EP1309783B1 - Method for controlling an internal combustion engine - Google Patents

Method for controlling an internal combustion engine Download PDF

Info

Publication number
EP1309783B1
EP1309783B1 EP01956351A EP01956351A EP1309783B1 EP 1309783 B1 EP1309783 B1 EP 1309783B1 EP 01956351 A EP01956351 A EP 01956351A EP 01956351 A EP01956351 A EP 01956351A EP 1309783 B1 EP1309783 B1 EP 1309783B1
Authority
EP
European Patent Office
Prior art keywords
combustion engine
internal combustion
signal
sensor
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01956351A
Other languages
German (de)
French (fr)
Other versions
EP1309783A1 (en
Inventor
Otwin Landschoff
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1309783A1 publication Critical patent/EP1309783A1/en
Application granted granted Critical
Publication of EP1309783B1 publication Critical patent/EP1309783B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D41/222Safety or indicating devices for abnormal conditions relating to the failure of sensors or parameter detection devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D41/1402Adaptive control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/04Engine intake system parameters
    • F02D2200/0406Intake manifold pressure
    • F02D2200/0408Estimation of intake manifold pressure

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine.
  • EP-A-0 905 358 Such a method is known from EP-A-0 905 358.
  • This method of controlling an internal combustion engine uses a sensor for detecting a pressure magnitude that characterizes the pressure of the air supplied to the internal combustion engine. By comparing the print size and a replacement value, the functionality of the sensor is monitored. In the case of a defect, the substitute signal is used for control. To determine the substitute signal, the device determines the substitute value based on operating parameters of the internal combustion engine. To form the substitute signal, the substitute value is processed mathematically.
  • This substitute signal provides sufficient accuracy only in static states.
  • a method and a device for controlling an internal combustion engine is known from DE-40 32 451 A1. There, a method and a device for controlling an internal combustion engine will be described.
  • a sensor for detecting a pressure variable which characterizes the pressure of the air supplied to the internal combustion engine. The functionality of the sensor is monitored and a replacement signal is used in the event of a defect. In the event of a defect, the output signal of a second sensor serves as a substitute value.
  • a substitute value can be provided in a simple and cost-effective manner. It is particularly advantageous if the static substitute value thus determined is filtered to form the substitute signal by means of a filter which has a delaying component. This filtering allows dynamic effects to be taken into account. Thus, the boost pressure reacts delayed to a change in the fuel quantity / and or the speed. Precise simulation is therefore only possible if the output variable of the simulation changes with a delay when the input variables change.
  • Particularly suitable for this purpose is in particular the speed of the internal combustion engine and / or time derivative of the pressure variable. At different speeds different time constants are selected for the filter. Accordingly, different time constants are selected for increasing and decreasing speeds. This allows the simulation to be more precisely adapted to the real behavior of the signal.
  • FIG. 1 shows a block diagram of the system for detecting the boost pressure
  • Figure 2 is a detailed representation of the monitoring of the boost pressure
  • Figure 3 is a block diagram showing the formation of a substitute value for the boost pressure.
  • the procedure according to the invention is described below using the example of a boost pressure sensor.
  • the invention is not limited to this application.
  • the procedure according to the invention can also be used with a sensor for detecting the air quantity or a variable correlated with the boost pressure or a variable characterizing the boost pressure.
  • the procedure can also be used with a sensor for detecting the amount of air.
  • a sensor for detecting the boost pressure and the associated analog / digital converter is designated 100.
  • This supplies a signal UP, which corresponds to the boost pressure, to a characteristic curve 110.
  • this variable is converted into a signal PR, which in turn is fed to a filter 120.
  • the output signal P of the filter 120 passes via a first switching means 130 to a controller 140, which then further processes this signal in order to correspondingly control the internal combustion engine or actuators arranged on the internal combustion engine.
  • An output signal PS of a simulation 135 is applied to the second input of the first switching means 130.
  • This simulation 135 calculates a simulated boost pressure PS based on various variables.
  • the switching means 130 can be controlled by a first monitoring 150. That is, when a fault is detected, the first monitor switches the first switching means 130 to such a position that the output signal PS of the simulation 135 reaches the controller 140.
  • the first monitoring 150 evaluates signals from various sensors 160, which characterize, for example, the amount of fuel QK to be injected and / or the speed N of the internal combustion engine.
  • the output signal PR of the characteristic diagram 110 for error monitoring is preferably evaluated.
  • the output signal P of the filter 120 or the output signal UP of the A / D converter of the sensor 100 can also be processed directly.
  • a second switching means 170 is arranged that is controlled by a second monitoring 180.
  • the second monitor 180 controls the switching means 170 such that the output PA of a delay 175 reaches the controller 140. This has the effect that, in the event of a detected defect, the value last recognized as error-free will continue to be used.
  • the output of the sensor provided by an A / D converter is converted by the characteristic 110 into a quantity PR corresponding to the pressure. After evaluating the various signals through the first Monitoring and / or the second monitoring, various errors are detected.
  • a substitute value PS or a previously stored value PA can be used as a substitute value for a detected error for controlling the internal combustion engine by the controller 140.
  • the delay 175 stores the value last recognized as faultless. This stored in the delay 175 old value PA then serves to control the internal combustion engine.
  • a signal range check may be provided at a minimum and / or a maximum value for the signal UP or the signal PR.
  • a plausibility check can be carried out with a further sensor, such as an atmospheric pressure sensor, in certain operating conditions.
  • a plausibility check with the injection quantity and / or another operating parameter which has a significant influence on the boost pressure is carried out.
  • This plausibility check is preferably carried out in such a way that an error is detected when a change in the operating parameter does not result in a corresponding change in the output variable of the sensor.
  • a variable which characterizes the injected fuel quantity is used as the operating parameter.
  • a desired value for the fuel quantity to be injected and / or a manipulated variable, which is used to control a fuel-determining actuator can be used.
  • the drive duration of an electromagnetic valve or a piezo actuator is suitable. This monitoring is shown in more detail in FIG.
  • the first switchover 130 switches over to the simulated substitute signal PS.
  • the functionality of the sensor is monitored and the replacement signal PS is used in the event of a defect.
  • variables which characterize the operating state of the internal combustion engine are used.
  • the value thus formed is additionally filtered with a filter having a delaying component. A detailed description of the formation of the substitute value can be found in FIG. 3.
  • the first monitor 150 is shown by way of example in more detail in FIG.
  • the case may occur that the boost pressure value UP remains constant, although the actual boost pressure changes.
