EP1317661A1 - Device for measuring exchanges of amounts of heat in non-stationary operating conditions - Google Patents

Device for measuring exchanges of amounts of heat in non-stationary operating conditions

Info

Publication number
EP1317661A1
EP1317661A1 EP01962524A EP01962524A EP1317661A1 EP 1317661 A1 EP1317661 A1 EP 1317661A1 EP 01962524 A EP01962524 A EP 01962524A EP 01962524 A EP01962524 A EP 01962524A EP 1317661 A1 EP1317661 A1 EP 1317661A1
Authority
EP
European Patent Office
Prior art keywords
thermally conductive
conductive part
measuring
housing
thermofluxmetric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01962524A
Other languages
German (de)
French (fr)
Inventor
Jean-Claude Padoy
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MAPE Sas
Original Assignee
Thermoflux SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thermoflux SA filed Critical Thermoflux SA
Publication of EP1317661A1 publication Critical patent/EP1317661A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K17/00Measuring quantity of heat
    • G01K17/06Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device
    • G01K17/08Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature
    • G01K17/20Measuring quantity of heat conveyed by flowing media, e.g. in heating systems e.g. the quantity of heat in a transporting medium, delivered to or consumed in an expenditure device based upon measurement of temperature difference or of a temperature across a radiating surface, combined with ascertainment of the heat transmission coefficient

Definitions

  • the present invention relates to a device for measuring the exchange of quantities of heat in a non-stationary regime, this regime having a low level dynamic embedded in an environment strongly disturbed by significant thermal fields, said device comprising an elongated housing provided with '' a central cavity, a measurement end and a connection end, the measurement end being closed and the central cavity containing, on the one hand, a measurement cell and, on the other hand, organs electrical connection, said measurement cell comprising at least one thermofluxmetric sensitive element sandwiched between a first thermally conductive part and a second thermally conductive part.
  • Such a device makes it possible to measure in real time the quantities of heat generated during rheological modifications of materials being processed, such as for example synthetic materials during a plasticization process in an extrusion or injection machine. .
  • the information collected is significant of the state of the material at a given instant, in particular of its pressure, its temperature, its viscous flow or, if necessary, its phase change, or its degradation during another transformation process.
  • thermal flux sensors have been created to mainly measure fluxes of the thermal balance type representative of the thermal exchanges between matter and its environment.
  • the heat fluxes generated within the material during local rheological modifications being very weak compared to the fluxes resulting from the exchanges with the environment, they are thus drowned in an important signal of level which it is necessary to process to be able to extract information from it sought.
  • This is a cumbersome and expensive method and it appears complex to routinely integrate such devices in an industrial process for performing online control.
  • thermofluxmetric sensor has been developed which meets these requirements and which was the subject of the international patent application published under the number WO 00/08431 and having the title: Device for measuring the exchange of heat quantities in variable, non-stationary or transient regime.
  • This device comprises a measurement cell comprising at least one thermofluxmetric sensitive element sandwiched between a first thermally conductive part and a second thermally conductive part.
  • the measuring cell has a flat circular base which is held in contact by mechanical compression means against the inner surface of the bottom of a body in which the measuring cell is arranged.
  • the two parts which sandwich said sensitive element are in direct contact with the body of the device which is itself linked to the environment of the material to be checked.
  • this device is designed to measure the exchange of heat quantities between the material to be checked and its immediate environment.
  • the device is capable of measuring the exchanges of quantities of heat between the sheath of an injection machine and the synthetic material itself being processed, which circulates inside this sheath in melted area. It is obvious that heat exchanges take place permanently between the material and its immediate environment so that the measurements carried out by this device do not make it possible to effectively and reliably control the evolution of the material being plasticized in the zone molten.
  • the present invention proposes to remedy these drawbacks by making it possible to carry out a precise control of the evolution of the material being transformed by a simple measurement of exchanges of heat quantities corresponding either to the exchanges due to the flow resulting from the thermal balance between the material and its environment, but exclusively for local exchanges between the material and a reference thermal element.
  • the device as defined in the preamble and characterized in that said first thermally conductive part is in contact with at least one surface of said housing, and in that said second thermally conductive part is isolated from said housing and constitutes a capacity constant thermal.
  • thermofluxmetric type is disposed between said first part, which constitutes a thermal electrode in contact with the medium to be checked, and said second part, which constitutes a determined thermal capacity.
  • the thermal capacity of the device destocks, in the opposite direction, the quantities of heat which are exchanged with the material by crossing the thermofluxmetric sensitive element, and this until the next local thermal equilibrium.
  • thermofluxmetric sensitive element which generates a significant electrical signal of these exchanges, and this in real time.
  • the electrical signal obtained is non-stationary. It provides information, in real time, on the dynamics of local rheological modifications of matter, and this in an environment strongly disturbed in particular by exchanges of thermal energy at very high level between matter and its environment.
  • the measurement end of the housing is substantially flat and one of the ends of said first part thermally conductive is at least partially in contact with an interior surface of said measurement end.
  • said first thermally conductive part comprises a heel provided with a contact surface whose geometry corresponds to that of an interior surface of said measurement end.
  • said contact surface of said heel of said first thermally conductive part is circular.
  • the measurement end of the housing is substantially frustoconical and one of the ends of said first thermally conductive part is at least partially in contact with an interior surface of said measurement end.
  • said first thermally conductive part comprises a heel provided with a contact surface, this contact surface being in abutment against an interior surface of the same geometry of said frustoconical measurement end.
  • thermofluxmetric sensitive element as well as said first thermally conductive part and said second thermally part are coated with a layer of gold, at least on their common surfaces, so as to ensure by diffusion of the layer of gold intimate thermal contact between the components concerned.
  • the housing comprises, on the side of its measurement end, a hollow finger whose thickness is reduced compared to that of the rest of the body so as to have a high axial thermal resistance, the cell being essentially housed in this finger.
  • the measuring cell is preferably held at the bottom of the hollow finger by compression means arranged to ensure that said first thermally conductive part is pressed against the internal surface of the measuring end.
  • the cross section of the hollow finger is circular
  • said first thermally conductive part has a semi-cylindrical section whose diameter is substantially equal to the diameter of the interior surface of the hollow finger
  • the second thermally conductive part has a semi-cylindrical section whose diameter is less than the diameter of the interior surface of the hollow finger.
  • FIG. 1 represents a view in partial longitudinal section of a first embodiment of the invention of the device according to the invention
  • FIG. 2A represents an enlarged partial view in longitudinal section of the measurement end of the device of FIG. 1,
  • FIG. 2B represents an enlarged partial view in cross section along the line l-l, of the measuring end of the device of FIG. 1,
  • FIG. 3 represents a view in longitudinal section of a second embodiment of the device according to the invention
  • FIG. 4A represents an enlarged partial view in longitudinal section of the measurement end of the device of FIG. 3
  • FIG. 4B represents an enlarged partial view in cross section, along line 11-11, of the measurement end of the device of FIG. 3,
  • FIG. 5 represents a view in longitudinal section of a third embodiment of the device according to the invention.
  • FIG. 6 is an enlarged partial view of the measurement end of the device in FIG. 5, and
