EP1319219B1 - Method for preventing counterfeiting or alteration of a printed or engraved surface - Google Patents

Method for preventing counterfeiting or alteration of a printed or engraved surface Download PDF

Info

Publication number
EP1319219B1
EP1319219B1 EP01964793A EP01964793A EP1319219B1 EP 1319219 B1 EP1319219 B1 EP 1319219B1 EP 01964793 A EP01964793 A EP 01964793A EP 01964793 A EP01964793 A EP 01964793A EP 1319219 B1 EP1319219 B1 EP 1319219B1
Authority
EP
European Patent Office
Prior art keywords
watermark
image
printed
printing
modulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01964793A
Other languages
German (de)
French (fr)
Other versions
EP1319219A1 (en
Inventor
Frédéric JORDAN
Roland Meylan
Martin Kutter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alpvision SA
Original Assignee
Alpvision SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alpvision SA filed Critical Alpvision SA
Priority to EP10174049.6A priority Critical patent/EP2261867B1/en
Publication of EP1319219A1 publication Critical patent/EP1319219A1/en
Application granted granted Critical
Publication of EP1319219B1 publication Critical patent/EP1319219B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/004Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency using digital security elements, e.g. information coded on a magnetic thread or strip
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D7/00Testing specially adapted to determine the identity or genuineness of valuable papers or for segregating those which are unacceptable, e.g. banknotes that are alien to a currency
    • G07D7/005Testing security markings invisible to the naked eye, e.g. verifying thickened lines or unobtrusive markings or alterations
    • G07D7/0054Testing security markings invisible to the naked eye, e.g. verifying thickened lines or unobtrusive markings or alterations involving markings the properties of which are altered from original properties
    • G07D7/0056Testing security markings invisible to the naked eye, e.g. verifying thickened lines or unobtrusive markings or alterations involving markings the properties of which are altered from original properties involving markings of altered colours

Definitions

  • the present invention relates to a method for preventing the counterfeiting or alteration of a printed or engraved surface.
  • Special ink prints use the particular chemical properties of the ink to provide a definite response to a particular action.
  • fluorescent inks become very bright when illuminated by a particular wavelength, some inks are even invisible to natural light, other inks change color depending on their orientation or temperature (and may reveal by warming the paper with a finger), etc.
  • Special inks have as a common point to be particularly expensive and require changes in the usual industrial production chain (additional mask for offset, for example).
  • additional mask for offset for example.
  • Codes using invisible inks unlike the two previous groups, hide digital information. These codes can be characters, barcodes, 2D codes, etc. In addition to its high cost and inherent to invisible inks, this system has two major drawbacks. On the one hand, because of the nature of the codes used, it is located on a certain part of the document or the packaging and it is therefore possible to destroy it without altering the entire surface. On the other hand, the codes used always have geometric peculiarities (bars, geometric figures, characters, etc.) clearly identifying them as anti-copy devices. This greatly facilitates the task of the pirate seeking to reveal and reproduce the ink. Moreover as soon as the pirate knows how to realize this reproduction, ipso facto holds the means of reproducing the code.
  • the document EP 0 961 239 discloses a solution for embedding a watermark in an image such as a banknote image.
  • the proposed solution is to modify by slight alterations of the ink color, the density or the texture of the surface of the banknote.
  • the watermark will modulate the width or location of a line component that forms the image of the bill.
  • One of the aims of the present invention is to overcome the disadvantages of known methods for preventing counterfeiting or alteration of printed or digitally engraved documents.
  • the present invention relates to a method for preventing the counterfeiting or alteration of printed or engraved documents characterized by embedding a digital watermark in part or all of the document.
  • the digital watermark technique also known as digital tattooing, is a technique for hiding information in a robust and imperceptible manner in multimedia data such as music, video, images, documents, etc.
  • the information that is hidden is called the signature.
  • This signature can be for example a number, a name or even an image.
  • “Hide” has a very specific meaning in this context: for example in the case of an image, we will slightly change the color of some pixels, and in the case of music we will change the sound a little from time to time.
  • “Imperceptible” means that the modifications introduced are such that an individual can not distinguish the original data from the data signed by his own senses. For example, a signed image must look exactly the same as a normal image, a signed music must look perfectly normal, as well as a video or any other data. The whole problem is to make sure that a computer is able to detect this hidden information when it escapes our senses. There are also applications where a visible watermark is acceptable or even desirable. This allows in particular to further increase the robustness and visual control of the presence of a watermark. The principle that remains is that the watermark must not be visually disturbing.
  • the "robustness" of a watermark means that one must be able to find the signature after any manipulation of signed data. Take for example the case of a signed image: it must be able to compress, print, scan or rotate without ever losing the signature.
  • the technique of the digital watermark has so far been used for the purpose of finding the signature on a possible copy to prove the origin of the information present on the copy, thanks to the presence of the watermark that the we find on the copy. This involved in all cases the use of a robust watermark.
  • the purpose of incorporating the digital watermark on the surface is different, since its presence is intended to prevent counterfeiting or alteration of the surface concerned, that is to say to allow to prove that it is the authentic surface if the watermark is present or that it is a copy or that the surface has been altered if the watermark is missing.
  • the robustness of the watermark must be reduced so that a copy of the surface will result in a failure of the watermark reading. digital. This is called "fragile" watermark.
  • a typical application is to prevent counterfeiting of securities such as banknotes.
  • the watermark may be strong or fragile.
  • Figure 1 the graph shows the variation of luminance of the pixels of an image according to their position X and for an identical position Y. The four peaks illustrate the effect of a symmetrical modulation of this signal obtained by increasing or decreasing its intensity locally.
  • the Figure 2 gives an example of asymmetric modulation obtained by darkening the color of some pixels. This modulation can then be positive or negative depending on whether color is added or removed.
  • the graph of the figure shows the luminance variation of the pixels of an image as a function of their position X and for an identical position Y. The two peaks illustrate the effect of an asymmetrical modulation of this signal obtained by decreasing only its intensity.
  • the Figure 3 gives some examples of digital watermark images.
  • Another object of the present invention is to propose a method for hiding and / or retrieving a digital watermark, characterized by the use of an asymmetrical modulation of the amplitude of a visible or invisible light component.
  • FIG. 1 An example of symmetric modulation is illustrated in Figure 1 .
  • the graph shows the luminance variation of the pixels of an image as a function of their X position and for an identical Y position.
  • the four peaks illustrate the effect of a symmetrical modulation of this signal obtained by increasing or decreasing its intensity locally.
  • FIG. 2 An example of asymmetric modulation is illustrated in Figure 2 .
  • the graph shows the luminance variation of the pixels of an image as a function of their X position and for an identical Y position.
  • the two peaks illustrate the effect of an asymmetrical modulation of this signal obtained by decreasing only its intensity.
  • One way to achieve positive asymmetric modulation is to use an overprint technique by printing the watermark over the actual colors of the material and other information already printed and thus ignoring local color variations on the surface of that material.
  • This approach imposes that the values of the color components of the material can only be darkened during the signature since additional ink is added. Mathematically, this corresponds to a positive asymmetric modulation of the color of the points.
  • this approach can be applied to any printing process.
  • Some specificities of watermark printing may depend on the printing process. The particular cases of offset and inkjet type printing for performing a positive modulation are detailed below.
  • the Figure 4 illustrates the implementation of the above method using positive modulation with an offset type industrial printing technique in the case of simultaneous printing of the watermark.
  • four-color printing 45 is performed (for example for a package 40) which means that four different ink colors are used for each of the yellow masks 41, cyan 42, magenta 43 and black 44.
  • the digital watermark can With a single color, it is generally desirable to use for the watermark one of the colors already selected for standard printing.
  • the Figure 4 shows how the different masks can then be applied.
  • the watermark printing fully integrates into the standard industrial printing line and therefore does not induce any additional cost.
  • the yellow mask can be used simultaneously for two different things: on the one hand it contains the yellow component of the image to print and on the other hand it contains the image of the watermark.
  • the computer tools used during the flashing of the offset film make it easy to achieve this integration.
  • FIG. 5 Another possible alternative is to use a separate mask for the watermark as shown on the Figure 5 .
  • the watermark is overprinted during an additional step with a mask and possibly an ink of its own (here magenta).
  • the mask 51 then defines the points of the watermark that are printed over the previously printed material 50.
  • This method although more expensive to implement by the printer, has the advantage of being able to easily change the watermark during the production. This allows for example to apply a watermark identifying different countries of sale to a series of identical packaging. It should be noted that when non-covering type inks are used, it is also possible to print the final image over the digital watermark, as shown in the illustration. Figure 6 .
  • the watermark being printed beforehand on the material, the final image being superimposed during an additional step.
  • the yellow masks 61, cyan 62, magenta 63 and black 64 are used to overprint the pattern. Since the ink is transparent, the watermark 60 located under the pattern can still be detected in the final result 65.
  • FIG. 7 Another usable printing method is of inkjet type as illustrated by the Figure 7 .
  • the illustration shows an example of an ink jet printing system using four colors, yellow 71, cyan 72, magenta 73 and black 74, their print heads 75 and the printed material 70.
  • the watermark is overprinted on the material.
  • the implementation of an ink jet printer for printing a watermark is particularly simple in that the vast majority of printer drivers automatically manage the color mixing to obtain a particular hue. The step of quadrichromic decomposition is therefore most often useless. It should be noted, however, that, depending on the drivers and printers, it may sometimes be desirable to choose a watermark color corresponding to the fundamental colors of the printer, in order to avoid getting raster colors or problems with the printer. alignment between dots of different colors.
  • watermark printing can be simultaneous with information or patterns intended to be printed normally. It is also possible to print the watermark separately, over or under the final pattern.
  • text can be overprinted on the signed material itself, this text possibly being linked to the watermark.
  • the key figures of a contract can thus be hidden in the watermark of the paper and thus make it possible to guarantee its integrity.
  • Watermark 1 is visible.
  • the lower visibility of the watermark 2 is obtained by simultaneously decreasing the density and the size of the points.
  • the watermark 3 further includes a lightening.
  • the main difficulty lies in the ability to find the asymmetrical watermark.
  • most tattooing techniques can extract information from the signed image without using the original image. Some techniques first make a prediction of what the original image was from the signed image and can then infer what the signature is. This technique is still applicable in the present case. In the case where the material has a uniform and known initial color, it is possible to suppress this prediction. This is particularly the case of a blank sheet of paper. This makes it possible to increase the reliability of the detection and thus to reduce the visibility of the watermark to the extreme limit of sensitivity of an optical scanner. Consequently, it makes it very difficult to duplicate the signed material, for example by photocopying: in fact, the losses inherent in any reproduction system generally weaken. this signature below the detectability threshold.
  • An application consists of including such a watermark on papers that you want to avoid copying, such as banknotes for example.
  • One embodiment consists in using as a basis a symmetric amplitude modulation spatial type digital watermark algorithm, for example that described in [1].
  • vs k ⁇ ' vs k + v . b . at k
  • the set of points defined by vba (k) constitutes the watermark ( Figure 8 , step 84) which is added to the original image c (k) to give the signed image c (k) '. It is the latter which is then printed according to the present invention.
  • the Figure 8 gives a block diagram of the complete process: the set of points constituting the watermark 85 is calculated 84 from the value of the bit to hide 81 and the key 82 defining the random sequence a (k). The value of the points being positive or negative, as defined by equation (1).
  • the equation (2) is equivalent to thresholding the values of the watermark 85 by keeping only the positive values and then adding these values 87 to the image to be signed 83 to obtain the signed image 89.
  • this technique is called "asymmetrical amplitude modulation”.
  • the sign of the modulation ba (k) being positive, the modulation is said to be positive.
  • the method can be further improved by operating in such a way that the watermark dominates over the values of the original mask.
  • M is the maximum value allowed by the mask, that is to say the value corresponding to the color of the document before signature.
  • the equation clearly shows the positive modulation with respect to zero and also illustrates the fact that at the positions where the watermark is hidden, the underlying image is not taken into account (dominance of the watermark on the original values).
  • This method has the advantage that the effective number of points contributing to the watermark increases, up to a factor of 2 in the best case.
  • the new value of the points c (k) ' can be measured on the printed sheet using an optical scanner. Two cases then arise depending on whether the color of the material is uniform and known or not.
  • the multiplicity of the modified points creates a redundancy making it possible to ensure the robustness of the technique to noise by statistical correlation.
  • the Figure 9 is a block diagram describing the process: the signed image obtained by scanner is subtracted from the original image in order to restore the watermark. The bit constituting the signature is then calculated, optionally, an additional filtering step may be performed if visible information has been printed over the signed uniform image.
  • the signed image 91 is previously filtered 92 in order to eliminate any noises (scratches, stains, text printed over the watermark, etc.).
  • the resulting image 93 is then subtracted 94 from the original image 95 in order to extract the watermark 96.
  • the value of the bit b is then found according to the standard watermark detection techniques, as described in the article [5] M. Kutter, "Watermarking resisting to translation, rotation, and scaling.”, Proceedings of SPIE International Symposium on Voice, Video, and Data Communications, November 1998 , which essentially consists of inverting equation (2) and statistically correlating the value of bit b found on several pixels k in order to guarantee good robustness to possible errors that may occur, for example, during the digital acquisition of the image .
  • This method can be generalized to several bits b and can then code any digital information such as a number or a string of characters.
  • the second case is illustrated by the block diagram of the figure Figure 10 where the original image is predicted from the signed image, the signed image is subtracted from the predicted image in order to render the watermark, the bit constituting the signature is then calculated.
  • a denoising filter 105 for example of the Wiener type, is used to make a prediction 106 of the original image o (k) from the signed image 101.
  • the difference 102 between these two images then constitutes the watermark 107 which can be decoded 103 using the key 108 to find the bit 104 in the same manner as before ( Figure 9 ). Since the prediction error is significantly greater than in the first case, the number of bits b coded in this way is systematically lower.
  • the implementation of the detection requires an optical scanner capable of scanning the document on which the watermark is printed.
  • the positioning on the scanner is never perfect, it is necessary to be able to find the information coded by the watermark after possible translations and rotations.
  • a suitable technique is to use the method described by [5] which is based on a self-correlated watermark (to compensate for rotations) and an inter-correlation technique (to compensate for translations).
  • the method can also be applied to other sectors than printing.
  • a laser to engrave metal surfaces, stones, ceramics, etc., and thus encode a digital watermark.
  • the applications concerned are, for example, parts of the automotive or aerospace industry or luxury articles in the jewelery or objects sectors. of values. It is also possible to hide watermarks on CD-ROMs or audio CDs, on the screen-printed side or on the engraved side (ink or laser).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Editing Of Facsimile Originals (AREA)
  • Image Processing (AREA)
  • Credit Cards Or The Like (AREA)
  • Paper (AREA)
  • Dental Preparations (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Laminated Bodies (AREA)
  • Printing Methods (AREA)