  • Such an error is also called freezing the sensor.
  • the error monitoring shown in Figure 2 is performed.
  • the monitoring is carried out according to the invention only in certain operating conditions. If there is such an operating state in which the charge air temperature is below a threshold value TLS, and the speed and the amount of fuel to be injected are within certain ranges of values, then after a change of sign in the change of the amount of fuel to be injected, the currently present amount and the currently existing boost pressure as old Values QKA or PA are stored. At the same time, a time counter starts. After a waiting period, the Differences QKD formed between the old stored value QKA and the now current value QK of the injection quantity. Accordingly, the change PD of the pressure in this waiting time is also determined.
  • the amount of the difference between the fuel quantity values is greater than a threshold value QKDS, the amount of change in the boost pressure must also be greater than a threshold value PDS. If this is not the case, an error is detected.
  • FIG. 2 shows an example of an embodiment of such a monitoring device.
  • a first comparator 200 is supplied with the output TL of a temperature sensor 160c which provides a signal corresponding to the charge air temperature. Furthermore, the comparator 200 is supplied with a threshold value TLS from a threshold value 205. The comparator 200 supplies an AND gate 210 with a corresponding signal.
  • a second comparator 230 the output of a map 220 is fed to the input of the speed signal N of a speed sensor 160 a is applied. Further, the map 220 processes a quantity QK that characterizes the amount of fuel to be injected and that is preferably provided by a quantity controller 160b. Furthermore, the comparator 230 is supplied with a threshold value BPS from a threshold value specification 235. The comparator 230 also acts on the AND gate 210 with a corresponding signal.
  • the size QK also passes to a sign recognition 250 and a filter 260.
  • the output signal of the sign recognition 250 is a time counter 270 and a first memory 262 and a second memory 265 acted upon.
  • the output signal of the filter 260 reaches, firstly, a positive sign to a node 285 and secondly via the first memory 262 with a negative sign to the second input of the node 285.
  • the node 285 acts on a switching means 275 with a size QKD.
  • the output signal of the switching means 275 QKD reaches a third comparator 280, at whose second input the output signal QKDS of a threshold value 285 is applied.
  • the evaluation 240 is likewise applied to the output signal of the comparator 280.
  • the output signal P of the filter 120 passes directly to the positive sign of a node 287 and the other via the second memory 265 with a negative sign to the second input of the node 287.
  • the node 287 acts on a switching means 276 with a size PD.
  • the output signal of the switching means 276 PD reaches a fourth comparator 290, to the second input of which the output signal PDS of a threshold value 295 is applied.
  • the evaluation 240 is likewise applied to the output signal of the comparator 290.
  • the first comparator 200 compares the measured charge air temperature TL with the threshold value TLS. If the measured charge air temperature TL is smaller than the threshold value TLS, a corresponding signal is sent to the AND gate 210.
  • the characteristic map 220 forms a characteristic value, which characterizes the operating state of the internal combustion engine, based on at least the rotational speed and / or the fuel quantity to be injected. This characteristic value is compared in the comparator 230 with the threshold value BTS. If the characteristic value for the operating state is greater than the threshold value BPS, then a corresponding signal goes to the AND gate 210. If both conditions are met, that is, the temperature of the air is less than the threshold TLS and there are certain operating conditions, so monitoring is possible.
  • This logic unit consisting of the comparators 200 and 230, the threshold values 205 and 235, the map 220 and the AND gate, cause the monitoring of the sensor signal is dependent on the presence of certain operating conditions. Monitoring occurs only when the air temperature is less than a threshold and when certain values for the speed and / or amount of fuel injected are present.
  • the sign recognition 250 checks whether there is a change in the sign of the change in the fuel quantity. This means that it is checked whether the derivative over the time of the fuel quantity to be injected has a zero crossing. If this is the case, the current values of the fuel quantity to be injected are stored in the memory 262 as the old value QKA. Accordingly, in the second memory 265, the current value of the pressure is stored as the old value PA. In this case, it is particularly advantageous if the quantity of fuel to be injected is filtered by means of the filter 260 before being stored.
  • the time counter 270 is activated. Based on the current value QK and the old value QKA for the amount of fuel, a difference value QKD is formed in the node 285, which indicates the change in the amount of fuel since the last sign change. Correspondingly, a corresponding difference value PD for the pressure is formed in the connection point 287, which characterizes the change in the boost pressure since the last change of sign.
  • the difference signal QKD is compared by the comparator 280 with a threshold value QKDS. Accordingly, the differential pressure PD is compared with a corresponding threshold value PDS in the node 290. If the two values for the difference of the fuel quantity QKD and the differential pressure PD are each greater than the threshold value, then the device does not recognize errors. If only the difference of the fuel quantity QKD is greater than the threshold value and the value PD for the pressure is smaller than the threshold value PDS, then the device recognizes errors. In this case, monitoring 150, i. H. from the evaluation 240, a corresponding signal for controlling the switching 130 predetermined.
  • a load size a Torque size and / or a drive quantity of a quantity controller can be used.
  • the simulation 135 is shown in more detail. Already described in Figure 1 elements are designated with corresponding signs.
  • the signal N of the rotational speed sensor 160a and the signal QK with respect to the injected fuel quantity reach a characteristic map 300 whose output quantity passes via a filter 310 to the switching means 130.
  • the rotational speed N also reaches the filter 310 via a characteristic 320 and a connection point 330.
  • At the second input of the node 330 is the output of a sign determination 340.
  • a value for the boost pressure P is stored depending on the operating state of the internal combustion engine.
  • This stored value corresponds to the boost pressure in the static state.
  • the filter means 310 is provided.
  • This filter means 310 is preferably designed as a PT1 filter, and simulates the time course of the pressure at a change of the operating state. It is particularly advantageous if the transmission behavior of this filter means 310 can be varied depending on the operating state of the internal combustion engine.
  • the characteristic curve 320 is provided in which, depending on at least the rotational speed N, a variable is stored which determines the transmission behavior of the filter medium 310.
  • a smaller time constant is chosen for high speeds than for low speeds for the filter.
  • the transmission behavior is determined by the sign determination 340, which depends on the sign of the pressure change, a correction quantity for Correction of the output signal of the characteristic 320 specifies.
  • the sign determination determines whether the pressure rises or falls.
  • a larger time constant is selected with increasing pressure than with decreasing pressure for the filter.
  • the output signal of the characteristic field 300 as well as the output signal of the filter means 310 are used.
  • the transmission behavior of the filter 310 is predetermined depending on the rotational speed of the internal combustion engine and the direction of change of the pressure