  • thermofluxmetric sensitive element of the measurement cell housed in the measurement end of the device of the invention.
  • the device 10 comprises a housing 11 of elongated shape which has a closed measurement end 12, a connection end 13 as well as a central cavity 14.
  • This central cavity 14 contains, on the one hand, a measurement cell 15 and, on the other hand, electrical connection members 16.
  • the housing 11 is extended, on the side of the measurement end 12, by a hollow finger 17, of section advantageously circular, which partly contains at least said measurement cell 15.
  • This measurement cell 15 consists of a thermofluxmetric sensitive element 18 which is sandwiched between a first thermally conductive part 19, which constitutes a kind of thermal electrode, and a second thermally conductive part 20, which constitutes a constant thermal capacity. called the reference thermal capacity.
  • the contact surfaces of the first thermally conductive part 19 and the second thermally conductive part 20 are each coated with a layer of gold, so as to form an intimate thermal connection with the element.
  • the two thermally conductive parts 19 and 20 are linked together by screws 21 made of a thermally poorly conductive material.
  • said first thermally conductive part 19 has a substantially semi-circular section and is provided at its free end with a heel 19a of substantially circular section which has a flat surface 19b of shape circular bearing on the interior surface 17a of the hollow finger 17.
  • the diameter of this heel is less than or equal to the interior diameter of said hollow finger 17.
  • the diameter of said first thermally conductive part 19 is less than the interior diameter of said finger hollow 17 so that this part has no direct contact with the body of the finger. The only contact between said first thermally conductive part 19 and the hollow finger 17 is indirect and takes place via the surface 19b of the heel 19a.
  • a thermal insulator 22 is mechanically fitted onto the first thermally conductive part 19 thus ensuring the mechanical connection between the measurement cell 15 and the connection members 16 of the device as well as good thermal insulation of said measurement cell.
  • Two electrically insulating clamping terminals 26a and 26b are respectively disposed on either side of the thermofluxmetric sensitive element 18 and each have a wedge-shaped recess 27 in which is engaged one end of each electrically conductive wire or braid of the two-wire cable 25, applied against a face of the thermofluxmetric sensitive element 18 which comprises on each of its faces an appropriate electrically conductive track.
  • thermofluxmetric 18 is sandwiched between the two electrically insulating clamping terminals 26a and 26b and held by means of two clamping screws 28 which ensure the clamping of said terminals by crushing between them the two electrical wires of the two-wire cable 25 on the electrical tracks of the thermofluxmetric sensitive element 18.
  • the braid clamp 20 takes support, at its end, on the hollow sheath 23 and has a cylindrical central bore allowing the passage of the conductive wires or the braid of the cable 25.
  • the other end is arranged to operate a coaxial clamping of the braid with the sheath of the cable 25 when a clamping sleeve 29 is screwed to the connection end 13 of the housing 11 and this bushing compresses the clamping clamp 24.
  • the housing 11 is provided with a shoulder 30 which serves to support a tightening nut 31 split longitudinally and which extends substantially over the entire length of the said housing 11.
  • This nut is intended to provide a mechanical connection with a support (not shown) which is linked to the environment of the medium to be checked, for example to the sleeve of an extrusion press.
  • the clamping nut 31 is externally provided with a thread which cooperates with the thread of said support linked to the environment of the medium to be checked.
  • Figures 3, 4A and 4B show views similar to those of Figures 1, 2A and 2B, they correspond to a second embodiment of the device according to the invention. Similar components will have the same reference numbers and will not be described in detail. Only the components which differ from those of the previous figures will be detailed.
  • said first thermally conductive part 19 is not extended by a heel which ensures contact with the end of the hollow finger 17, but the part itself extends to the end of this hollow finger and comprises, at its end, a flat surface 19c, in the form of half disc, which bears against the interior surface 17a of the hollow finger 17.
  • the diameter of said first thermally conductive part 19 is equal to the interior diameter of the hollow finger 17, so that the contact between this part and the body the hollow finger is made directly with the free end of the part and with its lateral surface 19d.
  • Figures 5 and 6 illustrate a third embodiment of the device according to the invention. Components similar to those of the previous figures and in particular of Figures 1, 2A and 2B will bear the same reference numbers and will not be described in detail. Only the components which differ from those of the previous figures will be detailed.
  • the hollow finger 17 differs from that of the finger illustrated in Figure 1.
  • the hollow finger is extended by a frustoconical end piece 31 which is arranged to be engaged in a suitable bore of a part in connection with the medium to be checked.
  • the frustoconical shape of the end piece makes it possible to increase the contact surface between the hollow finger 17 and the part in contact with the medium to be checked and thus to obtain greater sensitivity and greater reliability of the measurements.
  • the heel 19a can be replaced by an extension of said first thermally conductive part 19, as is the case in the embodiment illustrated in FIG. 3.
  • this heel can have a diameter equal to the inside diameter of the hollow finger 17, so as to increase the contact surface of said first thermally conductive part 19 with the body of the hollow finger.
  • FIGS. 7A and 7B represent the thermofluxmetric sensitive element of the measurement cell 15, respectively seen from below and seen in longitudinal section.
  • This element comprises a thermofluxmetric detector 40, disposed between a first insulating layer 41 and a second insulating layer 42 which extend beyond the detector towards the end of connection.
  • the two insulating layers 41 and 42 defined above are respectively surmounted by a first copper mass 43, called the absorption electrode, and a second copper mass 44, called the electrode of dissipation.
  • the two insulating layers 41 and 42 are separated from a third central insulating layer 45 by two conductive tracks, respectively 46 and 47.
  • Two pass-through holes 48 and 49 are provided on the side of the end of measurement to enable the thermofluxmetric sensitive element 18, said first thermally conductive part 19 and said second thermally conductive part 20 to be connected by screws.
  • the device according to the invention is applicable to the measurement of the exchange of quantities of heat in a totally non-stationary regime comprising a low level dynamic embedded in an environment strongly disturbed by significant thermal fields.
  • the measuring end the base of which is flat, as shown in particular in FIG. 2A, is usually engaged in a through bore so that this base is in contact with the material to be checked.
  • the measuring end, the base of which is frustoconical, as shown in particular in FIG. 6, is preferably engaged in a blind bore, the end of which has the shape of a cone, the top of which is disposed at a short distance from the passage of the material to be checked.
  • the sensor body In the first case, the sensor body, and more particularly the wall of this body located at the base of the measurement end, must withstand significant pressures, which can reach 2500 bars. In addition, the space between the body of the sensor and the wall of the through bore is invaded by material, in particular by plastics, which, by hardening, block the sensor in the bore and prevent its dismantling. Cold. In the second case, the sensor body is no longer in contact with the material, and is no longer subjected to the significant pressure of the latter. It can be dismantled at any time during the operation of an extrusion press, for example.
  • the distance between the measuring end and the material to be checked is small, thermal information is easily transmitted, all the more since the frustoconical shape makes it possible to increase by a factor of up to four the surface which captures variations in heat flux.
  • the contact between the frustoconical base surface of the measuring end and the conical surface of the point of the bore is easy to achieve, which makes it possible in the second case to obtain a result identical, or even better than that 'is obtained in the first case, despite increased thermal resistance.
  • this device can be advantageously used for:
  • thermosetting materials in SMC (Sheet Molding Compound) and BMC (Bulk Mounting Compound) compression molds so as to better optimize production by better controlling rheological parameters, especially during the crosslinking.
  • SMC Sheet Molding Compound
  • BMC Bulk Mounting Compound
  • thermomechanical signature has never been obtained to date, in particular in the molten zone, which gives hope for significant progress in knowledge. and online and real-time control of injection processes.

