EP1315679A1 - Glass ceramic mass and ceramic article - Google Patents

Glass ceramic mass and ceramic article

Info

Publication number
EP1315679A1
EP1315679A1 EP01967053A EP01967053A EP1315679A1 EP 1315679 A1 EP1315679 A1 EP 1315679A1 EP 01967053 A EP01967053 A EP 01967053A EP 01967053 A EP01967053 A EP 01967053A EP 1315679 A1 EP1315679 A1 EP 1315679A1
Authority
EP
European Patent Office
Prior art keywords
glass
oxide
ceramic
ceramic mass
glass ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP01967053A
Other languages
German (de)
French (fr)
Inventor
Bärbel SCHULZ
Wolfgang Arno Schiller
Wolfgang GÜTHER
Markus Eberstein
Wolfram Wersing
Gabriele Preu
Oliver Dernovsek
Christina Modes
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bundesanstalt fur Materialforschung und -Prufung
WC Heraus GmbH and Co KG
Original Assignee
WC Heraus GmbH and Co KG
Bundesanstalt fuer Materialforschung und Pruefung BAM
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WC Heraus GmbH and Co KG, Bundesanstalt fuer Materialforschung und Pruefung BAM, Siemens AG filed Critical WC Heraus GmbH and Co KG
Publication of EP1315679A1 publication Critical patent/EP1315679A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C14/00Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix
    • C03C14/004Glass compositions containing a non-glass component, e.g. compositions containing fibres, filaments, whiskers, platelets, or the like, dispersed in a glass matrix the non-glass component being in the form of particles or flakes

Definitions

  • the invention relates to a glass ceramic composition with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron.
  • the invention relates to a glass ceramic composition with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron and at least one oxide with at least one tetravalent metal Me4 +.
  • the use of the glass ceramic materials is also specified.
  • the glass ceramic compositions mentioned are known from US Pat. No. 5,264,403.
  • the oxide ceramic of the glass ceramic mass is made from barium oxide (BaO), titanium dioxide (Ti0 2 ), a trioxide of a rare earth metal (Rek 2 0 3 ) and possibly bismuth trioxide (Bi 2 0 3 ).
  • the rare earth metal Rek is, for example, neodymium.
  • the oxide ceramic of the composition mentioned is referred to as microwave ceramic, since its dielectric material properties permittivity ( ⁇ r ), quality (Q) and temperature response of the frequency (Tkf value) are very well suited for use in microwave technology.
  • the glass material of the glass ceramic mass consists of boron trioxide (B 2 0 3 ), silicon dioxide (Si0 2 ) and zinc oxide (ZnO).
  • a ceramic portion of the oxide ceramic in the glass ceramic mass is, for example, 90% and a glass portion of the glass material is 10%.
  • the glass ceramic mass is compacted at a sintering temperature of approximately 950 ° C.
  • a glass ceramic mass which mainly consists of a glass portion of a glass material.
  • the glass material has different combinations of silicon dioxide, an anthanid trioxide (Ln 2 0 3 ), Titanium dioxide, an alkaline earth metal oxide and zirconium dioxide (Zr0 2 ).
  • LTCC technology is a ceramic multilayer process in which a passive electrical component can be integrated in the volume of a ceramic multilayer body.
  • the passive electrical component is, for example, an electrical conductor track, a coil, an induction or a capacitor. Integration is achieved, for example, by printing a metal structure corresponding to the component on one or more ceramic green foils, stacking the printed ceramic green foils on top of one another to form a composite, and sintering the composite. Since ceramic green foils with a low-sintering glass ceramic mass are used, low-melting, electrically highly conductive elemental metal MeO such as silver or copper can be sintered in combination with the ceramic green foils.
  • An LTCC method is known from WO 00/04577, in which, in order to avoid lateral shrinkage (zero xy shrinkage) during sintering, the composite of ceramic green foils is built up with a first and at least one further glass ceramic mass. The first and the further glass ceramic mass compact at different temperatures. In a two-stage sintering process, the
  • the first glass ceramic mass condenses.
  • the non-compacting further glass-ceramic mass prevents the lateral shrinkage of the compacting first glass-ceramic mass.
  • the already compacted first glass ceramic mass now prevents the lateral shrinkage of the further glass-ceramic mass that is compacting at the higher temperature.
  • the first glass ceramic mass that compacts at a lower temperature consists mainly of a glass portion with a glass material that contains barium, aluminum and silicon (barium aluminum silicate glass).
  • the further glass ceramic mass which compacts at a higher temperature consists mainly of an oxide ceramic of the formal composition Ba 6 - ⁇ ek8 + ⁇ Ti ⁇ 8 ⁇ 54 (0 ⁇ x ⁇ 1), where Rek of a rare earth metal is lanthanum, neodymium or samarium.
  • the ceramic multilayer body obtained by the two-stage sintering process is characterized by a lateral shrinkage (lateral offset) of ⁇ 2%.
  • the glass ceramic mass is primarily compacted by reactive liquid phase sintering.
  • the glass material forms a liquid glass phase (glass melt).
  • the oxide ceramic dissolves in the glass melt until a saturation concentration is reached and the oxide ceramic re-precipitates.
  • a component of the oxide ceramic remains in the glass phase after the glass ceramic mass has cooled.
  • the object of the present invention is to provide a glass ceramic mass which compresses at a temperature of below 850 ° C. and is nevertheless suitable for use in microwave technology.
  • a glass ceramic mass is specified with at least one oxide ceramic which has barium, titanium and at least one rare earth metal Rek, and at least one glass material which has at least one oxide with boron and at least one oxide with at least one tetravalent metal Me4 +.
  • the glass ceramic mass is characterized in that the glass material has at least one oxide with at least one rare earth metal Reg.
  • the glass material has at least one oxide with at least one pentavalent metal Me5 +.
  • a glass ceramic mass is also specified with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron.
  • This glass ceramic mass is characterized in that the glass material has at least one oxide with at least one pentavalent metal Me5 + and at least one oxide with at least one rare earth metal Reg.
  • the glass material has at least one oxide with at least one tetravalent metal Me4 +.
  • the glass ceramic mass is a glass ceramic composition and regardless of its condition.
  • the glass ceramic mass can be present as a ceramic green body.
  • a powder of the oxide ceramic and a powder of the glass material can be produced using a organic binder.
  • the glass ceramic mass is present as a powder mixture of the oxide ceramic and the glass material.
  • the glass ceramic mass can be present as a sintered ceramic body.
  • a ceramic multilayer body produced in a sintering process consists of the glass ceramic mass. This ceramic multilayer body can be fed to a further sintering process or firing process at a higher firing temperature.
  • the oxide ceramic can be present as a single phase. But it can also consist of several phases. It is conceivable, for example, that the oxide ceramic consists of phases with a different composition in each case. The oxide ceramic is therefore a mixture of different ones
  • Oxide ceramics It is also conceivable that one or more starting compounds of an oxide ceramic are present, which are only converted to the actual oxide ceramic during sintering.
  • the glass material can also be a single phase.
  • the phase is a glass melt made of boron trioxide, titanium dioxide and lanthanum trioxide. It is also conceivable that the glass material consists of several phases. For example, the glass material consists of a
  • a common glass melt forms from the oxides during sintering.
  • a softening temperature of the glass material is preferably below 800 ° C. in order to enable the viscous flow to be carried out at the lowest possible temperature.
  • the glass material has a crystalline phase.
  • the crystalline phase is formed, for example, by a crystallization product of the glass melt. This means that the glass material after sintering is not only in the glass phase, but also in crystalline form.
  • Such a crystallization product is, for example, lanthanum borate (LaB0 3 ).
  • the Crystallization product or another crystalline component is added to the glass material before sintering.
  • the crystallization product and the crystalline constituent can serve as crystallization nuclei.
  • the composition of the glass ceramic mass is preferably chosen so that the compression takes place primarily by viscous flow.
  • the viscous flow causes compaction at a relatively low temperature.
  • a viscosity-temperature characteristic that is decisive for the compression process which is expressed, for example, in the glass transition point Tg and in the softening temperature T SO ft of the glass material, can be set, for example, by a ratio of the boron trioxide to the oxide of the tetravalent metal Me4 + or to the oxide of the pentavalent metal Me5 + ,
  • the dielectric material properties of the glass ceramic mass can be varied almost independently of the compression temperature.
  • the oxide of the rare earth metal it is possible to match the dielectric material properties of the glass material to the dielectric material properties of the oxide ceramic.
  • the higher the proportion of lanthanum trioxide in the glass material the higher the permittivity of the glass material.
  • the composition of the oxide ceramic and that of the glass material is selected such that crystallization products are formed during the compression (for example by reactive liquid phase sintering) and in particular after the compression (at higher temperatures). This
  • the oxide ceramic has a formal composition BaRek 2 Ti0 ⁇ .
  • the rare earth metal Rek is, for example, lanthanum.
  • the oxide ceramic of this composition is particularly suitable as a microwave ceramic.