Abstract

The invention relates to a method and to a device for controlling an internal combustion engine using a sensor for detecting a pressure value that is characteristic of the pressure of air taken in by the internal combustion engine. The operability of said sensor is monitored and in the case of a failure a substitute signal is used. For determining said substitute signal a statistic substitute value, based on values that describe the operational state of the internal combustion engine, is determined. Said statistical substitute value is filtered by means of a filter that comprises a retarding component in order to produce the substitute signal.

Description

Stand der TechnikState of the art

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine.The invention relates to a method and a device for controlling an internal combustion engine.

Ein solches Verfahren ist aus der EP-A-0 905 358 bekannt. Dieses Verfahren zur Steuerung einer Brennkraftmaschine verwendet einem Sensor zur Erfassung einer Druckgröße, die den Druck der Luft charakterisiert, die der Brennkraftmaschine zugeführt wird. Durch einen Vergleich der Druckgröße und eines Ersatzwerts wird die Funktionsfähigkeit des Sensors überwacht. Bei einem Defekt dient das Ersatzsignal zur Steuerung. Zur Ermittlung des Ersatzsignals bestimmt die Einrichtung den Ersatzwert ausgehend von Betriebskenngrößen der Brennkraftmaschine. Zur Bildung des Ersatzsignals wird der Ersatzwert mathematisch weiterverarbeitet.Such a method is known from EP-A-0 905 358. This method of controlling an internal combustion engine uses a sensor for detecting a pressure magnitude that characterizes the pressure of the air supplied to the internal combustion engine. By comparing the print size and a replacement value, the functionality of the sensor is monitored. In the case of a defect, the substitute signal is used for control. To determine the substitute signal, the device determines the substitute value based on operating parameters of the internal combustion engine. To form the substitute signal, the substitute value is processed mathematically.

Dieses Ersatzsignal liefert nur in statischen Zustanden eine ausreichende Genauigkeit.This substitute signal provides sufficient accuracy only in static states.

Ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine ist aus der DE-40 32 451 A1 bekannt. Dort wird ein Verfahren und eine Vorrichtung zur Steuerung einer Brennkraftmaschine beschrieben. Ein Sensor zur Erfassung einer Druckgröße, die den Druck der der Brennkraftmaschine zugeführten Luft charakterisiert. Die Funktionsfähigkeit des Sensors wird überwacht und bei einem Defekt ein Ersatzsignal verwendet. Bei einem Defekt dient das Ausgangssignal eines zweiten Sensors als Ersatzwert.A method and a device for controlling an internal combustion engine is known from DE-40 32 451 A1. There, a method and a device for controlling an internal combustion engine will be described. A sensor for detecting a pressure variable, which characterizes the pressure of the air supplied to the internal combustion engine. The functionality of the sensor is monitored and a replacement signal is used in the event of a defect. In the event of a defect, the output signal of a second sensor serves as a substitute value.

Nachteilig bei dieser Vorgehensweise ist, dass ein weiterer Sensor erforderlich.The disadvantage of this approach is that another sensor is required.

Vorteile der ErfindungAdvantages of the invention

Dadurch dass das Übertragungsverhalten des Filters von Betriebskenngrößen abhängig vorgebbar ist kann in einfacher und kostengünstiger Weise ein Ersatzwert bereitgestellt wird. Besonders vorteilhaft ist es, wenn der so ermittelte statische Ersatzwert zur Bildung des Ersatzsignals mittels eines Filters, das eine verzögernde Komponente aufweist, gefiltert wird. Durch diese Filterung können dynamische Effekte berücksichtigt werden. So reagiert der Ladedruck verzögert auf eine Änderung der Kraftstoffmenge/und oder der Drehzahl. Eine präzise Simulation ist daher nur möglich, wenn bei einer Änderung der Eingangsgrößen sich die Ausgangsgröße der Simulation verzögert ändert.Due to the fact that the transmission behavior of the filter can be specified as a function of operating parameters, a substitute value can be provided in a simple and cost-effective manner. It is particularly advantageous if the static substitute value thus determined is filtered to form the substitute signal by means of a filter which has a delaying component. This filtering allows dynamic effects to be taken into account. Thus, the boost pressure reacts delayed to a change in the fuel quantity / and or the speed. Precise simulation is therefore only possible if the output variable of the simulation changes with a delay when the input variables change.

Besonders geeignet hierzu ist insbesondere die Drehzahl der Brennkraftmaschine und/oder zeitlichen Ableitung der Druckgröße. Bei unterschiedlichen Drehzahlen werden unterschiedliche Zeitkonstanten für den Filter gewählt. Entsprechend werden bei steigenden und fallenden Drehzahlen unterschiedliche Zeitkonstanten gewählt. Dadurch lässt sich die Simulation präziser an das reale Verhalten des Signals anpassen.Particularly suitable for this purpose is in particular the speed of the internal combustion engine and / or time derivative of the pressure variable. At different speeds different time constants are selected for the filter. Accordingly, different time constants are selected for increasing and decreasing speeds. This allows the simulation to be more precisely adapted to the real behavior of the signal.

Besonders vorteilhaft ist es wenn ein Defekt des Sensors erkannt wird, wenn eine Änderung einer Größe, die die einzuspritzende Kraftstoffmenge charakterisiert, keine Änderung des Signals zur Folge hat. Durch diese Vorgehensweise ist eine sichere und einfache Fehlererkennung möglich.It is particularly advantageous if a defect of the sensor is detected when a change in a quantity which characterizes the quantity of fuel to be injected does not result in a change of the signal. By doing so, a safe and simple error detection is possible.

Vorteilhafte und zweckmäßige Ausgestaltungen und Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet.Advantageous and expedient refinements and developments of the invention are characterized in the subclaims.