Abstract

The invention concerns a device (10) for measuring exchanges of amounts of heat in non-stationary operational conditions comprising an elongated housing (11) having one measuring end (12) closed and one connecting end (13) and a central cavity (14). The central cavity (14) contains a measuring cell (15) and electrical connection members (15). The housing (11) is extended by a hollow finger (17) which contains partly at least the measuring cell (15) which consists of a sensitive heat flux measuring element (18) sandwiched between a first heat conducting component (19) and a second heat conducting component (20). The contact surfaces of the heat conducting component (19, 20) are each coated with a gold film, so as to produce an intimate heat conducting bond with the sensitive heat flux measuring element (18).

Description

DISPOSITIF POUR LA MESURE DES ECHANGES DE QUANTITES DE CHALEUR EN RÉGIME NON STATIONNAIREDEVICE FOR MEASURING EXCHANGES OF QUANTITIES OF HEAT IN NON-STATIONARY REGIME
Domaine technique La présente invention concerne un dispositif pour la mesure des échanges de quantités de chaleur en régime non stationnaire, ce régime ayant une dynamique de faible niveau noyée dans un environnement fortement perturbé par des champs thermiques importants, ledit dispositif comportant un boîtier allongé pourvu d'une cavité centrale, d'une extrémité de mesure et d'une extrémité de raccordement, l'extrémité de mesure étant fermée et la cavité centrale contenant, d'une part, une cellule de mesure et, d'autre part, des organes de raccordement électrique, ladite cellule de mesure comprenant au moins un élément sensible thermofluxmétrique disposé en sandwich entre une première pièce thermiquement conductrice et une seconde pièce thermiquement conductrice.Technical Field The present invention relates to a device for measuring the exchange of quantities of heat in a non-stationary regime, this regime having a low level dynamic embedded in an environment strongly disturbed by significant thermal fields, said device comprising an elongated housing provided with '' a central cavity, a measurement end and a connection end, the measurement end being closed and the central cavity containing, on the one hand, a measurement cell and, on the other hand, organs electrical connection, said measurement cell comprising at least one thermofluxmetric sensitive element sandwiched between a first thermally conductive part and a second thermally conductive part.
Technique antérieurePrior art
Un tel dispositif permet de mesurer en temps réel les quantités de chaleur générées lors de modifications rhéologiques de matières en cours de transformation, telles que par exemple des matières synthétiques au cours d'un processus de plastification dans une machine d'extrusion ou d'injection. L'information recueillie est significative de l'état de la matière à un instant donné, notamment de sa pression, de sa température, de son écoulement visqueux ou, le cas échéant, de son changement de phase, ou de sa dégradation lors d'un autre processus de transformation.Such a device makes it possible to measure in real time the quantities of heat generated during rheological modifications of materials being processed, such as for example synthetic materials during a plasticization process in an extrusion or injection machine. . The information collected is significant of the state of the material at a given instant, in particular of its pressure, its temperature, its viscous flow or, if necessary, its phase change, or its degradation during another transformation process.
Il est connu que les données des capteurs, notamment celles relatives à la température, à la pression et à la viscosité sont susceptibles de fournir des informations sur l'état de la matière, mais il est complexe d'obtenir, en temps réel, une information locale complète sur l'état rheologique de cette matière en cours de transformation à un instant donné. On sait d'expérience que l'ensemble de ces informations peut être fourni par des capteurs dits de flux thermique moyennant un traitement informatique approprié des signaux délivrés par ces capteurs. Les grandeurs physiques précédemment énoncées se traduisent toutes par des échanges de quantités de chaleur, c'est-à-dire que tout phénomène rheologique dont on peut ramener l'évolution à une grandeur thermique est détectable.It is known that data from sensors, in particular those relating to temperature, pressure and viscosity are capable of providing information on the state of matter, but it is complex to obtain, in real time, an complete local information on the rheological state of this material being transformed at a given time. We know from experience that all of this information can be supplied by so-called heat flow sensors by means of appropriate computer processing of the signals delivered by these sensors. The physical quantities previously stated all result in exchanges of quantities of heat, that is to say that any rheological phenomenon whose evolution can be reduced to a thermal quantity is detectable.
La plupart des capteurs de flux thermiques existants ont été créés pour mesurer principalement des flux du type bilan thermique représentatifs des échanges thermiques entre la matière et son environnement. Les flux thermiques engendrés au sein de la matière lors de modifications rhéologiques locales étant très faibles par rapport aux flux issus des échanges avec l'environnement, ils sont donc noyés dans un signal de niveau important qu'il faut traiter pour pouvoir en extraire les informations recherchées. Ceci est une méthode lourde et onéreuse et il apparaît complexe d'intégrer couramment de tels dispositifs dans un processus industriel pour exécuter un contrôle en ligne.Most of the existing thermal flux sensors have been created to mainly measure fluxes of the thermal balance type representative of the thermal exchanges between matter and its environment. The heat fluxes generated within the material during local rheological modifications being very weak compared to the fluxes resulting from the exchanges with the environment, they are thus drowned in an important signal of level which it is necessary to process to be able to extract information from it sought. This is a cumbersome and expensive method and it appears complex to routinely integrate such devices in an industrial process for performing online control.
Or, dans ce type d'application, c'est la dynamique des transformations de la matière qui est primordiale et non le bilan thermique. C'est pourquoi on a développé un capteur thermofluxmétrique répondant à ces impératifs et qui a fait l'objet de la demande internationale de brevet publiée sous le numéro WO 00/08431 et ayant pour titre : Dispositif de mesure des échanges de quantités de chaleur en régime variable, non stationnaire ou transitoire .However, in this type of application, it is the dynamics of the transformations of the material which is essential and not the thermal balance. This is why a thermofluxmetric sensor has been developed which meets these requirements and which was the subject of the international patent application published under the number WO 00/08431 and having the title: Device for measuring the exchange of heat quantities in variable, non-stationary or transient regime.
Ce dispositif comporte une cellule de mesure comprenant au moins un élément sensible thermofluxmétrique disposé en sandwich entre une première pièce thermiquement conductrice et une seconde pièce thermiquement conductrice. La cellule de mesure comporte une base circulaire plane qui est maintenue en contact par des moyens de compression mécaniques contre la surface intérieure du fonds d'un corps dans lequel est disposée la cellule de mesure. De ce fait, les deux pièces qui prennent en sandwich ledit élément sensible sont en contact direct avec le corps du dispositif qui est lui-même lié à l'environnement de la matière à contrôler. Il en résulte que ce dispositif est agencé pour mesurer les échanges de quantités de chaleur entre la matière à contrôler et son environnement immédiat. A titre d'exemple, le dispositif est apte à mesurer les échanges de quantités de chaleur entre le fourreau d'une machine d'injection et la matière synthétique elle-même en cours de transformation, qui circule à l'intérieur de ce fourreau en zone fondue. Il est évident que des échanges thermiques s'effectuent en permanence entre la matière et son environnement immédiat de sorte que les mesures effectuées par ce dispositif ne permettent pas de contrôler de façon efficace et fiable l'évolution de la matière en cours de plastification en zone fondue.This device comprises a measurement cell comprising at least one thermofluxmetric sensitive element sandwiched between a first thermally conductive part and a second thermally conductive part. The measuring cell has a flat circular base which is held in contact by mechanical compression means against the inner surface of the bottom of a body in which the measuring cell is arranged. As a result, the two parts which sandwich said sensitive element are in direct contact with the body of the device which is itself linked to the environment of the material to be checked. As a result, this device is designed to measure the exchange of heat quantities between the material to be checked and its immediate environment. By way of example, the device is capable of measuring the exchanges of quantities of heat between the sheath of an injection machine and the synthetic material itself being processed, which circulates inside this sheath in melted area. It is obvious that heat exchanges take place permanently between the material and its immediate environment so that the measurements carried out by this device do not make it possible to effectively and reliably control the evolution of the material being plasticized in the zone molten.
Exposé de l'inventionStatement of the invention
La présente invention se propose de remédier à ces inconvénients en permettant d'effectuer un contrôle précis de l'évolution de la matière en cours de transformation par une simple mesure d'échanges de quantités de chaleur correspondant non plus aux échanges dus au flux résultant du bilan thermique entre la matière et son environnement, mais exclusivement aux échanges locaux entre la matière et un élément thermique de référence.The present invention proposes to remedy these drawbacks by making it possible to carry out a precise control of the evolution of the material being transformed by a simple measurement of exchanges of heat quantities corresponding either to the exchanges due to the flow resulting from the thermal balance between the material and its environment, but exclusively for local exchanges between the material and a reference thermal element.
Ce but est atteint par le dispositif tel que défini en préambule et caractérisé en ce que ladite première pièce thermiquement conductrice est en contact avec au moins une surface dudit boîtier, et en ce que ladite seconde pièce thermiquement conductrice est isolée dudit boîtier et constitue une capacité thermique constante.This object is achieved by the device as defined in the preamble and characterized in that said first thermally conductive part is in contact with at least one surface of said housing, and in that said second thermally conductive part is isolated from said housing and constitutes a capacity constant thermal.
