - Non localité
Le filigrane peut recouvrir la totalité de la surface d'un document imprimé. Il n'est donc pas possible de l'effacer sans altérer le document, par exemple en grattant la surface. En pratique, cette propriété permet par exemple d'éviter les marchés gris, c'est à dire les produits revendus par des distributeurs non autorisés. En effet, ces derniers effacent parfois le code (code 2D invisible par exemple) identifiant leur revendeur en « fraisant » la surface de l'emballage où le code est imprimé. - Prix
Le filigrane est imprimé en utilisant des systèmes d'impression traditionnels. En ce qui concerne l'impression industrielle (offset, etc), il s'intègre totalement dans la chaîne de production et n'induit aucun coût supplémentaire. En ce qui concerne l'impression personnelle (jet d'encre, laser, etc), il est totalement compatible avec les imprimantes du commerce. Dans les deux cas, la lecture se fait avec un scanner digital standard. Ce faible prix ouvre des marchés nouveaux : d'une part en ce qui concerne l'impression industrielle, les emballages de produits de luxe ou pharmaceutiques, ainsi que les certificats, les chèques, les billets d'entrées, etc. D'autre part pour l'impression personnelle, il permet à n'importe qui possédant un équipement standard de créer et vérifier des documents sécurisés et personnalisés. Par exemple un médecin peut cacher le nom des médicaments prescrits dans le papier utilisé pour imprimer son ordonnance. Il est possible de programmer une imprimante pour qu'elle cache un filigrane dans tout document imprimé permettant ainsi d'identifier plus tard la date de l'impression, le nom de l'utilisateur, etc. - Stockage d'information
En plus d'authentifier l'original, le filigrane contient une information numérique (typiquement de plusieurs dizaines de bits par centimètres carrés) qui est encodée ou retrouvée à l'aide d'une clé. En pratique ce stockage permet par exemple de sécuriser une information imprimée en texte visible (donc susceptible d'être modifiée). En effet il est alors possible d'encoder la même information dans le filigrane et donc de pouvoir détecter toute modification dans le texte du document (date, montant, identité, etc.). Une application concerne les contrats dont on veut s'assurer de la date d'émission. Un autre exemple avec les billets de banque : le numéro de série peut être caché dans chaque billet, ainsi il est impossible de créer des faux billets avec des numéros différents car il faudrait pouvoir générer à chaque fois le filigrane correspondant. - Système de lecture et d'écriture à clé
Afin de pouvoir créer et lire le filigrane, il faut utiliser la même clé. En contrôlant l'accès aux clés, on peut donc contrôler quand et par qui chaque filigrane est créé ou lu, ce qui est essentiel : en effet cela complique beaucoup le piratage consistant à créer un nouveau filigrane (le plus simple restant de copier un filigrane existant). D'autre part le pirate sera dans l'incapacité de vérifier qu'un filigrane a été copié avec succès (car pour le lire, il est nécessaire de connaître la clé utilisée pour le cacher). La sécurité offerte par ce système de clé est donc supérieure à celle d'une information imprimée par exemple avec une encre invisible et révélée par ultraviolet, où le pirate peut aisément vérifier et donc améliorer l'encre qu'il contrefait. - Difficile à identifier visuellement
Même en utilisant des dispositifs (filtres, microscopes) particuliers, il est difficile d'identifier la présence d'un filigrane car son aspect visuel se rapproche de celui du grain du papier. Il n'a pas de caractéristique géométrique simple et n'a de sens que pour le programme de détection et muni de la bonne clé. Pour tous les papiers de valeur qui font l'objet d'une analyse fine de la part des pirates, cette qualité est primordiale. - Difficile à copier
L'utilisation combinée de certaines couleurs (jaune sur fond blanc par exemple) et de hautes résolutions d'impression (1200 dpi par exemple) permet d'obtenir un filigrane difficile ou impossible à reproduire sur un équipement de copie classique.
- Invisibility
The watermark is printed using colors and resolutions imperceptible to the naked eye. This allows to protect for example a package without its graphics is altered, which is important for marketing reasons. - Not locality
The watermark can cover the entire surface of a printed document. It is therefore not possible to erase it without altering the document, for example by scraping the surface. In practice, this property makes it possible, for example, to avoid gray markets, ie products resold by unauthorized distributors. Indeed, these sometimes erase the code (invisible 2D code for example) identifying their dealer by "milling" the surface of the package where the code is printed. - Price
The watermark is printed using traditional printing systems. As far as industrial printing (offset, etc.) is concerned, it fully integrates into the production line and does not entail any additional cost. With regard to personal printing (inkjet, laser, etc.), it is fully compatible with commercial printers. In both cases, reading is done with a standard digital scanner. This low price opens new markets: on the one hand with regard to industrial printing, luxury or pharmaceutical packaging, as well as certificates, checks, tickets, etc. On the other hand for personal printing, it allows anyone with standard equipment to create and verify secure and personalized documents. For example, a doctor may hide the names of the medications prescribed in the paper used to print his prescription. You can program a printer to hide a watermark in any printed document so that the date of printing, the name of the user, and so on can be identified later. - Storage of information
In addition to authenticating the original, the watermark contains digital information (typically several dozen bits per square centimeter) that is encoded or retrieved using a key. In practice, this storage makes it possible, for example, to secure information printed in visible text (which can therefore be modified). Indeed it is then possible to encode the same information in the watermark and thus to be able to detect any modification in the text of the document (date, amount, identity, etc.). An application concerns contracts whose date of issue is to be determined. Another example with banknotes: the serial number can be hidden in each ticket, so it is impossible to create fake banknotes with different numbers because it would be necessary to generate each time the corresponding watermark. - Key reading and writing system
In order to create and read the watermark, you must use the same key. By controlling access to keys, we can control when and by whom each watermark is created or read, which is essential: indeed it complicates much the piracy of creating a new watermark (the simplest remaining to copy a watermark existing). On the other hand the hacker will be unable to verify that a watermark has been copied successfully (because to read it, it is necessary to know the key used to hide it). The security offered by this key system is therefore greater than that of information printed for example with an invisible ink and revealed by ultraviolet, where the hacker can easily check and thus improve the ink it counterfeits. - Hard to identify visually
Even using particular devices (filters, microscopes), it is difficult to identify the presence of a watermark because its visual appearance is similar to that of paper grain. It has no simple geometric feature and only makes sense for the detection program and has the correct key. For all the papers of value that are the subject of a thorough analysis by hackers, this quality is paramount. - Hard to copy
The combined use of certain colors (yellow on a white background for example) and high print resolutions (1200 dpi for example) makes it possible to obtain a watermark that is difficult or impossible to reproduce on conventional copy equipment.