Abstract

A 'fragile' signature in the form of a numerical watermark is incorporated in a part or whole of the document. The watermark has asymmetric modulation of amplitude of a visible or invisible component. To detect the presence or absence of the signature the surface has to be of uniform color. Pre-treatment of the image is carried out in order to eliminate visible printed or engraved data which does not contain the watermark. During searching for the signature the image defining the original surface is predicted from the image of the signed surface. The signature can also be printed so that it is visible on the surface. During searching for the signature the numerical watermark is digitized by a scanner, or portable device. The non visible property of the ink is used to form the asymmetric modulation. Different signatures can be hidden in different regions of the surface.

Description

Domaine techniqueTechnical area

La présente invention concerne un procédé destiné à prévenir la contrefaçon ou l'altération d'une surface imprimée ou gravée.The present invention relates to a method for preventing the counterfeiting or alteration of a printed or engraved surface.

Etat de la techniqueState of the art

Les systèmes usuels destinés à prévenir la contrefaçon ou l'altération de documents imprimés ou gravés peuvent être classés en différents groupes:

  • les hologrammes, les impressions de motifs spéciaux
  • les impressions avec encres spéciales
  • les codes utilisant des encres invisibles
  • les systèmes à puce
The usual systems intended to prevent counterfeiting or alteration of printed or engraved documents can be classified in different groups:
  • holograms, special pattern prints
  • prints with special inks
  • codes using invisible inks
  • smart systems

Les hologrammes, motifs spéciaux et autres décorations sont difficiles à reproduire car leur réalisation nécessite un équipement spécial. Ils sont spécialement conçus pour interférer avec les systèmes de photocopie classique de telle sorte que la copie soit visiblement différente de l'original. Ces systèmes peuvent être contrôlés visuellement sans l'aide de dispositifs particuliers mais présentent l'inconvénient d'être coûteux, assez connus pour être reproduits sans problèmes par des experts en contrefaçon, et finalement leur visibilité nuit à l'esthétique de l'objet protégé (emballage de parfum par exemple). Leur visibilité est également la raison de leur efficacité limitée dans la mesure où un pirate peut facilement identifier l'élément de sécurité, soit pour le copier, soit pour l'effacer physiquement.Holograms, special patterns and other decorations are difficult to reproduce as they require special equipment. They are specially designed to interfere with conventional photocopying systems so that the copy is visibly different from the original. These systems can be visually controlled without the aid of particular devices but have the disadvantage of being expensive, sufficiently known to be reproduced without problems by counterfeit experts, and finally their visibility is detrimental to the aesthetics of the protected object. (perfume packaging for example). Their visibility is also the reason for their limited effectiveness in that an attacker can easily identify the security element, either to copy it or physically delete it.

Les impressions avec encres spéciales utilisent des propriétés chimiques particulières de l'encre pour fournir une réaction déterminée à une action particulière. Ainsi, les encres fluorescentes deviennent très lumineuses quand elles sont éclairées par une longueur d'onde particulière, certaines encres sont même invisibles à la lumière naturelle, d'autres encres changent de couleur en fonction de leur orientation ou de leur température (et peuvent se révéler en chauffant le papier avec un doigt), etc. Les encres spéciales ont comme point commun d'être particulièrement coûteuses et de nécessiter d'opérer des modifications dans la chaîne de production industrielle habituelle (masque supplémentaire pour l'offset par exemple). De plus, bien que plus robuste à la contrefaçon que le groupe précédent, il est également possible de reproduire leurs effets dans la mesure où le pirate peut contrôler par lui-même la fidélité de sa copie par rapport à l'original dès qu'il dispose du dispositif faisant réagir l'encre.Special ink prints use the particular chemical properties of the ink to provide a definite response to a particular action. Thus, fluorescent inks become very bright when illuminated by a particular wavelength, some inks are even invisible to natural light, other inks change color depending on their orientation or temperature (and may reveal by warming the paper with a finger), etc. Special inks have as a common point to be particularly expensive and require changes in the usual industrial production chain (additional mask for offset, for example). In addition, although more robust to counterfeiting than the previous group, it is also possible to reproduce their effects to the extent that the pirate can control by itself the fidelity of his copy compared to the original as soon as he has the device reacting the ink.

Les codes utilisant des encres invisibles, à la différences des deux groupes précédents, permettent de cacher une information numérique. Ces codes peuvent être des caractères, des codes barres, des codes 2D, etc. En plus de son coût élevé et propre aux encres invisibles, ce système a deux inconvénients majeurs. D'une part, du fait de la nature des codes utilisés, il est localisé sur une certaine partie du document ou de l'emballage et il est donc possible de le détruire sans altérer la totalité de la surface. D'autre part, les codes utilisés ont toujours des particularités géométriques (barres, figures géométriques, caractères, etc) les identifiant clairement comme des dispositifs anti-copie. Cela facilite grandement la tache du pirate cherchant à révéler et à reproduire l'encre. De plus dès que le pirate sait réaliser cette reproduction, il détient ipso facto le moyen de reproduire le code.Codes using invisible inks, unlike the two previous groups, hide digital information. These codes can be characters, barcodes, 2D codes, etc. In addition to its high cost and inherent to invisible inks, this system has two major drawbacks. On the one hand, because of the nature of the codes used, it is located on a certain part of the document or the packaging and it is therefore possible to destroy it without altering the entire surface. On the other hand, the codes used always have geometric peculiarities (bars, geometric figures, characters, etc.) clearly identifying them as anti-copy devices. This greatly facilitates the task of the pirate seeking to reveal and reproduce the ink. Moreover as soon as the pirate knows how to realize this reproduction, ipso facto holds the means of reproducing the code.

Finalement les systèmes basés sur des mémoires ou processeurs embarqués cumulent les inconvénients d'être très coûteux, inesthétiques et localisés. Leur application principale consiste plus à sécuriser une communication, ou à stocker dynamiquement une information plutôt qu'à distinguer un original d'une copie.Finally systems based on memories or embedded processors combine the disadvantages of being very expensive, unsightly and localized. Their main application is to secure a communication, or to dynamically store information rather than distinguish an original from a copy.

Le document EP 0 961 239 décrit une solution pour intégrer un filigrane dans une image telle qu'une image de billet de banque. La solution proposée est de modifier par de légères altérations de la couleur d'encre, de la densité ou de la texture de la surface du billet de banque. Selon un mode de réalisation, le filigrane va moduler la largeur ou l'emplacement d'une composante de ligne qui forme l'image du billet de banque.The document EP 0 961 239 discloses a solution for embedding a watermark in an image such as a banknote image. The proposed solution is to modify by slight alterations of the ink color, the density or the texture of the surface of the banknote. According to one embodiment, the watermark will modulate the width or location of a line component that forms the image of the bill.

L'un des buts de la présente invention est de remédier aux inconvénients des procédés connus permettant de prévenir la contrefaçon ou l'altération de documents imprimés ou gravés par voie numérique.One of the aims of the present invention is to overcome the disadvantages of known methods for preventing counterfeiting or alteration of printed or digitally engraved documents.

A cet effet, la présente invention concerne un procédé destiné à prévenir la contrefaçon ou l'altération de documents imprimés ou gravés caractérisé par l'incorporation d'un filigrane numérique dans une partie ou dans l'ensemble du document.For this purpose, the present invention relates to a method for preventing the counterfeiting or alteration of printed or engraved documents characterized by embedding a digital watermark in part or all of the document.