De ce fait, l'élément sensible de type thermofluxmétrique est disposé entre ladite première pièce, qui constitue une électrode thermique en contact avec le milieu à contrôler, et ladite seconde pièce, qui constitue une capacité thermique déterminée. Par ces moyens, on mesure des échanges de quantités de chaleur, non plus entre la matière à contrôler et son environnement immédiat, mais entre la matière à contrôler et une capacité thermique de référence parfaitement déterminée, intégrée à la cellule de mesure et thermiquement isolée du boîtier du dispositif.Therefore, the sensitive element of the thermofluxmetric type is disposed between said first part, which constitutes a thermal electrode in contact with the medium to be checked, and said second part, which constitutes a determined thermal capacity. By these means, exchanges of heat quantities are measured, no longer between the material to be checked and its immediate environment, but between the material to be checked and a perfectly determined reference thermal capacity, integrated into the measurement cell and thermally isolated from the device housing.
Lorsqu'il se produit une modification rheologique locale au sein de la matière se traduisant par une absorption, une restitution ou une production d'énergie sous forme thermique, des quantités de chaleur sont échangées avec la capacité thermique du dispositif de mesure en traversant l'élément sensible thermofluxmétrique. Les quantités de chaleur se stockent dans la capacité thermique du dispositif, dont la température s'élève jusqu'à ce qu'elle soit équilibrée avec celle de la matière locale.When there is a local rheological modification within the material resulting in absorption, restitution or production of energy in thermal form, quantities of heat are exchanged with the thermal capacity of the measuring device by crossing the thermofluxmetric sensitive element. The quantities of heat are stored in the thermal capacity of the device, the temperature of which rises until it is balanced with that of the local matter.
Lorsque le phénomène n'est plus exothermique mais endothermique, la capacité thermique du dispositif déstocke, en sens inverse, les quantités de chaleur qui sont échangées avec la matière en traversant l'élément sensible thermofluxmétrique, et ceci jusqu'au prochain équilibre thermique local.When the phenomenon is no longer exothermic but endothermic, the thermal capacity of the device destocks, in the opposite direction, the quantities of heat which are exchanged with the material by crossing the thermofluxmetric sensitive element, and this until the next local thermal equilibrium.
La dynamique de ces échanges thermiques locaux est détectée par l'élément sensible thermofluxmétrique qui génère un signal électrique significatif de ces échanges, et ceci en temps réel.The dynamics of these local heat exchanges are detected by the thermofluxmetric sensitive element which generates a significant electrical signal of these exchanges, and this in real time.
Le signal électrique obtenu est non stationnaire. Il fournit une information, en temps réel, sur la dynamique des modifications rhéologiques locales de la matière, et ceci dans un environnement fortement perturbé notamment par des échanges d'énergie thermique à très haut niveau entre la matière et son environnement.The electrical signal obtained is non-stationary. It provides information, in real time, on the dynamics of local rheological modifications of matter, and this in an environment strongly disturbed in particular by exchanges of thermal energy at very high level between matter and its environment.
Selon un mode de réalisation préférentiel, l'extrémité de mesure du boîtier est sensiblement plane et l'une des extrémités de ladite première pièce thermiquement conductrice est au moins partiellement en contact avec une surface intérieure de ladite extrémité de mesure.According to a preferred embodiment, the measurement end of the housing is substantially flat and one of the ends of said first part thermally conductive is at least partially in contact with an interior surface of said measurement end.
De façon avantageuse, ladite première pièce thermiquement conductrice comporte un talon pourvu d'une surface de contact dont la géométrie correspond à celle d'une surface intérieure de ladite extrémité de mesure.Advantageously, said first thermally conductive part comprises a heel provided with a contact surface whose geometry corresponds to that of an interior surface of said measurement end.
Selon un premier mode de réalisation, ladite surface de contact dudit talon de ladite première pièce thermiquement conductrice est circulaire.According to a first embodiment, said contact surface of said heel of said first thermally conductive part is circular.
Selon un second mode de réalisation, l'extrémité de mesure du boîtier est sensiblement tronconique et l'une des extrémités de ladite première pièce thermiquement conductrice est au moins partiellement en contact avec une surface intérieure de ladite extrémité de mesure.According to a second embodiment, the measurement end of the housing is substantially frustoconical and one of the ends of said first thermally conductive part is at least partially in contact with an interior surface of said measurement end.
Dans le cadre de ce second mode de réalisation, ladite première pièce thermiquement conductrice comporte un talon pourvu d'une surface de contact, cette surface de contact étant en appui contre une surface intérieure de même géométrie de ladite extrémité de mesure tronconique.In the context of this second embodiment, said first thermally conductive part comprises a heel provided with a contact surface, this contact surface being in abutment against an interior surface of the same geometry of said frustoconical measurement end.
De façon préférentielle, l'élément sensible thermofluxmétrique ainsi que ladite première pièce thermiquement conductrice et ladite seconde pièce thermiquement sont revêtus d'une couche d'or, au moins sur leurs surfaces communes, de manière à assurer par diffusion de la couche d'or un contact thermique intime entre les composants concernés.Preferably, the thermofluxmetric sensitive element as well as said first thermally conductive part and said second thermally part are coated with a layer of gold, at least on their common surfaces, so as to ensure by diffusion of the layer of gold intimate thermal contact between the components concerned.
Selon une construction particulièrement simple, efficace et avantageuse le boîtier comporte, du côté de son extrémité de mesure, un doigt creux dont l'épaisseur est réduite par rapport à celle du reste du corps de manière à présenter une importante résistance thermique axiale, la cellule de mesure étant essentiellement logée dans ce doigt. La cellule de mesure est de préférence maintenue au fond du doigt creux par des moyens de compression agencés pour assurer un plaquage de ladite première pièce thermiquement conductrice contre la surface intérieure de l'extrémité de mesure.According to a particularly simple, efficient and advantageous construction, the housing comprises, on the side of its measurement end, a hollow finger whose thickness is reduced compared to that of the rest of the body so as to have a high axial thermal resistance, the cell being essentially housed in this finger. The measuring cell is preferably held at the bottom of the hollow finger by compression means arranged to ensure that said first thermally conductive part is pressed against the internal surface of the measuring end.
D'une manière très intéressante pour des raisons constructives et fonctionnelles, la section droite du doigt creux est circulaire, ladite première pièce thermiquement conductrice a une section semi-cylindrique dont le diamètre est sensiblement égal au diamètre de la surface intérieure du doigt creux, et la seconde pièce thermiquement conductrice a une section semi- cylindrique dont le diamètre est inférieur au diamètre de la surface intérieure du doigt creux.In a very interesting manner for constructive and functional reasons, the cross section of the hollow finger is circular, said first thermally conductive part has a semi-cylindrical section whose diameter is substantially equal to the diameter of the interior surface of the hollow finger, and the second thermally conductive part has a semi-cylindrical section whose diameter is less than the diameter of the interior surface of the hollow finger.
Description sommaire des dessins La présente invention sera mieux comprise en référence à la description de divers modes de réalisation et des dessins annexés, donnés à titre d'exemples non limitatifs, dans lesquels :Brief description of the drawings The present invention will be better understood with reference to the description of various embodiments and the appended drawings, given by way of nonlimiting examples, in which:
- la figure 1 représente une vue en coupe longitudinale partielle d'une première forme de réalisation de l'invention du dispositif selon l'invention,FIG. 1 represents a view in partial longitudinal section of a first embodiment of the invention of the device according to the invention,
- la figure 2A représente une vue partielle agrandie et en coupe longitudinale de l'extrémité de mesure du dispositif de la figure 1 ,FIG. 2A represents an enlarged partial view in longitudinal section of the measurement end of the device of FIG. 1,
- la figure 2B représente une vue partielle agrandie et en coupe transversale selon la ligne l-l, de l'extrémité de mesure du dispositif de la figure 1 ,FIG. 2B represents an enlarged partial view in cross section along the line l-l, of the measuring end of the device of FIG. 1,
- la figure 3 représente une vue en coupe longitudinale d'une deuxième forme de réalisation du dispositif selon l'invention,FIG. 3 represents a view in longitudinal section of a second embodiment of the device according to the invention,
la figure 4A représente une vue partielle agrandie et en coupe longitudinale de l'extrémité de mesure du dispositif de la figure 3, - la figure 4B représente une vue partielle agrandie et en coupe transversale, selon la ligne 11-11, de l'extrémité de mesure du dispositif de la figure 3,FIG. 4A represents an enlarged partial view in longitudinal section of the measurement end of the device of FIG. 3, FIG. 4B represents an enlarged partial view in cross section, along line 11-11, of the measurement end of the device of FIG. 3,
- la figure 5 représente une vue en coupe longitudinale d'une troisième forme de réalisation du dispositif selon l'invention,FIG. 5 represents a view in longitudinal section of a third embodiment of the device according to the invention,
- la figure 6 est une vue partielle agrandie de l'extrémité de mesure du dispositif de la figure 5, etFIG. 6 is an enlarged partial view of the measurement end of the device in FIG. 5, and
- les figures 7A et 7B représentent des vues respectivement de dessus et en coupe longitudinale de l'élément sensible thermofluxmétrique de la cellule de mesure logée dans l'extrémité de mesure du dispositif de l'invention.- Figures 7A and 7B show views respectively from above and in longitudinal section of the thermofluxmetric sensitive element of the measurement cell housed in the measurement end of the device of the invention.
Manières de réaliser l'inventionWays to realize the invention