Les méthodes qui sont entièrement réalisées dans le domaine digital cachent généralement le filigrane en augmentant et en diminuant l'intensité des couleurs de certains points, ce qui signifie que certains pixels sont éclaircis alors que d'autres sont assombris, comme illustré sur la
Il est cependant certains cas où une modulation symétrique est impossible à réaliser, soit pour des raisons mathématiques (image à signer entièrement blanche ou noire) ou pratiques (liée à la technique d'impression).There are, however, some cases where symmetrical modulation is impossible to achieve, either for mathematical reasons (image to be signed entirely white or black) or practical (related to the printing technique).
La
Ainsi, un autre objet de la présente invention est de proposer un procédé pour cacher et/ou retrouver un filigrane numérique, caractérisé par l'utilisation d'une modulation asymétrique de l'amplitude d'une composante lumineuse visible ou invisible.Thus, another object of the present invention is to propose a method for hiding and / or retrieving a digital watermark, characterized by the use of an asymmetrical modulation of the amplitude of a visible or invisible light component.
La description qui suit, donnée à titre d'exemple, se réfère au dessin annexé sur lequel:
- la
Figure 1 illustre un exemple de modulation symétrique; - la
Figure 2 illustre un exemple de modulation asymétrique; - la
Figure 3 illustre des exemples de filigranes asymétriques; - la
Figure 4 illustre la mise en oeuvre du procédé intégré avec une technique d'impression offset standard; - la
Figure 5 illustre la mise en oeuvre du procédé avec une étape d'impression offset séparée; - la
Figure 6 illustre la mise en oeuvre du procédé avec une étape d'impression offset séparée; - la
Figure 7 illustre la mise en oeuvre du procédé avec une imprimante à jet d'encre; - la
Figure 8 est un schéma bloc du procédé de signature d'un matériau en trois étapes; - la
Figure 9 est un schéma bloc du procédé de lecture d'une image uniforme signée en trois étapes; et - la
Figure 10 est un schéma bloc du procédé de lecture d'une image non-uniforme signée en trois étapes.
- the
Figure 1 illustrates an example of symmetric modulation; - the
Figure 2 illustrates an example of asymmetric modulation; - the
Figure 3 illustrates examples of asymmetrical watermarks; - the
Figure 4 illustrates the implementation of the integrated process with a standard offset printing technique; - the
Figure 5 illustrates the implementation of the method with a separate offset printing step; - the
Figure 6 illustrates the implementation of the method with a separate offset printing step; - the
Figure 7 illustrates the implementation of the method with an ink jet printer; - the
Figure 8 is a block diagram of the three-stage material signature process; - the
Figure 9 is a block diagram of the process of reading a uniform image signed in three steps; and - the
Figure 10 is a block diagram of the process of reading a non-uniform image signed in three steps.
Un exemple de modulation symétrique est illustré à la
Un exemple de modulation asymétrique est illustré à la
Différentes stratégies sont envisageables pour imprimer un filigrane à modulation asymétrique, selon qu'il est positif ou négatif. De plus, il est possible de choisir soit une impression séparée, soit une impression simultanée à l'impression d'un autre motif visuel (fond, texte ou graphique).Different strategies are possible for printing an asymmetrically modulated watermark, depending on whether it is positive or negative. In addition, it is possible to choose either a separate print or a simultaneous print when printing another visual pattern (background, text or graphic).
Une manière d'obtenir une modulation asymétrique positive consiste à utiliser une technique de surimpression en imprimant le filigrane par-dessus les couleurs propres du matériau et autres informations déjà imprimées et donc sans tenir compte des variations locales des couleurs à la surface de ce matériau. Cette approche impose que les valeurs des composantes de couleur du matériau ne peuvent qu'être assombries lors de la signature puisque de l'encre supplémentaire est ajoutée. Mathématiquement, cela correspond à une modulation asymétrique positive de la couleur des points. Dans son principe, cette approche peut être appliquée à n'importe quel procédé d'impression. Certaines spécificités de l'impression du filigrane peuvent dépendre du procédé d'impression. Les cas particuliers de l'impression de type offset et jet d'encre pour la réalisation d'une modulation positive sont détaillés ci-dessous.One way to achieve positive asymmetric modulation is to use an overprint technique by printing the watermark over the actual colors of the material and other information already printed and thus ignoring local color variations on the surface of that material. This approach imposes that the values of the color components of the material can only be darkened during the signature since additional ink is added. Mathematically, this corresponds to a positive asymmetric modulation of the color of the points. In principle, this approach can be applied to any printing process. Some specificities of watermark printing may depend on the printing process. The particular cases of offset and inkjet type printing for performing a positive modulation are detailed below.