Selon l'invention, il est proposé une méthode d'impression d'un filigrane et d'une image sur une surface imprimée, ce filigrane étant auto-corrélé et contenant une information à cacher, cette méthode étant caractérisée par les étapes suivantes:

  • réaliser un filigrane numérique vba(k) de type spatial en fonction du signe du bit b={-1,1} de l'information à cacher et de l'amplitude v de la modulation d'une composante de couleur ainsi que d'un générateur aléatoire a(k) défini par une clé, tel que la densité du filigrane soit de 2% ou moins,
  • imprimer l'image c(k),
  • imprimer par-dessus l'image c(k) le filigrane vba(k) pour des valeurs ba(k) > 0 uniquement afin d'obtenir une modulation asymétrique d'amplitude sur la surface à une résolution comprise entre 300 et 1200 dpi.
According to the invention, there is provided a method of printing a watermark and an image on a printed surface, this watermark being self-correlated and containing information to be hidden, this method being characterized by the following steps:
  • to realize a spatial watermark vba (k) according to the sign of the bit b = {- 1,1} of the information to be hidden and the amplitude v of the modulation of a color component as well as of a random generator a (k) defined by a key, such that the density of the watermark is 2% or less,
  • print the image c (k),
  • print over the image c (k) the watermark vba (k) for values ba (k)> 0 only in order to obtain asymmetrical amplitude modulation on the surface at a resolution between 300 and 1200 dpi.

La technique du filigrane numérique, également connue sous le nom de tatouage numérique, est une technique permettant de cacher des informations de manière robuste et imperceptible dans des données multimédia telles que la musique, la vidéo, les images, les documents, etc. L'information qui est cachée s'appelle la signature. Cette signature peut être par exemple un numéro, un nom ou même une image. Après la protection des données multimédia avec un filigrane numérique on parle d'image signée, de vidéo signée, etc.The digital watermark technique, also known as digital tattooing, is a technique for hiding information in a robust and imperceptible manner in multimedia data such as music, video, images, documents, etc. The information that is hidden is called the signature. This signature can be for example a number, a name or even an image. After the protection of multimedia data with a digital watermark we speak of signed image, signed video, etc.

Jusqu'ici, la technique du filigrane numérique n'a été utilisée que dans le but de retrouver la signature sur une éventuelle copie, pour prouver l'origine de l'information.So far, the technique of the digital watermark has only been used for the purpose of finding the signature on a possible copy, to prove the origin of the information.

« Cacher » comporte un sens bien spécifique dans ce contexte : par exemple dans le cas d'une image, on changera légèrement la couleur de certains pixels, et dans le cas d'une musique on modifiera un peu le son de temps à autre."Hide" has a very specific meaning in this context: for example in the case of an image, we will slightly change the color of some pixels, and in the case of music we will change the sound a little from time to time.

« Imperceptible » veut dire que les modifications introduites sont telles qu'un individu ne peut pas distinguer les données originales des données signées par ses propres sens. Par exemple, une image signée doit avoir exactement la même apparence qu'une image normale, une musique signée doit sembler tout à fait normale, de même pour une vidéo ou n'importe quelle autre donnée. Tout le problème consiste à faire en sorte qu'un ordinateur soit capable de détecter cette information cachée alors qu'elle échappe à nos sens. Il existe aussi des applications où un filigrane visible est acceptable voire même souhaitable. Cela permet notamment d'augmenter encore la robustesse et un contrôle visuel de la présence d'un filigrane. Le principe qui demeure est que le filigrane ne doit pas être dérangeant visuellement."Imperceptible" means that the modifications introduced are such that an individual can not distinguish the original data from the data signed by his own senses. For example, a signed image must look exactly the same as a normal image, a signed music must look perfectly normal, as well as a video or any other data. The whole problem is to make sure that a computer is able to detect this hidden information when it escapes our senses. There are also applications where a visible watermark is acceptable or even desirable. This allows in particular to further increase the robustness and visual control of the presence of a watermark. The principle that remains is that the watermark must not be visually disturbing.

La «robustesse » d'un filigrane signifie que l'on doit pouvoir retrouver la signature après n'importe quelle manipulation de données signées. Prenons par exemple le cas d'une image signée : on doit pouvoir la comprimer, l'imprimer, la scanner ou la tourner sans jamais perdre la signature.The "robustness" of a watermark means that one must be able to find the signature after any manipulation of signed data. Take for example the case of a signed image: it must be able to compress, print, scan or rotate without ever losing the signature.

De nombreuses publications ont été faites sur les différentes techniques permettant de cacher un filigrane dans une image, dans une vidéo ou un signal audio. En ce qui concerne les images, ces dernières peuvent se classer en fonction de la technique utilisée pour le marquage : certaines opèrent des modifications directement dans le domaine spatial (voir par exemple [1] M. Kutter, F. Jordan, F. Bossen, "Digital watermaking of color images using amplitude modulation", Journal of Electronic Imaging, vol. 7, n° 2, pp. 326-332, April 1998 .), d'autres opèrent ces modifications dans un domaine transformé (par exemple le domaine fréquentiel) voire des domaines intermédiaires comme les ondelettes (voir [2] Shelby Pereira, Sviatoslav Voloshynovskiy and Thierry Pun, Optimized wavelet domain watermark embedding strategy using linear programming, In Harold H. Szu and Martin Vetterli eds., Wavelet Applications VII (part of SPIE AeroSense 2000), Orlando, Florida USA, April 26-28 2000 .).Numerous publications have been made on the different techniques for hiding a watermark in an image, video or audio signal. As far as the images are concerned, the latter can be classified according to the technique used for the marking: some operate modifications directly in the spatial domain (see for example [1] M. Kutter, F. Jordan, F. Bossen, "Digital watermaking of color images using amplitude modulation," Journal of Electronic Imaging, Vol. 7, No. 2, pp. 326-332, April 1998 .), others operate these modifications in a transformed domain (for example the frequency domain) even intermediate domains like the wavelets (see [2] Shelby Pereira, Svyatoslav Voloshynovskiy and Thierry Pun, Optimized wavelet domain watermark embedding strategy using linear programming, Harold H. Szu and Martin Vetterli eds., Wavelet Applications VII (part of SPIE AeroSense 2000), Orlando, Florida USA, April 26-28 2000 .).

Ces techniques peuvent également être utilisées pour le marquage de vidéo, moyennant certaines adaptations. D'autres techniques spécifiquement dédiées au marquage de vidéo sont aussi possibles en définissant de nouveaux domaines transformés comme les sous-bandes 3D ou les vecteurs de mouvements (par exemple, voir [3] brevet US 5,960,081 , Video watermarking using motion vectors et [4] demande de brevet EP 0762417 A2 , Video watermarking in the compressed domain).These techniques can also be used for video tagging, with some adaptations. Other techniques specifically dedicated to video tagging are also possible by defining new transformed domains such as 3D subbands or motion vectors (for example, see [3] patent US 5,960,081 Video watermarking using motion vectors and [4] patent application EP 0762417 A2 , Watermarking video in the compressed domain).

Comme on l'a déjà mentionné, la technique du filigrane numérique a été jusqu'ici utilisée dans le but de retrouver la signature sur une éventuelle copie pour prouver l'origine des informations présentes sur la copie, grâce à la présence du filigrane que l'on retrouve sur la copie. Ceci impliquait dans tous les cas l'utilisation d'un filigrane robuste.As already mentioned, the technique of the digital watermark has so far been used for the purpose of finding the signature on a possible copy to prove the origin of the information present on the copy, thanks to the presence of the watermark that the we find on the copy. This involved in all cases the use of a robust watermark.

Dans le procédé de la présente invention, le but de l'incorporation du filigrane numérique sur la surface est différent, puisque sa présence est destinée à prévenir la contrefaçon ou l'altération de la surface concernée, c'est-à-dire de permettre d'apporter la preuve qu'il s'agit de la surface authentique si le filigrane est présent ou qu'il s'agit d'une copie ou que la surface a été altérée si le filigrane est absent. Dans le cas où le filigrane est incorporé à des fins d'authentification de la surface par rapport à des copies, la robustesse du filigrane doit être réduite de façon qu'une copie de la surface se traduise alors par un échec de la lecture du filigrane numérique. On parle alors de filigrane "fragile". Un exemple typique d'application consiste à empêcher la contrefaçon de papiers-valeurs comme les billets de banque. Dans le cas où le filigrane est incorporé afin d'éviter l'altération de tout ou partie de la surface, le filigrane peut être robuste ou fragile.In the method of the present invention, the purpose of incorporating the digital watermark on the surface is different, since its presence is intended to prevent counterfeiting or alteration of the surface concerned, that is to say to allow to prove that it is the authentic surface if the watermark is present or that it is a copy or that the surface has been altered if the watermark is missing. In the case where the watermark is incorporated for surface authentication purposes with respect to copies, the robustness of the watermark must be reduced so that a copy of the surface will result in a failure of the watermark reading. digital. This is called "fragile" watermark. A typical application is to prevent counterfeiting of securities such as banknotes. In the case where the watermark is incorporated in order to avoid the alteration of all or part of the surface, the watermark may be strong or fragile.

La liste suivante décrit un ensemble de caractéristiques présentes seulement de manière isolée dans les systèmes connus destinés à prévenir la contrefaçon ou l'altération de documents imprimés ou gravés mentionnés plus haut :

