EP1311004A2 - Method of calculating a target voltage for a piezoelectric element - Google Patents

Method of calculating a target voltage for a piezoelectric element Download PDF

Info

Publication number
EP1311004A2
EP1311004A2 EP02021151A EP02021151A EP1311004A2 EP 1311004 A2 EP1311004 A2 EP 1311004A2 EP 02021151 A EP02021151 A EP 02021151A EP 02021151 A EP02021151 A EP 02021151A EP 1311004 A2 EP1311004 A2 EP 1311004A2
Authority
EP
European Patent Office
Prior art keywords
piezoelectric element
multiplier
correction
summand
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02021151A
Other languages
German (de)
French (fr)
Other versions
EP1311004A3 (en
EP1311004B1 (en
Inventor
Joerg Rueger
Udo Schulz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1311004A2 publication Critical patent/EP1311004A2/en
Publication of EP1311004A3 publication Critical patent/EP1311004A3/en
Application granted granted Critical
Publication of EP1311004B1 publication Critical patent/EP1311004B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/06Fuel or fuel supply system parameters
    • F02D2200/0602Fuel pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems

Definitions

  • the invention relates to a method for voltage setpoint calculation of a piezoelectric element as a function of rail pressure with those in the preamble of claim 1 mentioned features.
  • Piezoelectric elements are among others Fuel injection nozzles for internal combustion engines for Commitment.
  • the piezoelectric Element as an actuator in a fuel injection system is used that the piezoelectric element as closely as possible to different, possibly also varying extents is brought.
  • a direct or indirect Transfer to a control valve of relocating a Actuator, such as a nozzle needle.
  • the relocation of the nozzle needle has been released of injection holes.
  • the duration of the Approval of the injection holes corresponds, depending a free cross section of the holes and one applied pressure, a desired injection quantity.
  • the first, direct type of transmission is the nozzle needle, directly from the piezoelectric element, via a hydraulic coupler moves.
  • the second type of transmission is the movement of the nozzle needle through a control valve controlled by a hydraulic Coupler, starting from the piezoelectric element, is controlled.
  • the hydraulic coupler has two main characteristics, firstly Amplification of the stroke of the piezoelectric element and second, the decoupling of the movement of the control valve and / or a static temperature expansion nozzle needle of the piezoelectric element.
  • a high pressure inside the control valve in a pressure chamber, also known as a rail, generated by, for example, a high pressure fuel pump becomes.
  • the one from this high pressure fuel pump generated pressure is called rail pressure.
  • rail pressure To do that Position the control valve correctly and thus a Realizing the desired injection is a control voltage setpoint for the piezoelectric element required, which depends heavily on rail pressure is formed. This voltage setpoint will additionally by means of a multiplier a temperature of the piezoelectric element corrected.
  • the advantage of the calculation method according to the invention of the voltage setpoint is that the corrected voltage setpoint to be calculated the voltage setpoint by multiplication by at least a correction value (multiplier) and / or by addition with at least one correction value (Summand) is formed.
  • This makes it advantageous to adapt the control characteristics depending on the rail pressure, the temperature of the piezoelectric element, the specifics of the piezoelectric element used and the specific data of the injector. This allows tolerances within the control voltage characteristics be drastically reduced and that Procedure can be done via data feed within a Engine control individually, for example with one Vehicle manufacturers, coordinated with those used upcoming piezoelectric elements and injectors respectively. This process is therefore also for large series practical.
  • FIG. 1 shows a method in a block diagram for calculation of setpoint with correction of a target control voltage 14 depending on the rail pressure 22 and depending on a temperature 16 of the piezoelectric Element 10.
  • control voltage characteristics 12 are dependent determined by rail pressure 22. Both Control voltage characteristics 12 determined in which a control valve after deflection by the piezoelectric Element 10 works against the rail pressure 22, as well as control voltage characteristics 12, at those after returning the deflection of the piezoelectric Element 10 the control valve with the Rail pressure 22 is moved. These determined control voltage characteristics 12 each result in the target drive voltages 14.
  • the piezoelectric element 10 has a static temperature expansion, is dependent on the temperature 16 of the piezoelectric Element 10 made a correction, in which the control voltage characteristic curves 18 - temperature-corrected - be determined. From the control voltage characteristics 12 and the control voltage characteristics 18 results in a correction value, multiplier 30, with which the target drive voltages 14th Getting corrected. This results in the target control voltages 20 - Temperature corrected - with the piezoelectric element 10 and below the injector 32 is controlled.
  • FIG. 2 shows a block diagram of the invention Setpoint calculation procedure with correction of the Voltage setpoint 14 depending on the rail pressure 22, the temperature 16 of the piezoelectric element 10, as previously described in Figure 1, and one specific correction value 24 of the piezoelectric Element 10 and a specific correction value 26 of the injector 32.
  • each Drive voltage characteristics 12 for piezoelectric Elements 10 determined with or against the rail pressure 22 work.
  • These determined control voltage characteristics 12 and 18 lead - as previously described - to the multiplicative correction value 30.
  • the target drive voltage is also 14 using a multiplier as Correction value 24 changes the specific data a special piezoelectric element 10 contains.
  • a correction value 26 is added that adds the injector-specific data to a contains special injector 32.
  • the correction value 26 After correction of the rail pressure-dependent target control voltages 14 with the correction value 24 by multiplication, the correction value 26 by addition and final correction by further multiplication the corrected value 30 results in the corrected Target drive voltage 28 with which the piezoelectric Element 10 is controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