La
Une autre alternative possible consiste à utiliser un masque séparé pour le filigrane comme illustré sur la
Un autre procédé d'impression utilisable est de type jet d'encre comme illustré par la
La réalisation d'une modulation négative peut être réalisée lors d'une impression simultanée en suivant le même principe que décrit précédemment car il est toujours possible de soustraire de la couleur au niveau du fichier électronique: sur le motif à imprimer, les points correspondant au filigrane sont alors éclaircis. Pour réaliser une impression séparée avec une modulation négative, il est par contre nécessaire d'utiliser une encre particulière : par exemple, dans le cas d'une encre visible, une solution consiste à utiliser une encre de type couvrante. La synthèse de différentes possibilités d'impression du filigrane est présentée dans le tableau ci-dessous :
Quels que soit le type de modulation ou d'impression choisis, la visibilité finale du filigrane ainsi que sa fragilité à la duplication est contrôlée par un ensemble commun de paramètres :
- Taille des points : il s'agit du diamètre des points du filigrane obtenus après impression. La taille minimale des points est fixée par la technologie d'impression. Des valeurs entre 300 et 1200 points par pouces sont courantes. Plus la taille des points est petites, moins le filigrane est visible.
- Couleur des points : En fonction de la couleur, de la texture et des motifs éventuels appliqués au matériaux, certaines couleurs peuvent être plus ou moins visibles. Par exemple, il est usuel d'utiliser une couleur jaune pour des fonds blancs (modulation positive séparée ou simultanée).
- Densité du filigrane : Cette dernière définit le ratio entre le nombre de points imprimés par unité de surface (mesurée également en points). Des valeurs typiques de 0.02 ou moins peuvent être utilisées. Une taille de point très fine permet d'augmenter la densité du filigrane.
- Quantité d'encre : Lorsque le procédé d'impression le permet, il est intéressant de jouer sur la quantité d'encre utilisée pour imprimer chaque point.
- Tramage : La technique de tramage (demi-teintes) permet de reproduire n'importe quelle couleur à partir des différentes couleurs fondamentales. Il est alors préférable que la taille du tramage soit suffisamment fine par rapport à la taille des points.
- Type d'encre : Des substances non visibles peuvent également être utilisées.
- Size of the points: this is the diameter of the points of the watermark obtained after printing. The minimum size of the points is fixed by the printing technology. Values between 300 and 1200 dots per inch are common. The smaller the point size, the less the watermark is visible.
- Color of points: Depending on the color, texture and possible patterns applied to the materials, some colors may be more or less visible. For example, it is customary to use a yellow color for white backgrounds (separate or simultaneous positive modulation).
- Watermark Density: The latter defines the ratio between the number of dots printed per unit area (measured also in points). Typical values of 0.02 or less can be used. A very fine point size makes it possible to increase the density of the watermark.
- Ink Quantity: When the printing process allows it, it is interesting to play on the amount of ink used to print each dot.
- Screening: The halftoning technique allows to reproduce any color from the different fundamental colors. It is then preferable that the size of the screening is sufficiently fine compared to the size of the points.
- Ink type: Non-visible substances can also be used.
L'influence de certains de ces paramètres est illustrée sur la
La difficulté principale réside dans la capacité à retrouver le filigrane asymétrique. D'une manière générale, la majorité des techniques de tatouage peuvent extraire l'information de l'image signée sans utiliser l'image originale. Certaines techniques réalisent d'abord une prédiction de ce qu'était l'image originale à partir de l'image signée et peuvent ensuite en déduire quelle est la signature. Cette technique est encore applicable dans le cas présent. Dans le cas où le matériau possède une couleur initiale uniforme et connue, il est possible de supprimer cette prédiction. C'est en particulier le cas d'une feuille de papier blanc. Cela permet d'augmenter la fiabilité de la détection et donc de diminuer la visibilité du filigrane jusqu'à l'extrême limite de sensibilité d'un scanner optique. En conséquence, cela rend très difficile la duplication du matériau signé, par exemple par photocopie : en effet, les pertes propres à tout système de reproduction affaiblissent en général cette signature au-dessous du seuil de détectabilité. Une application consiste à inclure un tel filigrane sur des papiers dont on souhaite éviter la copie, comme des billets de banque par exemple.The main difficulty lies in the ability to find the asymmetrical watermark. In general, most tattooing techniques can extract information from the signed image without using the original image. Some techniques first make a prediction of what the original image was from the signed image and can then infer what the signature is. This technique is still applicable in the present case. In the case where the material has a uniform and known initial color, it is possible to suppress this prediction. This is particularly the case of a blank sheet of paper. This makes it possible to increase the reliability of the detection and thus to reduce the visibility of the watermark to the extreme limit of sensitivity of an optical scanner. Consequently, it makes it very difficult to duplicate the signed material, for example by photocopying: in fact, the losses inherent in any reproduction system generally weaken. this signature below the detectability threshold. An application consists of including such a watermark on papers that you want to avoid copying, such as banknotes for example.
Afin d'augmenter la fiabilité de la détection, il est également possible de coder la signature en utilisant la différence entre des paires de pixels et de calculer ensuite la moyenne de ces différences. D'un point de vue statistique, cela augmentera la corrélation de la détection avec pour résultat une signature plus fiable.In order to increase the reliability of the detection, it is also possible to code the signature using the difference between pairs of pixels and then to calculate the average of these differences. From a statistical point of view, this will increase the correlation of the detection resulting in a more reliable signature.