  • Invisibilité
    Le filigrane est imprimé en utilisant des couleurs et des résolution imperceptibles à l'oeil nu. Cela permet donc de protéger par exemple un emballage sans que son graphisme en soit altéré, ce qui est important pour des raisons marketing.
  • Non localité
    Le filigrane peut recouvrir la totalité de la surface d'un document imprimé. Il n'est donc pas possible de l'effacer sans altérer le document, par exemple en grattant la surface. En pratique, cette propriété permet par exemple d'éviter les marchés gris, c'est à dire les produits revendus par des distributeurs non autorisés. En effet, ces derniers effacent parfois le code (code 2D invisible par exemple) identifiant leur revendeur en « fraisant » la surface de l'emballage où le code est imprimé.
  • Prix
    Le filigrane est imprimé en utilisant des systèmes d'impression traditionnels. En ce qui concerne l'impression industrielle (offset, etc), il s'intègre totalement dans la chaîne de production et n'induit aucun coût supplémentaire. En ce qui concerne l'impression personnelle (jet d'encre, laser, etc), il est totalement compatible avec les imprimantes du commerce. Dans les deux cas, la lecture se fait avec un scanner digital standard. Ce faible prix ouvre des marchés nouveaux : d'une part en ce qui concerne l'impression industrielle, les emballages de produits de luxe ou pharmaceutiques, ainsi que les certificats, les chèques, les billets d'entrées, etc. D'autre part pour l'impression personnelle, il permet à n'importe qui possédant un équipement standard de créer et vérifier des documents sécurisés et personnalisés. Par exemple un médecin peut cacher le nom des médicaments prescrits dans le papier utilisé pour imprimer son ordonnance. Il est possible de programmer une imprimante pour qu'elle cache un filigrane dans tout document imprimé permettant ainsi d'identifier plus tard la date de l'impression, le nom de l'utilisateur, etc.
  • Stockage d'information
    En plus d'authentifier l'original, le filigrane contient une information numérique (typiquement de plusieurs dizaines de bits par centimètres carrés) qui est encodée ou retrouvée à l'aide d'une clé. En pratique ce stockage permet par exemple de sécuriser une information imprimée en texte visible (donc susceptible d'être modifiée). En effet il est alors possible d'encoder la même information dans le filigrane et donc de pouvoir détecter toute modification dans le texte du document (date, montant, identité, etc.). Une application concerne les contrats dont on veut s'assurer de la date d'émission. Un autre exemple avec les billets de banque : le numéro de série peut être caché dans chaque billet, ainsi il est impossible de créer des faux billets avec des numéros différents car il faudrait pouvoir générer à chaque fois le filigrane correspondant.
  • Système de lecture et d'écriture à clé
    Afin de pouvoir créer et lire le filigrane, il faut utiliser la même clé. En contrôlant l'accès aux clés, on peut donc contrôler quand et par qui chaque filigrane est créé ou lu, ce qui est essentiel : en effet cela complique beaucoup le piratage consistant à créer un nouveau filigrane (le plus simple restant de copier un filigrane existant). D'autre part le pirate sera dans l'incapacité de vérifier qu'un filigrane a été copié avec succès (car pour le lire, il est nécessaire de connaître la clé utilisée pour le cacher). La sécurité offerte par ce système de clé est donc supérieure à celle d'une information imprimée par exemple avec une encre invisible et révélée par ultraviolet, où le pirate peut aisément vérifier et donc améliorer l'encre qu'il contrefait.
  • Difficile à identifier visuellement
    Même en utilisant des dispositifs (filtres, microscopes) particuliers, il est difficile d'identifier la présence d'un filigrane car son aspect visuel se rapproche de celui du grain du papier. Il n'a pas de caractéristique géométrique simple et n'a de sens que pour le programme de détection et muni de la bonne clé. Pour tous les papiers de valeur qui font l'objet d'une analyse fine de la part des pirates, cette qualité est primordiale.
  • Difficile à copier
    L'utilisation combinée de certaines couleurs (jaune sur fond blanc par exemple) et de hautes résolutions d'impression (1200 dpi par exemple) permet d'obtenir un filigrane difficile ou impossible à reproduire sur un équipement de copie classique.
The following list describes a set of features present only in isolation in known systems intended to prevent counterfeiting or alteration of printed or engraved documents mentioned above:
  • Invisibility
    The watermark is printed using colors and resolutions imperceptible to the naked eye. This allows to protect for example a package without its graphics is altered, which is important for marketing reasons.
  • Not locality
    The watermark can cover the entire surface of a printed document. It is therefore not possible to erase it without altering the document, for example by scraping the surface. In practice, this property makes it possible, for example, to avoid gray markets, ie products resold by unauthorized distributors. Indeed, these sometimes erase the code (invisible 2D code for example) identifying their dealer by "milling" the surface of the package where the code is printed.
  • Price
    The watermark is printed using traditional printing systems. As far as industrial printing (offset, etc.) is concerned, it fully integrates into the production line and does not entail any additional cost. With regard to personal printing (inkjet, laser, etc.), it is fully compatible with commercial printers. In both cases, reading is done with a standard digital scanner. This low price opens new markets: on the one hand with regard to industrial printing, luxury or pharmaceutical packaging, as well as certificates, checks, tickets, etc. On the other hand for personal printing, it allows anyone with standard equipment to create and verify secure and personalized documents. For example, a doctor may hide the names of the medications prescribed in the paper used to print his prescription. You can program a printer to hide a watermark in any printed document so that the date of printing, the name of the user, and so on can be identified later.
  • Storage of information
    In addition to authenticating the original, the watermark contains digital information (typically several dozen bits per square centimeter) that is encoded or retrieved using a key. In practice, this storage makes it possible, for example, to secure information printed in visible text (which can therefore be modified). Indeed it is then possible to encode the same information in the watermark and thus to be able to detect any modification in the text of the document (date, amount, identity, etc.). An application concerns contracts whose date of issue is to be determined. Another example with banknotes: the serial number can be hidden in each ticket, so it is impossible to create fake banknotes with different numbers because it would be necessary to generate each time the corresponding watermark.
  • Key reading and writing system
    In order to create and read the watermark, you must use the same key. By controlling access to keys, we can control when and by whom each watermark is created or read, which is essential: indeed it complicates much the piracy of creating a new watermark (the simplest remaining to copy a watermark existing). On the other hand the hacker will be unable to verify that a watermark has been copied successfully (because to read it, it is necessary to know the key used to hide it). The security offered by this key system is therefore greater than that of information printed for example with an invisible ink and revealed by ultraviolet, where the hacker can easily check and thus improve the ink it counterfeits.
  • Hard to identify visually
    Even using particular devices (filters, microscopes), it is difficult to identify the presence of a watermark because its visual appearance is similar to that of paper grain. It has no simple geometric feature and only makes sense for the detection program and has the correct key. For all the papers of value that are the subject of a thorough analysis by hackers, this quality is paramount.
  • Hard to copy
    The combined use of certain colors (yellow on a white background for example) and high print resolutions (1200 dpi for example) makes it possible to obtain a watermark that is difficult or impossible to reproduce on conventional copy equipment.

Les méthodes qui sont entièrement réalisées dans le domaine digital cachent généralement le filigrane en augmentant et en diminuant l'intensité des couleurs de certains points, ce qui signifie que certains pixels sont éclaircis alors que d'autres sont assombris, comme illustré sur la Figure 1 : le graphe montre la variation de luminance des pixels d'une image en fonction de leur position X et pour une position Y identique. Les quatre pics illustrent l'effet d'une modulation symétrique de ce signal obtenue en augmentant ou en diminuant localement son intensité.Methods that are done entirely in the digital domain generally hide the watermark by increasing and decreasing the color intensity of certain points, which means that some pixels are brightened while others are darkened, as shown in the illustration. Figure 1 : the graph shows the variation of luminance of the pixels of an image according to their position X and for an identical position Y. The four peaks illustrate the effect of a symmetrical modulation of this signal obtained by increasing or decreasing its intensity locally.

Il est cependant certains cas où une modulation symétrique est impossible à réaliser, soit pour des raisons mathématiques (image à signer entièrement blanche ou noire) ou pratiques (liée à la technique d'impression).There are, however, some cases where symmetrical modulation is impossible to achieve, either for mathematical reasons (image to be signed entirely white or black) or practical (related to the printing technique).

La Figure 2 donne un exemple de modulation asymétrique obtenue en assombrissant la couleur de certains pixels. Cette modulation peut alors être positive ou négative selon que de la couleur est ajoutée ou retirée. Le graphe de la figure montre la variation de luminance des pixels d'une image en fonction de leur position X et pour une position Y identique. Les deux pics illustrent l'effet d'une modulation asymétrique de ce signal obtenue en diminuant uniquement son intensité. La Figure 3 donne quelques exemples d'images de filigrane numériques.The Figure 2 gives an example of asymmetric modulation obtained by darkening the color of some pixels. This modulation can then be positive or negative depending on whether color is added or removed. The graph of the figure shows the luminance variation of the pixels of an image as a function of their position X and for an identical position Y. The two peaks illustrate the effect of an asymmetrical modulation of this signal obtained by decreasing only its intensity. The Figure 3 gives some examples of digital watermark images.

Ainsi, un autre objet de la présente invention est de proposer un procédé pour cacher et/ou retrouver un filigrane numérique, caractérisé par l'utilisation d'une modulation asymétrique de l'amplitude d'une composante lumineuse visible ou invisible.Thus, another object of the present invention is to propose a method for hiding and / or retrieving a digital watermark, characterized by the use of an asymmetrical modulation of the amplitude of a visible or invisible light component.

Description détailléedetailed description

La description qui suit, donnée à titre d'exemple, se réfère au dessin annexé sur lequel:

  • la Figure 1 illustre un exemple de modulation symétrique;
  • la Figure 2 illustre un exemple de modulation asymétrique;
  • la Figure 3 illustre des exemples de filigranes asymétriques;
  • la Figure 4 illustre la mise en oeuvre du procédé intégré avec une technique d'impression offset standard;
  • la Figure 5 illustre la mise en oeuvre du procédé avec une étape d'impression offset séparée;
  • la Figure 6 illustre la mise en oeuvre du procédé avec une étape d'impression offset séparée;
  • la Figure 7 illustre la mise en oeuvre du procédé avec une imprimante à jet d'encre;
  • la Figure 8 est un schéma bloc du procédé de signature d'un matériau en trois étapes;
  • la Figure 9 est un schéma bloc du procédé de lecture d'une image uniforme signée en trois étapes; et
  • la Figure 10 est un schéma bloc du procédé de lecture d'une image non-uniforme signée en trois étapes.
The following description, given by way of example, refers to the accompanying drawing in which:
  • the Figure 1 illustrates an example of symmetric modulation;
  • the Figure 2 illustrates an example of asymmetric modulation;
  • the Figure 3 illustrates examples of asymmetrical watermarks;
  • the Figure 4 illustrates the implementation of the integrated process with a standard offset printing technique;
  • the Figure 5 illustrates the implementation of the method with a separate offset printing step;
  • the Figure 6 illustrates the implementation of the method with a separate offset printing step;
  • the Figure 7 illustrates the implementation of the method with an ink jet printer;
  • the Figure 8 is a block diagram of the three-stage material signature process;
  • the Figure 9 is a block diagram of the process of reading a uniform image signed in three steps; and
  • the Figure 10 is a block diagram of the process of reading a non-uniform image signed in three steps.

Un exemple de modulation symétrique est illustré à la Figure 1. Le graphe montre la variation de luminance des pixels d'une image en fonction de leur position X et pour une position Y identique. Les quatre pics illustrent l'effet d'une modulation symétrique de ce signal obtenue en augmentant ou en diminuant localement son intensité.An example of symmetric modulation is illustrated in Figure 1 . The graph shows the luminance variation of the pixels of an image as a function of their X position and for an identical Y position. The four peaks illustrate the effect of a symmetrical modulation of this signal obtained by increasing or decreasing its intensity locally.

Un exemple de modulation asymétrique est illustré à la Figure 2. Le graphe montre la variation de luminance des pixels d'une image en fonction de leur position X et pour une position Y identique. Les deux pics illustrent l'effet d'une modulation asymétrique de ce signal obtenue en diminuant uniquement son intensité.An example of asymmetric modulation is illustrated in Figure 2 . The graph shows the luminance variation of the pixels of an image as a function of their X position and for an identical Y position. The two peaks illustrate the effect of an asymmetrical modulation of this signal obtained by decreasing only its intensity.

Impression du filigraneWatermark printing

Différentes stratégies sont envisageables pour imprimer un filigrane à modulation asymétrique, selon qu'il est positif ou négatif. De plus, il est possible de choisir soit une impression séparée, soit une impression simultanée à l'impression d'un autre motif visuel (fond, texte ou graphique).Different strategies are possible for printing an asymmetrically modulated watermark, depending on whether it is positive or negative. In addition, it is possible to choose either a separate print or a simultaneous print when printing another visual pattern (background, text or graphic).

Une manière d'obtenir une modulation asymétrique positive consiste à utiliser une technique de surimpression en imprimant le filigrane par-dessus les couleurs propres du matériau et autres informations déjà imprimées et donc sans tenir compte des variations locales des couleurs à la surface de ce matériau. Cette approche impose que les valeurs des composantes de couleur du matériau ne peuvent qu'être assombries lors de la signature puisque de l'encre supplémentaire est ajoutée. Mathématiquement, cela correspond à une modulation asymétrique positive de la couleur des points. Dans son principe, cette approche peut être appliquée à n'importe quel procédé d'impression. Certaines spécificités de l'impression du filigrane peuvent dépendre du procédé d'impression. Les cas particuliers de l'impression de type offset et jet d'encre pour la réalisation d'une modulation positive sont détaillés ci-dessous.One way to achieve positive asymmetric modulation is to use an overprint technique by printing the watermark over the actual colors of the material and other information already printed and thus ignoring local color variations on the surface of that material. This approach imposes that the values of the color components of the material can only be darkened during the signature since additional ink is added. Mathematically, this corresponds to a positive asymmetric modulation of the color of the points. In principle, this approach can be applied to any printing process. Some specificities of watermark printing may depend on the printing process. The particular cases of offset and inkjet type printing for performing a positive modulation are detailed below.