A multiplier (30) uses a temperature (16) for a piezoelectric element (10) to adjust a voltage set-point (14). An adjusted voltage set-point (28) to be calculated is formed from a voltage set-point (14) through multiplication with an adjustment value/multiplier (24) and/or through addition with an adjustment value/summand. The multiplier/summand are formed from specific data for the piezoelectric element and for tolerances in an injector.

Description

Die Erfindung betrifft ein Verfahren zur Spannungssollwertberechnung eines piezoelektrischen Elementes als Funktion des Rail-Druckes mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen.The invention relates to a method for voltage setpoint calculation of a piezoelectric element as a function of rail pressure with those in the preamble of claim 1 mentioned features.

Stand der TechnikState of the art

Piezoelektrische Elemente kommen unter anderem bei Kraftstoffeinspritzdüsen für Brennkraftmaschinen zum Einsatz. Für bestimmte Anwendungsfälle ist es erforderlich, beispielsweise wenn das piezoelektrische Element als Aktor in einem Kraftstoffeinspritzsystem verwendet wird, dass das piezoelektrische Element möglichst genau auf verschiedene, gegebenenfalls auch variierende Ausdehnungen gebracht wird. Dabei entsprechen verschiedene Ausdehnungen des piezoelektrischen Elementes durch eine direkte oder indirekte Übertragung auf ein Steuerventil der Verlagerung eines Stellgliedes, wie beispielsweise einer Düsennadel. Die Verlagerung der Düsennadel hat die Freigabe von Einspritzlöchern zur Folge. Die Dauer der Freigabe der Einspritzlöcher entspricht, in Abhängigkeit eines freien Querschnittes der Löcher und eines anliegenden Druckes, einer gewünschten Einspritzmenge.Piezoelectric elements are among others Fuel injection nozzles for internal combustion engines for Commitment. For certain applications it is necessary for example if the piezoelectric Element as an actuator in a fuel injection system is used that the piezoelectric element as closely as possible to different, possibly also varying extents is brought. Doing so different dimensions of the piezoelectric Element by a direct or indirect Transfer to a control valve of relocating a Actuator, such as a nozzle needle. The relocation of the nozzle needle has been released of injection holes. The duration of the Approval of the injection holes corresponds, depending a free cross section of the holes and one applied pressure, a desired injection quantity.