Une mode de réalisation consiste à utiliser comme base un algorithme de filigrane numérique de type spatial à modulation symétrique d'amplitude, comme par exemple celui décrit dans [1]. On parle de modulation symétrique d'amplitude d'un signal lorsque la valeur du signal est augmentée en certains points et diminuées en d'autre points. Dans cette technique, une composante de couleur d'un ensemble de pixels c(k) est modifiée d'une valeur v correspondant à l'amplitude de la modulation et en fonction du signe du bit b={-1,1} à cacher ainsi que d'un générateur aléatoire a(k) défini par une clé et donnant deux valeurs {-1,1}.
Dans l'équation (1), l'ensemble des points défini par v.b.a(k) constitue le filigrane (
Dans le cas d'une modulation asymétrique positive (filigrane en surimpression par exemple), ce n'est plus l'image c(k)' mais le filigrane lui-même v.b.a(k) qui est imprimé par-dessus une image c(k). En effet, la composante c du support (bleu, luminance, etc...) a déjà une valeur initiale o(k) et ne peut qu'être augmentée lors de la surimpression. La formule suivante est alors appliquée :
La
Dans le cas où le filigrane est réalisé par une impression simultanée, le procédé peut encore être amélioré en opérant de manière à ce que le filigrane domine sur les valeurs du masque original. Mathématiquement, ce concept se formalise de la manière suivante :
où M est la valeur maximum autorisée par le masque, c'est-à-dire la valeur correspondant à la couleur du document avant signature. L'équation montre clairement la modulation positive par rapport à zéro et illustre également le fait qu'aux positions où le filigrane est caché, l'image sous-jacente n'est pas prise en compte (domination du filigrane sur les valeurs originales). Ce procédé présente l'avantage que le nombre effectif de points contribuant au filigrane augmente, pouvant atteindre un facteur 2 dans le meilleur cas.In the case where the watermark is realized by simultaneous printing, the method can be further improved by operating in such a way that the watermark dominates over the values of the original mask. Mathematically, this concept is formalized as follows:
where M is the maximum value allowed by the mask, that is to say the value corresponding to the color of the document before signature. The equation clearly shows the positive modulation with respect to zero and also illustrates the fact that at the positions where the watermark is hidden, the underlying image is not taken into account (dominance of the watermark on the original values). This method has the advantage that the effective number of points contributing to the watermark increases, up to a factor of 2 in the best case.
Il est également possible d'obtenir une modulation négative en imprimant une couleur uniforme u « percée » par le filigrane. L'équation (2) devient alors :
Dans tous les cas (modulation asymétrique positive ou négative), si le générateur aléatoire. a(k) génère le même nombre de valeurs positives et négatives, il en résulte que, statistiquement, la moitié des pixels c(k) est modifiée. Si la valeur de v est choisie suffisamment faible et que la finesse d'impression est suffisamment haute, l'impression de ces points peut être faite de manière invisible.In all cases (positive or negative asymmetric modulation), if the random generator. a (k) generates the same number of positive and negative values, it follows that, statistically, half of the pixels c (k) is modified. If the value of v is chosen sufficiently weak and that the fineness of impression is high enough, the printing of these points can be done in an invisible way.
La nouvelle valeur des points c(k)' peut être mesurée sur la feuille imprimée en utilisant un scanner optique. Deux cas se présentent alors selon que la couleur du matériau est uniforme et connue ou non.The new value of the points c (k) ' can be measured on the printed sheet using an optical scanner. Two cases then arise depending on whether the color of the material is uniform and known or not.
Dans le premier cas, l'information b est alors aisément retrouvée dans la mesure où o(k)=Constante, v et a(k) sont tous connus par avance. La multiplicité des points modifiés crée une redondance permettant d'assurer la robustesse de la technique au bruit par corrélation statistique. La
Cette méthode est généralisable à plusieurs bits b et permet alors de coder n'importe quelle information numérique comme un numéro ou une chaîne de caractères.This method can be generalized to several bits b and can then code any digital information such as a number or a string of characters.
Le deuxième cas est illustré par le schéma bloc de la figure
Dans la pratique il peut également être utile d'imprimer des informations visibles par-dessus le filigrane numérique. C'est le cas par exemple d'une feuille blanche de papier qui comporte un filigrane numérique et par dessus laquelle est imprimé un texte. Ceci est réalisable en choisissant des couleurs ou des intensités distinctes pour le filigrane et pour les informations visibles. Il est ensuite possible de filtrer l'image avant la détection du filigrane (
Finalement, la mise en oeuvre de la détection requiert un scanner optique capable de numériser le document sur lequel le filigrane est imprimé. Le positionnement sur le scanner n'étant jamais parfait, il est nécessaire de pouvoir retrouver l'information codé par le filigrane après d'éventuelles translations et rotations. Une technique convenable consiste à utiliser la méthode décrite par [5] qui est basée sur un filigrane auto-correlé (pour compenser les rotations) et une technique d'inter-corrélation (pour compenser les translations).Finally, the implementation of the detection requires an optical scanner capable of scanning the document on which the watermark is printed. The positioning on the scanner is never perfect, it is necessary to be able to find the information coded by the watermark after possible translations and rotations. A suitable technique is to use the method described by [5] which is based on a self-correlated watermark (to compensate for rotations) and an inter-correlation technique (to compensate for translations).