La Figure 4 illustre la mise en oeuvre du procédé ci-dessus utilisant une modulation positive avec une technique d'impression industrielle de type offset dans le cas d'une impression simultanée du filigrane. Dans cet exemple, une impression quadrichromie 45 est réalisée (par exemple pour un emballage 40) ce qui signifie que quatre couleurs d'encre différentes sont utilisées pour chacun des masques jaune 41, cyan 42, magenta 43 et noir 44. Le filigrane numérique pouvant comporter une couleur unique, il est en général souhaitable d'utiliser pour le filigrane une des couleurs déjà sélectionnées pour l'impression standard. La Figure 4 montre comment les différents masques peuvent alors être appliqués. Dans ce cas, l'impression du filigrane s'intègre totalement dans la chaîne d'impression industrielle standard et n'induit donc aucun coût supplémentaire. Par exemple, le masque jaune peut être utilisé simultanément pour deux choses différentes : d'une part il contient la composante jaune de l'image à imprimer et d'autre part il contient l'image du filigrane. Les outils informatiques utilisés lors du flashage du film offset permettent de réaliser facilement cette intégration.The Figure 4 illustrates the implementation of the above method using positive modulation with an offset type industrial printing technique in the case of simultaneous printing of the watermark. In this example, four-color printing 45 is performed (for example for a package 40) which means that four different ink colors are used for each of the yellow masks 41, cyan 42, magenta 43 and black 44. The digital watermark can With a single color, it is generally desirable to use for the watermark one of the colors already selected for standard printing. The Figure 4 shows how the different masks can then be applied. In this case, the watermark printing fully integrates into the standard industrial printing line and therefore does not induce any additional cost. For example, the yellow mask can be used simultaneously for two different things: on the one hand it contains the yellow component of the image to print and on the other hand it contains the image of the watermark. The computer tools used during the flashing of the offset film make it easy to achieve this integration.

Une autre alternative possible consiste à utiliser un masque séparé pour le filigrane comme illustré sur la Figure 5. Dans ce cas, le filigrane est surimprimé lors d'une étape supplémentaire avec un masque et éventuellement une encre qui lui est propre (ici le magenta). Le masque 51 définit alors les points du filigrane qui sont imprimés par-dessus le matériau préalablement imprimé 50. Cette méthode, bien que plus coûteuse à mettre en oeuvre par l'imprimeur, présente l'avantage de pouvoir aisément changer le filigrane lors de la production. Cela permet par exemple d'appliquer un filigrane identifiant différents pays de vente à une série d'emballages identiques. Il est à noter que lorsque des encres de type non couvrantes sont utilisées, il est également possible d'imprimer l'image finale par-dessus le filigrane digital, comme illustré sur la Figure 6. Dans ce cas, c'est le procédé inverse qui est utilisé, le filigrane étant préalablement imprimé 60 sur le matériau, l'image finale étant surimprimée lors d'une étape supplémentaire. Les masques jaune 61, cyan 62, magenta 63 et noir 64 sont utilisés pour surimprimer le motif. L'encre étant transparente, le filigrane 60 situé sous le motif peut encore être détecté dans le résultat final 65.Another possible alternative is to use a separate mask for the watermark as shown on the Figure 5 . In this case, the watermark is overprinted during an additional step with a mask and possibly an ink of its own (here magenta). The mask 51 then defines the points of the watermark that are printed over the previously printed material 50. This method, although more expensive to implement by the printer, has the advantage of being able to easily change the watermark during the production. This allows for example to apply a watermark identifying different countries of sale to a series of identical packaging. It should be noted that when non-covering type inks are used, it is also possible to print the final image over the digital watermark, as shown in the illustration. Figure 6 . In this case, it is the inverse method that is used, the watermark being printed beforehand on the material, the final image being superimposed during an additional step. The yellow masks 61, cyan 62, magenta 63 and black 64 are used to overprint the pattern. Since the ink is transparent, the watermark 60 located under the pattern can still be detected in the final result 65.

Un autre procédé d'impression utilisable est de type jet d'encre comme illustré par la Figure 7. L'illustration montre un exemple de système d'impression à jet d'encre utilisant quatre couleurs, jaune 71, cyan 72, magenta 73 et noir 74, leurs têtes d'impression 75 et le matériau imprimé 70. Le filigrane est surimprimé sur le matériau. La mise en oeuvre d'une imprimante à jet d'encre pour l'impression d'un filigrane est particulièrement simple dans la mesure où la grande majorité des pilotes d'imprimantes gèrent automatiquement le mélange des couleurs permettant d'obtenir une teinte particulière. L'étape de décomposition quadrichromique est donc le plus souvent inutile. Il faut cependant noter que, dépendant des pilotes et des imprimantes, il peut parfois être souhaitable de choisir une couleur de filigrane correspondant à des couleurs fondamentales de l'imprimante, ceci afin d'éviter d'obtenir des couleurs tramées ou des problèmes d'alignement entre des points de différentes couleurs. Comme avec l'impression offset, l'impression du filigrane peut être simultanée avec les informations ou motifs destinés à être imprimés normalement. Il est également possible d'imprimer le filigrane séparément, par-dessus ou par-dessous le motif final. En particulier, du texte peut être surimprimé sur le matériau signé lui-même, ce texte pouvant éventuellement être lié au filigrane. Par exemple, les chiffres clés d'un contrat peuvent ainsi être cachés dans le filigrane du papier et permettre ainsi d'en garantir l'intégrité.Another usable printing method is of inkjet type as illustrated by the Figure 7 . The illustration shows an example of an ink jet printing system using four colors, yellow 71, cyan 72, magenta 73 and black 74, their print heads 75 and the printed material 70. The watermark is overprinted on the material. The implementation of an ink jet printer for printing a watermark is particularly simple in that the vast majority of printer drivers automatically manage the color mixing to obtain a particular hue. The step of quadrichromic decomposition is therefore most often useless. It should be noted, however, that, depending on the drivers and printers, it may sometimes be desirable to choose a watermark color corresponding to the fundamental colors of the printer, in order to avoid getting raster colors or problems with the printer. alignment between dots of different colors. As with offset printing, watermark printing can be simultaneous with information or patterns intended to be printed normally. It is also possible to print the watermark separately, over or under the final pattern. In particular, text can be overprinted on the signed material itself, this text possibly being linked to the watermark. For example, the key figures of a contract can thus be hidden in the watermark of the paper and thus make it possible to guarantee its integrity.

La réalisation d'une modulation négative peut être réalisée lors d'une impression simultanée en suivant le même principe que décrit précédemment car il est toujours possible de soustraire de la couleur au niveau du fichier électronique: sur le motif à imprimer, les points correspondant au filigrane sont alors éclaircis. Pour réaliser une impression séparée avec une modulation négative, il est par contre nécessaire d'utiliser une encre particulière : par exemple, dans le cas d'une encre visible, une solution consiste à utiliser une encre de type couvrante. La synthèse de différentes possibilités d'impression du filigrane est présentée dans le tableau ci-dessous : Impression simultanée Impression séparée Modulation Possible Possible asymétrique positive par surimpression ou sousim pression Modulation Possible Possible The realization of a negative modulation can be carried out during a simultaneous printing by following the same principle as described above because it is always possible to subtract from the color at the level of the electronic file: on the pattern to be printed, the points corresponding to the watermark are then cleared up. To achieve a separate print with a negative modulation, it is necessary to use a particular ink: for example, in the case of a visible ink, one solution is to use a type of ink covering. The synthesis of different possibilities for printing the watermark is presented in the table below: Simultaneous printing Separate printing Modulation Possible Possible positive asymmetric by overprinting or under pressure Modulation Possible Possible

Paramètres contrôlant la visibilité du filigraneParameters controlling the visibility of the watermark

Quels que soit le type de modulation ou d'impression choisis, la visibilité finale du filigrane ainsi que sa fragilité à la duplication est contrôlée par un ensemble commun de paramètres :

  • Taille des points : il s'agit du diamètre des points du filigrane obtenus après impression. La taille minimale des points est fixée par la technologie d'impression. Des valeurs entre 300 et 1200 points par pouces sont courantes. Plus la taille des points est petites, moins le filigrane est visible.
  • Couleur des points : En fonction de la couleur, de la texture et des motifs éventuels appliqués au matériaux, certaines couleurs peuvent être plus ou moins visibles. Par exemple, il est usuel d'utiliser une couleur jaune pour des fonds blancs (modulation positive séparée ou simultanée).
  • Densité du filigrane : Cette dernière définit le ratio entre le nombre de points imprimés par unité de surface (mesurée également en points). Des valeurs typiques de 0.02 ou moins peuvent être utilisées. Une taille de point très fine permet d'augmenter la densité du filigrane.
  • Quantité d'encre : Lorsque le procédé d'impression le permet, il est intéressant de jouer sur la quantité d'encre utilisée pour imprimer chaque point.
  • Tramage : La technique de tramage (demi-teintes) permet de reproduire n'importe quelle couleur à partir des différentes couleurs fondamentales. Il est alors préférable que la taille du tramage soit suffisamment fine par rapport à la taille des points.
  • Type d'encre : Des substances non visibles peuvent également être utilisées.
Whatever the type of modulation or printing chosen, the final visibility of the watermark as well as its fragility to duplication is controlled by a common set of parameters:
  • Size of the points: this is the diameter of the points of the watermark obtained after printing. The minimum size of the points is fixed by the printing technology. Values between 300 and 1200 dots per inch are common. The smaller the point size, the less the watermark is visible.
  • Color of points: Depending on the color, texture and possible patterns applied to the materials, some colors may be more or less visible. For example, it is customary to use a yellow color for white backgrounds (separate or simultaneous positive modulation).
  • Watermark Density: The latter defines the ratio between the number of dots printed per unit area (measured also in points). Typical values of 0.02 or less can be used. A very fine point size makes it possible to increase the density of the watermark.
  • Ink Quantity: When the printing process allows it, it is interesting to play on the amount of ink used to print each dot.
  • Screening: The halftoning technique allows to reproduce any color from the different fundamental colors. It is then preferable that the size of the screening is sufficiently fine compared to the size of the points.
  • Ink type: Non-visible substances can also be used.

L'influence de certains de ces paramètres est illustrée sur la Figure 3. Le filigrane 1 est visible. La visibilité plus faible du filigrane 2 est obtenue en diminuant simultanément la densité et la taille des points. Le filigrane 3 comporte en plus un éclaircissement.The influence of some of these parameters is illustrated on the Figure 3 . Watermark 1 is visible. The lower visibility of the watermark 2 is obtained by simultaneously decreasing the density and the size of the points. The watermark 3 further includes a lightening.