Zeichnungdrawing

Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 ein Blockdiagramm des Systems zur Erfassung des Ladedrucks, Figur 2 eine detaillierte Darstellung der Überwachung des Ladedrucks und Figur 3 ein Blockdiagramm zur Darstellung der Bildung eines Ersatzwertes für den Ladedruck.The invention will be explained below with reference to the embodiments shown in the drawing. 1 shows a block diagram of the system for detecting the boost pressure, Figure 2 is a detailed representation of the monitoring of the boost pressure and Figure 3 is a block diagram showing the formation of a substitute value for the boost pressure.

Beschreibung der AusführungsbeispieleDescription of the embodiments

Im Folgenden wird die erfindungsgemäße Vorgehensweise am Beispiel eines Ladedrucksensors beschrieben. Die Erfindung ist aber nicht auf diese Anwendung beschränkt. Insbesondere kann die erfindungsgemäße Vorgehensweise auch bei einem Sensor zur Erfassung der Luftmenge oder einer mit dem Ladedruck korrelierten Größe oder einer den Ladedruck charakterisierenden Größe verwendet werden. Insbesondere kann die Vorgehensweise auch bei einem Sensor zur Erfassung der Luftmenge eingesetzt werden.The procedure according to the invention is described below using the example of a boost pressure sensor. The invention is not limited to this application. In particular, the procedure according to the invention can also be used with a sensor for detecting the air quantity or a variable correlated with the boost pressure or a variable characterizing the boost pressure. In particular, the procedure can also be used with a sensor for detecting the amount of air.

In Figur 1 ist ein Sensor zur Erfassung des Ladedrucks und der dazugehörige Analog/Digitalwandler mit 100 bezeichnet. Dieser liefert ein Signal UP, das dem Ladedruck entspricht, an eine Kennlinie 110. Dort wird diese Größe in ein Signal PR umgewandelt, dass wiederum einem Filter 120 zugeleitet wird. Das Ausgangssignal P des Filters 120 gelangt über ein erstes Schaltmittel 130 zu einer Steuerung 140, die dieses Signal dann weiterverarbeitet, um die Brennkraftmaschine oder an der Brennkraftmaschine angeordnete Steller entsprechend anzusteuern.In Figure 1, a sensor for detecting the boost pressure and the associated analog / digital converter is designated 100. This supplies a signal UP, which corresponds to the boost pressure, to a characteristic curve 110. There, this variable is converted into a signal PR, which in turn is fed to a filter 120. The output signal P of the filter 120 passes via a first switching means 130 to a controller 140, which then further processes this signal in order to correspondingly control the internal combustion engine or actuators arranged on the internal combustion engine.

Am zweiten Eingang des ersten Schaltmittels 130 liegt ein Ausgangssignal PS einer Simulation 135 an.. Diese Simulation 135 berechnet ausgehend von verschiedenen Größen einen simulierten Ladedruck PS.An output signal PS of a simulation 135 is applied to the second input of the first switching means 130. This simulation 135 calculates a simulated boost pressure PS based on various variables.

Das Schaltmittel 130 ist von einer ersten Überwachung 150 ansteuerbar. Dies bedeutet, bei einem erkannten Fehler schaltet die erste Überwachung das erste Schaltmittel 130 in eine solche Position, dass das Ausgangssignal PS der Simulation 135 zur Steuerung 140 gelangt. Die erste Überwachung 150 wertet Signale verschiedener Sensoren 160 aus, die beispielsweise die einzuspritzende Kraftstoffmenge QK und/oder die Drehzahl N der Brennkraftmaschine charakterisieren. Desweiteren wird vorzugsweise das Ausgangssignal PR des Kennfeldes 110 zur Fehlerüberwachung ausgewertet. Alternativ oder ergänzend kann auch das Ausgangssignal P des Filters 120 bzw. das Ausgangssignal UP des A/D-Wandlers des Sensors 100 unmittelbar verarbeitet werden.The switching means 130 can be controlled by a first monitoring 150. That is, when a fault is detected, the first monitor switches the first switching means 130 to such a position that the output signal PS of the simulation 135 reaches the controller 140. The first monitoring 150 evaluates signals from various sensors 160, which characterize, for example, the amount of fuel QK to be injected and / or the speed N of the internal combustion engine. Furthermore, the output signal PR of the characteristic diagram 110 for error monitoring is preferably evaluated. Alternatively or additionally, the output signal P of the filter 120 or the output signal UP of the A / D converter of the sensor 100 can also be processed directly.

Eine weitere Ausgestaltung ist gestrichelt dargestellt. Bei dieser ist zwischen dem ersten Schaltmittel 130 und der Steuerung 140 ein zweites Schaltmittel 170 angeordnet, dass von einer zweiten Überwachung 180 angesteuert wird. Im Fehlerfall steuert die zweite Überwachung 180 das Schaltmittel 170 so an, dass das Ausgangssignal PA einer Verzögerung 175 zur Steuerung 140 gelangt. Dies bewirkt, dass bei einem erkannte Defekt der zuletzt als fehlerfrei erkannte Wert weiter verwendet wird.Another embodiment is shown in dashed lines. In this, between the first switching means 130 and the controller 140, a second switching means 170 is arranged that is controlled by a second monitoring 180. In the event of an error, the second monitor 180 controls the switching means 170 such that the output PA of a delay 175 reaches the controller 140. This has the effect that, in the event of a detected defect, the value last recognized as error-free will continue to be used.

Das Ausgangssignal des Sensors, das von einem A/D-Wandler bereitgestellt wird, wird von der Kennlinie 110 in eine Größe PR umgewandelt, die dem Druck entspricht. Nach Auswerten der verschiedenen Signale durch die erste Überwachung und/oder die zweite Überwachung werden verschiedene Fehler erkannt.The output of the sensor provided by an A / D converter is converted by the characteristic 110 into a quantity PR corresponding to the pressure. After evaluating the various signals through the first Monitoring and / or the second monitoring, various errors are detected.