Le procédé peut également être appliqué à d'autres secteurs que l'impression. Par exemple, il est possible d'utiliser un laser pour graver des surfaces métalliques, des pierres, de la céramique, etc, et encoder ainsi un filigrane digital. Les applications concernées sont alors par exemple les pièces de l'industrie automobile ou aéronautique ou des objets de luxe dans les secteurs de la joaillerie ou des objets de valeurs. On peut également imaginer de cacher des filigranes sur des CD-ROM ou CD audio, sur la face sérigraphiée ou sur la face gravée (encre ou laser).The method can also be applied to other sectors than printing. For example, it is possible to use a laser to engrave metal surfaces, stones, ceramics, etc., and thus encode a digital watermark. The applications concerned are, for example, parts of the automotive or aerospace industry or luxury articles in the jewelery or objects sectors. of values. It is also possible to hide watermarks on CD-ROMs or audio CDs, on the screen-printed side or on the engraved side (ink or laser).
Claims (4)
- Method of printing a watermark and a image on a printed surface, this watermark being auto-correlated and containing an information to hide, this method being characterized in the following steps :- realizing a digital watermark vba(k) of the spatial type in function of the sign of the bit b={-1;1} of the information to hide and of the amplitude v of the modulation of a color component as well as a random generator a(k) defined by a key, so that the density of the watermark is 2% or less,- printing the image c(k),- printing over the image c(k) the watermark vba(k) for the values ba(k) >0 only in order to obtain an asymmetrical amplitude modulation over the surface at a resolution comprised between 300 and 1200 dpi.
- Method of printing a watermark according to claim 1, characterized in that the watermark covers the entire surface.
- Printed surface comprising a image and a watermark according one of the claim 1 or 2.
- Printed surface according to the claim 3, characterized in that the watermark is printed on a material having an uniform color.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10174049.6A EP2261867B1 (en) | 2000-09-20 | 2001-09-17 | Method intended for preventing forgery or alteration of a printed or engraved surface. |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH183200 | 2000-09-20 | ||
CH18322000 | 2000-09-20 | ||
PCT/CH2001/000560 WO2002025599A1 (en) | 2000-09-20 | 2001-09-17 | Method for preventing counterfeiting or alteration of a printed or engraved surface |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10174049.6A Division EP2261867B1 (en) | 2000-09-20 | 2001-09-17 | Method intended for preventing forgery or alteration of a printed or engraved surface. |
EP10174049.6 Division-Into | 2010-08-25 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1319219A1 EP1319219A1 (en) | 2003-06-18 |
EP1319219B1 true EP1319219B1 (en) | 2010-11-17 |
Family
ID=4566438
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01964793A Expired - Lifetime EP1319219B1 (en) | 2000-09-20 | 2001-09-17 | Method for preventing counterfeiting or alteration of a printed or engraved surface |
EP10174049.6A Expired - Lifetime EP2261867B1 (en) | 2000-09-20 | 2001-09-17 | Method intended for preventing forgery or alteration of a printed or engraved surface. |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10174049.6A Expired - Lifetime EP2261867B1 (en) | 2000-09-20 | 2001-09-17 | Method intended for preventing forgery or alteration of a printed or engraved surface. |
Country Status (8)
Country | Link |
---|---|
US (1) | US7684088B2 (en) |
EP (2) | EP1319219B1 (en) |
CN (1) | CN1252653C (en) |
AT (1) | ATE488822T1 (en) |
DE (1) | DE60143487D1 (en) |
DK (1) | DK1319219T3 (en) |
ES (1) | ES2356598T3 (en) |
WO (1) | WO2002025599A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9552543B2 (en) | 2014-02-04 | 2017-01-24 | Hicof Inc. | Method and apparatus for proving an authentication of an original item and method and apparatus for determining an authentication status of a suspect item |
US10235618B2 (en) | 2015-06-18 | 2019-03-19 | Hicof Inc. | Authentication feature in a barcode |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6728390B2 (en) | 1995-05-08 | 2004-04-27 | Digimarc Corporation | Methods and systems using multiple watermarks |
US7246239B2 (en) | 2001-01-24 | 2007-07-17 | Digimarc Corporation | Digital watermarks for checking authenticity of printed objects |
US6899475B2 (en) | 2002-01-30 | 2005-05-31 | Digimarc Corporation | Watermarking a page description language file |
US7974495B2 (en) | 2002-06-10 | 2011-07-05 | Digimarc Corporation | Identification and protection of video |
US7644281B2 (en) * | 2004-09-27 | 2010-01-05 | Universite De Geneve | Character and vector graphics watermark for structured electronic documents security |
EP1691539A1 (en) * | 2005-02-15 | 2006-08-16 | European Central Bank | Two-dimensional security pattern that can be authenticated with one-dimensional signal processing |
EP1690697A1 (en) | 2005-02-15 | 2006-08-16 | Alpvision SA | Method to apply an invisible mark on a media |
KR100831601B1 (en) * | 2005-10-26 | 2008-05-23 | 이항경 | Method and system for good authentification on communication network by using serial number and password |
CN101089807A (en) * | 2006-06-16 | 2007-12-19 | 光宝科技股份有限公司 | Printing method and device for floating print |
US8770625B1 (en) * | 2006-12-22 | 2014-07-08 | Hewlett-Packard Development Company, L.P. | Anti-counterfeiting articles |