Dabei wird die Übertragung der Ausdehnung des piezoelektrischen Elementes auf das Steuerventil in zwei grundlegende Übertragungsarten unterschieden. In der ersten, direkten Übertragungsart wird die Düsennadel, direkt vom piezoelektrischen Element, über einen hydraulischen Koppler bewegt. In der zweiten Übertragungsart wird die Bewegung der Düsennadel durch ein Steuerventil gesteuert, das über einen hydraulischen Koppler, vom piezoelektrischen Element ausgehend, angesteuert wird. Der hydraulische Koppler hat im Wesentlichen zwei Eigenschaften, erstens die Verstärkung des Hubes des piezoelektrischen Elementes und zweitens die Entkopplung der Bewegung von Steuerventil und/oder Düsennadel einer statischen Temperaturdehnung des piezoelektrischen Elementes.This is the transmission of the expansion of the piezoelectric Element on the control valve in two differentiated basic transmission types. In the The first, direct type of transmission is the nozzle needle, directly from the piezoelectric element, via a hydraulic coupler moves. In the second type of transmission is the movement of the nozzle needle through a control valve controlled by a hydraulic Coupler, starting from the piezoelectric element, is controlled. The hydraulic coupler has two main characteristics, firstly Amplification of the stroke of the piezoelectric element and second, the decoupling of the movement of the control valve and / or a static temperature expansion nozzle needle of the piezoelectric element.

Innerhalb des Steuerventils herrscht ein hoher Druck, der in einer Druckkammer, auch als Rail bezeichnet, von beispielsweise einer Hochdruckkraftstoffpumpe erzeugt wird. Der von dieser Hochdruckkraftstoffpumpe erzeugte Druck wird als Rail-Druck bezeichnet. Um das Steuerventil korrekt zu positionieren und damit eine gewünschte Einspritzung zu realisieren, ist ein Ansteuerspannungssollwert für das piezoelektrische Element erforderlich, der jedoch stark Raildruck abhängig gebildet wird. Dieser Spannungssollwert wird zusätzlich mittels eines Multiplikators in Abhängigkeit einer Temperatur des piezoelektrischen Elementes korrigiert. There is a high pressure inside the control valve, in a pressure chamber, also known as a rail, generated by, for example, a high pressure fuel pump becomes. The one from this high pressure fuel pump generated pressure is called rail pressure. To do that Position the control valve correctly and thus a Realizing the desired injection is a control voltage setpoint for the piezoelectric element required, which depends heavily on rail pressure is formed. This voltage setpoint will additionally by means of a multiplier a temperature of the piezoelectric element corrected.

Bei diesem Verfahren ist jedoch nachteilig, dass die ermittelte Ansteuerspannungskennlinie nicht für alle piezoelektrischen Elemente und für alle Injektoren gleichermaßen gilt. Die Gründe für die hierbei auftretenden Abweichungen liegen erstens in den Streuungen des Hubvermögens der piezoelektrischen Elemente und zweitens in den mechanischen Toleranzen der Komponenten der Injektoren. Die Berechnung des Spannungssollwertes zur Ermittlung der Ansteuerspannungskennlinie ist mit dem bisherigen Verfahren aufgrund von nicht in Betracht gezogenen spezifischen Korrekturwerten der piezoelektrischen Elemente und/oder der Injektoren nicht möglich.However, this method has the disadvantage that the determined control voltage characteristic not for all piezoelectric elements and for all injectors applies equally. The reasons for this occurring First, there are deviations in the scatter the lifting capacity of the piezoelectric elements and secondly in the mechanical tolerances of the Components of the injectors. The calculation of the voltage setpoint to determine the control voltage characteristic is due to the previous procedure of specifics not considered Correction values of the piezoelectric elements and / or of injectors not possible.