En référence aux figures 1 , 2A et 2B, le dispositif 10 selon l'invention comporte un boîtier 11 de forme allongée qui comporte une extrémité de mesure 12 fermée, une extrémité de raccordement 13 ainsi qu'une cavité centrale 14. Cette cavité centrale 14 contient, d'une part, une cellule de mesure 15 et, d'autre part, des organes de raccordement électrique 16. Le boîtier 11 se prolonge, du côté de l'extrémité de mesure 12, par un doigt creux 17, de section avantageusement circulaire, qui contient en partie au moins ladite cellule de mesure 15.With reference to FIGS. 1, 2A and 2B, the device 10 according to the invention comprises a housing 11 of elongated shape which has a closed measurement end 12, a connection end 13 as well as a central cavity 14. This central cavity 14 contains, on the one hand, a measurement cell 15 and, on the other hand, electrical connection members 16. The housing 11 is extended, on the side of the measurement end 12, by a hollow finger 17, of section advantageously circular, which partly contains at least said measurement cell 15.
Cette cellule de mesure 15 se compose d'un élément sensible thermofluxmétrique 18 qui est pris en sandwich entre une première pièce thermiquement conductrice 19, qui constitue une sorte d'électrode thermique, et une seconde pièce thermiquement conductrice 20, qui constitue une capacité thermique constante appelée capacité thermique de référence. Les surfaces de contact de la première pièce thermiquement conductrice 19 et de la seconde pièce thermiquement conductrice 20 sont revêtues chacune d'une couche d'or, de manière à réaliser une liaison thermique intime avec l'élément sensible thermofluxmétrique 18. Les deux pièces thermiquement conductrices 19 et 20 sont liées entre elles par des vis 21 réalisées en un matériau thermiquement peu conducteur.This measurement cell 15 consists of a thermofluxmetric sensitive element 18 which is sandwiched between a first thermally conductive part 19, which constitutes a kind of thermal electrode, and a second thermally conductive part 20, which constitutes a constant thermal capacity. called the reference thermal capacity. The contact surfaces of the first thermally conductive part 19 and the second thermally conductive part 20 are each coated with a layer of gold, so as to form an intimate thermal connection with the element. thermofluxmetric sensitive 18. The two thermally conductive parts 19 and 20 are linked together by screws 21 made of a thermally poorly conductive material.
Dans l'exemple de réalisation décrit et représenté par les figures, ladite première pièce thermiquement conductrice 19 a une section sensiblement semi-circulaire et est pourvue à son extrémité libre d'un talon 19a de section sensiblement circulaire qui comporte une surface plane 19b de forme circulaire prenant appui sur la surface intérieure 17a du doigt creux 17. Le diamètre de ce talon est inférieur ou égal au diamètre intérieur dudit doigt creux 17. De façon similaire, le diamètre de ladite première pièce thermiquement conductrice 19 est inférieur au diamètre intérieur dudit doigt creux 17 afin que cette pièce n'ait aucun contact direct avec le corps du doigt. Le seul contact entre ladite première pièce thermiquement conductrice 19 et le doigt creux 17 est indirect et se fait par l'intermédiaire de la surface 19b du talon 19a.In the embodiment described and represented by the figures, said first thermally conductive part 19 has a substantially semi-circular section and is provided at its free end with a heel 19a of substantially circular section which has a flat surface 19b of shape circular bearing on the interior surface 17a of the hollow finger 17. The diameter of this heel is less than or equal to the interior diameter of said hollow finger 17. Similarly, the diameter of said first thermally conductive part 19 is less than the interior diameter of said finger hollow 17 so that this part has no direct contact with the body of the finger. The only contact between said first thermally conductive part 19 and the hollow finger 17 is indirect and takes place via the surface 19b of the heel 19a.
Un isolateur thermique 22 s'emboîte mécaniquement sur la première pièce thermiquement conductrice 19 assurant ainsi la liaison mécanique entre la cellule de mesure 15 et les organes de raccordement 16 du dispositif ainsi qu'une bonne isolation thermique de ladite cellule de mesure.A thermal insulator 22 is mechanically fitted onto the first thermally conductive part 19 thus ensuring the mechanical connection between the measurement cell 15 and the connection members 16 of the device as well as good thermal insulation of said measurement cell.
Un fourreau creux 23, de forme cylindrique, réalisé en un matériau électriquement isolant, fait office de pièce intermédiaire entre l'isolateur thermique 22 et une pince de serrage de tresse 24 d'un câble bifilaire 25. Deux bornes de serrage électriquement isolantes 26a et 26b sont respectivement disposées de part et d'autre de l'élément sensible thermofluxmétrique 18 et comportent chacune un évidement 27 en forme de coin, dans lequel est engagée une extrémité de chaque fil électriquement conducteur ou tresse du câble bifilaire 25, appliquée contre une face de l'élément sensible thermofluxmétrique 18 qui comporte sur chacune de ses faces une piste électriquement conductrice appropriée. L'élément sensible thermofluxmétrique 18 est placé en sandwich entre les deux bornes de serrage électriquement isolantes 26a et 26b et maintenu au moyen de deux vis de serrage 28 qui assurent le serrage desdites bornes en écrasant entre elles les deux fils électriques du câble bifilaire 25 sur les pistes électriques de l'élément sensible thermofluxmétrique 18.A hollow sheath 23, of cylindrical shape, made of an electrically insulating material, acts as an intermediate piece between the thermal insulator 22 and a braid clamp 20 of a two-wire cable 25. Two electrically insulating clamping terminals 26a and 26b are respectively disposed on either side of the thermofluxmetric sensitive element 18 and each have a wedge-shaped recess 27 in which is engaged one end of each electrically conductive wire or braid of the two-wire cable 25, applied against a face of the thermofluxmetric sensitive element 18 which comprises on each of its faces an appropriate electrically conductive track. The sensitive element thermofluxmetric 18 is sandwiched between the two electrically insulating clamping terminals 26a and 26b and held by means of two clamping screws 28 which ensure the clamping of said terminals by crushing between them the two electrical wires of the two-wire cable 25 on the electrical tracks of the thermofluxmetric sensitive element 18.
La pince de serrage de tresse 24 prend appuie, par son extrémité, sur le fourreau creux 23 et comporte un alésage central cylindrique permettant le passage des fils conducteurs ou de la tresse du câble 25. L'autre extrémité est agencée pour opérer un serrage coaxial de la tresse avec la gaine du câble 25 lorsqu'une douille de serrage 29 est vissée à l'extrémité de raccordement 13 du boîtier 11 et que cette douille comprime la pince de serrage 24.The braid clamp 20 takes support, at its end, on the hollow sheath 23 and has a cylindrical central bore allowing the passage of the conductive wires or the braid of the cable 25. The other end is arranged to operate a coaxial clamping of the braid with the sheath of the cable 25 when a clamping sleeve 29 is screwed to the connection end 13 of the housing 11 and this bushing compresses the clamping clamp 24.
Le boîtier 11 est pourvu d'un épaulement 30 qui sert d'appui à un écrou de serrage 31 fendu longitudinalement et qui s'étend sensiblement sur toute la longueur dudit boîtier 11. Cet écrou est destiné à assurer une liaison mécanique avec un support (non représenté) qui est lié à l'environnement du milieu à contrôler, par exemple au fourreau d'une presse d'extrusion. L'écrou de serrage 31 est pourvu extérieurement d'un filetage qui coopère avec le filetage dudit support lié à l'environnement du milieu à contrôler.The housing 11 is provided with a shoulder 30 which serves to support a tightening nut 31 split longitudinally and which extends substantially over the entire length of the said housing 11. This nut is intended to provide a mechanical connection with a support ( not shown) which is linked to the environment of the medium to be checked, for example to the sleeve of an extrusion press. The clamping nut 31 is externally provided with a thread which cooperates with the thread of said support linked to the environment of the medium to be checked.
Les figures 3, 4A et 4B représentent des vues similaires à celles des figures 1 , 2A et 2B, elles correspondent à une deuxième forme de réalisation du dispositif selon l'invention. Les composants similaires porteront les mêmes numéros de référence et ne seront pas décrits en détail. Seuls les composants qui diffèrent de ceux des figures précédentes seront détaillés.Figures 3, 4A and 4B show views similar to those of Figures 1, 2A and 2B, they correspond to a second embodiment of the device according to the invention. Similar components will have the same reference numbers and will not be described in detail. Only the components which differ from those of the previous figures will be detailed.
Dans cette réalisation, ladite première pièce thermiquement conductrice 19 n'est pas prolongée par un talon qui assure le contact avec l'extrémité du doigt creux 17, mais la pièce elle-même se prolonge jusqu'à l'extrémité de ce doigt creux et comporte, à son extrémité, une surface plane 19c, en forme de demi-disque, qui prend appui contre la surface intérieure 17a du doigt creux 17. En outre, le diamètre de ladite première pièce thermiquement conductrice 19 est égal au diamètre intérieur du doigt creux 17, de sorte que le contact entre cette pièce et le corps du doigt creux s'effectue directement avec l'extrémité libre de la pièce et avec sa surface latérale 19d.In this embodiment, said first thermally conductive part 19 is not extended by a heel which ensures contact with the end of the hollow finger 17, but the part itself extends to the end of this hollow finger and comprises, at its end, a flat surface 19c, in the form of half disc, which bears against the interior surface 17a of the hollow finger 17. In addition, the diameter of said first thermally conductive part 19 is equal to the interior diameter of the hollow finger 17, so that the contact between this part and the body the hollow finger is made directly with the free end of the part and with its lateral surface 19d.
Les figures 5 et 6 illustrent une troisième forme de réalisation du dispositif selon l'invention. Les composants similaires à ceux des figures précédentes et notamment des figures 1 , 2A et 2B porteront les mêmes numéros de référence et ne seront pas décrits en détail. Seuls les composants qui diffèrent de ceux des figures précédentes seront détaillés.Figures 5 and 6 illustrate a third embodiment of the device according to the invention. Components similar to those of the previous figures and in particular of Figures 1, 2A and 2B will bear the same reference numbers and will not be described in detail. Only the components which differ from those of the previous figures will be detailed.