DE102008012426A1 (en) * | 2007-10-31 | 2009-05-07 | Bundesdruckerei Gmbh | Document-production method for producing a security inserts imaging information/data into layers of a document to form a total security image |
WO2009134965A2 (en) * | 2008-04-30 | 2009-11-05 | Polyonics, Inc. | Method and apparatus for the detection of counterfeiting |
US9749607B2 (en) | 2009-07-16 | 2017-08-29 | Digimarc Corporation | Coordinated illumination and image signal capture for enhanced signal detection |
HUP1200097A2 (en) * | 2012-02-15 | 2013-08-28 | Glenisys Kft | Security element and method for checking originality of a printed matter |
US10424038B2 (en) | 2015-03-20 | 2019-09-24 | Digimarc Corporation | Signal encoding outside of guard band region surrounding text characters, including varying encoding strength |
US9635378B2 (en) | 2015-03-20 | 2017-04-25 | Digimarc Corporation | Sparse modulation for robust signaling and synchronization |
FR3018130B1 (en) * | 2014-03-03 | 2016-03-25 | Advanced Track & Trace | METHOD OF MARKING A HOLOGRAPHIC MATRIX AND HOLOGRAPHIC MATRIX THUS OBTAINED |
US10783601B1 (en) | 2015-03-20 | 2020-09-22 | Digimarc Corporation | Digital watermarking and signal encoding with activable compositions |
US9754341B2 (en) | 2015-03-20 | 2017-09-05 | Digimarc Corporation | Digital watermarking and data hiding with narrow-band absorption materials |
FR3035819B1 (en) | 2015-05-07 | 2021-04-30 | Honnorat Rech & Services | SMARTPHONE AUTHENTICABLE PAPER |
CN106682912B (en) | 2015-11-10 | 2021-06-15 | 艾普维真股份有限公司 | Authentication method of 3D structure |
US10896307B2 (en) | 2017-11-07 | 2021-01-19 | Digimarc Corporation | Generating and reading optical codes with variable density to adapt for visual quality and reliability |
US10872392B2 (en) | 2017-11-07 | 2020-12-22 | Digimarc Corporation | Generating artistic designs encoded with robust, machine-readable data |
US11062108B2 (en) | 2017-11-07 | 2021-07-13 | Digimarc Corporation | Generating and reading optical codes with variable density to adapt for visual quality and reliability |
EP3686027B1 (en) | 2019-01-27 | 2021-07-14 | U-NICA Systems AG | Method of printing authentication indicators with an amplitude-modulated half tone |
TWI844619B (en) | 2019-02-28 | 2024-06-11 | 瑞士商西克帕控股有限公司 | Method for authenticating a magnetically induced mark with a portable device |
PT115571B (en) | 2019-06-08 | 2021-06-07 | Incm Imprensa Nac Casa Da Moeda S A | METHOD FOR VALIDATION OF THE AUTHENTICITY OF AN IMAGE PRESENT IN AN OBJECT, OBJECT WITH INTENSIFIED LEVEL OF SAFETY AND ITS METHOD OF PREPARATION, COMPUTER DEVICE, COMPUTER PROGRAMS AND ADAPTED READING MEDIA |
US11636565B1 (en) | 2019-07-24 | 2023-04-25 | Digimarc Corporation | Tamper detection arrangements, and point of sales systems employing same |
EP3859597A1 (en) | 2020-01-31 | 2021-08-04 | U-NICA Systems AG | A computer implemented method and system of surface identification comprising scales |
AR123354A1 (en) | 2020-09-02 | 2022-11-23 | Sicpa Holding Sa | SECURITY MARK, METHOD AND DEVICE FOR READING THE SECURITY MARK, SECURITY DOCUMENT MARKED WITH THE SECURITY MARK AND METHOD AND SYSTEM FOR VERIFYING SUCH SECURITY DOCUMENT |
WO2023076847A1 (en) | 2021-10-26 | 2023-05-04 | Numéraire Financial, Inc. | Tokenizing scarce goods with provenance history bound to biological fingerprints |
EP4328879A1 (en) | 2022-08-26 | 2024-02-28 | Alpvision SA | Systems and methods for predicting the authentication detectability of counterfeited items |
EP4400324A1 (en) | 2023-01-10 | 2024-07-17 | Alpvision SA | A product comprising a marking pattern on a surface area for identifying the product |
Family Cites Families (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3984624A (en) | 1974-07-25 | 1976-10-05 | Weston Instruments, Inc. | Video system for conveying digital and analog information |
US4237484A (en) | 1979-08-08 | 1980-12-02 | Bell Telephone Laboratories, Incorporated | Technique for transmitting digital data together with a video signal |
FR2515403A1 (en) | 1981-10-28 | 1983-04-29 | Quadrivium Inf | METHOD FOR IDENTIFYING A SOUND RECORDING AND DUPLICATION INSTALLATION IMPLEMENTING THE METHOD |
US5191966A (en) * | 1982-09-02 | 1993-03-09 | Miller Formless Co., Inc. | Apparatus and method for unloading bulk materials |
DE3851724T2 (en) | 1987-07-08 | 1995-05-04 | Matsushita Electric Ind Co Ltd | Method and device for protecting copy signals. |
GB8806452D0 (en) | 1988-03-18 | 1988-04-20 | Imperial College | Digital data security system |
FI80405C (en) | 1988-03-24 | 1990-06-11 | Suomen Pankin Setelipaino | Printed article secured with warning figure and method for its cutting |
NL8901032A (en) | 1988-11-10 | 1990-06-01 | Philips Nv | CODER FOR INCLUDING ADDITIONAL INFORMATION IN A DIGITAL AUDIO SIGNAL WITH A PREFERRED FORMAT, A DECODER FOR DERIVING THIS ADDITIONAL INFORMATION FROM THIS DIGITAL SIGNAL, AN APPARATUS FOR RECORDING A DIGITAL SIGNAL ON A CODE OF RECORD. OBTAINED A RECORD CARRIER WITH THIS DEVICE. |
US5103459B1 (en) | 1990-06-25 | 1999-07-06 | Qualcomm Inc | System and method for generating signal waveforms in a cdma cellular telephone system |
CA2044404C (en) | 1990-07-31 | 1998-06-23 | Dan S. Bloomberg | Self-clocking glyph shape codes |
US5091966A (en) | 1990-07-31 | 1992-02-25 | Xerox Corporation | Adaptive scaling for decoding spatially periodic self-clocking glyph shape codes |
EP0493091A1 (en) | 1990-12-27 | 1992-07-01 | Xerox Corporation | Method and system for embedding machine readable digital data in grayscale images |