Durch eine entsprechende Ansteuerung des ersten Schaltmittels 130 und/oder des zweiten Schaltmittels 170 kann ein Ersatzwert PS oder ein früher abgespeicherter Wert PA als Ersatzwert bei einem erkannten Fehler zur Steuerung der Brennkraftmaschine durch die Steuerung 140 verwendet werden. Hierzu speichert die Verzögerung 175 den zuletzt als fehlerfrei erkannten Wert ab. Dieser in der Verzögerung 175 abgespeicherte alte Wert PA dient dann zur Steuerung der Brennkraftmaschine.By a corresponding activation of the first switching means 130 and / or of the second switching means 170, a substitute value PS or a previously stored value PA can be used as a substitute value for a detected error for controlling the internal combustion engine by the controller 140. For this purpose, the delay 175 stores the value last recognized as faultless. This stored in the delay 175 old value PA then serves to control the internal combustion engine.

Durch die erste Überwachung und/oder die zweite Überwachung können verschiedene Fehler erkannt werden. So kann beispielsweise ein Signal-Range-Check auf einem minimalen und/oder einem maximalen Wert für das Signal UP bzw. das Signal PR vorgesehen sein. Desweiteren kann eine Plausibilitätsüberprüfung mit einem weiteren Sensor wie einem Atmosphärendrucksensor in bestimmten Betriebsbedingungen durchgeführt werden.Through the first monitoring and / or the second monitoring different errors can be detected. For example, a signal range check may be provided at a minimum and / or a maximum value for the signal UP or the signal PR. Furthermore, a plausibility check can be carried out with a further sensor, such as an atmospheric pressure sensor, in certain operating conditions.

Desweiteren kann erfindungsgemäß vorgesehen sein, dass eine Plausibilitätsprüfung mit der Einspritzmenge und/oder einer anderen Betriebskenngröße, die einen wesentlichen Einfluss auf den Ladedruck besitzt, durchgeführt wird. Diese Plausibilitätsprüfung erfolgt vorzugsweise derart, dass ein Fehler erkannt wird, wenn eine Änderung der Betriebskenngröße keine entsprechende Änderung der Ausgangsgröße des Sensors zur Folge hat.Furthermore, it can be provided according to the invention that a plausibility check with the injection quantity and / or another operating parameter which has a significant influence on the boost pressure is carried out. This plausibility check is preferably carried out in such a way that an error is detected when a change in the operating parameter does not result in a corresponding change in the output variable of the sensor.

Vorzugsweise wird als Betriebskenngröße eine Größe verwendet, die die eingespritzte Kraftstoffmenge charakterisiert. Hierzu kann zum einen ein Sollwert für die einzuspritzende Kraftstoffmenge und/oder eine Stellgröße, die zur Ansteuerung eines kraftstoffbestimmenden Stellgliedes verwendet wird, eingesetzt werden. Beispielsweise eignet sich die Ansteuerdauer eines elektromagnetischen Ventils oder eines Piezoaktuators. Diese Überwachung ist detaillierter in der Figur 2 dargestellt.Preferably, a variable which characterizes the injected fuel quantity is used as the operating parameter. For this purpose, on the one hand, a desired value for the fuel quantity to be injected and / or a manipulated variable, which is used to control a fuel-determining actuator can be used. For example, the drive duration of an electromagnetic valve or a piezo actuator is suitable. This monitoring is shown in more detail in FIG.

Wird ein entsprechender Fehler erkannt, so schaltet die erste Umschaltung 130 auf das simulierte Ersatzsignal PS um. Dies bedeutet, dass die Funktionsfähigkeit des Sensors überwacht und bei einem Defekt das Ersatzsignal PS verwendet wird. Zur Ermittlung des Ersatzsignals werden Größen, die den Betriebszustand der Brennkraftmaschine charakterisieren, verwendet. Der so gebildete Wert wird zusätzlich mit einem Filter, der eine verzögernde Komponente aufweist, gefiltert. Eine detaillierte Darstellung der Bildung des Ersatzwertes findet sich in Figur 3.If a corresponding error is detected, the first switchover 130 switches over to the simulated substitute signal PS. This means that the functionality of the sensor is monitored and the replacement signal PS is used in the event of a defect. For determining the substitute signal, variables which characterize the operating state of the internal combustion engine are used. The value thus formed is additionally filtered with a filter having a delaying component. A detailed description of the formation of the substitute value can be found in FIG. 3.

Die erste Überwachung 150 ist beispielhaft detaillierter in Figur 2 dargestellt. In bestimmten Betriebszuständen kann der Fall eintreten, dass der Ladedruckwert UP konstant bleibt, obwohl der tatsächliche Ladedruck sich ändert. Ein solcher Fehler wird auch als Einfrieren des Sensors bezeichnet. Zur Erkennung dieses Fehlers, wird die in Figur 2 dargestellte Fehlerüberwachung durchgeführt.The first monitor 150 is shown by way of example in more detail in FIG. In certain operating conditions, the case may occur that the boost pressure value UP remains constant, although the actual boost pressure changes. Such an error is also called freezing the sensor. To detect this error, the error monitoring shown in Figure 2 is performed.

Die Überwachung erfolgt erfindungsgemäß nur in bestimmten Betriebszuständen. Liegt ein solcher Betriebszustand vor, bei dem die Ladelufttemperatur unterhalb eines Schwellwertes TLS liegt, und die Drehzahl und die einzuspritzende Kraftstoffmenge liegen innerhalb bestimmter Wertebereiche, so werden nach einem Vorzeichenwechsel bei der Änderung der einzuspritzenden Kraftstoffmenge die aktuell vorliegende Menge und der aktuell vorliegende Ladedruck als alte Werte QKA bzw. PA abgespeichert. Gleichzeitig startet ein Zeitzähler. Nach Ablauf einer Wartezeit werden die Differenzen QKD zwischen dem alten abgespeicherten Wert QKA und dem nun aktuellen Wert QK der Einspritzmenge gebildet. Entsprechend wird auch die Änderung PD des Drucks in dieser Wartezeit bestimmt.The monitoring is carried out according to the invention only in certain operating conditions. If there is such an operating state in which the charge air temperature is below a threshold value TLS, and the speed and the amount of fuel to be injected are within certain ranges of values, then after a change of sign in the change of the amount of fuel to be injected, the currently present amount and the currently existing boost pressure as old Values QKA or PA are stored. At the same time, a time counter starts. After a waiting period, the Differences QKD formed between the old stored value QKA and the now current value QK of the injection quantity. Accordingly, the change PD of the pressure in this waiting time is also determined.