Vorteile der ErfindungAdvantages of the invention

Der Vorteil des erfindungsgemäßen Verfahrens zur Berechnung des Spannungssollwertes liegt darin, dass der zu berechnende korrigierte Spannungssollwert aus dem Spannungssollwert durch Multiplikation mit mindestens einem Korrekturwert (Multiplikator) und/oder durch Addition mit mindestens einem Korrekturwert (Summand) gebildet wird. Dabei beinhalten der Multiplikator und/oder der Summand die spezifischen Daten des piezoelektrischen Elementes und des Injektors. Dadurch wird vorteilhaft eine Anpassung der Ansteuerkennlinien in Abhängigkeit vom Rail-Druck, der Temperatur des piezoelektrischen Elementes, der Spezifika des zum Einsatz kommenden piezoelektrischen Elementes und der spezifischen Daten des Injektors möglich. Damit können Toleranzen innerhalb der Ansteuerspannungskennlinien drastisch reduziert werden und das Verfahren kann über Datenzuführung innerhalb einer Motorsteuerung individuell, beispielsweise bei einem Fahrzeughersteller, abgestimmt mit den zum Einsatz kommenden piezoelektrischen Elementen und Injektoren erfolgen. Dieses Verfahren ist somit auch für Großserien praktikabel.The advantage of the calculation method according to the invention of the voltage setpoint is that the corrected voltage setpoint to be calculated the voltage setpoint by multiplication by at least a correction value (multiplier) and / or by addition with at least one correction value (Summand) is formed. The multiplier included and / or the summand the specific data of the piezoelectric element and the injector. This makes it advantageous to adapt the control characteristics depending on the rail pressure, the temperature of the piezoelectric element, the specifics of the piezoelectric element used and the specific data of the injector. This allows tolerances within the control voltage characteristics be drastically reduced and that Procedure can be done via data feed within a Engine control individually, for example with one Vehicle manufacturers, coordinated with those used upcoming piezoelectric elements and injectors respectively. This process is therefore also for large series practical.

Zeichnungendrawings

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:

Figur 1
ein Blockschaltbild einer Sollwertberechnung mit Korrektur eines Spannungssollwertes in Abhängigkeit eines Rail-Druckes und einer Temperatur eines piezoelektrischen Elementes und
Figur 2
ein Blockschaltbild zur Sollwertberechnung mit Korrektur des Spannungssollwertes in Abhängigkeit vom Rail-Druck, der Temperatur des piezoelektrischen Elementes und der Korrektur des Spannungssollwertes mittels spezifischer Daten aus dem piezoelektrischen Element und einem Injektor.
The invention is explained in more detail in an exemplary embodiment with reference to the accompanying drawings. Show it:
Figure 1
a block diagram of a setpoint calculation with correction of a voltage setpoint as a function of a rail pressure and a temperature of a piezoelectric element and
Figure 2
a block diagram for setpoint calculation with correction of the voltage setpoint depending on the rail pressure, the temperature of the piezoelectric element and the correction of the voltage setpoint using specific data from the piezoelectric element and an injector.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Figur 1 zeigt in einem Blockschaltbild ein Verfahren zur Sollwertberechnung mit Korrektur einer Soll-Ansteuerspannung 14 in Abhängigkeit vom Rail-Druck 22 und in Abhängigkeit einer Temperatur 16 des piezoelektrischen Elementes 10. Für die bisher eingesetzten piezoelektrischen Elemente 10 und die in den bekannten Einspritzsystemen verwendeten Injektoren 32 werden Ansteuerspannungskennlinien 12 in Abhängigkeit vom Rail-Druck 22 ermittelt. Dabei werden sowohl Ansteuerspannungskennlinien 12 ermittelt, bei denen ein Steuerventil nach Auslenkung durch das piezoelektrische Element 10 gegen den Rail-Druck 22 arbeitet, als auch Ansteuerspannungskennlinien 12, bei denen nach Rückführung der Auslenkung des piezoelektrischen Elementes 10 das Steuerventil mit dem Rail-Druck 22 bewegt wird. Diese ermittelten Ansteuerspannungskennlinien 12 ergeben jeweils die Soll-Ansteuerspannungen 14. Da das piezoelektrische Element 10 eine statische Temperaturdehnung aufweist, wird in Abhängigkeit von der Temperatur 16 des piezoelektrischen Elementes 10 eine Korrektur vorgenommen, bei der die Ansteuerspannungskennlinien 18 - Temperatur-korrigiert - ermittelt werden. Aus den Ansteuerspannungskennlinien 12 und den Ansteuerspannungskennlinien 18 ergibt sich ein Korrekturwert, Multiplikator 30, mit dem die Soll-Ansteuerspannungen 14 korrigiert werden. Daraus ergeben sich die Soll-Ansteuerspannungen 20 - Temperatur-korrigiert - mit der das piezoelektrische Element 10 und nachfolgend der Injektor 32 angesteuert wird.FIG. 1 shows a method in a block diagram for calculation of setpoint with correction of a target control voltage 14 depending on the rail pressure 22 and depending on a temperature 16 of the piezoelectric Element 10. For the previously used piezoelectric elements 10 and those in the known injectors used injectors 32nd control voltage characteristics 12 are dependent determined by rail pressure 22. Both Control voltage characteristics 12 determined in which a control valve after deflection by the piezoelectric Element 10 works against the rail pressure 22, as well as control voltage characteristics 12, at those after returning the deflection of the piezoelectric Element 10 the control valve with the Rail pressure 22 is moved. These determined control voltage characteristics 12 each result in the target drive voltages 14. Because the piezoelectric element 10 has a static temperature expansion, is dependent on the temperature 16 of the piezoelectric Element 10 made a correction, in which the control voltage characteristic curves 18 - temperature-corrected - be determined. From the control voltage characteristics 12 and the control voltage characteristics 18 results in a correction value, multiplier 30, with which the target drive voltages 14th Getting corrected. This results in the target control voltages 20 - Temperature corrected - with the piezoelectric element 10 and below the injector 32 is controlled.