US5315098A (en) * | 1990-12-27 | 1994-05-24 | Xerox Corporation | Methods and means for embedding machine readable digital data in halftone images |
CA2063785C (en) | 1991-03-25 | 1998-09-29 | Masahiro Funada | Image processing apparatus |
SG71841A1 (en) | 1991-03-29 | 2000-04-18 | Canon Kk | Image processing apparatus and copying machine |
US6166750A (en) | 1992-01-31 | 2000-12-26 | Canon Kabushiki Kaisha | Image processing apparatus and method for adding predetermined additional information to an image by adding a predetermined number of unit dots to partial color component data of the image |
US5721788A (en) | 1992-07-31 | 1998-02-24 | Corbis Corporation | Method and system for digital image signatures |
US6421145B1 (en) * | 1992-09-28 | 2002-07-16 | Canon Kabushiki Kaisha | Image processing apparatus and method using image information and additional information or an additional pattern added thereto or superposed thereon |
US5421869A (en) * | 1993-05-28 | 1995-06-06 | Nocopi Technologies, Inc. | Security marking method and composition |
US6614914B1 (en) * | 1995-05-08 | 2003-09-02 | Digimarc Corporation | Watermark embedder and reader |
US5748763A (en) | 1993-11-18 | 1998-05-05 | Digimarc Corporation | Image steganography system featuring perceptually adaptive and globally scalable signal embedding |
US6345104B1 (en) * | 1994-03-17 | 2002-02-05 | Digimarc Corporation | Digital watermarks and methods for security documents |
EP0959621B1 (en) | 1993-11-18 | 2001-02-28 | Digimarc Corporation | Video copy control with plural embedded signals |
US6449377B1 (en) * | 1995-05-08 | 2002-09-10 | Digimarc Corporation | Methods and systems for watermark processing of line art images |
US7116781B2 (en) | 1993-11-18 | 2006-10-03 | Digimarc Corporation | Counteracting geometric distortions in watermarking |
US5768426A (en) | 1993-11-18 | 1998-06-16 | Digimarc Corporation | Graphics processing system employing embedded code signals |
US6882738B2 (en) | 1994-03-17 | 2005-04-19 | Digimarc Corporation | Methods and tangible objects employing textured machine readable data |
US5488664A (en) | 1994-04-22 | 1996-01-30 | Yeda Research And Development Co., Ltd. | Method and apparatus for protecting visual information with printed cryptographic watermarks |
US5530751A (en) | 1994-06-30 | 1996-06-25 | Hewlett-Packard Company | Embedded hidden identification codes in digital objects |
US5600732A (en) * | 1994-12-08 | 1997-02-04 | Banctec, Inc. | Document image analysis method |
US6728390B2 (en) | 1995-05-08 | 2004-04-27 | Digimarc Corporation | Methods and systems using multiple watermarks |
ATE418233T1 (en) | 1995-05-08 | 2009-01-15 | Digimarc Corp | METHOD FOR EMBEDDING MACHINE READABLE STEGANOGRAPHIC CODE |
US6988202B1 (en) | 1995-05-08 | 2006-01-17 | Digimarc Corporation | Pre-filteriing to increase watermark signal-to-noise ratio |
US7171018B2 (en) | 1995-07-27 | 2007-01-30 | Digimarc Corporation | Portable devices and methods employing digital watermarking |
US6345145B1 (en) | 1995-08-25 | 2002-02-05 | Sony Corporation | Signal recording/reproducing method and apparatus, signal record medium and signal transmission/reception method and apparatus |
US6750902B1 (en) * | 1996-02-13 | 2004-06-15 | Fotonation Holdings Llc | Camera network communication device |
US5974548A (en) * | 1996-07-12 | 1999-10-26 | Novell, Inc. | Media-independent document security method and apparatus |
US5872834A (en) | 1996-09-16 | 1999-02-16 | Dew Engineering And Development Limited | Telephone with biometric sensing device |
US6039257A (en) * | 1997-04-28 | 2000-03-21 | Pitney Bowes Inc. | Postage metering system that utilizes secure invisible bar codes for postal verification |
US5960081A (en) | 1997-06-05 | 1999-09-28 | Cray Research, Inc. | Embedding a digital signature in a video sequence |
US6104812A (en) * | 1998-01-12 | 2000-08-15 | Juratrade, Limited | Anti-counterfeiting method and apparatus using digital screening |
US5946414A (en) | 1998-08-28 | 1999-08-31 | Xerox Corporation | Encoding data in color images using patterned color modulated image regions |
US6542629B1 (en) * | 1999-07-22 | 2003-04-01 | Xerox Corporation | Digital imaging method and apparatus for detection of document security marks |
US6546114B1 (en) * | 1999-09-07 | 2003-04-08 | Microsoft Corporation | Technique for detecting a watermark in a marked image |
US6442555B1 (en) * | 1999-10-26 | 2002-08-27 | Hewlett-Packard Company | Automatic categorization of documents using document signatures |
JP2001213015A (en) * | 2000-02-02 | 2001-08-07 | Fujitsu Ltd | Image recorder |
US6708894B2 (en) * | 2001-06-26 | 2004-03-23 | Xerox Corporation | Method for invisible embedded data using yellow glyphs |
US7310168B2 (en) * | 2001-07-03 | 2007-12-18 | Infoprint Solutions Company Llc | Method and apparatus for controlling a spot function for digital halftoning |
-
2001
- 2001-09-17 EP EP01964793A patent/EP1319219B1/en not_active Expired - Lifetime
- 2001-09-17 CN CNB018188141A patent/CN1252653C/en not_active Expired - Lifetime
- 2001-09-17 EP EP10174049.6A patent/EP2261867B1/en not_active Expired - Lifetime
- 2001-09-17 ES ES01964793T patent/ES2356598T3/en not_active Expired - Lifetime
- 2001-09-17 US US10/380,914 patent/US7684088B2/en active Active
- 2001-09-17 AT AT01964793T patent/ATE488822T1/en active
- 2001-09-17 DE DE60143487T patent/DE60143487D1/en not_active Expired - Lifetime
- 2001-09-17 DK DK01964793.2T patent/DK1319219T3/en active