Dans cette réalisation, seule l'extrémité du doigt creux 17 diffère de celle du doigt illustré par la figure 1. Le doigt creux se prolonge par un embout d'extrémité tronconique 31 qui est agencé pour être engagé dans un alésage approprié d'une pièce en liaison avec le milieu à contrôler. La forme tronconique de l'embout permet d'augmenter la surface de contact entre le doigt creux 17 et la pièce en contact avec le milieu à contrôler et d'obtenir ainsi une plus grande sensibilité et une plus grande fiabilité des mesures.In this embodiment, only the end of the hollow finger 17 differs from that of the finger illustrated in Figure 1. The hollow finger is extended by a frustoconical end piece 31 which is arranged to be engaged in a suitable bore of a part in connection with the medium to be checked. The frustoconical shape of the end piece makes it possible to increase the contact surface between the hollow finger 17 and the part in contact with the medium to be checked and thus to obtain greater sensitivity and greater reliability of the measurements.
Le talon 19a peut être remplacé par un prolongement de ladite première pièce thermiquement conductrice 19, comme c'est le cas dans la réalisation illustrée par la figure 3. En outre, ce talon peut avoir un diamètre égal au diamètre intérieur du doigt creux 17, de manière à augmenter la surface de contact de ladite première pièce thermiquement conductrice 19 avec le corps du doigt creux.The heel 19a can be replaced by an extension of said first thermally conductive part 19, as is the case in the embodiment illustrated in FIG. 3. In addition, this heel can have a diameter equal to the inside diameter of the hollow finger 17, so as to increase the contact surface of said first thermally conductive part 19 with the body of the hollow finger.
Les figures 7A et 7B représentent l'élément sensible thermofluxmétrique de la cellule de mesure 15, respectivement vu de dessous et vu en coupe longitudinale. Cet élément comporte un détecteur thermofluxmétrique 40, disposé entre une première couche isolante 41 et une seconde couche isolante 42 qui se prolongent au-delà du détecteur vers l'extrémité de raccordement. Du côté de l'extrémité de mesure, les deux couches isolantes 41 et 42 définies ci-dessus sont respectivement surmontées d'une première masse en cuivre 43, appelée électrode d'absorption, et d'une deuxième masse en cuivre 44, appelée électrode de dissipation. Du côté de l'extrémité de raccordement, les deux couches isolantes 41 et 42 sont séparées d'une troisième couche isolante centrale 45 par deux pistes conductrices, respectivement 46 et 47. Deux trous passants 48 et 49 sont ménagés du côté de l'extrémité de mesure pour permettre d'assurer la liaison par des vis de l'élément sensible thermofluxmétrique 18, de ladite première pièce thermiquement conductrice 19 et de ladite seconde pièce thermiquement conductrice 20.FIGS. 7A and 7B represent the thermofluxmetric sensitive element of the measurement cell 15, respectively seen from below and seen in longitudinal section. This element comprises a thermofluxmetric detector 40, disposed between a first insulating layer 41 and a second insulating layer 42 which extend beyond the detector towards the end of connection. On the side of the measurement end, the two insulating layers 41 and 42 defined above are respectively surmounted by a first copper mass 43, called the absorption electrode, and a second copper mass 44, called the electrode of dissipation. On the side of the connection end, the two insulating layers 41 and 42 are separated from a third central insulating layer 45 by two conductive tracks, respectively 46 and 47. Two pass-through holes 48 and 49 are provided on the side of the end of measurement to enable the thermofluxmetric sensitive element 18, said first thermally conductive part 19 and said second thermally conductive part 20 to be connected by screws.
Le dispositif selon l'invention est applicable à la mesure des échanges de quantités de chaleur en régime totalement non stationnaire comportant une dynamique de faible niveau noyée dans un environnement fortement perturbé par des champs thermiques importants.The device according to the invention is applicable to the measurement of the exchange of quantities of heat in a totally non-stationary regime comprising a low level dynamic embedded in an environment strongly disturbed by significant thermal fields.
Dans la pratique, l'extrémité de mesure dont la base est plane, comme le montre notamment la figure 2A, est habituellement engagée dans un alésage traversant afin que cette base soit en contact avec la matière à contrôler. L'extrémité de mesure dont la base est tronconique, comme le montre notamment la figure 6, est de préférence engagée dans un alésage borgne, dont l'extrémité a la forme d'un cône dont le sommet est disposé à faible distance du passage de la matière à contrôler.In practice, the measuring end, the base of which is flat, as shown in particular in FIG. 2A, is usually engaged in a through bore so that this base is in contact with the material to be checked. The measuring end, the base of which is frustoconical, as shown in particular in FIG. 6, is preferably engaged in a blind bore, the end of which has the shape of a cone, the top of which is disposed at a short distance from the passage of the material to be checked.
Dans le premier cas, le corps du capteur, et plus particulièrement la paroi de ce corps localisée à la base de l'extrémité de mesure, doit résister à des pressions importantes, qui peuvent atteindre 2500 bars. En outre, l'espace situé entre le corps du capteur et la paroi de l'alésage traversant est envahi par de la matière, en particulier par des matières plastiques, qui, en durcissant, bloquent le capteur dans l'alésage et empêchent son démontage à froid. Dans le deuxième cas, le corps du capteur n'est plus en contact avec la matière, et n'est plus soumis à la pression importante de cette dernière. Il peut être démonté à tout moment au cours du fonctionnement d'une presse d'extrusion par exemple. Comme la distance entre l'extrémité de mesure et la matière à contrôler est faible, l'information thermique se transmet aisément, d'autant plus que la forme tronconique permet d'augmenter d'un facteur allant jusqu'à quatre la surface qui capte les variations de flux thermique. Le contact entre la surface de base tronconique de l'extrémité de mesure et la surface conique de la pointe de l'alésage est facile à réaliser, ce qui permet d'obtenir dans le deuxième cas un résultat identique, voire meilleur à celui que l'on obtient dans le premier cas, malgré une résistance thermique accrue.In the first case, the sensor body, and more particularly the wall of this body located at the base of the measurement end, must withstand significant pressures, which can reach 2500 bars. In addition, the space between the body of the sensor and the wall of the through bore is invaded by material, in particular by plastics, which, by hardening, block the sensor in the bore and prevent its dismantling. Cold. In the second case, the sensor body is no longer in contact with the material, and is no longer subjected to the significant pressure of the latter. It can be dismantled at any time during the operation of an extrusion press, for example. As the distance between the measuring end and the material to be checked is small, thermal information is easily transmitted, all the more since the frustoconical shape makes it possible to increase by a factor of up to four the surface which captures variations in heat flux. The contact between the frustoconical base surface of the measuring end and the conical surface of the point of the bore is easy to achieve, which makes it possible in the second case to obtain a result identical, or even better than that 'is obtained in the first case, despite increased thermal resistance.
Possibilités d'applications industrielles A titre d'exemples, ce dispositif peut être avantageusement utilisé pour :Possibilities of industrial applications As examples, this device can be advantageously used for:
-. le contrôle en ligne des têtes d'extrusion de type "crosshead" de manière à mieux optimiser la production par un pilotage basé sur les paramètres rhéologiques des états de la matière, notamment lors d'extrusions complexes, par exemple de câbles. -. le contrôle des moules d'étirage - soufflage, de manière à mieux optimiser la production par un pilotage basé sur le contrôle de la cristallisation de la matière, notamment lors de la production de bouteilles synthétiques. -. le contrôle des différentes phases d'injection des matières thermoplastiques dans un moule, de manière à améliorer la qualité, réduire le temps de cycle et mieux piloter le processus d'injection par une meilleure connaissance de différents paramètres tels que la dynamique de pression, l'arrivée de la matière, la détection des incomplets, les réactions de cristallisation. -. le contrôle des phases d'injection des matières thermodurcissables dans les moules de compression du type SMC (Sheet Molding Compound) et BMC (Bulk Mounting Compound) de manière à mieux optimiser la production par un meilleur pilotage des paramètres rhéologiques, notamment pendant la phase de réticulation. -. le contrôle de la dégradation des graisses utilisées notamment dans les roulements fortement sollicités, sous forte charge et à très haute vitesse dans le but d'optimiser la maintenance prédictive.-. online control of "crosshead" type extrusion heads so as to better optimize production by piloting based on rheological parameters of the states of matter, especially during complex extrusions, for example cables. -. the control of the stretch-blow molding molds, so as to better optimize the production by piloting based on the control of the crystallization of the material, especially during the production of synthetic bottles. -. control of the different phases of injection of thermoplastic materials into a mold, so as to improve quality, reduce cycle time and better control the injection process by better knowledge of different parameters such as pressure dynamics, l arrival of matter, detection of incomplete, crystallization reactions. -. control of the injection phases of thermosetting materials in SMC (Sheet Molding Compound) and BMC (Bulk Mounting Compound) compression molds so as to better optimize production by better controlling rheological parameters, especially during the crosslinking. -. the control of the degradation of greases used in particular in highly stressed bearings, under heavy load and at very high speed in order to optimize predictive maintenance.
Les essais ont démontré la fiabilité et la reproductibilité des signaux délivrés et notamment une dépendance remarquable du profil dynamique de flux thermique avec ceux de la pression. Une série de ces dispositifs installés sur un système vis/fourreau de presse à injecter montre qu'une telle signature thermomécanique n'a jamais été obtenue jusqu'à ce jour, notamment en zone fondue, ce qui laisse espérer des progrès significatifs dans la connaissance et le pilotage en ligne et en temps réel des procédés d'injection. The tests demonstrated the reliability and reproducibility of the signals delivered and in particular a remarkable dependence of the dynamic profile of thermal flux with those of the pressure. A series of these devices installed on a screw / sleeve system of an injection molding machine shows that such a thermomechanical signature has never been obtained to date, in particular in the molten zone, which gives hope for significant progress in knowledge. and online and real-time control of injection processes.