Ist der Betrag der Differenz zwischen den Kraftstoffmengenwerten größer als ein Schwellwert QKDS, so muss auch der Betrag der Änderung des Ladedrucks größer als ein Schwellwert PDS sein. Ist dies nicht der Fall, so wird ein Fehler erkannt.If the amount of the difference between the fuel quantity values is greater than a threshold value QKDS, the amount of change in the boost pressure must also be greater than a threshold value PDS. If this is not the case, an error is detected.

In Figur 2 ist eine Ausführungsform einer solchen Überwachungseinrichtung beispielhaft dargestellt. Einem ersten Vergleicher 200 wird das Ausgangssignal TL eines Temperatursensors 160c, der ein Signal bereitstellt, dass der Ladelufttemperatur entspricht, zugeführt. Desweiteren wird dem Vergleicher 200 von einer Schwellwertvorgabe 205 ein Schwellwert TLS zugeleitet. Der Vergleicher 200 beaufschlagt ein UND-Glied 210 mit einem entsprechenden Signal. Einem zweiten Vergleicher 230 wird das Ausgangssignal eines Kennfeldes 220 zugeleitet, an dessen Eingang das Drehzahlsignal N eines Drehzahlsensors 160a anliegt. Ferner verarbeitet das Kennfeld 220 eine Größe QK, die die einzuspritzende Kraftstoffmenge charakterisiert und die Vorzugsweise von einer Mengensteuerung 160b bereitgestellt wird. Desweiteren wird dem Vergleicher 230 von einer Schwellwertvorgabe 235 ein Schwellwert BPS zugeleitet. Der Vergleicher 230 beaufschlagt ebenfalls das UND-Glied 210 mit einem entsprechenden Signal.FIG. 2 shows an example of an embodiment of such a monitoring device. A first comparator 200 is supplied with the output TL of a temperature sensor 160c which provides a signal corresponding to the charge air temperature. Furthermore, the comparator 200 is supplied with a threshold value TLS from a threshold value 205. The comparator 200 supplies an AND gate 210 with a corresponding signal. A second comparator 230, the output of a map 220 is fed to the input of the speed signal N of a speed sensor 160 a is applied. Further, the map 220 processes a quantity QK that characterizes the amount of fuel to be injected and that is preferably provided by a quantity controller 160b. Furthermore, the comparator 230 is supplied with a threshold value BPS from a threshold value specification 235. The comparator 230 also acts on the AND gate 210 with a corresponding signal.

Die Größe QK gelangt ferner zu einer Vorzeichenerkennung 250 und einem Filter 260. Mit dem Ausgangssignal der Vorzeichenerkennung 250 wird eine Zeitzähler 270 sowie ein erster Speicher 262 und ein zweiter Speicher 265 beaufschlagt.The size QK also passes to a sign recognition 250 and a filter 260. The output signal of the sign recognition 250 is a time counter 270 and a first memory 262 and a second memory 265 acted upon.

Das Ausgangssignal des Filters 260 gelangt zum einen direkt mit positivem Vorzeichen zu einem Verknüpfungspunkt 285 und zum anderen über den ersten Speicher 262 mit negativem Vorzeichen an den zweiten Eingang des Verknüpfungspunktes 285. Der Verknüpfungspunkt 285 beaufschlagt ein Schaltmittel 275 mit einer Größe QKD. Das Ausgangssignal des Schaltmittels 275 QKD gelangt zu einem dritten Vergleicher 280, an dessen zweiten Eingang das Ausgangssignal QKDS einer Schwellwertvorgabe 285 anliegt. Mit dem Ausgangssignal des Vergleichers 280 wird ebenfalls die Auswertung 240 beaufschlagt.The output signal of the filter 260 reaches, firstly, a positive sign to a node 285 and secondly via the first memory 262 with a negative sign to the second input of the node 285. The node 285 acts on a switching means 275 with a size QKD. The output signal of the switching means 275 QKD reaches a third comparator 280, at whose second input the output signal QKDS of a threshold value 285 is applied. The evaluation 240 is likewise applied to the output signal of the comparator 280.

Das Ausgangssignal P des Filters 120 gelangt zum einen direkt mit positivem Vorzeichen zu einem Verknüpfungspunkt 287 und zum anderen über den zweiten Speicher 265 mit negativem Vorzeichen an den zweiten Eingang des Verknüpfungspunktes 287. Der Verknüpfungspunkt 287 beaufschlagt ein Schaltmittel 276 mit einer Größe PD. Das Ausgangssignal des Schaltmittels 276 PD gelangt zu einem vierten Vergleicher 290, an dessen zweiten Eingang das Ausgangssignal PDS einer Schwellwertvorgabe 295 anliegt. Mit dem Ausgangssignal des Vergleichers 290 wird ebenfalls die Auswertung 240 beaufschlagt.The output signal P of the filter 120 passes directly to the positive sign of a node 287 and the other via the second memory 265 with a negative sign to the second input of the node 287. The node 287 acts on a switching means 276 with a size PD. The output signal of the switching means 276 PD reaches a fourth comparator 290, to the second input of which the output signal PDS of a threshold value 295 is applied. The evaluation 240 is likewise applied to the output signal of the comparator 290.

Der erste Vergleicher 200 vergleicht die gemessene Ladelufttemperatur TL mit dem Schwellwert TLS. Ist die gemessene Ladelufttemperatur TL kleiner als der Schwellwert TLS, gelangt ein entsprechendes Signal an das UND-Glied 210. Das Kennfeld 220 bildet ausgehend von wenigstens der Drehzahl und/oder der einzuspritzenden Kraftstoffmenge einen Kennwert, der den Betriebszustand der Brennkraftmaschine charakterisiert. Dieser Kennwert wird in dem Vergleicher 230 mit dem Schwellenwert BTS verglichen. Ist der Kennwert für den Betriebszustand größer als der Schwellenwert BPS, so geht ein entsprechendes Signal an das UND-Glied 210. Sind beide Bedingungen erfüllt, d. h. ist die Temperatur der Luft kleiner als der Schwellwert TLS und liegen bestimmte Betriebszustände vor, so ist eine Überwachung möglich.The first comparator 200 compares the measured charge air temperature TL with the threshold value TLS. If the measured charge air temperature TL is smaller than the threshold value TLS, a corresponding signal is sent to the AND gate 210. The characteristic map 220 forms a characteristic value, which characterizes the operating state of the internal combustion engine, based on at least the rotational speed and / or the fuel quantity to be injected. This characteristic value is compared in the comparator 230 with the threshold value BTS. If the characteristic value for the operating state is greater than the threshold value BPS, then a corresponding signal goes to the AND gate 210. If both conditions are met, that is, the temperature of the air is less than the threshold TLS and there are certain operating conditions, so monitoring is possible.