- 2001-09-17 WO PCT/CH2001/000560 patent/WO2002025599A1/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9552543B2 (en) | 2014-02-04 | 2017-01-24 | Hicof Inc. | Method and apparatus for proving an authentication of an original item and method and apparatus for determining an authentication status of a suspect item |
US10235618B2 (en) | 2015-06-18 | 2019-03-19 | Hicof Inc. | Authentication feature in a barcode |
Also Published As
Publication number | Publication date |
---|---|
EP2261867A3 (en) | 2012-12-19 |
EP2261867B1 (en) | 2018-07-18 |
EP1319219A1 (en) | 2003-06-18 |
CN1475001A (en) | 2004-02-11 |
US20040013285A1 (en) | 2004-01-22 |
WO2002025599A1 (en) | 2002-03-28 |
EP2261867A2 (en) | 2010-12-15 |
CN1252653C (en) | 2006-04-19 |
ATE488822T1 (en) | 2010-12-15 |
US7684088B2 (en) | 2010-03-23 |
DK1319219T3 (en) | 2011-02-21 |
DE60143487D1 (en) | 2010-12-30 |
ES2356598T3 (en) | 2011-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1319219B1 (en) | Method for preventing counterfeiting or alteration of a printed or engraved surface | |
US11548310B2 (en) | Authenticating identification and security documents and other objects | |
US6718046B2 (en) | Low visibility watermark using time decay fluorescence | |
CA2596103C (en) | Method to apply an invisible mark on a media | |
RU2316058C2 (en) | System and method for product authentication | |
EP2780865B1 (en) | Pattern for encoding digital information on a surface, and marking and reading methods | |
AU2013220001B2 (en) | Security element and method to inspect authenticity of a print | |
US20030005304A1 (en) | Marking articles using a covert digitally watermarked image | |
EP1433305B1 (en) | Method for robust asymmetric modulation spatial marking with spatial oversampling | |
EP2398652B1 (en) | Method and device for securing documents against forgery | |
CH694233A5 (en) | Prevention of counterfeiting or alteration to printed or engraved document surfaces uses a numerical watermark in a part or over whole surface of document | |
JP2002532812A (en) | Anti-counterfeiting system | |
CA2726968A1 (en) | Fiduciary or similar document comprising color block designs and copperplate printing, and manufacturing method for same | |
FR2734655A1 (en) | Formation of cheque protected against falsification | |
EP1847400A2 (en) | Control element for printed objects |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20030326 |
|
AK | Designated contracting states |
Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
17Q | First examination report despatched |
Effective date: 20061009 |
|
17Q | First examination report despatched |
Effective date: 20061009 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: KUTTER, MARTIN Inventor name: MEYLAN, ROLAND Inventor name: JORDAN, FREDERIC |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60143487 Country of ref document: DE Date of ref document: 20101230 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: LEMAN CONSULTING S.A. |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2356598 Country of ref document: ES Kind code of ref document: T3 Effective date: 20110411 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110317 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20101117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20110218 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20110818 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20110914 Year of fee payment: 11 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 60143487 Country of ref document: DE Effective date: 20110818 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110917 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20170922 Year of fee payment: 17 Ref country code: IT Payment date: 20170926 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20170928 Year of fee payment: 17 Ref country code: NL Payment date: 20170921 Year of fee payment: 17 Ref country code: SE Payment date: 20170921 Year of fee payment: 17 Ref country code: AT Payment date: 20170922 Year of fee payment: 17 Ref country code: TR Payment date: 20170906 Year of fee payment: 17 Ref country code: DK Payment date: 20170921 Year of fee payment: 17 Ref country code: BE Payment date: 20170921 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20171025 Year of fee payment: 17 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 18 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180917 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20181001 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 488822 Country of ref document: AT Kind code of ref document: T Effective date: 20180917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180918 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20180930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180917 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180917 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180930 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180917 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20191031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180918 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200922 Year of fee payment: 20 Ref country code: FR Payment date: 20200914 Year of fee payment: 20 Ref country code: DE Payment date: 20200925 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 60143487 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20210916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20210916 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180917 |