Figur 2 zeigt erfindungsgemäß ein Blockschaltbild des Verfahrens zur Sollwertberechnung mit Korrektur des Spannungssollwertes 14 in Abhängigkeit vom Rail-Druck 22, der Temperatur 16 des piezoelektrischen Elementes 10, wie zuvor in Figur 1 beschrieben, und eines spezifischen Korrekturwertes 24 des piezoelektrischen Elementes 10 und eines spezifischen Korrekturwertes 26 des Injektors 32. Es werden wiederum jeweils Ansteuerspannungskennlinien 12 für piezoelektrische Elemente 10 ermittelt, die mit beziehungsweise gegen den Rail-Druck 22 arbeiten. Zur Ermittlung der Ansteuerspannungskennlinien 12 wird die Raildruck-Abhängigkeit beachtet und zur Ermittlung der Ansteuerspannungskennlinien 18 wird die statische Temperatur-Abhängigkeit des piezoelektrischen Elementes 10 einbezogen. Diese ermittelten Ansteuerspannungskennlinien 12 und 18 führen- wie zuvor beschrieben - zu dem multiplikativen Korrekturwert 30. In Weiterführung zu Figur 1 wird zusätzlich die Soll-Ansteuerspannung 14 mittels eines Multiplikators als Korrekturwert 24 verändert, der die spezifischen Daten eines speziellen piezoelektrischen Elementes 10 enthält. Zusätzlich wird ein Korrekturwert 26 hinzu addiert, der die Injektor-spezifischen Daten eines speziellen Injektors 32 enthält.Figure 2 shows a block diagram of the invention Setpoint calculation procedure with correction of the Voltage setpoint 14 depending on the rail pressure 22, the temperature 16 of the piezoelectric element 10, as previously described in Figure 1, and one specific correction value 24 of the piezoelectric Element 10 and a specific correction value 26 of the injector 32. In turn, each Drive voltage characteristics 12 for piezoelectric Elements 10 determined with or against the rail pressure 22 work. To determine the control voltage characteristics 12 becomes the rail pressure dependency observed and to determine the control voltage characteristics 18 becomes the static Temperature dependence of the piezoelectric element 10 included. These determined control voltage characteristics 12 and 18 lead - as previously described - to the multiplicative correction value 30. In continuation to Figure 1, the target drive voltage is also 14 using a multiplier as Correction value 24 changes the specific data a special piezoelectric element 10 contains. In addition, a correction value 26 is added that adds the injector-specific data to a contains special injector 32.