Lecture du filigraneReading the watermark

La difficulté principale réside dans la capacité à retrouver le filigrane asymétrique. D'une manière générale, la majorité des techniques de tatouage peuvent extraire l'information de l'image signée sans utiliser l'image originale. Certaines techniques réalisent d'abord une prédiction de ce qu'était l'image originale à partir de l'image signée et peuvent ensuite en déduire quelle est la signature. Cette technique est encore applicable dans le cas présent. Dans le cas où le matériau possède une couleur initiale uniforme et connue, il est possible de supprimer cette prédiction. C'est en particulier le cas d'une feuille de papier blanc. Cela permet d'augmenter la fiabilité de la détection et donc de diminuer la visibilité du filigrane jusqu'à l'extrême limite de sensibilité d'un scanner optique. En conséquence, cela rend très difficile la duplication du matériau signé, par exemple par photocopie : en effet, les pertes propres à tout système de reproduction affaiblissent en général cette signature au-dessous du seuil de détectabilité. Une application consiste à inclure un tel filigrane sur des papiers dont on souhaite éviter la copie, comme des billets de banque par exemple.The main difficulty lies in the ability to find the asymmetrical watermark. In general, most tattooing techniques can extract information from the signed image without using the original image. Some techniques first make a prediction of what the original image was from the signed image and can then infer what the signature is. This technique is still applicable in the present case. In the case where the material has a uniform and known initial color, it is possible to suppress this prediction. This is particularly the case of a blank sheet of paper. This makes it possible to increase the reliability of the detection and thus to reduce the visibility of the watermark to the extreme limit of sensitivity of an optical scanner. Consequently, it makes it very difficult to duplicate the signed material, for example by photocopying: in fact, the losses inherent in any reproduction system generally weaken. this signature below the detectability threshold. An application consists of including such a watermark on papers that you want to avoid copying, such as banknotes for example.

Afin d'augmenter la fiabilité de la détection, il est également possible de coder la signature en utilisant la différence entre des paires de pixels et de calculer ensuite la moyenne de ces différences. D'un point de vue statistique, cela augmentera la corrélation de la détection avec pour résultat une signature plus fiable.In order to increase the reliability of the detection, it is also possible to code the signature using the difference between pairs of pixels and then to calculate the average of these differences. From a statistical point of view, this will increase the correlation of the detection resulting in a more reliable signature.

RéalisationProduction

Une mode de réalisation consiste à utiliser comme base un algorithme de filigrane numérique de type spatial à modulation symétrique d'amplitude, comme par exemple celui décrit dans [1]. On parle de modulation symétrique d'amplitude d'un signal lorsque la valeur du signal est augmentée en certains points et diminuées en d'autre points. Dans cette technique, une composante de couleur d'un ensemble de pixels c(k) est modifiée d'une valeur v correspondant à l'amplitude de la modulation et en fonction du signe du bit b={-1,1} à cacher ainsi que d'un générateur aléatoire a(k) défini par une clé et donnant deux valeurs {-1,1}. c k ʹ = c k + v . b . a k

Figure imgb0001
One embodiment consists in using as a basis a symmetric amplitude modulation spatial type digital watermark algorithm, for example that described in [1]. We speak of symmetrical amplitude modulation of a signal when the value of the signal is increased at certain points and decreased at other points. In this technique, a color component of a set of pixels c (k) is modified by a value v corresponding to the amplitude of the modulation and according to the sign of the bit b = {- 1,1} to be hidden as well as a random generator a (k) defined by a key and giving two values {-1,1}. vs k ' = vs k + v . b . at k
Figure imgb0001

Dans l'équation (1), l'ensemble des points défini par v.b.a(k) constitue le filigrane (Figure 8, étape 84) qui est ajouté à l'image originale c(k) pour donner l'image signée c(k)'. C'est cette dernière qui est alors imprimée selon la présente invention.In equation (1), the set of points defined by vba (k) constitutes the watermark ( Figure 8 , step 84) which is added to the original image c (k) to give the signed image c (k) '. It is the latter which is then printed according to the present invention.

Dans le cas d'une modulation asymétrique positive (filigrane en surimpression par exemple), ce n'est plus l'image c(k)' mais le filigrane lui-même v.b.a(k) qui est imprimé par-dessus une image c(k). En effet, la composante c du support (bleu, luminance, etc...) a déjà une valeur initiale o(k) et ne peut qu'être augmentée lors de la surimpression. La formule suivante est alors appliquée : Si b . a k > 0 alors c k ʹ = o k + v . b . a k sinon c k ʹ = o k

Figure imgb0002
In the case of a positive asymmetric modulation (watermark superimposed for example), it is no longer the image c (k) ' but the watermark itself vba (k) which is printed over an image c ( k) . Indeed, the component c of the support (blue, luminance, etc.) already has an initial value o (k) and can only be increased during the overprinting. The following formula is then applied: Yes b . at k > 0 so vs k ' = o k + v . b . at k if not vs k ' = o k
Figure imgb0002

La Figure 8 donne un schéma bloc du procédé complet : l'ensemble des points constituant le filigrane 85 est calculé 84 à partir de la valeur du bit à cacher 81 et de la clé 82 définissant la séquence aléatoire a(k). La valeur des points étant positives ou négatives, comme défini par l'équation (1). L'équation (2) est équivalente à seuiller 86 les valeurs du filigrane 85 en ne conservant que les valeurs positives puis à ajouter 88 ces valeurs 87 à l'image à signer 83 pour obtenir l'image signée 89. Par comparaison avec la formule (1) correspondant à une modulation symétrique de l'amplitude selon le signe de b.a(k), cette technique est qualifiée de «modulation asymétrique d'amplitude ». De plus, le signe de la modulation b.a(k) étant positif, la modulation est dite positive.The Figure 8 gives a block diagram of the complete process: the set of points constituting the watermark 85 is calculated 84 from the value of the bit to hide 81 and the key 82 defining the random sequence a (k). The value of the points being positive or negative, as defined by equation (1). The equation (2) is equivalent to thresholding the values of the watermark 85 by keeping only the positive values and then adding these values 87 to the image to be signed 83 to obtain the signed image 89. By comparison with the formula (1) corresponding to a symmetrical modulation of the amplitude according to the sign of ba (k), this technique is called "asymmetrical amplitude modulation". In addition, the sign of the modulation ba (k) being positive, the modulation is said to be positive.

Dans le cas où le filigrane est réalisé par une impression simultanée, le procédé peut encore être amélioré en opérant de manière à ce que le filigrane domine sur les valeurs du masque original. Mathématiquement, ce concept se formalise de la manière suivante : c k ʹ = 0 si b . a k < 0

Figure imgb0003
c k ʹ = M sinon
Figure imgb0004

où M est la valeur maximum autorisée par le masque, c'est-à-dire la valeur correspondant à la couleur du document avant signature. L'équation montre clairement la modulation positive par rapport à zéro et illustre également le fait qu'aux positions où le filigrane est caché, l'image sous-jacente n'est pas prise en compte (domination du filigrane sur les valeurs originales). Ce procédé présente l'avantage que le nombre effectif de points contribuant au filigrane augmente, pouvant atteindre un facteur 2 dans le meilleur cas.In the case where the watermark is realized by simultaneous printing, the method can be further improved by operating in such a way that the watermark dominates over the values of the original mask. Mathematically, this concept is formalized as follows: vs k ' = 0 if b . at k < 0
Figure imgb0003
vs k ' = M otherwise
Figure imgb0004

where M is the maximum value allowed by the mask, that is to say the value corresponding to the color of the document before signature. The equation clearly shows the positive modulation with respect to zero and also illustrates the fact that at the positions where the watermark is hidden, the underlying image is not taken into account (dominance of the watermark on the original values). This method has the advantage that the effective number of points contributing to the watermark increases, up to a factor of 2 in the best case.

Il est également possible d'obtenir une modulation négative en imprimant une couleur uniforme u « percée » par le filigrane. L'équation (2) devient alors : Si b . a k < 0 alors c k ʹ = o k + u - v . b . a k sinon c k ʹ = o k

Figure imgb0005
It is also possible to obtain a negative modulation by printing a uniform color u "pierced" by the watermark. Equation (2) then becomes: Yes b . at k < 0 so vs k ' = o k + u - v . b . at k if not vs k ' = o k
Figure imgb0005

Dans tous les cas (modulation asymétrique positive ou négative), si le générateur aléatoire. a(k) génère le même nombre de valeurs positives et négatives, il en résulte que, statistiquement, la moitié des pixels c(k) est modifiée. Si la valeur de v est choisie suffisamment faible et que la finesse d'impression est suffisamment haute, l'impression de ces points peut être faite de manière invisible.In all cases (positive or negative asymmetric modulation), if the random generator. a (k) generates the same number of positive and negative values, it follows that, statistically, half of the pixels c (k) is modified. If the value of v is chosen sufficiently weak and that the fineness of impression is high enough, the printing of these points can be done in an invisible way.

La nouvelle valeur des points c(k)' peut être mesurée sur la feuille imprimée en utilisant un scanner optique. Deux cas se présentent alors selon que la couleur du matériau est uniforme et connue ou non.The new value of the points c (k) ' can be measured on the printed sheet using an optical scanner. Two cases then arise depending on whether the color of the material is uniform and known or not.

Dans le premier cas, l'information b est alors aisément retrouvée dans la mesure où o(k)=Constante, v et a(k) sont tous connus par avance. La multiplicité des points modifiés crée une redondance permettant d'assurer la robustesse de la technique au bruit par corrélation statistique. La Figure 9 est un schéma bloc décrivant le procédé : l'image signée obtenue par scanner est soustraite de l'image originale afin de restituer le filigrane. Le bit constituant la signature est alors calculé, optionellement, une étape supplémentaire de filtrage peut-être réalisée si des informations visibles ont été imprimées par dessus l'image uniforme signée. L'image signée 91 est préalablement filtrée 92 afin d'éliminer d'éventuels bruits (rayures, salissures, texte imprimé par dessus le filigrane, etc). L'image obtenue 93 est alors soustraite 94 de l'image originale 95 afin d'extraire le filigrane 96. La valeur du bit b est alors retrouvée selon les techniques classiques de détection de filigrane, comme décrit dans l'article [5] M. Kutter, "Watermarking resisting to translation, rotation, and scaling.", Proceedings of SPIE International Symposium on Voice, Video, and Data Communications, November 1998 , et qui consiste essentiellement à inverser l'équation (2) et corréler statistiquement la valeur du bit b retrouvé 99 sur plusieurs pixels k afin de garantir une bonne robustesse aux erreurs éventuelles pouvant par exemple survenir lors du l'acquisition numérique de l'image.In the first case, the information b is then easily found to the extent that o (k) = Constant, v and a (k) are all known in advance. The multiplicity of the modified points creates a redundancy making it possible to ensure the robustness of the technique to noise by statistical correlation. The Figure 9 is a block diagram describing the process: the signed image obtained by scanner is subtracted from the original image in order to restore the watermark. The bit constituting the signature is then calculated, optionally, an additional filtering step may be performed if visible information has been printed over the signed uniform image. The signed image 91 is previously filtered 92 in order to eliminate any noises (scratches, stains, text printed over the watermark, etc.). The resulting image 93 is then subtracted 94 from the original image 95 in order to extract the watermark 96. The value of the bit b is then found according to the standard watermark detection techniques, as described in the article [5] M. Kutter, "Watermarking resisting to translation, rotation, and scaling.", Proceedings of SPIE International Symposium on Voice, Video, and Data Communications, November 1998 , which essentially consists of inverting equation (2) and statistically correlating the value of bit b found on several pixels k in order to guarantee good robustness to possible errors that may occur, for example, during the digital acquisition of the image .