  • the Tkf value of the oxide ceramic is in the range between - 20 ppm / K and + 200 ppm / K.
  • a suitable composition and combination of oxide ceramics and glass material makes it possible to achieve a low absolute Tkf value.
  • Tkf value of an underlying glass ceramic mass is negative, countermeasures are taken, for example, with BaLa 2 Ti 4 0 ⁇ 2 , titanium dioxide and / or strontium titanate (SrTi0 3 ) in the direction + 0 ppm / K of the glass ceramic mass. If, on the other hand, the Tkf value of the underlying glass ceramic mass is positive, the Tkf value can be compensated, for example, with BaSm 2 Ti0 ⁇ 2 , aluminum oxide and lanthanum borate (LaB0 3 ).
  • the additional oxides, with the aid of which countermeasures are taken, can be added to the glass ceramic mass before sintering. However, these oxides can also be crystallization products mentioned above.
  • the rare earth metal Reg is present, for example, as trioxide Reg 2 0 3 .
  • the permittivity of the glass material which contributes to the permittivity of the entire glass ceramic mass, can be adapted to the permittivity of the oxide ceramic. This makes a glass ceramic mass accessible that has a permittivity of 15 to 80 or even higher.
  • the rare earth metal Rek and / or the rare earth metal Reg are selected from the group consisting of lanthanum and / or neodymium and / or samarium. Other lanthanides or actinides are also conceivable.
  • the rare earth metals Rek and Reg can be identical, but they can also be different rare earth metals.
  • the tetravalent metal is Me4 ' + from the group silicon and / or germanium and / or tin and / or titanium and / or zirconium and / or hafnium selected.
  • the oxides of the sub-group elements titanium, zirconium and hafnium themselves influence the dielectric material properties of the glass ceramic mass. In particular, these oxides influence the formation of the
  • the oxides of the main group elements silicon, germanium and tin primarily support a glassiness of the glass material. With the help of these oxides, the viscosity-temperature characteristics of the glass material are controlled.
  • the pentavalent metal Me5 + is selected from the group bismuth and / or vanadium and / or niobium and / or tantalum.
  • the oxides of the sub-group elements vanadium, niobium and tantalum apply
  • niobium pentoxide Nb 2 Os or tantalum pentoxide Ta 2 Os directly influence the dielectric material properties.
  • these oxides influence the formation of the crystallization products and thus indirectly the material properties.
  • Main group element primarily supports the glassiness of the glass material.
  • the glass material has at least one oxide with at least one further metal Mex, which is selected from the group aluminum and / or magnesium and / or calcium and / or strontium and / or barium and / or copper and / or zinc ,
  • the other metal Mex can exist as its own oxidic phase.
  • the oxides aluminum trioxide (Al 2 0 3 ), magnesium oxide (MgO),
  • Calcium oxide (CaO), strontium oxide (SrO) and barium oxide (BaO) can stabilize the glassiness of the glass material.
  • the oxide ceramic has, in addition to barium as a divalent metal, a doping of at least one further divalent metal Me2 +.
  • the further divalent metal Me2 + is from the group Copper and / or zinc selected.
  • the oxide ceramic of the composition BaRek 2 Ti 4 0 ⁇ 2 is doped with zinc.
  • the divalent metal Me2 + controls the dielectric material properties of the oxide ceramic.
  • the oxide ceramic can partially dissolve in the glass melt of the glass material with subsequent crystallization. It has been shown that it is particularly favorable if the glass material or an oxide of the glass material is doped with the divalent metal Me2 +, which also occurs in the oxide ceramic. This also applies to other crystalline additives in the glass material.
  • An oxide of an alkaline earth metal as a divalent metal Me2 + increases the basicity of the glass material and thus the reactivity of the glass material with a basic oxide ceramic.
  • the composition of the oxide ceramic is thus largely retained during the compression. It has been shown that it is particularly advantageous if the oxide ceramic is doped with a divalent metal Me2 +, which also occurs in the glass material. Zinc is particularly worth mentioning as the divalent metal Me2 +.
  • 100 vol% of the glass ceramic mass is composed of a ceramic portion of the oxide ceramic, which is selected from the range between 20 vol% up to and including 60 vol%, and a glass portion of the glass material, which is selected from the range between 80 vol% up to and including 40 vol%.
  • the ceramic portion is selected from the range between 30 vol% to 50 vol% inclusive and the glass portion from the range between 70 vol% to 50 vol% inclusive.
  • densification takes place primarily through viscous flow.
  • the oxide ceramic and / or the glass material have a powder with an average particle size (D 50 value), which is selected from the range between 0.8 ⁇ m and 3.0 ⁇ m inclusive.
  • the average particle size is also referred to as the half-value particle size.
  • the oxide ceramic and the glass material are each in the form of such a powder.
  • the average particle size is in particular between 1.5 ⁇ m and 2.0 ⁇ m. It has been shown that with a particle size from the range mentioned, a possible reactive removal of individual components of the oxide ceramic or crystalline additives of the glass material can be controlled well.
  • the particle size is advantageously not more than 3 ⁇ m, so that the glass ceramic mass can be sealing-sintered.
  • a lead oxide content and / or a cadmium oxide content in the glass ceramic mass and / or the oxide ceramic and / or the glass material is at most 0.1%, in particular at most 1 pp. It is preferably off
  • the glass ceramic mass has a sealing firing temperature of at most 850 ° C. and in particular of at most 800 ° C.
  • a glass ceramic mass is accessible with a permittivity selected from the range from 20 to 80 inclusive, a quality selected from the range from 300 to 5000 inclusive, and a Tkf value from the range from including - 20 ppm / K up to and including + 20 ppm / K is selected.
  • the glass ceramic mass is ideally suited for use in microwave technology.
  • a ceramic body with a previously described glass ceramic mass is specified.
  • the ceramic body has at least one elemental metal MeO, which is selected from the group gold and / or silver and / or copper.
  • the ceramic body is preferably a ceramic multilayer body.
  • the glass ceramic mass described above is used to produce the ceramic body.
  • Multi-layer body can be produced.
  • the glass ceramic mass is used in particular in ceramic green foils using LTCC technology. This means that LTCC technology is provided with glass ceramic materials with excellent material properties for the production of microwave technology components.
  • the glass ceramic mass sintering at low temperature can be used to suppress the lateral shrinkage when producing a ceramic multilayer body.
  • the invention has the following advantages:
  • composition of the glass ceramic mass with oxide ceramic and glass material is selected so that the compression is predominantly carried out by viscous flow and crystallization products are formed during and / or after the compression.
  • the composition of the oxide ceramic remains essentially constant during the sintering of the glass ceramic mass.
  • the material properties of the glass ceramic mass can thus be preset very easily.
  • the invention is described below using an exemplary embodiment and the associated figure.
  • the figure shows a schematic cross section, not to scale, of a ceramic body with the glass ceramic mass in a multilayer construction.
  • the glass ceramic mass 11 is a powder made of an oxide ceramic and a powder of one
  • the oxide ceramic has the formal composition Ba ek2 i4 ⁇ i2 ⁇
  • the rare earth metal Rek is neodymium.
  • the oxide ceramic has a divalent metal Me2 + in the form of zinc as doping.
  • appropriate amounts of barium oxide, titanium dioxide and neodymium trioxide are mixed with about 1% by weight of zinc oxide, calcined or sintered and then ground to the corresponding powder.
  • the glass material has the following composition: 35.0% mol% boron trioxide, 23.0 mol% lanthanum trioxide and 42 mol% titanium dioxide.
  • the glass material Alkaline earth metal oxides zirconium dioxide mixed in with less than 5% by weight, a ratio between boron trioxide and the sum of the oxides of the tetravalent metals titanium and zirconium being approximately 0.75.
  • 100 vol% of the glass ceramic mass is composed of 35 vol% of the ceramic material and 65 vol% of the glass material. Ceramic material and glass material have a D 50 value of 1.0 ⁇ m.
  • the sealing firing temperature of the glass ceramic mass is 760 ° C.
  • the glass ceramic mass compresses.
  • the crystallization product titanium dioxide forms, which serves as one for adjusting the Tkf value
  • Component acts. Crystalline titanium dioxide is obtained with 15% by weight.
  • a firing process which leads to the specified values, consists in a first heating phase with a heating rate of 2 K / min to a temperature of 500 ° C, a first holding time of the temperature of 30 min, a second heating phase with a heating rate of 10 K / min, a second holding time of 5 K / min and a cooling phase of 5 K / min to room temperature.
  • the presented glass ceramic mass 11 is used in order to use the LTCC technology in the volume of a ceramic multilayer body 1 to form a passive electrical component 6, 7 to integrate.
  • the passive electrical component 6, 7 consists of the elemental metal MeO silver.
  • the ceramic layers 3 and 4 of the ceramic multilayer body 1 are formed from the ceramic green foils with the glass ceramic mass 11 by sintering.
  • the ceramic layers 2 and 5 result from the Heratape® green foils.
  • the glass ceramic mass has a permittivity of 30, a quality of over 1000 and a Tkf value of + 8 ppm / K.
  • a permittivity of 28 a quality of over 1000 and a Tkf value of + 142 are obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Glass Compositions (AREA)