Nach Korrektur der Raildruck-abhängigen Soll-Ansteuerspannungen 14 mit dem Korrekturwert 24 durch Multiplikation, dem Korrekturwert 26 durch Addition und abschließender Korrektur durch weitere Multiplikation mit dem Korrekturwert 30 ergibt sich die korrigierte Soll-Ansteuerspannung 28, mit der das piezoelektrische Element 10 angesteuert wird.After correction of the rail pressure-dependent target control voltages 14 with the correction value 24 by multiplication, the correction value 26 by addition and final correction by further multiplication the corrected value 30 results in the corrected Target drive voltage 28 with which the piezoelectric Element 10 is controlled.

Claims (4)

Verfahren zur Spannungssollwertberechnung eines piezoelektrischen Elementes (10) als Funktion eines Rail-Druckes (22), wobei ein Spannungssollwert (14) mittels eines Multiplikators (30) in Abhängigkeit einer Temperatur (16) des piezoelektrischen Elementes (10) korrigiert wird, dadurch gekennzeichnet, dass der zu berechnende korrigierte Spannungssollwert (28) aus dem Spannungssollwert (14) durch Multiplikation mit mindestens einem Korrekturwert (Multiplikator (24)) und/oder durch Addition mit mindestens einem Korrekturwert (Summand (26)) gebildet wird.Method for calculating the voltage setpoint of a piezoelectric element (10) as a function of a rail pressure (22), wherein a voltage setpoint (14) is corrected by means of a multiplier (30) as a function of a temperature (16) of the piezoelectric element (10), characterized in that that the corrected voltage setpoint (28) to be calculated is formed from the voltage setpoint (14) by multiplication with at least one correction value (multiplier (24)) and / or by addition with at least one correction value (summand (26)). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Multiplikator (24) und/oder der Summand (26) aus den spezifischen Daten des piezoelektrischen Elementes (10) gebildet wird.A method according to claim 1, characterized in that the multiplier (24) and / or the summand (26) is formed from the specific data of the piezoelectric element (10). Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Multiplikator (24) und/oder der Summand (26) aus den spezifischen Daten der Toleranzen eines Injektors (32) gebildet wird.A method according to claim 1, characterized in that the multiplier (24) and / or the summand (26) is formed from the specific data of the tolerances of an injector (32). Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Korrektur der Soll-Ansteuerspannung (14) mittels des Multiplikators (24) und/oder des Summanden (26) vor der Korrektur durch einen weiteren Korrekturwert (Multiplikator (30)) der Temperatur (16) des piezoelektrischen Elementes (10) vorgenommen wird.Method according to one of the preceding claims, characterized in that the correction of the target drive voltage (14) by means of the multiplier (24) and / or the summand (26) before the correction by a further correction value (multiplier (30)) of the temperature ( 16) of the piezoelectric element (10) is made.
EP02021151A 2001-11-10 2002-09-24 Method of calculating a target voltage for a piezoelectric element Expired - Lifetime EP1311004B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10155389 2001-11-10
DE10155389A DE10155389A1 (en) 2001-11-10 2001-11-10 Method for voltage setpoint calculation of a piezoelectric element

Publications (3)

Publication Number Publication Date
EP1311004A2 true EP1311004A2 (en) 2003-05-14
EP1311004A3 EP1311004A3 (en) 2005-11-16
EP1311004B1 EP1311004B1 (en) 2007-09-12

Family

ID=7705390

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02021151A Expired - Lifetime EP1311004B1 (en) 2001-11-10 2002-09-24 Method of calculating a target voltage for a piezoelectric element

Country Status (4)

Country Link
US (1) US6867531B2 (en)
EP (1) EP1311004B1 (en)
JP (1) JP2003148213A (en)
DE (2) DE10155389A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399656A (en) * 2003-03-14 2004-09-22 Bosch Gmbh Robert A method for controlling the actuation of a piezo-electric element in a fuel injector