Diese Logikeinheit bestehend aus den Vergleichern 200 und 230, den Schwellwertvorgaben 205 und 235, dem Kennfeld 220 und dem UND-Glied, bewirken, dass die Überwachung des Sensorsignals abhängig vom Vorliegen bestimmter Betriebszustände erfolgt. Die Überwachung erfolgt nur, wenn die Lufttemperatur kleiner als ein Schwellenwert ist und wenn bestimmte Werte für die Drehzahl und/oder die eingespritzte Kraftstoffmenge vorliegen.This logic unit consisting of the comparators 200 and 230, the threshold values 205 and 235, the map 220 and the AND gate, cause the monitoring of the sensor signal is dependent on the presence of certain operating conditions. Monitoring occurs only when the air temperature is less than a threshold and when certain values for the speed and / or amount of fuel injected are present.

Von der Vorzeichenerkennung 250 wird überprüft, ob eine Änderung des Vorzeichens der Änderung der Kraftstoffmenge vorliegt. Dies bedeutet, es wird überprüft, ob die Ableitung über der Zeit der einzuspritzenden Kraftstoffmenge einen Nulldurchgang besitzt. Ist dies der Fall, so werden in dem Speicher 262 die aktuellen Werte der einzuspritzenden Kraftstoffmenge als alter Wert QKA abgelegt. Entsprechend wird in dem zweiten Speicher 265 der aktuelle Wert des Druckes als alter Wert PA abgelegt. Besonders vorteilhaft ist hierbei, wenn die einzuspritzende Kraftstoffmenge vor dem Abspeichern mittels des Filters 260 gefiltert wird.The sign recognition 250 checks whether there is a change in the sign of the change in the fuel quantity. This means that it is checked whether the derivative over the time of the fuel quantity to be injected has a zero crossing. If this is the case, the current values of the fuel quantity to be injected are stored in the memory 262 as the old value QKA. Accordingly, in the second memory 265, the current value of the pressure is stored as the old value PA. In this case, it is particularly advantageous if the quantity of fuel to be injected is filtered by means of the filter 260 before being stored.

Gleichzeitig mit dem erkannten Vorzeichenwechsel wird der Zeitzähler 270 aktiviert. Ausgehend von dem aktuellen Wert QK und dem alten Wert QKA für die Kraftstoffmenge wird ein Differenzwert QKD im Verknüpfungspunkt 285 gebildet, der die Änderung der Kraftstoffmenge seit dem letzten Vorzeichenwechsel angibt. Entsprechend wird im Verknüpfungspunkt 287 ein entsprechender Differenzwert PD für den Druck gebildet, der der Änderung des Ladedrucks seit dem letzten Vorzeichenwechsel charakterisiert.Simultaneously with the detected sign change, the time counter 270 is activated. Based on the current value QK and the old value QKA for the amount of fuel, a difference value QKD is formed in the node 285, which indicates the change in the amount of fuel since the last sign change. Correspondingly, a corresponding difference value PD for the pressure is formed in the connection point 287, which characterizes the change in the boost pressure since the last change of sign.

Ist der Zeitzähler abgelaufen, d. h. eine bestimmte Wartezeit seit dem letzten Vorzeichenwechsel ist erfüllt, so wird das Differenzsignal QKD von dem Vergleicher 280 mit einem Schwellenwert QKDS verglichen. Entsprechend wird der Differenzdruck PD mit einem entsprechenden Schwellwert PDS in dem Verknüpfungspunkt 290 verglichen. Sind die beiden Werte für die Differenz der Kraftstoffmenge QKD und den Differenzdruck PD jeweils größer als der Schwellwert, so erkennt die Einrichtung nicht auf Fehler. Ist lediglich die Differenz der Kraftstoffmenge QKD größer als der Schwellwert und der Wert PD für den Druck ist kleiner als der Schwellwert PDS, so erkennt die Einrichtung auf Fehler. In diesem Fall wird von der Überwachung 150, d. h. von der Auswertung 240 ein entsprechendes Signal zur Ansteuerung der Umschaltung 130 vorgegeben.If the time counter has expired, d. H. a certain waiting time since the last sign change is fulfilled, the difference signal QKD is compared by the comparator 280 with a threshold value QKDS. Accordingly, the differential pressure PD is compared with a corresponding threshold value PDS in the node 290. If the two values for the difference of the fuel quantity QKD and the differential pressure PD are each greater than the threshold value, then the device does not recognize errors. If only the difference of the fuel quantity QKD is greater than the threshold value and the value PD for the pressure is smaller than the threshold value PDS, then the device recognizes errors. In this case, monitoring 150, i. H. from the evaluation 240, a corresponding signal for controlling the switching 130 predetermined.

Bei der hier dargestellten Vorgehensweise handelt es sich um eine Ausführungsform. Es sind auch andere Ausführungsformen möglich, so kann die Überprüfung auch mittels anderer Programmschritte erfolgen. Wesentlich ist, dass ein Fehler erkannt wird, wenn eine Änderung einer Betriebskenngröße, wie beispielsweise der einzuspritzenden Kraftstoffmenge, keine entsprechende Änderung des Ladedrucks zur Folge hat. Ist nach einem Vorzeichenwechsel der Änderung der Kraftstoffmenge eine Änderung der Kraftstoffmenge mit einer Änderung der Druckgrösse korreliert, so liegt kein Fehler vor.The procedure presented here is an embodiment. Other embodiments are possible, so the review can also be done by means of other program steps. It is essential that an error is detected when a change in an operating parameter, such as the amount of fuel to be injected, does not result in a corresponding change in the boost pressure. If a change in the fuel quantity correlates with a change in the pressure variable after a change of sign of the change in the fuel quantity, then there is no error.