Abstract

The invention relates to a glass ceramic mass, comprising at least one oxide ceramic, containing barium, titanium and at least one rare earth metal Rek and at least one glass material, containing at least one oxide with boron and at least one oxide of a rare earth metal Reg. The glass material further contains either an oxide of a tetravalent metal Me4+, or at least one oxide of a pentavalent metal Me5+. A compression of the glass ceramic mass occurs above all by viscous flow. A low vitrification temperature can thus be achieved. Crystallisation products are produced during and/or after the compression. The rare earth oxide and the crystallisation products can be used to pre-determine each of a dielectric material property of the glass ceramic mass in a wide range such as permittivity (15 - 80), Q (350 - 5000) and Tf value (± 20 ppm/K). The glass ceramic mass is characterised by a vitrification temperature of below 850 °C and can thus find application in LTCC (low temperature cofired ceramics) technology for the integration of a passive electrical component in the volume of a ceramic multi-layer body. Suppression of a lateral shrinkage may be achieved in a composite with a ceramic film blank made from another ceramic material compressed at a higher temperature.

Description

Beschreibungdescription
Glaskeramikmasse und Verwendung der GlaskeramikmasseGlass ceramic mass and use of the glass ceramic mass
Die Erfindung betrifft eine Glaskeramikmasse mit mindestens einer Oxidkeramik, die Barium, Titan und mindestens ein Seltenerdmetall Rek aufweist, und mindestens einem Glasmaterial, das mindestens ein Oxid mit Bor aufweist. Daneben betrifft die Erfindung eine Glaskeramikmasse mit mindestens einer Oxidkeramik, die Barium, Titan und mindestens ein Seltenerdmetall Rek aufweist, und mindestens einem Glasmaterial, das mindestens ein Oxid mit Bor und mindestens ein Oxid mit mindestens einem vierwertigen Metall Me4+ aufweist. Neben den Glaskeramikmassen wird eine Verwen- dng der Glaskeramikmassen angegeben.The invention relates to a glass ceramic composition with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron. In addition, the invention relates to a glass ceramic composition with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron and at least one oxide with at least one tetravalent metal Me4 +. In addition to the glass ceramic materials, the use of the glass ceramic materials is also specified.
Die genannten Glaskeramikmassen sind aus der US 5 264 403 bekannt. Die Oxidkeramik der Glaskeramikmasse wird aus Bariumoxid (BaO) , Titandioxid (Ti02) , einem Trioxid eines Seltenerdmetalls (Rek203) und eventuell Bismuttrioxid (Bi203) herstellt. Das Seltenerdmetall Rek ist beispielsweise Neodym. Die Oxidkeramik der genannten Zusammensetzung wird als Mikrowellenkeramik bezeichnet, da dessen dielektrische Materialeigenschaften Permittivitat (εr) , Güte (Q) und Temperaturgang der Frequenz (Tkf-Wert) sehr gut geeignet sind für einen Einsatz in der Mikrowellentechnik. Das Glasmaterial der Glaskeramikmasse besteht aus Bortrioxid (B203) , Siliziumdioxid (Si02) und Zinkoxid (ZnO) . Ein Keramikanteil der Oxidkeramik an der Glaskeramikmasse beträgt bei- spielsweise 90% und ein Glasanteil des Glasmaterials 10 %.The glass ceramic compositions mentioned are known from US Pat. No. 5,264,403. The oxide ceramic of the glass ceramic mass is made from barium oxide (BaO), titanium dioxide (Ti0 2 ), a trioxide of a rare earth metal (Rek 2 0 3 ) and possibly bismuth trioxide (Bi 2 0 3 ). The rare earth metal Rek is, for example, neodymium. The oxide ceramic of the composition mentioned is referred to as microwave ceramic, since its dielectric material properties permittivity (ε r ), quality (Q) and temperature response of the frequency (Tkf value) are very well suited for use in microwave technology. The glass material of the glass ceramic mass consists of boron trioxide (B 2 0 3 ), silicon dioxide (Si0 2 ) and zinc oxide (ZnO). A ceramic portion of the oxide ceramic in the glass ceramic mass is, for example, 90% and a glass portion of the glass material is 10%.
Ein Verdichten der Glaskeramikmasse findet bei einer Sintertemperatur von etwa 950°C statt.The glass ceramic mass is compacted at a sintering temperature of approximately 950 ° C.
Aus der JP 08 073 239 A ist eine Glaskeramikmasse bekannt, die hauptsächlich aus einem Glasanteil eines Glasmaterials besteht. Das Glasmaterial weist in unterschiedlicher Kombination Siliziumdioxid, ein anthanidtrioxid (Ln203) , Titandioxid, ein Erdalkalimetalloxid und Zirkoniumdioxid (Zr02) auf .From JP 08 073 239 A a glass ceramic mass is known which mainly consists of a glass portion of a glass material. The glass material has different combinations of silicon dioxide, an anthanid trioxide (Ln 2 0 3 ), Titanium dioxide, an alkaline earth metal oxide and zirconium dioxide (Zr0 2 ).
Beide Glaskeramikmassen eignen sich zur Verwendung in der LTCCdow temperature cofired ceramics)- Technologie. Die LTCC-Technologie ist beispielsweise in D. L. Wilcox et al, Proc. 1997 ISAM, Philadelphia, Seiten 17 bis 23 beschrieben. Die LTCC-Technologie ist ein keramisches Mehrschichtverfahren, bei dem ein passives elektrisches Bauelement im Volumen eines keramischen Mehrschichtkörpers integriert werden kann. Das passive elektrische Bauelement ist beispielsweise eine elektrische Leiterbahn, eine Spule, eine Induktion oder ein Kondensator. Eine Integration gelingt beispielsweise dadurch, dass eine dem Bauelement entsprechende Metallstruktur auf einer oder mehreren keramischen Grünfolien aufgedruckt wird, die bedruckten keramischen Grünfolien übereinander zu einem Verbund gestapelt werden und der Verbund gesintert wird. Da keramische Grünfolien mit niedrig sinternder Glaskeramikmasse verwendet werden, kann niedrig schmelzendes, elektrisch hochleitfähiges elementares Metall MeO wie Silber oder Kupfer im Verbund mit der keramischen Grünfolien gesintert werden.Both glass ceramic materials are suitable for use in LTCCdow temperature cofired ceramics) technology. LTCC technology is described, for example, in D.L. Wilcox et al, Proc. 1997 ISAM, Philadelphia, pages 17 to 23. LTCC technology is a ceramic multilayer process in which a passive electrical component can be integrated in the volume of a ceramic multilayer body. The passive electrical component is, for example, an electrical conductor track, a coil, an induction or a capacitor. Integration is achieved, for example, by printing a metal structure corresponding to the component on one or more ceramic green foils, stacking the printed ceramic green foils on top of one another to form a composite, and sintering the composite. Since ceramic green foils with a low-sintering glass ceramic mass are used, low-melting, electrically highly conductive elemental metal MeO such as silver or copper can be sintered in combination with the ceramic green foils.
Aus der WO 00/04577 ist ein LTCC-Verfahren bekannt, bei dem zur Vermeidung einer lateralen Schwindung (zero xy shrinkage) während des Sinterns der Verbund aus keramischen Grünfolien mit einer ersten und mindestens einer weiteren Glaskeramikmasse aufgebaut wird. Die erste und die weitere Glaskeramikmasse verdichten bei unterschiedlichen Temperaturen. In einem zweistufigen Sinterprozess wird derAn LTCC method is known from WO 00/04577, in which, in order to avoid lateral shrinkage (zero xy shrinkage) during sintering, the composite of ceramic green foils is built up with a first and at least one further glass ceramic mass. The first and the further glass ceramic mass compact at different temperatures. In a two-stage sintering process, the
Verbund gesintert. Bei einer tieferen Temperatur (z.B. 750°C) verdichtet die erste Glaskeramikmasse. Die nicht verdichtende weitere Glaskeramikmasse unterbindet die laterale Schwindung der verdichtenden ersten Glaskeramikmasse. Nach beendetem Verdichten der ersten Glaskeramikmasse wird die weitereComposite sintered. At a lower temperature (e.g. 750 ° C), the first glass ceramic mass condenses. The non-compacting further glass-ceramic mass prevents the lateral shrinkage of the compacting first glass-ceramic mass. After the first glass ceramic mass has been compacted, the further one
Glaskeramikmasse bei einer höheren Temperatur (z.B. 900°C) verdichtet. Die bereits verdichtete erste Glaskeramikmasse verhindert nun die laterale Schwindung der bei der höheren Temperatur verdichtenden weiteren Glaskeramikmasse. Die erste, bei tieferer Temperatur verdichtende Glaskeramikmasse besteht hauptsächlich aus einem Glasanteil mit einem Glasmaterial, das Barium, Aluminium und Silizium aufweist (Barium-Aluminium-Silikatglas) . Die weitere, bei höherer Temperatur verdichtende Glaskeramikmasse besteht hauptsächlich aus einer Oxidkeramik der formalen Zusammensetzung Ba6-χ ek8+χTiι8θ54 (0< x < 1) , wobei Rek eines Seltenerdmetalle Lanthan, Neodym oder Samarium ist. Der durch den zweistufigen Sinterprozess erhaltene keramische Mehrschichtkörper zeichnet sich durch eine laterale Schwindung (lateraler Versatz) von < 2% aus.Glass ceramic mass compressed at a higher temperature (eg 900 ° C). The already compacted first glass ceramic mass now prevents the lateral shrinkage of the further glass-ceramic mass that is compacting at the higher temperature. The first glass ceramic mass that compacts at a lower temperature consists mainly of a glass portion with a glass material that contains barium, aluminum and silicon (barium aluminum silicate glass). The further glass ceramic mass which compacts at a higher temperature consists mainly of an oxide ceramic of the formal composition Ba 6 -χ ek8 + χTiι 8 θ54 (0 <x <1), where Rek of a rare earth metal is lanthanum, neodymium or samarium. The ceramic multilayer body obtained by the two-stage sintering process is characterized by a lateral shrinkage (lateral offset) of <2%.
Bei einer Glaskeramikmasse mit hohem Keramikanteil an der Oxidkeramik erfolgt das Verdichten der Glaskeramikmasse in erster Linie durch reaktives Flüssigphasensintern. Während des Verdichtens (Sinterns) bildet sich aus dem Glasmaterial eine flüssige Glasphase (Glasschmelze) . Bei einer höheren Temperatur löst sich die Oxidkeramik in der Glasschmelze auf, bis eine Sättigungskonzentration erreicht ist und es zu einem Wiederausscheiden der Oxidkeramik kommt. Durch ein Auflösen und Wiederausscheiden der Oxidkeramik kann sich die Zusammensetzung der Oxidkeramik und damit auch die der Glasphase beziehungsweise des Glasmaterials ändern.In the case of a glass ceramic mass with a high ceramic content in the oxide ceramic, the glass ceramic mass is primarily compacted by reactive liquid phase sintering. During the densification (sintering) the glass material forms a liquid glass phase (glass melt). At a higher temperature, the oxide ceramic dissolves in the glass melt until a saturation concentration is reached and the oxide ceramic re-precipitates. By dissolving and re-separating the oxide ceramic, the composition of the oxide ceramic and thus also that of the glass phase or the glass material can change.
Beispielsweise verbleibt ein Bestandteil der Oxidkeramik nach einem Abkühlen der Glaskeramikmasse in der Glasphase.For example, a component of the oxide ceramic remains in the glass phase after the glass ceramic mass has cooled.
Dagegen erfolgt bei Glaskeramikmassen mit relativ hohem Glasanteil das Verdichten in erster Linie durch viskosesOn the other hand, in the case of glass ceramic materials with a relatively high proportion of glass, the compression takes place primarily through viscous ones
Fließen der Glasschmelze des Glasmaterials im Bereich einer Erweichungstemperatur Tsoft des Glasmaterials. Ein Dichtsintern erfolgt dabei unterhalb von 900°C. Je höher der Glasanteil der Glaskeramikmasse ist, desto tiefer liegt die Temperatur, bei der die Glaskeramikmasse verdichtet. Je höher aber der Glasanteil ist, desto niedriger ist die Permittivitat der Glaskeramikmasse. Mit zunehmendem Glasanteil werden auch die Güte und der Tkf-Wert der Glaskeramikmasse derart beeinflusst, dass die Glaskeramikmasse beispielsweise für einen Einsatz in der Mikrowellentechnik nicht mehr geeignet ist.Flow of the glass melt of the glass material in the range of a softening temperature T soft of the glass material. Seal sintering takes place below 900 ° C. The higher the proportion of glass in the glass ceramic mass, the lower the temperature at which the glass ceramic mass densifies. However, the higher the glass content, the lower the permittivity of the glass ceramic mass. With increasing Glass content, the quality and the Tkf value of the glass ceramic mass are also influenced in such a way that the glass ceramic mass is no longer suitable, for example, for use in microwave technology.