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004028612B4 (en) * 2004-06-12 2017-03-02 Robert Bosch Gmbh Method for operating an internal combustion engine, and computer program, control and / or regulating device, and internal combustion engine
US20100180866A1 (en) * 2009-01-13 2010-07-22 Becker Richard A System and method for defining piezoelectric actuator waveform
DE102009003176A1 (en) 2009-05-18 2010-11-25 Robert Bosch Gmbh Method and control device for operating a piezoelectric actuator
DE102012202344B4 (en) * 2012-02-16 2013-11-14 Continental Automotive Gmbh Method for regulating pressure in a high-pressure region of an internal combustion engine
DE102013223756B4 (en) * 2013-11-21 2015-08-27 Continental Automotive Gmbh Method for operating injectors of an injection system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108576A1 (en) * 2000-03-21 2001-09-27 Caterpillar Inc Device for temperature compensation of piezoelectric device, generates control signal compensated in response to estimated temperature near piezoelectric device
EP1139448A1 (en) * 2000-04-01 2001-10-04 Robert Bosch GmbH Method and apparatus for regulating voltages and voltage gradients for driving piezoelectric elements
DE10016474A1 (en) * 2000-04-01 2001-10-04 Bosch Gmbh Robert Fuel injection valve control method for direct injection IC engine has control voltage for piezoelectric actuator corrected in dependence on detected temperature

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3827409A (en) * 1972-06-29 1974-08-06 Physics Int Co Fuel injection system for internal combustion engines
JPH01262348A (en) * 1988-04-13 1989-10-19 Mitsubishi Electric Corp Control device for internal combustion engine
US5758309A (en) * 1992-02-05 1998-05-26 Nissan Motor Co., Ltd. Combustion control apparatus for use in internal combustion engine
US5299868A (en) * 1993-02-03 1994-04-05 Halliburton Company Crystalline transducer with ac-cut temperature crystal
US5367999A (en) * 1993-04-15 1994-11-29 Mesa Environmental Ventures Limited Partnership Method and system for improved fuel system performance of a gaseous fuel engine
US5771861A (en) * 1996-07-01 1998-06-30 Cummins Engine Company, Inc. Apparatus and method for accurately controlling fuel injection flow rate
JP3426439B2 (en) * 1996-07-17 2003-07-14 三菱ふそうトラック・バス株式会社 Accumulation type fuel injection control device
US5731742A (en) * 1996-12-17 1998-03-24 Motorola Inc. External component programming for crystal oscillator temperature compensation
DE19652801C1 (en) * 1996-12-18 1998-04-23 Siemens Ag Driving at least one capacitive positioning element esp. piezoelectrically driven fuel injection valve for IC engine
DE19723932C1 (en) * 1997-06-06 1998-12-24 Siemens Ag Method for controlling at least one capacitive actuator
DE19931233B4 (en) * 1999-07-07 2007-02-01 Siemens Ag Method for driving a capacitive actuator
JP2001267847A (en) * 2000-03-17 2001-09-28 Asahi Kasei Microsystems Kk Temperature compensated crystal oscillator and method for compensating temperature or the oscillator
DE10032022B4 (en) * 2000-07-01 2009-12-24 Robert Bosch Gmbh Method for determining the drive voltage for an injection valve with a piezoelectric actuator
US6597083B2 (en) * 2001-12-19 2003-07-22 Caterpillar Inc. Method and apparatus for compensating for temperature induced deformation of a piezoelectric device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10108576A1 (en) * 2000-03-21 2001-09-27 Caterpillar Inc Device for temperature compensation of piezoelectric device, generates control signal compensated in response to estimated temperature near piezoelectric device
EP1139448A1 (en) * 2000-04-01 2001-10-04 Robert Bosch GmbH Method and apparatus for regulating voltages and voltage gradients for driving piezoelectric elements
DE10016474A1 (en) * 2000-04-01 2001-10-04 Bosch Gmbh Robert Fuel injection valve control method for direct injection IC engine has control voltage for piezoelectric actuator corrected in dependence on detected temperature

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2399656A (en) * 2003-03-14 2004-09-22 Bosch Gmbh Robert A method for controlling the actuation of a piezo-electric element in a fuel injector
US6986339B2 (en) 2003-03-14 2006-01-17 Robert Bosch Gmbh Method, computer program, memory medium and control and/or regulating unit for operating an internal combustion engine, as well as internal combustion engine, in particular for a motor vehicle
GB2399656B (en) * 2003-03-14 2007-09-26 Bosch Gmbh Robert Method,computer program,storage medium and open-loop and/or clsed-loop control device for operating an internal combustion engine