Claims

REVENDICATIONS
1. Dispositif pour la mesure des échanges de quantités de chaleur en régime non stationnaire, ce régime ayant une dynamique de faible niveau noyée dans un environnement fortement perturbé par des champs thermiques importants, ledit dispositif comportant un boîtier allongé (11) pourvu d'une cavité centrale (14), d'une extrémité de mesure (12) et d'une extrémité de raccordement (13), l'extrémité de mesure (12) étant fermée et la cavité centrale (14) contenant, d'une part, une cellule de mesure (15) et, d'autre part, des organes de raccordement électrique (16), ladite cellule de mesure comprenant au moins un élément sensible thermofluxmétrique (18) disposé en sandwich entre une première pièce thermiquement conductrice (19) et une seconde pièce thermiquement conductrice (20), caractérisé en ce que ladite première pièce thermiquement conductrice (19) est en contact avec au moins une surface dudit boîtier (11) et en ce que ladite seconde pièce thermiquement conductrice (20) est isolée dudit boîtier et constitue une capacité thermique constante.1. Device for measuring the exchange of quantities of heat in a non-stationary regime, this regime having a low level dynamic embedded in an environment highly disturbed by significant thermal fields, said device comprising an elongated housing (11) provided with a central cavity (14), a measurement end (12) and a connection end (13), the measurement end (12) being closed and the central cavity (14) containing, on the one hand, a measurement cell (15) and, on the other hand, electrical connection members (16), said measurement cell comprising at least one thermofluxmetric sensitive element (18) sandwiched between a first thermally conductive part (19) and a second thermally conductive part (20), characterized in that said first thermally conductive part (19) is in contact with at least one surface of said housing (11) and in that said second thermally conductive part nductrice (20) is isolated from said housing and constitutes a constant thermal capacity.
2. Dispositif selon la revendication 1 , caractérisé en ce que l'extrémité de mesure (12) du boîtier est sensiblement plane, et en ce que l'une des extrémités de ladite première pièce thermiquement conductrice (19) est au moins partiellement en contact avec une surface intérieure (17a) de ladite extrémité de mesure.2. Device according to claim 1, characterized in that the measuring end (12) of the housing is substantially planar, and in that one of the ends of said first thermally conductive part (19) is at least partially in contact with an inner surface (17a) of said measuring end.
3. Dispositif selon la revendication 2, caractérisé en ce que ladite première pièce thermiquement conductrice (19) comporte un talon (19a) pourvu d'une surface de contact dont la géométrie correspond à celle de la surface intérieure (17a) de ladite extrémité de mesure.3. Device according to claim 2, characterized in that said first thermally conductive part (19) comprises a heel (19a) provided with a contact surface whose geometry corresponds to that of the interior surface (17a) of said end of measured.
4. Dispositif selon la revendication 3, caractérisé en ce que ladite surface de contact dudit talon (19a) de ladite première pièce thermiquement conductrice (19) est circulaire. 4. Device according to claim 3, characterized in that said contact surface of said heel (19a) of said first thermally conductive part (19) is circular.
5. Dispositif selon la revendication 1 , caractérisé en ce que l'extrémité de mesure du boîtier (12) est sensiblement tronconique, et en ce que l'une des extrémités de ladite première pièce thermiquement conductrice (19) est au moins partiellement en contact avec une surface intérieure de ladite extrémité de mesure.5. Device according to claim 1, characterized in that the measuring end of the housing (12) is substantially frustoconical, and in that one of the ends of said first thermally conductive part (19) is at least partially in contact with an inner surface of said measuring end.
6. Dispositif selon la revendication 5, caractérisé en ce que ladite première pièce thermiquement conductrice (19) comporte un talon pourvu d'une surface de contact, cette surface de contact étant en appui contre une surface intérieure de même géométrie de ladite extrémité de mesure tronconique.6. Device according to claim 5, characterized in that said first thermally conductive part (19) comprises a heel provided with a contact surface, this contact surface being in abutment against an interior surface of the same geometry of said measurement end truncated.
7. Dispositif selon la revendication 1 , caractérisé en ce que l'élément sensible thermofluxmétrique (18) ainsi que ladite première pièce thermiquement conductrice (19) et ladite seconde pièce thermiquement conductrice (20) sont revêtus d'une couche d'or, au moins sur leurs surfaces communes.7. Device according to claim 1, characterized in that the thermofluxmetric sensitive element (18) as well as said first thermally conductive part (19) and said second thermally conductive part (20) are coated with a layer of gold, at less on their common surfaces.
8. Dispositif selon la revendication 1 , caractérisé en ce que le boîtier (11) comporte, du côté de son extrémité de mesure (12), un doigt creux (17) dont l'épaisseur est réduite par rapport à celle du reste du corps dudit boîtier, la cellule de mesure (15) étant essentiellement logée dans ce doigt.8. Device according to claim 1, characterized in that the housing (11) comprises, on the side of its measurement end (12), a hollow finger (17) whose thickness is reduced compared to that of the rest of the body of said housing, the measurement cell (15) being essentially housed in this finger.
9. Dispositif selon la revendication 8, caractérisé en ce que la cellule de mesure (15) est maintenue au fond du doigt creux (17) par des moyens de compression agencés pour assurer un plaquage de ladite première pièce thermiquement conductrice (19) contre la surface intérieure de l'extrémité de mesure (12). 9. Device according to claim 8, characterized in that the measuring cell (15) is held at the bottom of the hollow finger (17) by compression means arranged to ensure that said first thermally conductive part (19) is pressed against the inner surface of the measuring end (12).
10. Dispositif selon la revendication 8, caractérisé en ce que la section droite du doigt creux (17) est circulaire, en ce que ladite première pièce thermiquement conductrice (19) a une section semi-cylindrique dont le diamètre est sensiblement égal au diamètre de la surface intérieure du doigt creux et en ce que la seconde pièce thermiquement conductrice (20) a une section semi-cylindrique dont le diamètre est inférieur au diamètre de la surface intérieure du doigt creux.10. Device according to claim 8, characterized in that the cross section of the hollow finger (17) is circular, in that said first thermally conductive part (19) has a semi-cylindrical section whose diameter is substantially equal to the diameter of the inner surface of the hollow finger and in that the second thermally conductive part (20) has a semi-cylindrical section whose diameter is less than the diameter of the interior surface of the hollow finger.
11. Dispositif selon la revendication 8, caractérisé en ce que l'élément sensible thermofluxmétrique (18) comporte un détecteur thermofluxmétrique (40) pris en sandwich entre une première couche isolante (41), associée à une électrode d'absorption (43), et une seconde couche isolante (42), associée à une électrode de dissipation (44). 11. Device according to claim 8, characterized in that the thermofluxmetric sensitive element (18) comprises a thermofluxmetric detector (40) sandwiched between a first insulating layer (41), associated with an absorption electrode (43), and a second insulating layer (42), associated with a dissipation electrode (44).
EP01962524A 2000-09-11 2001-09-05 Device for measuring exchanges of amounts of heat in non-stationary operating conditions Withdrawn EP1317661A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0011527 2000-09-11
FR0011527A FR2813956B1 (en) 2000-09-11 2000-09-11 DEVICE FOR MEASURING EXCHANGES OF QUANTITIES OF HEAT IN NON-STATIONARY CONDITIONS
PCT/CH2001/000537 WO2002023144A1 (en) 2000-09-11 2001-09-05 Device for measuring exchanges of amounts of heat in non-stationary operating conditions