Aufgabe der vorliegenden Erfindung ist es, eine Glaskeramikmasse anzugeben, die bei einer Temperatur von unter 850°C verdichtet und trotzdem für einen Einsatz in der Mikrowellentechnik geeignet ist.The object of the present invention is to provide a glass ceramic mass which compresses at a temperature of below 850 ° C. and is nevertheless suitable for use in microwave technology.
Zur Lösung der Aufgabe wird eine Glaskeramikmasse angegeben mit mindestens einer Oxidkeramik, die Barium, Titan und mindestens ein Seltenerdmetall Rek aufweist, und mindestens einem Glasmaterial, das mindestens ein Oxid mit Bor und mindestens ein Oxid mit mindestens einem vierwertigen Metall Me4+ aufweist. Die Glaskeramikmasse ist dadurch gekennzeichnet, dass das Glasmaterial mindestens ein Oxid mit mindestens einem Seltenerdmetall Reg aufweist. Insbesondere weist dabei das Glasmaterial mindestens ein Oxid mit mindestens einem fünfwertigen Metall Me5+ auf.To achieve the object, a glass ceramic mass is specified with at least one oxide ceramic which has barium, titanium and at least one rare earth metal Rek, and at least one glass material which has at least one oxide with boron and at least one oxide with at least one tetravalent metal Me4 +. The glass ceramic mass is characterized in that the glass material has at least one oxide with at least one rare earth metal Reg. In particular, the glass material has at least one oxide with at least one pentavalent metal Me5 +.
Zur Lösung der Aufgabe wird auch eine Glaskeramikmasse angegeben mit mindestens einer Oxidkeramik, die Barium, Titan und mindestens ein Seltenerdmetall Rek aufweist, und mindestens einem Glasmaterial, das mindestens ein Oxid mit Bor aufweist. Diese Glaskeramikmasse ist dadurch gekennzeichnet, dass das Glasmaterial mindestens ein Oxid mit mindestens einem fünfwertigen Metall Me5+ und mindestens ein Oxid mit mindestens einem Seltenerdmetall Reg aufweist. Insbesondere weist dabei das Glasmaterial mindestens ein Oxid mit mindestens einem vierwertigen Metall Me4+ auf.To achieve the object, a glass ceramic mass is also specified with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron. This glass ceramic mass is characterized in that the glass material has at least one oxide with at least one pentavalent metal Me5 + and at least one oxide with at least one rare earth metal Reg. In particular, the glass material has at least one oxide with at least one tetravalent metal Me4 +.
Die Glaskeramikmasse ist eine glaskeramische Zusammensetzung und unabhängig vom ihrem Zustand. Die Glaskeramikmasse kann als keramischer Grünkörper vorliegen. Bei einem Grünkörper, beispielsweise einer Grünfolie, können ein Pulver der Oxidkeramik und ein Pulver des Glasmaterials mit Hilfe eines organischen Binders miteinander verbunden sein. Denkbar ist auch, dass die Glaskeramikmasse als Pulvermischung der Oxidkeramik und des Glasmaterials vorliegt. Darüber hinaus kann die Glaskeramikmasse als gesinterter Keramikkörper vorliegen. Beispielsweise besteht ein in einem Sinterprozess hergestellter keramischer Mehrschichtkörper aus der Glaskeramikmasse. Dieser keramische MehrSchichtkörper kann einem weiteren Sinterprozess oder Brennprozess bei einer höheren Brenntemperatur zugeführt werden.The glass ceramic mass is a glass ceramic composition and regardless of its condition. The glass ceramic mass can be present as a ceramic green body. In the case of a green body, for example a green film, a powder of the oxide ceramic and a powder of the glass material can be produced using a organic binder. It is also conceivable that the glass ceramic mass is present as a powder mixture of the oxide ceramic and the glass material. In addition, the glass ceramic mass can be present as a sintered ceramic body. For example, a ceramic multilayer body produced in a sintering process consists of the glass ceramic mass. This ceramic multilayer body can be fed to a further sintering process or firing process at a higher firing temperature.
Die Oxidkeramik kann als einzige Phase vorliegen. Sie kann aber auch aus mehreren Phasen bestehen. Denkbar ist beispielsweise, dass die Oxidkeramik aus Phasen mit einer jeweils unterschiedlichen Zusammensetzung besteht. Die Oxidkeramik ist somit eine Mischung verschiedenerThe oxide ceramic can be present as a single phase. But it can also consist of several phases. It is conceivable, for example, that the oxide ceramic consists of phases with a different composition in each case. The oxide ceramic is therefore a mixture of different ones
Oxidkeramiken. Denkbar ist auch, dass eine oder mehrere Ausgangsverbindungen einer Oxidkeramik vorliegen, die während des Sinterns erst zur eigentlichen Oxidkeramik umgesetzt werden.Oxide ceramics. It is also conceivable that one or more starting compounds of an oxide ceramic are present, which are only converted to the actual oxide ceramic during sintering.
Das Glasmaterial kann ebenfalls eine einzige Phase sein. Beispielsweise ist die Phase eine Glasschmelze aus Bortrioxid, Titandioxid und Lanthantrioxid. Denkbar ist auch, dass das Glasmaterial aus mehren Phasen besteht. Beispielsweise besteht das Glasmaterial aus einerThe glass material can also be a single phase. For example, the phase is a glass melt made of boron trioxide, titanium dioxide and lanthanum trioxide. It is also conceivable that the glass material consists of several phases. For example, the glass material consists of a
Pulvermischung der angegebenen Oxide. Aus den Oxiden bildet sich während des Sinterns eine gemeinsame Glasschmelze. Eine Erweichungstemperatur des Glasmaterials liegt vorzugsweise unter 800°C, um das viskose Fließen bei einer möglichst niedrigen Temperatur zu ermöglichen. Insbesondere denkbar ist auch, dass das Glasmaterial eine kristalline Phase aufweist. Die kristalline Phase wird beispielsweise von einem Kristallisationsprodukt der Glasschmelze gebildet. Dies bedeutet, dass das Glasmaterial nach dem Sintern nicht nur als Glasphase, sondern auch in kristalliner Form vorliegt. Ein derartiges Kristallisationsprodukt ist beispielsweise Lanthanborat (LaB03) . Insbesondere ist auch denkbar, dass das Kristallisationsprodukt oder ein anderer kristalliner Bestandteil vor dem Sintern dem Glasmaterial beigemengt ist. Das Kristallisationsprodukt und der kristalline Bestandteil können als Kristallisationskeime dienen.Powder mixture of the specified oxides. A common glass melt forms from the oxides during sintering. A softening temperature of the glass material is preferably below 800 ° C. in order to enable the viscous flow to be carried out at the lowest possible temperature. It is also particularly conceivable that the glass material has a crystalline phase. The crystalline phase is formed, for example, by a crystallization product of the glass melt. This means that the glass material after sintering is not only in the glass phase, but also in crystalline form. Such a crystallization product is, for example, lanthanum borate (LaB0 3 ). In particular, it is also conceivable that the Crystallization product or another crystalline component is added to the glass material before sintering. The crystallization product and the crystalline constituent can serve as crystallization nuclei.
Die Zusammensetzung der Glaskeramikmasse wird vorzugsweise so gewählt, dass das Verdichten vorrangig durch viskoses Fließen erfolgt. Durch das viskose Fließen erfolgt ein Verdichten bei einer relativ niedrigen Temperatur. Eine für den Verdichtungsprozess entscheidende Viskositäts-Temperatur- Charakteristik, die sich beispielsweise im Glasübergangspunkt Tg und in der Erweichungstemperatur TSOft des Glasmaterials äußert, kann beispielsweise durch ein Verhältnis des Bortrioxids zum Oxid des vierwertigen Metalls Me4+ oder zum Oxid des fünfwertigen Metalls Me5+ eingestellt werden.The composition of the glass ceramic mass is preferably chosen so that the compression takes place primarily by viscous flow. The viscous flow causes compaction at a relatively low temperature. A viscosity-temperature characteristic that is decisive for the compression process, which is expressed, for example, in the glass transition point Tg and in the softening temperature T SO ft of the glass material, can be set, for example, by a ratio of the boron trioxide to the oxide of the tetravalent metal Me4 + or to the oxide of the pentavalent metal Me5 + ,
Gleichzeitig können nahezu unabhängig von der Verdichtungstemperatur die dielektrischen Materialeigenschaften der Glaskeramikmasse variiert werden. Vornehmlich durch das Oxid des Seltenerdmetalls ist es möglich, die dielektrischen Materialeigenschaf en des Glasmaterials auf die dielektrischen Materialeigenschaften der Oxidkeramik abzustimmen. Je höher beispielsweise der Anteil von Lanthantrioxid am Glasmaterial ist, desto höher ist die Permittivitat des Glasmaterials. Darüber hinaus ist die Zusammensetzung der Oxidkeramik und die des Glasmaterials so gewählt, dass während des Verdichtens (beispielsweise durch reaktives Flüssigphasensintern) und insbesondere nach dem Verdichten (bei höheren Temperaturen) Kristallisationsprodukte gebildet werden. DieseAt the same time, the dielectric material properties of the glass ceramic mass can be varied almost independently of the compression temperature. Mainly through the oxide of the rare earth metal, it is possible to match the dielectric material properties of the glass material to the dielectric material properties of the oxide ceramic. For example, the higher the proportion of lanthanum trioxide in the glass material, the higher the permittivity of the glass material. In addition, the composition of the oxide ceramic and that of the glass material is selected such that crystallization products are formed during the compression (for example by reactive liquid phase sintering) and in particular after the compression (at higher temperatures). This
Kristallisationsprodukte beeinflussen in günstiger Weise die dielektrischen Materialeigenschaften der Glaskeramikmasse, so dass die Glaskeramikmasse in der Mikrowellentechnik eingesetzt werden kann. Auf diese Weise kann beispielsweise bei niedriger Verdichtungstemperatur eine Glaskeramikmasse mit relativ hohe Permittivitat von über 15 und mit einer Güte von über 350 erhalten werden. In einer besonderen Ausgestaltung weist die Oxidkeramik eine formale Zusammensetzung BaRek2Ti0ι auf. Das Seltenerdmetall Rek ist beispielsweise Lanthan. Die Oxidkeramik dieser Zusammensetzung eignet sich besonders als Mikrowellenkeramik. Der Tkf-Wert der Oxidkeramik liegt im Bereich zwischen - 20 ppm/K und + 200 ppm/K. Durch eine geeignete Zusammensetzung und Kombination von Oxidkeramik und Glasmaterial ist es möglich, einen niedrigen absoluten Tkf-Wert zu erzielen. Wenn der Tkf-Wert einer zugrundeliegenden Glaskeramikmasse negativ ist, so wird beispielsweise mit BaLa2Ti42, Titandioxid und/oder Strontiumtitanat (SrTi03) in Richtung + 0 ppm/K der Glaskeramikmasse gegengesteuert. Ist dagegen der Tkf-Wert der zugrundeliegenden Glaskeramikmasse positiv, so kann beispielsweise mit BaSm2Ti0ι2, Aluminiumoxid und Lanthanborat (LaB03) der Tkf-Wert ausgeglichen werden. Die zusätzlichen Oxide, mit deren Hilfe gegengesteuert wird, können vor dem Sintern der Glaskeramikmasse zugesetzt sein. Diese Oxide können aber auch oben genannte Kristallisationsprodukte sein.Crystallization products have a favorable influence on the dielectric material properties of the glass ceramic mass, so that the glass ceramic mass can be used in microwave technology. In this way, for example at low compression temperature, a glass ceramic mass with a relatively high permittivity of over 15 and with a quality of over 350 can be obtained. In a special embodiment, the oxide ceramic has a formal composition BaRek 2 Ti0ι. The rare earth metal Rek is, for example, lanthanum. The oxide ceramic of this composition is particularly suitable as a microwave ceramic. The Tkf value of the oxide ceramic is in the range between - 20 ppm / K and + 200 ppm / K. A suitable composition and combination of oxide ceramics and glass material makes it possible to achieve a low absolute Tkf value. If the Tkf value of an underlying glass ceramic mass is negative, countermeasures are taken, for example, with BaLa 2 Ti 42 , titanium dioxide and / or strontium titanate (SrTi0 3 ) in the direction + 0 ppm / K of the glass ceramic mass. If, on the other hand, the Tkf value of the underlying glass ceramic mass is positive, the Tkf value can be compensated, for example, with BaSm 2 Ti0ι 2 , aluminum oxide and lanthanum borate (LaB0 3 ). The additional oxides, with the aid of which countermeasures are taken, can be added to the glass ceramic mass before sintering. However, these oxides can also be crystallization products mentioned above.