Cette méthode est généralisable à plusieurs bits b et permet alors de coder n'importe quelle information numérique comme un numéro ou une chaîne de caractères.This method can be generalized to several bits b and can then code any digital information such as a number or a string of characters.

Le deuxième cas est illustré par le schéma bloc de la figure Figure 10 où l'image originale est prédite à partir de l'image signée, l'image signée est soustraite de l'image prédite afin de restituer le filigrane, le bit constituant la signature est alors calculé. Un filtre de débruitage 105, par exemple de type Wiener, est utilisé pour réaliser une prédiction 106 de l'image originale o(k) à partir de l'image signée 101. La différence 102 entre ces deux images constitue alors le filigrane 107 qui peut être décodé 103 en utilisant la clé 108 pour retrouver le bit 104 de la même manière que précédemment (Figure 9). L'erreur de prédiction étant notablement plus importante que dans le premier cas, le nombre de bits b codés de cette manière est systématiquement inférieur.The second case is illustrated by the block diagram of the figure Figure 10 where the original image is predicted from the signed image, the signed image is subtracted from the predicted image in order to render the watermark, the bit constituting the signature is then calculated. A denoising filter 105, for example of the Wiener type, is used to make a prediction 106 of the original image o (k) from the signed image 101. The difference 102 between these two images then constitutes the watermark 107 which can be decoded 103 using the key 108 to find the bit 104 in the same manner as before ( Figure 9 ). Since the prediction error is significantly greater than in the first case, the number of bits b coded in this way is systematically lower.

Dans la pratique il peut également être utile d'imprimer des informations visibles par-dessus le filigrane numérique. C'est le cas par exemple d'une feuille blanche de papier qui comporte un filigrane numérique et par dessus laquelle est imprimé un texte. Ceci est réalisable en choisissant des couleurs ou des intensités distinctes pour le filigrane et pour les informations visibles. Il est ensuite possible de filtrer l'image avant la détection du filigrane (Figure 9, étape 92) pour différencier le filigrane du texte imprimé et ainsi éliminer les parties ne comportant pas le filigrane. Une méthode consiste par exemple à utiliser la composante bleu pour le filigrane et à imprimer le texte du document en noir.In practice it can also be useful to print visible information over the digital watermark. This is the case for example of a blank sheet of paper that has a digital watermark and over which is printed a text. This is achievable by choosing different colors or intensities for the watermark and for visible information. It is then possible to filter the image before the watermark is detected ( Figure 9 , step 92) to differentiate the watermark from the printed text and thus eliminate the parts not having the watermark. One method is for example to use the blue component for the watermark and to print the document text in black.

Finalement, la mise en oeuvre de la détection requiert un scanner optique capable de numériser le document sur lequel le filigrane est imprimé. Le positionnement sur le scanner n'étant jamais parfait, il est nécessaire de pouvoir retrouver l'information codé par le filigrane après d'éventuelles translations et rotations. Une technique convenable consiste à utiliser la méthode décrite par [5] qui est basée sur un filigrane auto-correlé (pour compenser les rotations) et une technique d'inter-corrélation (pour compenser les translations).Finally, the implementation of the detection requires an optical scanner capable of scanning the document on which the watermark is printed. The positioning on the scanner is never perfect, it is necessary to be able to find the information coded by the watermark after possible translations and rotations. A suitable technique is to use the method described by [5] which is based on a self-correlated watermark (to compensate for rotations) and an inter-correlation technique (to compensate for translations).

Autres applicationsOther applications

Le procédé peut également être appliqué à d'autres secteurs que l'impression. Par exemple, il est possible d'utiliser un laser pour graver des surfaces métalliques, des pierres, de la céramique, etc, et encoder ainsi un filigrane digital. Les applications concernées sont alors par exemple les pièces de l'industrie automobile ou aéronautique ou des objets de luxe dans les secteurs de la joaillerie ou des objets de valeurs. On peut également imaginer de cacher des filigranes sur des CD-ROM ou CD audio, sur la face sérigraphiée ou sur la face gravée (encre ou laser).The method can also be applied to other sectors than printing. For example, it is possible to use a laser to engrave metal surfaces, stones, ceramics, etc., and thus encode a digital watermark. The applications concerned are, for example, parts of the automotive or aerospace industry or luxury articles in the jewelery or objects sectors. of values. It is also possible to hide watermarks on CD-ROMs or audio CDs, on the screen-printed side or on the engraved side (ink or laser).

Claims (4)

  1. Method of printing a watermark and a image on a printed surface, this watermark being auto-correlated and containing an information to hide, this method being characterized in the following steps :
    - realizing a digital watermark vba(k) of the spatial type in function of the sign of the bit b={-1;1} of the information to hide and of the amplitude v of the modulation of a color component as well as a random generator a(k) defined by a key, so that the density of the watermark is 2% or less,
    - printing the image c(k),
    - printing over the image c(k) the watermark vba(k) for the values ba(k) >0 only in order to obtain an asymmetrical amplitude modulation over the surface at a resolution comprised between 300 and 1200 dpi.
  2. Method of printing a watermark according to claim 1, characterized in that the watermark covers the entire surface.
  3. Printed surface comprising a image and a watermark according one of the claim 1 or 2.
  4. Printed surface according to the claim 3, characterized in that the watermark is printed on a material having an uniform color.
EP01964793A 2000-09-20 2001-09-17 Method for preventing counterfeiting or alteration of a printed or engraved surface Expired - Lifetime EP1319219B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10174049.6A EP2261867B1 (en) 2000-09-20 2001-09-17 Method intended for preventing forgery or alteration of a printed or engraved surface.

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH183200 2000-09-20
CH18322000 2000-09-20
PCT/CH2001/000560 WO2002025599A1 (en) 2000-09-20 2001-09-17 Method for preventing counterfeiting or alteration of a printed or engraved surface

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP10174049.6A Division EP2261867B1 (en) 2000-09-20 2001-09-17 Method intended for preventing forgery or alteration of a printed or engraved surface.
EP10174049.6 Division-Into 2010-08-25

Publications (2)

Publication Number Publication Date
EP1319219A1 EP1319219A1 (en) 2003-06-18
EP1319219B1 true EP1319219B1 (en) 2010-11-17

Family

ID=4566438

Family Applications (2)

Application Number Title Priority Date Filing Date
EP01964793A Expired - Lifetime EP1319219B1 (en) 2000-09-20 2001-09-17 Method for preventing counterfeiting or alteration of a printed or engraved surface
EP10174049.6A Expired - Lifetime EP2261867B1 (en) 2000-09-20 2001-09-17 Method intended for preventing forgery or alteration of a printed or engraved surface.

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10174049.6A Expired - Lifetime EP2261867B1 (en) 2000-09-20 2001-09-17 Method intended for preventing forgery or alteration of a printed or engraved surface.

Country Status (8)

Country Link
US (1) US7684088B2 (en)
EP (2) EP1319219B1 (en)
CN (1) CN1252653C (en)
AT (1) ATE488822T1 (en)
DE (1) DE60143487D1 (en)
DK (1) DK1319219T3 (en)
ES (1) ES2356598T3 (en)
WO (1) WO2002025599A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9552543B2 (en) 2014-02-04 2017-01-24 Hicof Inc. Method and apparatus for proving an authentication of an original item and method and apparatus for determining an authentication status of a suspect item
US10235618B2 (en) 2015-06-18 2019-03-19 Hicof Inc. Authentication feature in a barcode

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6728390B2 (en) 1995-05-08 2004-04-27 Digimarc Corporation Methods and systems using multiple watermarks
US7246239B2 (en) 2001-01-24 2007-07-17 Digimarc Corporation Digital watermarks for checking authenticity of printed objects
US6899475B2 (en) 2002-01-30 2005-05-31 Digimarc Corporation Watermarking a page description language file
US7974495B2 (en) 2002-06-10 2011-07-05 Digimarc Corporation Identification and protection of video
US7644281B2 (en) * 2004-09-27 2010-01-05 Universite De Geneve Character and vector graphics watermark for structured electronic documents security
EP1691539A1 (en) * 2005-02-15 2006-08-16 European Central Bank Two-dimensional security pattern that can be authenticated with one-dimensional signal processing
EP1690697A1 (en) 2005-02-15 2006-08-16 Alpvision SA Method to apply an invisible mark on a media
KR100831601B1 (en) * 2005-10-26 2008-05-23 이항경 Method and system for good authentification on communication network by using serial number and password
CN101089807A (en) * 2006-06-16 2007-12-19 光宝科技股份有限公司 Printing method and device for floating print
US8770625B1 (en) * 2006-12-22 2014-07-08 Hewlett-Packard Development Company, L.P. Anti-counterfeiting articles
DE102008012426A1 (en) * 2007-10-31 2009-05-07 Bundesdruckerei Gmbh Document-production method for producing a security inserts imaging information/data into layers of a document to form a total security image
WO2009134965A2 (en) * 2008-04-30 2009-11-05 Polyonics, Inc. Method and apparatus for the detection of counterfeiting
US9749607B2 (en) 2009-07-16 2017-08-29 Digimarc Corporation Coordinated illumination and image signal capture for enhanced signal detection
HUP1200097A2 (en) * 2012-02-15 2013-08-28 Glenisys Kft Security element and method for checking originality of a printed matter
US10424038B2 (en) 2015-03-20 2019-09-24 Digimarc Corporation Signal encoding outside of guard band region surrounding text characters, including varying encoding strength
US9635378B2 (en) 2015-03-20 2017-04-25 Digimarc Corporation Sparse modulation for robust signaling and synchronization
FR3018130B1 (en) * 2014-03-03 2016-03-25 Advanced Track & Trace METHOD OF MARKING A HOLOGRAPHIC MATRIX AND HOLOGRAPHIC MATRIX THUS OBTAINED
US10783601B1 (en) 2015-03-20 2020-09-22 Digimarc Corporation Digital watermarking and signal encoding with activable compositions
US9754341B2 (en) 2015-03-20 2017-09-05 Digimarc Corporation Digital watermarking and data hiding with narrow-band absorption materials
FR3035819B1 (en) 2015-05-07 2021-04-30 Honnorat Rech & Services SMARTPHONE AUTHENTICABLE PAPER
CN106682912B (en) 2015-11-10 2021-06-15 艾普维真股份有限公司 Authentication method of 3D structure
US10896307B2 (en) 2017-11-07 2021-01-19 Digimarc Corporation Generating and reading optical codes with variable density to adapt for visual quality and reliability
US10872392B2 (en) 2017-11-07 2020-12-22 Digimarc Corporation Generating artistic designs encoded with robust, machine-readable data
US11062108B2 (en) 2017-11-07 2021-07-13 Digimarc Corporation Generating and reading optical codes with variable density to adapt for visual quality and reliability
EP3686027B1 (en) 2019-01-27 2021-07-14 U-NICA Systems AG Method of printing authentication indicators with an amplitude-modulated half tone
TWI844619B (en) 2019-02-28 2024-06-11 瑞士商西克帕控股有限公司 Method for authenticating a magnetically induced mark with a portable device
PT115571B (en) 2019-06-08 2021-06-07 Incm Imprensa Nac Casa Da Moeda S A METHOD FOR VALIDATION OF THE AUTHENTICITY OF AN IMAGE PRESENT IN AN OBJECT, OBJECT WITH INTENSIFIED LEVEL OF SAFETY AND ITS METHOD OF PREPARATION, COMPUTER DEVICE, COMPUTER PROGRAMS AND ADAPTED READING MEDIA
US11636565B1 (en) 2019-07-24 2023-04-25 Digimarc Corporation Tamper detection arrangements, and point of sales systems employing same
EP3859597A1 (en) 2020-01-31 2021-08-04 U-NICA Systems AG A computer implemented method and system of surface identification comprising scales
AR123354A1 (en) 2020-09-02 2022-11-23 Sicpa Holding Sa SECURITY MARK, METHOD AND DEVICE FOR READING THE SECURITY MARK, SECURITY DOCUMENT MARKED WITH THE SECURITY MARK AND METHOD AND SYSTEM FOR VERIFYING SUCH SECURITY DOCUMENT
WO2023076847A1 (en) 2021-10-26 2023-05-04 Numéraire Financial, Inc. Tokenizing scarce goods with provenance history bound to biological fingerprints
EP4328879A1 (en) 2022-08-26 2024-02-28 Alpvision SA Systems and methods for predicting the authentication detectability of counterfeited items
EP4400324A1 (en) 2023-01-10 2024-07-17 Alpvision SA A product comprising a marking pattern on a surface area for identifying the product