Publications (1)

Publication Number Publication Date
EP1317661A1 true EP1317661A1 (en) 2003-06-11

Family

ID=8854145

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01962524A Withdrawn EP1317661A1 (en) 2000-09-11 2001-09-05 Device for measuring exchanges of amounts of heat in non-stationary operating conditions

Country Status (5)

Country Link
US (1) US6817755B2 (en)
EP (1) EP1317661A1 (en)
CA (1) CA2421598A1 (en)
FR (1) FR2813956B1 (en)
WO (1) WO2002023144A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5761302B2 (en) * 2013-06-04 2015-08-12 株式会社デンソー Comfortable temperature control device for vehicles
CN106770481B (en) * 2016-12-14 2023-04-14 吉林省公路管理局 Bridge sling monitoring sensor

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3199352A (en) * 1962-06-25 1965-08-10 Macatician John Heat transfer gauge
US3217543A (en) * 1963-01-28 1965-11-16 Oceanic Instr Inc Vibrated heat sensing probe
JPS5915829A (en) * 1982-07-19 1984-01-26 Yamari Sangyo Kk Tubular multipoint heat flowmeter
JPS5957127A (en) * 1982-09-27 1984-04-02 Mitsubishi Heavy Ind Ltd Heat flowmeter
US5048973A (en) * 1990-05-31 1991-09-17 United States Of America, As Represented By The Administrator Of The National Aeronautics And Space Administration Plug-type heat flux gauge
FR2716534B1 (en) * 1994-02-22 1996-05-24 Univ Nantes Method and device for transient measurement of surface temperatures and fluxes.
US5697706A (en) * 1995-12-26 1997-12-16 Chrysler Corporation Multi-point temperature probe
JP2000019030A (en) * 1998-07-01 2000-01-21 Mitsubishi Heavy Ind Ltd Heat flux meter
WO2000008431A1 (en) * 1998-07-31 2000-02-17 Thermoflux S.A. Device for measuring exchanges of heat amounts in non-stationary or transitory variable operating conditions
US6186661B1 (en) * 1998-09-11 2001-02-13 Vatell Corporation Schmidt-Boelter gage

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0223144A1 *

Also Published As

Publication number Publication date
FR2813956B1 (en) 2002-11-15
WO2002023144A1 (en) 2002-03-21
FR2813956A1 (en) 2002-03-15
US6817755B2 (en) 2004-11-16
CA2421598A1 (en) 2002-03-21
US20040042932A1 (en) 2004-03-04

Similar Documents

Publication Publication Date Title
EP0003271A1 (en) Thermic flux meter
FR2897930A1 (en) Plate heat exchanger e.g. gas/gas plate heat exchanger, for e.g. chemical industry, has sensor evaluating clogging state of fluid circuits, and including thermocouples for measuring temperature at close proximity of electric resistor
FR2586297A1 (en) METHOD AND DEVICE FOR DETERMINING THE HEAT CAPACITY OF A SAMPLE
EP0919800A1 (en) Device for measuring the viscosity of a fluid
EP2898318A1 (en) Thermal flow sensor, gas sensor comprising at least one such sensor and pirani gauge comprising at least one such sensor
EP2414815A1 (en) Terahertz imaging device with improved thermal converter
EP1317661A1 (en) Device for measuring exchanges of amounts of heat in non-stationary operating conditions
EP0624244B1 (en) Rheometer for injection press
FR3065281B1 (en) DEVICE FOR MEASURING SPEED OR GAS FLOW
FR2706610A1 (en) Heat flow sensor and associated measuring device
EP2666000A1 (en) Device for measuring or determining a characteristic of a heat flow exchanged between a first medium and a second medium
FR3022627A1 (en) PRESSURE AND TEMPERATURE MEASURING DEVICE
EP0209476A2 (en) Method and apparatus for detecting the appearance and quantification of the development of cracks in the surface of a material
EP0320387B1 (en) Transducer for measuring high pressures from a great distance
EP1101086B1 (en) Device for measuring exchanges of heat amounts in non-stationary or transitory variable operating conditions
EP0112783A2 (en) Thermal probe for detecting the presence or absence of a liquid
FR2496871A1 (en) Measurement of narrow gap between two hot metal workpieces - by determn. of capacitance between surface of one piece and metal sensor located on other piece
FR2894335A1 (en) Object e.g. insulator, thermal conductivity measuring method for e.g. building, involves increasing temperature of one side of object e.g. insulator, for specific duration, and measuring temperature of another side of object
EP3771879B1 (en) Device for detecting and characterising clogging likely to form in a wall subjected to heat exchange
EP0572311A1 (en) Resistive current sensor
FR2704979A1 (en) Method of producing a thermal flow meter and thermal flow meter obtained according to this method
EP4244589A1 (en) Improved system for determining a heat exchange coefficient
FR3023909A1 (en) METHOD FOR MAKING AN EFFORTS SENSOR AND INSTALLATION FOR IMPLEMENTING IT
FR3018115A1 (en) REDUCED INFLUENCE SENSOR FOR MEASURING A THERMAL FLOW
FR2608762A1 (en) Rheological measurement device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030403

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: THERMOFLUX TECHNOLOGIES SA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAPE SAS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081023