Das Seltenerdmetall Reg liegt beispielsweise als Trioxid Reg203 vor. Mit dem Oxid des Seltenerdmetalls Reg kann die Permittivitat des Glasmaterials, die zur Permittivitat der gesamten Glaskeramikmasse beiträgt, an die Permittivitat der Oxidkeramik angepasst werden. Damit ist eine Glaskeramikmasse zugänglich, die eine Permittivitat von 15 bis 80 oder noch höher aufweist.The rare earth metal Reg is present, for example, as trioxide Reg 2 0 3 . With the oxide of the rare earth metal Reg, the permittivity of the glass material, which contributes to the permittivity of the entire glass ceramic mass, can be adapted to the permittivity of the oxide ceramic. This makes a glass ceramic mass accessible that has a permittivity of 15 to 80 or even higher.
Insbesondere sind das Seltenerdmetall Rek und/oder das Seltenerdmetall Reg aus der Gruppe Lanthan und/oder Neodym und/oder Samarium ausgewählt sind. Denkbar sind auch andere Lanthanide oder auch Actinide. Die Seltenerdmetalle Rek und Reg können identisch sein, es können aber auch verschieden Seltenerdmetalle sein.In particular, the rare earth metal Rek and / or the rare earth metal Reg are selected from the group consisting of lanthanum and / or neodymium and / or samarium. Other lanthanides or actinides are also conceivable. The rare earth metals Rek and Reg can be identical, but they can also be different rare earth metals.
In einer besonderen Ausgestaltung ist das vierwertige Metall Me4'+ aus der Gruppe Silizium und/oder Germanium und/oder Zinn und/oder Titan und/oder Zirkonium und/oder Hafnium ausgewählt . Insbesondere die Oxide der Nebengruppenelemente Titan, Zirkonium und Hafnium beeinflussen selbst die dielektrischen Materialeigenschaf en der Glaskeramikmasse. Insbesondere beeinflussen diese Oxide die Bildung derIn a special embodiment, the tetravalent metal is Me4 ' + from the group silicon and / or germanium and / or tin and / or titanium and / or zirconium and / or hafnium selected. In particular, the oxides of the sub-group elements titanium, zirconium and hafnium themselves influence the dielectric material properties of the glass ceramic mass. In particular, these oxides influence the formation of the
Kristallisationsprodukte. Die Oxide der Hauptgruppenelemente Silizium, Germanium und Zinn unterstützen vornehmlich eine Glasigkeit des Glasmaterials. Mit Hilfe dieser Oxide wird die Viskositäts-Temperatur-Charakteristik des Glasmaterials gesteuert.Crystallization products. The oxides of the main group elements silicon, germanium and tin primarily support a glassiness of the glass material. With the help of these oxides, the viscosity-temperature characteristics of the glass material are controlled.
In einer besonderen Ausgestaltung ist das fünfwertige Metall Me5+ aus der Gruppe Bismut und/oder Vanadium und/oder Niob und/oder Tantal ausgewählt ist. Auch hier gilt, dass Oxide der Nebengruppenelemente Vanadin, Niob und TantalIn a special embodiment, the pentavalent metal Me5 + is selected from the group bismuth and / or vanadium and / or niobium and / or tantalum. Here, too, the oxides of the sub-group elements vanadium, niobium and tantalum apply
(beispielsweise Niobpentoxid Nb2Os oder Tantalpentoxid Ta2Os) direkt die dielektrischen Materialeigenschaften beeinflussen. Insbesondere beeinflussen diese Oxide die Bildung der Kristallisationsprodukte und damit indirekt die Materialeigenschaften. Ein Oxid des Bismuts als(for example niobium pentoxide Nb 2 Os or tantalum pentoxide Ta 2 Os) directly influence the dielectric material properties. In particular, these oxides influence the formation of the crystallization products and thus indirectly the material properties. An oxide of bismuth as
Hauptgruppenelement unterstützt in erster Linie die Glasigkeit des Glasmaterials.Main group element primarily supports the glassiness of the glass material.
In einer weiteren Ausgestaltung weist das Glasmaterial zumindest ein Oxid mit mindestens einem weiteren Metall Mex aufweist, das aus der Gruppe Aluminium und/oder Magnesium und/oder Calcium und/oder Strontium und/oder Barium und/oder Kupfer und/oder Zink ausgewählt -ist . Das weitere Metall Mex kann als eigene oxidische Phase vorliegen. Mit Hilfe der Oxide Aluminiumtrioxid (Al203) , Magnesiumoxid (MgO) ,In a further embodiment, the glass material has at least one oxide with at least one further metal Mex, which is selected from the group aluminum and / or magnesium and / or calcium and / or strontium and / or barium and / or copper and / or zinc , The other metal Mex can exist as its own oxidic phase. With the help of the oxides aluminum trioxide (Al 2 0 3 ), magnesium oxide (MgO),
Calciumoxid (CaO) , Strontiumoxid (SrO) und Bariumoxid (BaO) kann die Glasigkeit des Glasmaterials stabilisiert werden.Calcium oxide (CaO), strontium oxide (SrO) and barium oxide (BaO) can stabilize the glassiness of the glass material.
In einer besonderen Ausgestaltung weist die Oxidkeramik neben Barium als zweiwertigem Metall eine Dotierung mindestens eines weiteren zweiwertigen Metalls Me2+ auf. Insbesondere ist dabei das weitere zweiwertige Metall Me2+ aus der Gruppe Kupfer und/oder Zink ausgewählt. Beispielsweise ist die Oxidkeramik der Zusammensetzung BaRek2Ti42 mit Zink dotiert. Das zweiwertige Metall Me2+ steuert die dielektrischen Materialeigenschaften der Oxidkeramik. Beim Sintern, insbesondere bei einer weiteren Behandlung der Glaskeramik bei höheren Temperaturen, kann es zur partiellen Auflösung der Oxidkeramik in der Glasschmelze des Glasmaterials mit anschließender Kristallisation kommen. Es hat sich gezeigt, dass es besonders günstig ist, wenn das Glasmaterial bzw. ein Oxid des Glasmaterials mit dem zweiwertigen Metall Me2+ dotiert ist, das auch in der Oxidkeramik vorkommt. Dies gilt auch für andere kristalline Zusätze im Glasmaterial. Ein Oxid eines Erdalkalimetalls als zweiwertiges Metall Me2+ erhöht eine Basizität des Glasmaterials und damit eine Reaktivität des Glasmaterials gegenüber einer basischen Oxidkeramik.In a special embodiment, the oxide ceramic has, in addition to barium as a divalent metal, a doping of at least one further divalent metal Me2 +. In particular, the further divalent metal Me2 + is from the group Copper and / or zinc selected. For example, the oxide ceramic of the composition BaRek 2 Ti 42 is doped with zinc. The divalent metal Me2 + controls the dielectric material properties of the oxide ceramic. During sintering, in particular during a further treatment of the glass ceramic at higher temperatures, the oxide ceramic can partially dissolve in the glass melt of the glass material with subsequent crystallization. It has been shown that it is particularly favorable if the glass material or an oxide of the glass material is doped with the divalent metal Me2 +, which also occurs in the oxide ceramic. This also applies to other crystalline additives in the glass material. An oxide of an alkaline earth metal as a divalent metal Me2 + increases the basicity of the glass material and thus the reactivity of the glass material with a basic oxide ceramic.
Somit bleibt die Zusammensetzung der Oxidkeramik während des Verdichtens weitgehend erhalten. Es hat sich gezeigt, dass es besonders günstig ist, wenn die Oxidkeramik mit einem zweiwertigen Metall Me2+ dotiert ist, das auch im Glasmaterial vorkommt. Insbesondere ist hier Zink als zweiwertiges Metall Me2+ zu erwähnen.The composition of the oxide ceramic is thus largely retained during the compression. It has been shown that it is particularly advantageous if the oxide ceramic is doped with a divalent metal Me2 +, which also occurs in the glass material. Zinc is particularly worth mentioning as the divalent metal Me2 +.
In einer besonderen Ausgestaltung setzen sich 100 vol% der Glaskeramikmasse zusammen aus einem Keramikanteil der Oxidkeramik, der ausgewählt ist aus dem Bereich zwischen einschließlich 20 vol% bis einschließlich 60 vol%, und einem Glasanteil des Glasmaterials, der ausgewählt ist aus dem Bereich zwischen einschließlich 80 vol% bis einschließlich 40 vol%. Insbesondere sind der Keramikanteil aus dem Bereich zwischen einschließlich 30 vol% bis einschließlich 50 vol% und der Glasanteil aus dem Bereich zwischen einschließlich 70 vol% bis einschließlich 50 vol% ausgewählt. Bei diesen Zusammensetzungen findet das Verdichten in erster Linie durch viskoses Fließen statt.In a special embodiment, 100 vol% of the glass ceramic mass is composed of a ceramic portion of the oxide ceramic, which is selected from the range between 20 vol% up to and including 60 vol%, and a glass portion of the glass material, which is selected from the range between 80 vol% up to and including 40 vol%. In particular, the ceramic portion is selected from the range between 30 vol% to 50 vol% inclusive and the glass portion from the range between 70 vol% to 50 vol% inclusive. In these compositions, densification takes place primarily through viscous flow.
Insbesondere weisen die Oxidkeramik und/oder das Glasmaterial ein Pulver mit einer mittleren Partikelgröße (D50-Wert) auf, die aus dem Bereich zwischen einschließlich 0,8 μm und einschließlich 3,0 μm ausgewählt ist. Die mittlere Partikelgröße wird auch als Halbwertspartikelgröße bezeichnet. Die Oxidkeramik und das Glasmaterial liegen jeweils als derartiges Pulver vor. Die mittlere Partikelgröße beträgt insbesondere zwischen 1,5 μm und 2,0 μm. Es hat sich gezeigt, dass bei einer Partikelgröße aus dem genannten Bereich ein mögliches reaktives Herauslösen einzelner Bestandteile der Oxidkeramik oder kristalliner Zusätze des Glasmaterials gut gesteuert werden kann. Günstigerweise beträgt die Partikelgröße nicht über 3 μm, damit ein Dichtsintern der Glaskeramikmasse stattfinden kann.In particular, the oxide ceramic and / or the glass material have a powder with an average particle size (D 50 value), which is selected from the range between 0.8 μm and 3.0 μm inclusive. The average particle size is also referred to as the half-value particle size. The oxide ceramic and the glass material are each in the form of such a powder. The average particle size is in particular between 1.5 μm and 2.0 μm. It has been shown that with a particle size from the range mentioned, a possible reactive removal of individual components of the oxide ceramic or crystalline additives of the glass material can be controlled well. The particle size is advantageously not more than 3 μm, so that the glass ceramic mass can be sealing-sintered.
Üblicherweise wird zur Erniedrigung der Sintertemperatur und zur Erhöhung der Permittivitat der Glaskeramikmasse demUsually, to lower the sintering temperature and to increase the permittivity of the glass ceramic mass
Glasmaterial Bleioxid (PbO) zugegeben. Mit der vorliegenden Erfindung beträgt ein Bleioxidanteil und/oder ein Cadmiumoxidanteil an der Glaskeramikmasse und/oder der Oxidkeramik und/oder des Glasmaterials maximal 0,1 %, insbesondere maximal 1 pp . Vorzugsweise ist ausGlass material lead oxide (PbO) added. With the present invention, a lead oxide content and / or a cadmium oxide content in the glass ceramic mass and / or the oxide ceramic and / or the glass material is at most 0.1%, in particular at most 1 pp. It is preferably off
Umweltgesichtspunkten der Anteil von Bleioxid und Cadmiumoxid nahezu Null . Mit der vorliegenden Erfindung gelingt dies ohne wesentliche Einschränkung der Materialeigenschaften der Glaskeramikmasse .From an environmental point of view, the proportion of lead oxide and cadmium oxide is almost zero. With the present invention, this can be achieved without significantly restricting the material properties of the glass ceramic mass.