Family Cites Families (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3984624A (en) 1974-07-25 1976-10-05 Weston Instruments, Inc. Video system for conveying digital and analog information
US4237484A (en) 1979-08-08 1980-12-02 Bell Telephone Laboratories, Incorporated Technique for transmitting digital data together with a video signal
FR2515403A1 (en) 1981-10-28 1983-04-29 Quadrivium Inf METHOD FOR IDENTIFYING A SOUND RECORDING AND DUPLICATION INSTALLATION IMPLEMENTING THE METHOD
US5191966A (en) * 1982-09-02 1993-03-09 Miller Formless Co., Inc. Apparatus and method for unloading bulk materials
DE3851724T2 (en) 1987-07-08 1995-05-04 Matsushita Electric Ind Co Ltd Method and device for protecting copy signals.
GB8806452D0 (en) 1988-03-18 1988-04-20 Imperial College Digital data security system
FI80405C (en) 1988-03-24 1990-06-11 Suomen Pankin Setelipaino Printed article secured with warning figure and method for its cutting
NL8901032A (en) 1988-11-10 1990-06-01 Philips Nv CODER FOR INCLUDING ADDITIONAL INFORMATION IN A DIGITAL AUDIO SIGNAL WITH A PREFERRED FORMAT, A DECODER FOR DERIVING THIS ADDITIONAL INFORMATION FROM THIS DIGITAL SIGNAL, AN APPARATUS FOR RECORDING A DIGITAL SIGNAL ON A CODE OF RECORD. OBTAINED A RECORD CARRIER WITH THIS DEVICE.
US5103459B1 (en) 1990-06-25 1999-07-06 Qualcomm Inc System and method for generating signal waveforms in a cdma cellular telephone system
CA2044404C (en) 1990-07-31 1998-06-23 Dan S. Bloomberg Self-clocking glyph shape codes
US5091966A (en) 1990-07-31 1992-02-25 Xerox Corporation Adaptive scaling for decoding spatially periodic self-clocking glyph shape codes
EP0493091A1 (en) 1990-12-27 1992-07-01 Xerox Corporation Method and system for embedding machine readable digital data in grayscale images
US5315098A (en) * 1990-12-27 1994-05-24 Xerox Corporation Methods and means for embedding machine readable digital data in halftone images
CA2063785C (en) 1991-03-25 1998-09-29 Masahiro Funada Image processing apparatus
SG71841A1 (en) 1991-03-29 2000-04-18 Canon Kk Image processing apparatus and copying machine
US6166750A (en) 1992-01-31 2000-12-26 Canon Kabushiki Kaisha Image processing apparatus and method for adding predetermined additional information to an image by adding a predetermined number of unit dots to partial color component data of the image
US5721788A (en) 1992-07-31 1998-02-24 Corbis Corporation Method and system for digital image signatures
US6421145B1 (en) * 1992-09-28 2002-07-16 Canon Kabushiki Kaisha Image processing apparatus and method using image information and additional information or an additional pattern added thereto or superposed thereon
US5421869A (en) * 1993-05-28 1995-06-06 Nocopi Technologies, Inc. Security marking method and composition
US6614914B1 (en) * 1995-05-08 2003-09-02 Digimarc Corporation Watermark embedder and reader
US5748763A (en) 1993-11-18 1998-05-05 Digimarc Corporation Image steganography system featuring perceptually adaptive and globally scalable signal embedding
US6345104B1 (en) * 1994-03-17 2002-02-05 Digimarc Corporation Digital watermarks and methods for security documents
EP0959621B1 (en) 1993-11-18 2001-02-28 Digimarc Corporation Video copy control with plural embedded signals
US6449377B1 (en) * 1995-05-08 2002-09-10 Digimarc Corporation Methods and systems for watermark processing of line art images
US7116781B2 (en) 1993-11-18 2006-10-03 Digimarc Corporation Counteracting geometric distortions in watermarking
US5768426A (en) 1993-11-18 1998-06-16 Digimarc Corporation Graphics processing system employing embedded code signals
US6882738B2 (en) 1994-03-17 2005-04-19 Digimarc Corporation Methods and tangible objects employing textured machine readable data
US5488664A (en) 1994-04-22 1996-01-30 Yeda Research And Development Co., Ltd. Method and apparatus for protecting visual information with printed cryptographic watermarks
US5530751A (en) 1994-06-30 1996-06-25 Hewlett-Packard Company Embedded hidden identification codes in digital objects
US5600732A (en) * 1994-12-08 1997-02-04 Banctec, Inc. Document image analysis method
US6728390B2 (en) 1995-05-08 2004-04-27 Digimarc Corporation Methods and systems using multiple watermarks
ATE418233T1 (en) 1995-05-08 2009-01-15 Digimarc Corp METHOD FOR EMBEDDING MACHINE READABLE STEGANOGRAPHIC CODE
US6988202B1 (en) 1995-05-08 2006-01-17 Digimarc Corporation Pre-filteriing to increase watermark signal-to-noise ratio
US7171018B2 (en) 1995-07-27 2007-01-30 Digimarc Corporation Portable devices and methods employing digital watermarking
US6345145B1 (en) 1995-08-25 2002-02-05 Sony Corporation Signal recording/reproducing method and apparatus, signal record medium and signal transmission/reception method and apparatus
US6750902B1 (en) * 1996-02-13 2004-06-15 Fotonation Holdings Llc Camera network communication device
US5974548A (en) * 1996-07-12 1999-10-26 Novell, Inc. Media-independent document security method and apparatus
US5872834A (en) 1996-09-16 1999-02-16 Dew Engineering And Development Limited Telephone with biometric sensing device
US6039257A (en) * 1997-04-28 2000-03-21 Pitney Bowes Inc. Postage metering system that utilizes secure invisible bar codes for postal verification
US5960081A (en) 1997-06-05 1999-09-28 Cray Research, Inc. Embedding a digital signature in a video sequence
US6104812A (en) * 1998-01-12 2000-08-15 Juratrade, Limited Anti-counterfeiting method and apparatus using digital screening
US5946414A (en) 1998-08-28 1999-08-31 Xerox Corporation Encoding data in color images using patterned color modulated image regions
US6542629B1 (en) * 1999-07-22 2003-04-01 Xerox Corporation Digital imaging method and apparatus for detection of document security marks
US6546114B1 (en) * 1999-09-07 2003-04-08 Microsoft Corporation Technique for detecting a watermark in a marked image
US6442555B1 (en) * 1999-10-26 2002-08-27 Hewlett-Packard Company Automatic categorization of documents using document signatures
JP2001213015A (en) * 2000-02-02 2001-08-07 Fujitsu Ltd Image recorder
US6708894B2 (en) * 2001-06-26 2004-03-23 Xerox Corporation Method for invisible embedded data using yellow glyphs
US7310168B2 (en) * 2001-07-03 2007-12-18 Infoprint Solutions Company Llc Method and apparatus for controlling a spot function for digital halftoning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9552543B2 (en) 2014-02-04 2017-01-24 Hicof Inc. Method and apparatus for proving an authentication of an original item and method and apparatus for determining an authentication status of a suspect item
US10235618B2 (en) 2015-06-18 2019-03-19 Hicof Inc. Authentication feature in a barcode

Also Published As

Publication number Publication date
EP2261867A3 (en) 2012-12-19
EP2261867B1 (en) 2018-07-18
EP1319219A1 (en) 2003-06-18
CN1475001A (en) 2004-02-11
US20040013285A1 (en) 2004-01-22
WO2002025599A1 (en) 2002-03-28
EP2261867A2 (en) 2010-12-15
CN1252653C (en) 2006-04-19
ATE488822T1 (en) 2010-12-15
US7684088B2 (en) 2010-03-23
DK1319219T3 (en) 2011-02-21
DE60143487D1 (en) 2010-12-30
ES2356598T3 (en) 2011-04-11

Similar Documents

Publication Publication Date Title
EP1319219B1 (en) Method for preventing counterfeiting or alteration of a printed or engraved surface
US11548310B2 (en) Authenticating identification and security documents and other objects
US6718046B2 (en) Low visibility watermark using time decay fluorescence
CA2596103C (en) Method to apply an invisible mark on a media
RU2316058C2 (en) System and method for product authentication
EP2780865B1 (en) Pattern for encoding digital information on a surface, and marking and reading methods
AU2013220001B2 (en) Security element and method to inspect authenticity of a print
US20030005304A1 (en) Marking articles using a covert digitally watermarked image
EP1433305B1 (en) Method for robust asymmetric modulation spatial marking with spatial oversampling
EP2398652B1 (en) Method and device for securing documents against forgery
CH694233A5 (en) Prevention of counterfeiting or alteration to printed or engraved document surfaces uses a numerical watermark in a part or over whole surface of document
JP2002532812A (en) Anti-counterfeiting system
CA2726968A1 (en) Fiduciary or similar document comprising color block designs and copperplate printing, and manufacturing method for same
FR2734655A1 (en) Formation of cheque protected against falsification
EP1847400A2 (en) Control element for printed objects

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030326

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20061009

17Q First examination report despatched

Effective date: 20061009

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KUTTER, MARTIN

Inventor name: MEYLAN, ROLAND

Inventor name: JORDAN, FREDERIC

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 60143487

Country of ref document: DE

Date of ref document: 20101230

Kind code of ref document: P

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: LEMAN CONSULTING S.A.

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2356598

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20110411

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110317

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110218

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: MC

Payment date: 20110914

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60143487

Country of ref document: DE

Effective date: 20110818

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110917

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20170922

Year of fee payment: 17

Ref country code: IT

Payment date: 20170926

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20170928

Year of fee payment: 17

Ref country code: NL

Payment date: 20170921

Year of fee payment: 17

Ref country code: SE

Payment date: 20170921

Year of fee payment: 17

Ref country code: AT

Payment date: 20170922

Year of fee payment: 17

Ref country code: TR

Payment date: 20170906

Year of fee payment: 17

Ref country code: DK

Payment date: 20170921

Year of fee payment: 17

Ref country code: BE

Payment date: 20170921

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20171025

Year of fee payment: 17

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20180930

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 488822

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180918

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20180930

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180930

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20191031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180918

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200922

Year of fee payment: 20

Ref country code: FR

Payment date: 20200914

Year of fee payment: 20

Ref country code: DE

Payment date: 20200925

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 60143487

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20210916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20210916

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180917