Also Published As

Publication number Publication date
DE50210881D1 (en) 2007-10-25
JP2003148213A (en) 2003-05-21
EP1311004A3 (en) 2005-11-16
DE10155389A1 (en) 2003-05-22
US20030111934A1 (en) 2003-06-19
EP1311004B1 (en) 2007-09-12
US6867531B2 (en) 2005-03-15

Similar Documents

Publication Publication Date Title
EP1913249B1 (en) Method and device for controlling the injection system of an internal combustion engine
EP2297444B1 (en) Method and device for the pressure wave compensation of consecutive injections in an injection system of an internal combustion engine
DE102010040283B3 (en) Method for controlling the injection quantity of a piezo injector of a fuel injection system
DE10113670A1 (en) Driving piezoelectric actuator for fuel injection system in IC engine, involves selecting voltage that can be tapped at piezoelectric actuator during charge/discharge time depending on engine operating situation
DE102011007580A1 (en) Method for operating fuel injection valve of combustion engine, involves determining coking of injector nozzle of injection valve using one of partial models, and using output of partial model to correct control of actuator
DE102011085926A1 (en) Method for operating an internal combustion engine
EP1172541A1 (en) Piezoelectric actuator for injector and/or injection system
EP1311004A2 (en) Method of calculating a target voltage for a piezoelectric element
DE102006039522B4 (en) Method for the Leerhubsteuerung a fuel injection device
DE19848950A1 (en) Appliance for uniform control of piezoelectric actuators for fuel injection systems with compensation for operating conditions
DE10303573B4 (en) Method, computer program, storage medium and control and / or regulating device for operating an internal combustion engine, and internal combustion engine, in particular for a motor vehicle
DE102005040531A1 (en) Power source, control device and method for operating the control device
EP1311005B1 (en) Method and apparatus for charging and discharging a piezoelectric element
WO2004001794A2 (en) Method for controlling and adjusting the length of a piezoelectric actuator (pa) and an electronic unit for regulating said method
WO2003091559A1 (en) Device and method for triggering the piezo actuator of a control valve of a pump-nozzle unit
DE102007010263B3 (en) Operation device for piezoactuator used in e.g. fuel injection valve for vehicle internal combustion (IC) engine, uses two energy control units, each producing control signal for current threshold value of charging current of piezoactuator
DE10351141A1 (en) Method for compensating injector scattering in injectors
DE102007058540A1 (en) Method for charging and discharging piezoelectric element, involves adjusting charging current for charging piezoelectric element and discharge current for discharging piezoelectric element
EP1718854A1 (en) Method and device for determining the charging flanks of a piezoelectric actuator
DE102016219749A1 (en) Method for determining a minimum pilot injection quantity for an internal combustion engine
DE102004037719A1 (en) Fuel injection system controlling method for internal combustion engine, involves modulating control voltage that determines operation of piezoelectric actuator and is adjusted to pressure waves at nozzle needles in form of waves
DE102008001510B4 (en) Control device and method for operating a fuel injection device
DE102004002311A1 (en) Controlling injector(s) with piezoelectric actuator for injecting fuel under pressure into engine combustion chamber involves deriving control period and/or control angle correction from injector-specific charging time, fuel pressure
EP1442206A2 (en) Internal combustion engine injection system and related operating method
DE102004028612B4 (en) Method for operating an internal combustion engine, and computer program, control and / or regulating device, and internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

17P Request for examination filed

Effective date: 20060516

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060704

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: F02D 41/38 20060101ALI20070202BHEP

Ipc: H01L 41/04 20060101AFI20070202BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

RIN1 Information on inventor provided before grant (corrected)

Inventor name: SCHULZ, UDO

Inventor name: RUEGER, JOHANNES-JOERG

REF Corresponds to:

Ref document number: 50210881

Country of ref document: DE

Date of ref document: 20071025

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071220

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080613

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080917

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080922

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081124

Year of fee payment: 7

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090924

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090924