Insbesondere weist die Glaskeramikmasse eine Dichtbrandtemperatur von maximal 850°C und insbesondere von maximal 800°C auf. Insbesondere ist dabei eine Glaskeramikmasse zugänglich mit einer Permittivitat, die aus dem Bereich von einschließlich 20 bis einschließlich 80 ausgewählt ist, einer Güte, die aus dem Bereich von einschließlich 300 bis einschließlich 5000 ausgewählt ist, und einem Tkf-Wert, der aus dem Bereich von einschließlich - 20 ppm/K bis einschließlich + 20 ppm/K ausgewählt ist. Die Glaskeramikmasse ist mit diesen Materialeigenschaften hervorragend für den Einsatz in der Mikrowellentechnik geeignet . Gemäß einem zweiten Aspekt der Erfindung wird ein Keramikkörper mit einer zuvor beschriebenen Glaskeramikmasse angegeben. Insbesondere weist der Keramikkörper mindestens ein elementares Metall MeO auf, das aus der Gruppe Gold und/oder Silber und/oder Kupfer ausgewählt ist. Vorzugsweise ist der Keramikkörper ein keramischer Mehrschichtkörper. Zum Herstellen des Keramikkörpers wird die zuvor beschriebene Glaskeramikmasse verwendet. Insbesondere kann auf diese Weise ein Keramikkörper in Form eines keramischenIn particular, the glass ceramic mass has a sealing firing temperature of at most 850 ° C. and in particular of at most 800 ° C. In particular, a glass ceramic mass is accessible with a permittivity selected from the range from 20 to 80 inclusive, a quality selected from the range from 300 to 5000 inclusive, and a Tkf value from the range from including - 20 ppm / K up to and including + 20 ppm / K is selected. With these material properties, the glass ceramic mass is ideally suited for use in microwave technology. According to a second aspect of the invention, a ceramic body with a previously described glass ceramic mass is specified. In particular, the ceramic body has at least one elemental metal MeO, which is selected from the group gold and / or silver and / or copper. The ceramic body is preferably a ceramic multilayer body. The glass ceramic mass described above is used to produce the ceramic body. In particular, a ceramic body in the form of a ceramic
Mehrschichtkörpers hergestellt werden. Die Glaskeramikmasse wird insbesondere in keramischen Grünfolien in der LTCC- Technologie eingesetzt. Damit sind der LTCC-Technologie Glaskeramikmassen zur Verfügung gestellt, mit hervorragenden Materialeigenschaften für die Herstellung von mikrowellentechnischen Bauelementen. Zusätzlich kann die bei tiefer Temperatur sinternde Glaskeramikmasse zur Unterdrückung der lateralen Schwindung bei Herstellen eines keramischen Mehrschichtkörpers verwendet werden.Multi-layer body can be produced. The glass ceramic mass is used in particular in ceramic green foils using LTCC technology. This means that LTCC technology is provided with glass ceramic materials with excellent material properties for the production of microwave technology components. In addition, the glass ceramic mass sintering at low temperature can be used to suppress the lateral shrinkage when producing a ceramic multilayer body.
Zusammengefasst ergeben sich mit der Erfindung folgende Vorteile :In summary, the invention has the following advantages:
• Die Zusammensetzung der Glaskeramikmasse mit Oxidkeramik und Glasmaterial ist so gewählt, dass das Verdichten vorwiegend durch viskoses Fließen erfolgt und während und/oder nach dem Verdichten Kristallisationsprodukte gebildet werden.• The composition of the glass ceramic mass with oxide ceramic and glass material is selected so that the compression is predominantly carried out by viscous flow and crystallization products are formed during and / or after the compression.
• Die Zusammensetzung der Oxidkeramik beleibt während des Sinterns der Glaskeramikmasse im Wesentlichen konstant. Somit lassen sich die Materialeigenschaften der Glaskeramikmasse sehr gut voreinstellen.• The composition of the oxide ceramic remains essentially constant during the sintering of the glass ceramic mass. The material properties of the glass ceramic mass can thus be preset very easily.
• Durch geeignete (oxidische) Zusätze zur Oxidkeramik und zum Glasmaterial lassen sich das Sinterverhalten der Glaskeramikmasse und die Materialeigenschaften der Glaskeramikmasse nahezu beliebig einstellen. So können beispielsweise Permittivitat, Güte und Tkf-Wert in einem weiten Bereich eingestellt werden unter Einhaltung einer niedrigen Dichtbrandtemperatur.• The sintering behavior of the glass ceramic mass and the material properties of the Adjust the glass ceramic mass almost as desired. For example, permittivity, quality and Tkf value can be set in a wide range while maintaining a low sealing firing temperature.
• Ein nahezu komplettes Verdichten (Dichtsintern) der Glaskeramikmasse kann unter 850 °C erreicht werden, wodurch die Keramikmasse zur Anwendung in der LTCC- Technologie geeignet ist. Insbesondere in Kombination mit Glaskeramikmasse, die bei einer höheren Temperatur verdichtet, kann in einem mehrstufigen Sinterprozess eine laterale Schwindung von unter 2% eingehalten werden.• Almost complete compaction (internal sealing) of the glass ceramic mass can be achieved below 850 ° C, which makes the ceramic mass suitable for use in LTCC technology. In particular in combination with glass ceramic mass, which compresses at a higher temperature, a lateral shrinkage of less than 2% can be maintained in a multi-stage sintering process.
• Das Verdichten gelingt ohne Einsatz von Bleioxid und oder Cadmiumoxid.• The compression works without the use of lead oxide and or cadmium oxide.
Anhand eines Ausführungsbeispiels und der dazugehörigen Figur wird die Erfindung im Folgenden beschrieben. Die Figur zeigt eine schematischen, nicht maßstabsgetreuen Querschnitt eines keramischen Körpers mit der Glaskeramikmasse in Mehrschichtbauweise .The invention is described below using an exemplary embodiment and the associated figure. The figure shows a schematic cross section, not to scale, of a ceramic body with the glass ceramic mass in a multilayer construction.
Gemäß dem Ausführungsbeispiel ist die Glaskeramikmasse 11 ein Pulver aus einer Oxidkeramik und einem Pulver einesAccording to the exemplary embodiment, the glass ceramic mass 11 is a powder made of an oxide ceramic and a powder of one
Glasmaterials. Die Oxidkeramik hat die formale Zusammensetzung Ba ek2 i4θi2 ■ Das Seltenerdmetall Rek ist Neodym. Die Oxidkeramik weist als Dotierung ein zweiwertiges Metall Me2+ in Form von Zink auf. Zur Herstellung der Oxidkeramik werden entsprechende Mengen an Bariumoxid, Titandioxid und Neodymtrioxid mit etwa einem Gew.% Zinkoxid vermengt, calziniert bzw. gesintert und anschließend zum entsprechenden Pulver vermählen.Glass material. The oxide ceramic has the formal composition Ba ek2 i4θi2 ■ The rare earth metal Rek is neodymium. The oxide ceramic has a divalent metal Me2 + in the form of zinc as doping. To produce the oxide ceramic, appropriate amounts of barium oxide, titanium dioxide and neodymium trioxide are mixed with about 1% by weight of zinc oxide, calcined or sintered and then ground to the corresponding powder.
Das Glasmaterial weist folgende Zusammensetzung auf: 35,0 % mol% Bortrioxid, 23,0 mol% Lanthantrioxid und 42 mol% Titandioxid. Daneben sind dem Glasmaterial Erdalkalimetalloxide Zirkoniumdioxid mit unter 5 Gew.% beigemengt, wobei ein Verhältnis zwischen Bortrioxid und der Summe der Oxide der vierwertigen Metalle Titan und Zirkonium etwa 0,75 beträgt.The glass material has the following composition: 35.0% mol% boron trioxide, 23.0 mol% lanthanum trioxide and 42 mol% titanium dioxide. Next to it are the glass material Alkaline earth metal oxides zirconium dioxide mixed in with less than 5% by weight, a ratio between boron trioxide and the sum of the oxides of the tetravalent metals titanium and zirconium being approximately 0.75.
100 vol% der Glaskeramikmasse setzen sich zusammen aus 35 vol% des Keramikmaterials und 65 vol% des Glasmaterials. Keramikmaterial und Glasmaterial weisen einen D50-Wert von 1,0 μm auf. Die Dichtbrandtemperatur der Glaskeramikmasse beträgt 760°C.100 vol% of the glass ceramic mass is composed of 35 vol% of the ceramic material and 65 vol% of the glass material. Ceramic material and glass material have a D 50 value of 1.0 μm. The sealing firing temperature of the glass ceramic mass is 760 ° C.
Während eines Brennens der Glaskeramikmasse bei einer bestimmten Brenntemperatur verdichtet die Glaskeramikmasse. Zudem bildet sich das Kristallisationsprodukt Titandioxid, das als eine zur Einstellung des Tkf-Wertes dienendeDuring a firing of the glass ceramic mass at a certain firing temperature, the glass ceramic mass compresses. In addition, the crystallization product titanium dioxide forms, which serves as one for adjusting the Tkf value
Komponente fungiert. Kristallines Titandioxid wird mit 15 Gew.% erhalten.Component acts. Crystalline titanium dioxide is obtained with 15% by weight.
In Abhängigkeit von der Brenntemperatur der Keramikmasse stellen sich für die Glaskeramikmasse folgende dielektrischeDepending on the firing temperature of the ceramic mass, the following dielectric values arise for the glass ceramic mass
Materialeigenschaften (bei 6 GHz) ein:Material properties (at 6 GHz) on:
Bei einer Brenntemperatur von 790°C resultiert eine Permittivitat von 34, eine Güte von 400 und ein Tkf-Wert von -163 ppm/K. Bei einer Brenntemperatur von 820°C resultiert eine Permittivitat von 32, eine Güte von über 1000 und ein Tkf-Wert von -4ppm. Ein Brennverlauf (Brennregime) , der zu den angegebenen Werten führt, besteht in einer ersten Aufheizphase mit einer Aufheizrate von 2 K/min auf eine Temperatur von 500 °C, einer ersten Haltezeit der Temperatur von 30 min, einer zweiten Aufheizphase mit einer Aufheizrate von 10 K/min, einer zweiten Haltezeit von 5 K/min und einer Abkühlphase von 5 K/min auf Raumtemperatur.At a firing temperature of 790 ° C, a permittivity of 34, a quality of 400 and a Tkf value of -163 ppm / K result. At a firing temperature of 820 ° C this results in a permittivity of 32, a quality of over 1000 and a Tkf value of -4ppm. A firing process (firing regime), which leads to the specified values, consists in a first heating phase with a heating rate of 2 K / min to a temperature of 500 ° C, a first holding time of the temperature of 30 min, a second heating phase with a heating rate of 10 K / min, a second holding time of 5 K / min and a cooling phase of 5 K / min to room temperature.
Die vorgestellte Glaskeramikmasse 11 wird eingesetzt, um mit Hilfe der LTCC-Technologie im Volumen eines keramischen Mehrschichtkörpers 1 ein passives elektrisches Bauelement 6, 7 zu integrieren. Das passive elektrische Bauelement 6, 7 besteht aus dem elementaren Metall MeO Silber. Zur Herstellung des Mehrschichtkörpers 1 wird ein Verbund aus keramischen Grünfolien mit der Glaskeramikmasse 11 und Heratape®-Grünfolien mit von der Glaskeramikmasse 12 verschiedenen Keramikmasse 12 hergestellt. Aus den keramischen Grünfolien mit der Glaskeramikmasse 11 entstehen durch das Sintern die Keramikschichten 3 und 4 des keramischen Mehrschichtkörpers 1. Die Keramikschichten 2 und 5 resultieren aus den Heratape®-Grünfolien. Im Verbund stellt sich bei einer Brenntemperatur von 860°C (Dichtbrandtemperatur der Heratape®-Grünfolien) eine Permittivitat der Glaskeramikmasse von 30, eine Güte von über 1000 und ein Tkf-Wert von + 8 ppm/K ein. Bei einer Brandtemperatur von 900°C werden eine Permittivitat von 28, eine Güte von über 1000 und ein Tkf-Wert von + 142 erhalten. The presented glass ceramic mass 11 is used in order to use the LTCC technology in the volume of a ceramic multilayer body 1 to form a passive electrical component 6, 7 to integrate. The passive electrical component 6, 7 consists of the elemental metal MeO silver. To produce the multilayer body 1, a composite of ceramic green foils with the glass ceramic mass 11 and Heratape® green foils with a ceramic mass 12 different from the glass ceramic mass 12 is produced. The ceramic layers 3 and 4 of the ceramic multilayer body 1 are formed from the ceramic green foils with the glass ceramic mass 11 by sintering. The ceramic layers 2 and 5 result from the Heratape® green foils. At a firing temperature of 860 ° C (sealing firing temperature of the Heratape® green foils), the glass ceramic mass has a permittivity of 30, a quality of over 1000 and a Tkf value of + 8 ppm / K. At a fire temperature of 900 ° C, a permittivity of 28, a quality of over 1000 and a Tkf value of + 142 are obtained.

Claims

Patentansprüche claims
1. Glaskeramikmasse mit mindestens einer Oxidkeramik, die Barium, Titan und mindestens ein Seltenerdmetall Rek aufweist, und mindestens einem Glasmaterial, das mindestens ein Oxid mit Bor und mindestens ein Oxid mit mindestens einem vierwertigen Metall Me4+ aufweist, dadurch gekennzeichnet, dass - das Glasmaterial mindestens ein Oxid mit mindestens einem Seltenerdmetall Reg aufweist.1. Glass ceramic mass with at least one oxide ceramic that has barium, titanium and at least one rare earth metal Rek, and at least one glass material that has at least one oxide with boron and at least one oxide with at least one tetravalent metal Me4 +, characterized in that - the glass material at least has an oxide with at least one rare earth metal Reg.
2. Glaskeramikmasse nach Anspruch 1, wobei das Glasmaterial mindestens ein Oxid mit mindestens einem fünfwertigen Metall Me5+ aufweist.2. Glass ceramic mass according to claim 1, wherein the glass material has at least one oxide with at least one pentavalent metal Me5 +.
3. Glaskeramikmasse mit mindestens einer Oxidkeramik, die Barium, Titan und mindestens ein Seltenerdmetall Rek aufweist, und - mindestens einem Glasmaterial, das mindestens ein Oxid mit Bor aufweist, dadurch gekennzeichnet, dass das Glasmaterial mindestens ein Oxid mit mindestens einem fünfwertigen3. Glass ceramic mass with at least one oxide ceramic, which has barium, titanium and at least one rare earth metal Rek, and - at least one glass material which has at least one oxide with boron, characterized in that the glass material has at least one oxide with at least one pentavalent
Metall Me5+ und - mindestens ein Oxid mit mindestens einem SeltenerdmetallMetal Me5 + and - at least one oxide with at least one rare earth metal
Reg aufweist.Reg has.
4. Glaskeramikmasse nach Anspruch 3 , wobei das Glasmaterial mindestens ein Oxid mit mindestens einem vierwertigen Metall Me4+ aufweist.4. Glass ceramic mass according to claim 3, wherein the glass material has at least one oxide with at least one tetravalent metal Me4 +.
5. Glaskeramikmasse nach einem der Ansprüche 1 bis 4, wobei die Oxidkeramik eine formale Zusammensetzung BaRek2Ti012 aufweist .5. Glass ceramic mass according to one of claims 1 to 4, wherein the oxide ceramic has a formal composition BaRek 2 Ti0 12 .
Glaskeramikmasse nach einem der Ansprüche 1 bis 5, wobei das Seltenerdmetall Rek und/oder das Seltenerdmetall Reg aus der Gruppe Lanthan und/oder Neodym und/oder Samarium ausgewählt ist.Glass ceramic mass according to one of claims 1 to 5, wherein the rare earth metal Rek and / or the rare earth metal Reg is selected from the group of lanthanum and / or neodymium and / or samarium.
7. Glaskeramikmasse nach einem der Ansprüche 1, 2 und 4 bis 6, wobei das vierwertige Metall Me4+ aus der Gruppe7. Glass ceramic mass according to one of claims 1, 2 and 4 to 6, wherein the tetravalent metal Me4 + from the group
Silizium und/oder Germanium und/oder Zinn und/oder Titan und/oder Zirkonium und/oder Hafnium ausgewählt ist.Silicon and / or germanium and / or tin and / or titanium and / or zirconium and / or hafnium is selected.
8. Glaskeramikmasse nach einem der Ansprüche 2 bis 7, wobei das fünfwertige Metall Me5+ aus der Gruppe Bismut und/oder Vanadium und/oder Niob und/oder Tantal ausgewählt ist.8. Glass ceramic mass according to one of claims 2 to 7, wherein the pentavalent metal Me5 + is selected from the group bismuth and / or vanadium and / or niobium and / or tantalum.
9. Glaskeramikmasse nach einem der Ansprüche 1 bis 8, wobei das Glasmaterial zumindest ein Oxid mit mindestens einem weiteren Metall Mex aufweist, das aus der Gruppe Aluminium und/oder Magnesium und/oder Calcium und/oder Strontium und/oder Barium und/oder Kupfer und/oder Zink ausgewählt ist.9. Glass ceramic mass according to one of claims 1 to 8, wherein the glass material has at least one oxide with at least one further metal Mex, which from the group aluminum and / or magnesium and / or calcium and / or strontium and / or barium and / or copper and / or zinc is selected.
10. Glaskeramikmasse nach einem der Ansprüche 1 bis 9, wobei die Oxidkeramik neben Barium als zweiwertigem Metall eine Dotierung mindestens eines weiteren zweiwertigen Metalls Me2+ aufweist.10. Glass ceramic mass according to one of claims 1 to 9, wherein the oxide ceramic has, in addition to barium as a divalent metal, a doping of at least one further divalent metal Me2 +.
11. Glaskeramikmasse nach Anspruch 10, wobei das weitere zweiwertige Metall Me2+ aus der Gruppe Kupfer und/oder Zink ausgewählt ist.11. Glass ceramic mass according to claim 10, wherein the further divalent metal Me2 + is selected from the group of copper and / or zinc.
12. Glaskeramikmasse nach einem der Ansprüche 1 bis 11, wobei sich 100 vol% der Glaskeramikmasse zusammensetzen aus einem Keramikanteil der Oxidkeramik, der ausgewählt ist aus dem Bereich zwischen einschließlich 20 vol% bis einschließlich 60 vol%, und einem Glasanteil des Glasmaterials, der ausgewählt ist aus dem Bereich zwischen einschließlich 80 vol% bis einschließlich 40 vol%. 12. Glass ceramic mass according to one of claims 1 to 11, wherein 100 vol% of the glass ceramic mass is composed of a ceramic portion of the oxide ceramic, which is selected from the range between 20 vol% up to and including 60 vol%, and a glass portion of the glass material, which is selected is in the range between 80 vol% and 40 vol% inclusive.
13. Glaskeramikmasse nach Anspruch 12 , wobei der13. Glass ceramic mass according to claim 12, wherein the
Keramikanteil aus dem Bereich zwischen einschließlich 30 vol% bis einschließlich 50 vol% und der Glasanteil aus dem Bereich zwischen einschließlich 70 vol% bis einschließlich 50 vol% ausgewählt sind.Ceramic portion from the range between 30 vol% to 50 vol% inclusive and the glass portion from the range between 70 vol% to 50 vol% inclusive are selected.
14. Glaskeramikmasse nach einem der Ansprüche 1 bis 13, wobei die Oxidkeramik und/oder das Glasmaterial ein Pulver mit einer mittleren Partikelgröße aufweisen, die aus dem Bereich zwischen einschließlich 0,8 μm und einschließlich 3,0 μm ausgewählt ist.14. Glass ceramic mass according to one of claims 1 to 13, wherein the oxide ceramic and / or the glass material have a powder with an average particle size which is selected from the range between 0.8 μm and 3.0 μm inclusive.
15. Glaskeramikmasse nach einem der Ansprüche 1 bis 14, wobei ein Bleioxidanteil und/oder ein Cadmiumoxidanteil an der Glaskeramikmasse und/oder der Oxidkeramik und/oder des Glasmaterials maximal 0,1 %, insbesondere maximal 1 ppm, beträgt .15. Glass ceramic mass according to one of claims 1 to 14, wherein a lead oxide content and / or a cadmium oxide content in the glass ceramic mass and / or the oxide ceramic and / or the glass material is at most 0.1%, in particular at most 1 ppm.
16. Glaskeramikmasse nach einem der Ansprüche 1 bis 15, mit einer Dichtbrandtemperatur von maximal 850°C, insbesondere von maximal 800°C.16. Glass ceramic mass according to one of claims 1 to 15, with a sealing firing temperature of at most 850 ° C, in particular of at most 800 ° C.
17. Glaskeramikmasse nach Anspruch 16, mit - einer Permittivitat, die aus dem Bereich von einschließlich 15 bis einschließlich 80 ausgewählt ist, einer Güte, die aus dem Bereich von einschließlich 300 bis einschließlich 5000 ausgewählt ist, und einem Tkf-Wert, der aus dem Bereich von einschließlich - 20 ppm/K bis einschließlich + 20 ppm/K ausgewählt ist.17. Glass ceramic mass according to claim 16, with - a permittivity selected from the range from 15 to 80 inclusive, a quality selected from the range from 300 to 5000 inclusive, and a Tkf value from in the range from - 20 ppm / K up to + 20 ppm / K inclusive.
18. Keramikkörper mit einer Glaskeramikmasse nach einem der Ansprüche 1 bis 17.18. Ceramic body with a glass ceramic mass according to one of claims 1 to 17.
19. Keramikkörper nach Anspruch 18, mit mindestens einem elementaren Metall MeO, das aus der Gruppe Gold und/oder Silber und/oder Kupfer ausgewählt ist. 19. Ceramic body according to claim 18, with at least one elemental metal MeO, which is selected from the group gold and / or silver and / or copper.
20. Keramikkörper nach Anspruch 18 oder 19, wobei der20. Ceramic body according to claim 18 or 19, wherein the
Keramikkörper ein keramischer Mehrschichtkörper ist. Ceramic body is a ceramic multilayer body.
EP01967053A 2000-09-01 2001-08-31 Glass ceramic mass and ceramic article Withdrawn EP1315679A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10043194A DE10043194A1 (en) 2000-09-01 2000-09-01 Glass ceramic mass and use of the glass ceramic mass
DE10043194 2000-09-01
PCT/DE2001/003337 WO2002018285A1 (en) 2000-09-01 2001-08-31 Glass ceramic mass and use thereof

Publications (1)

Publication Number Publication Date
EP1315679A1 true EP1315679A1 (en) 2003-06-04

Family

ID=7654693

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01967053A Withdrawn EP1315679A1 (en) 2000-09-01 2001-08-31 Glass ceramic mass and ceramic article

Country Status (13)

Country Link
US (1) US20040014584A1 (en)
EP (1) EP1315679A1 (en)
JP (1) JP2004507429A (en)
KR (1) KR100532799B1 (en)
CN (1) CN1307117C (en)
CA (1) CA2422651C (en)
CZ (1) CZ2003911A3 (en)
DE (1) DE10043194A1 (en)
HU (1) HUP0300881A2 (en)
MX (1) MXPA03001713A (en)
NO (1) NO20030882L (en)
TW (1) TWI224082B (en)
WO (1) WO2002018285A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6841493B2 (en) 2002-06-04 2005-01-11 E. I. Du Pont De Nemours And Company High K glass and tape composition for use at high frequency
DE10309689B4 (en) * 2003-02-27 2005-04-07 Bundesanstalt für Materialforschung und -Prüfung (BAM) Ceramic plate with monolithic layer structure and method for its production
DE102007020888A1 (en) 2007-05-04 2008-11-06 Micro Systems Engineering Gmbh & Co. Kg Ceramic substrate material, method of making and using same and antenna or antenna array
DE102007049172A1 (en) 2007-10-13 2009-04-16 Micro Systems Engineering Gmbh & Co. Kg A microreactor and method of making the same and method of making a substrate for a microreactor
JP2011518336A (en) * 2008-04-21 2011-06-23 トップ エンジニアリング カンパニー リミテッド MEMS probe card and manufacturing method thereof
US20110169517A1 (en) * 2008-09-05 2011-07-14 Kim Sang-Hee Mems probe card and method of manufacturing same
DE102008043352A1 (en) 2008-10-31 2010-05-06 Micro Systems Engineering Gmbh Ceramic substrate material, method of making and using same and antenna or antenna array
DE102012214055B4 (en) * 2012-08-08 2016-06-09 Siemens Healthcare Gmbh A method of manufacturing a controlled high voltage insulator and associated medical device
JP5844299B2 (en) * 2013-03-25 2016-01-13 株式会社日立製作所 Bonding material, bonding structure
CN104386917A (en) * 2014-10-22 2015-03-04 华文蔚 Glass ceramic material and preparation method thereof
CN105541115B (en) * 2016-02-03 2019-04-16 同济大学 A kind of metatitanic acid niobic acid composite glass-ceramic and its preparation method and application
FR3059635B1 (en) 2016-12-05 2019-07-12 Ms Systemes MOTORIZED BICYCLE
CN107056071A (en) * 2017-04-25 2017-08-18 福州大学 ZrO2, HfO2The gear division devitrified glass being co-doped with
JP6897704B2 (en) * 2019-03-29 2021-07-07 Tdk株式会社 Black mark composition and electronic components using it
US11177072B2 (en) * 2019-08-16 2021-11-16 Samsung Electro-Mechanics Co., Ltd. Multilayer capacitor and board having the same mounted thereon
CN111362578B (en) * 2020-03-09 2022-06-21 广东四维新材料有限公司 Microcrystalline glass ceramic for 6G communication filter and preparation method thereof
CN113072379A (en) * 2021-03-31 2021-07-06 中国振华集团云科电子有限公司 High-dielectric high-mechanical-strength glass ceramic sintered substrate and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2522870A1 (en) * 1982-03-02 1983-09-09 Europ Composants Electron DIELECTRIC CERAMIC COMPOSITION BASED ON BARIUM TITANATE STABLE ACCORDING TO TEMPERATURE AND CAPACITOR USING THE SAME
US5264403A (en) * 1991-09-27 1993-11-23 Ngk Insulators, Ltd. Dielectric ceramic composition containing ZnO-B2 O3 -SiO2 glass
JP2711618B2 (en) * 1992-06-30 1998-02-10 ティーディーケイ株式会社 Dielectric composition, multilayer wiring board and multilayer ceramic capacitor
JP3624405B2 (en) * 1994-08-31 2005-03-02 日本電気硝子株式会社 Glass ceramic dielectric material
US6205281B1 (en) * 1997-05-27 2001-03-20 Corning Incorporated Fluorinated rare earth doped glass and glass-ceramic articles
EP1099246A1 (en) * 1998-07-15 2001-05-16 Siemens Aktiengesellschaft Method for producing a ceramic body having an integrated passive electronic component, such a body and use of same
JP2000143341A (en) * 1998-09-11 2000-05-23 Murata Mfg Co Ltd Dielectric ceramic composition and multilayer ceramic part
JP3709752B2 (en) * 1999-01-26 2005-10-26 株式会社村田製作所 Dielectric ceramic composition and ceramic multilayer substrate
EP1230653B1 (en) * 2000-08-08 2007-01-24 Koninklijke Philips Electronics N.V. Dielectric composition, method of manufacturing a ceramic multilayer element, and electronic device.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
EBERSTEIN M. ET AL: "ADJUSTMENT OF DIELECTRIC PROPERTIES OF GLASS CERAMIC COMPOSITES VIA CRYSTALLIZATION", GLASS SCIENCE AND TECHNOLOGY, DEUTSCHE GLASTECHNISCHE GESELLSCHAFT, OFFENBACH, DE, vol. 73, no. C01, 1 January 2000 (2000-01-01), pages 370 - 373, XP008047391, ISSN: 0946-7475 *

Also Published As

Publication number Publication date
KR20030040431A (en) 2003-05-22
US20040014584A1 (en) 2004-01-22
KR100532799B1 (en) 2005-12-02
NO20030882D0 (en) 2003-02-25
CZ2003911A3 (en) 2004-12-15
CA2422651C (en) 2007-06-19
CN1307117C (en) 2007-03-28
CN1556775A (en) 2004-12-22
JP2004507429A (en) 2004-03-11
WO2002018285A1 (en) 2002-03-07
CA2422651A1 (en) 2003-02-27
HUP0300881A2 (en) 2004-07-28
TWI224082B (en) 2004-11-21
DE10043194A1 (en) 2002-03-28
MXPA03001713A (en) 2004-09-10
NO20030882L (en) 2003-04-25

Similar Documents

Publication Publication Date Title
EP1315679A1 (en) Glass ceramic mass and ceramic article
DE112007001868B4 (en) Glass ceramic composition, sintered glass ceramic body and monolithic ceramic electronic component
DE3317963A1 (en) CERAMIC CAPACITOR WITH LAYER STRUCTURE
DE112009000012T5 (en) Glass ceramic composition, glass ceramic sintered body and ceramic multilayer electronic component
EP3319913B1 (en) Ceramics and glass ceramics exhibiting low or negative thermal expansion
DE3138593A1 (en) METHOD FOR PRODUCING A FINE-GRAINED SEMI-CONDUCTING CERAMIC EMBODYING AN INTERNAL CLEARING LAYER
DE3213148C2 (en) Dielectric ceramic mass
DE10035172B4 (en) Ceramic mass and capacitor with the ceramic mass
EP1315680B1 (en) Glass ceramic mass and use thereof
DE19841487C2 (en) Reduction-stable ceramic mass and its use
DE4005505A1 (en) MONOLITHIC CERAMIC CONDENSER
DE2631035B2 (en) Finely divided powder from a lead titanate / lead magnesium tungstate composition and its use
DE3327768C2 (en)
DE4406812C1 (en) Low sintering temp. dielectric for green tape system
DE19749858C1 (en) Reduction stable low dielectric constant ceramic material for co-firing with copper electrodes
DE3541517C2 (en)
EP1732862B1 (en) Glass ceramic composition, electrical component comprising one such composition, and ceramic multi-layer body comprising one such electric component
DE2225731A1 (en) Powder composition and its application
DE10228557A1 (en) Glass-ceramic composition, used in low temperature co-fired ceramics technology, comprises an oxide ceramic containing barium, titanium, a rare earth metal and an oxide of a pentavalent metal, and a glass material
DE10130894A1 (en) Glass ceramic having a specified relative permittivity used in the production of electrical components comprises a ceramic material, and a glass material containing a boron oxide, a silicon oxide, a divalent metal oxide, and a bismuth oxide
DE1646941C3 (en) Ceramic dielectric and process for its manufacture
DE10130893A1 (en) Glass ceramic with a specified relative permittivity used in the manufacture of monolithic ceramic multilayer bodies comprises a ceramic material having a specified thermal expansion coefficient
DE10325008B4 (en) Electrical component and its manufacture
DE1514012A1 (en) Thin-film capacitor with a dielectric which is temperature-independent in predeterminable ranges and a method for producing this capacitor
DE19922556C1 (en) X7R ceramic material, especially for multilayer capacitors with silver-palladium internal electrodes, comprises a barium titanate composition containing niobium and cobalt or magnesium oxides with glass frit addition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030318

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Extension state: SI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUFUNG

Owner name: W.C. HERAEUS GMBH & CO. KG

17Q First examination report despatched

Effective date: 20031006

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: GLASS CERAMIC MASS AND CERAMIC ARTICLE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUFUNG

Owner name: W.C. HERAEUS GMBH

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150303