Anstelle der Kraftstoffmenge können auch andere Größen verwendet werden, die die einzuspritzende Kraftstoffmenge charakterisieren, das heisst von der Kraftstoffmenge abhängen oder abhängig von der die Kraftstoffmenge bestimmt wird. So kann beispielsweise eine Lastgröße, eine Momentengröße und/oder ein Ansteuergröße eines Mengenstellers verwendet werden.Instead of the amount of fuel, other variables can be used that characterize the amount of fuel to be injected, that is, depending on the amount of fuel or depending on the amount of fuel is determined. For example, a load size, a Torque size and / or a drive quantity of a quantity controller can be used.

In Figur 3 ist die Simulation 135 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Vorzeichen bezeichnet. Das Signal N des Drehzahlsensors 160a und das Signal QK bezüglich der eingespritzten Kraftstoffmenge gelangen zu einem Kennfeld 300, dessen Ausgangsgröße gelangt über einen Filter 310 zu dem Schaltmittel 130. Die Drehzahl N gelangt über eine Kennlinie 320 und einen Verknüpfungspunkt 330 ebenfalls zu dem Filter 310. Am zweiten Eingang des Verknüpfungspunktes 330 liegt das Ausgangssignal einer Vorzeichenermittlung 340 an.In Figure 3, the simulation 135 is shown in more detail. Already described in Figure 1 elements are designated with corresponding signs. The signal N of the rotational speed sensor 160a and the signal QK with respect to the injected fuel quantity reach a characteristic map 300 whose output quantity passes via a filter 310 to the switching means 130. The rotational speed N also reaches the filter 310 via a characteristic 320 and a connection point 330. At the second input of the node 330 is the output of a sign determination 340.

In dem Kennfeld 300 ist abhängig vom Betriebszustand der Brennkraftmaschine ein Wert für den Ladedruck P abgelegt. Dieser abgespeicherte Wert entspricht dem Ladedruck im statischen Zustand. Um dynamische Zustände berücksichtigen zu können, ist das Filtermittel 310 vorgesehen. Dieses Filtermittel 310 ist vorzugsweise als PT1-Filter ausgebildet, und bildet den zeitlichen Verlauf des Drucks bei einer Änderung des Betriebszustandes nach. Besonders vorteilhaft ist es, wenn das Übertragungsverhalten dieses Filtermittels 310 abhängig vom Betriebszustand der Brennkraftmaschine variierbar ist. Hierzu ist insbesondere die Kennlinie 320 vorgesehen, in der abhängig von wenigstens der Drehzahl N eine Größe abgelegt ist, die das Übertragungsverhalten des Filtermittels 310 bestimmt.In the map 300, a value for the boost pressure P is stored depending on the operating state of the internal combustion engine. This stored value corresponds to the boost pressure in the static state. In order to be able to take account of dynamic states, the filter means 310 is provided. This filter means 310 is preferably designed as a PT1 filter, and simulates the time course of the pressure at a change of the operating state. It is particularly advantageous if the transmission behavior of this filter means 310 can be varied depending on the operating state of the internal combustion engine. For this purpose, in particular, the characteristic curve 320 is provided in which, depending on at least the rotational speed N, a variable is stored which determines the transmission behavior of the filter medium 310.

Vorzugsweise wird bei großen Drehzahlen eine kleinere Zeitkonstante als bei kleinen Drehzahlen für das Filter gewählt. Das Übertragungsverhalten wird von der Vorzeichenermittlung 340 bestimmt, die abhängig vom Vorzeichen der Druckänderung eine Korrekturgröße zur Korrektur des Ausgangssignals der Kennlinie 320 vorgibt. Die Vorzeichenermittlung ermittelt, ob der Druck ansteigt bzw. abfällt.Preferably, a smaller time constant is chosen for high speeds than for low speeds for the filter. The transmission behavior is determined by the sign determination 340, which depends on the sign of the pressure change, a correction quantity for Correction of the output signal of the characteristic 320 specifies. The sign determination determines whether the pressure rises or falls.

Vorzugsweise wird bei steigenden Druck eine größere Zeitkonstante als bei fallendem Druck für das Filter gewählt.Preferably, a larger time constant is selected with increasing pressure than with decreasing pressure for the filter.

Als Eingangsgrößen für die Vorzeichenermittlung werden vorzugsweise das Ausgangssignal des Kennfeldes 300 sowie das Ausgangssignal des Filtermittels 310 verwendet. Es erfolgt eine additive und/oder eine multiplikative Korrektur des drehzahlabhängigen Ausgangssignals des Kennfeldes 320 mit einem vorgebbaren Wert.As input variables for the sign determination, preferably the output signal of the characteristic field 300 as well as the output signal of the filter means 310 are used. There is an additive and / or a multiplicative correction of the speed-dependent output signal of the map 320 with a predetermined value.

Erfindungesgemäß wird das Übertragungsverhalten des Filters 310 abhängig von der Drehzahl der Brennkraftmaschine und der Änderungsrichtung des Druckes vorgegebenAccording to the invention, the transmission behavior of the filter 310 is predetermined depending on the rotational speed of the internal combustion engine and the direction of change of the pressure

Claims (7)

  1. Method for controlling an internal combustion engine having a sensor for sensing a pressure variable which characterizes the pressure of the air which is supplied to the internal combustion engine, wherein the operational capability of the sensor is monitored and an equivalent signal is used in the case of a defect, wherein, in order to determine the equivalent signal, a static equivalent value is determined on the basis of variables which characterize the operating state of the internal combustion engine, wherein in order to form the equivalent signal the static equivalent value is filtered by means of a filter which has a delaying component, characterized in that the transmission behaviour of the filter can be predefined as a function of operational characteristic variables.
  2. Method according to Claim 1, characterized in that the transmission behaviour can be predefined as a function of the rotational speed.
  3. Method according to Claim 2, characterized in that the transmission behaviour can be predefined by the derivative of the pressure variable over time.
  4. Method according to one of the preceding claims, characterized in that a variable which characterizes the rotational speed and/or a variable which characterizes the fuel quantity to be injected are used as variables which characterize the operating state of the internal combustion engine.
  5. Method according to one of the preceding claims, characterized in that the equivalent signal is used if the output signal of the sensor has been detected as faulty.
  6. Method according to one of the preceding claims, characterized in that a faulty signal is detected if a change in a variable which characterizes the fuel quantity to be injected does not result in a change in the signal.
  7. Method for controlling an internal combustion engine having a sensor for sensing a pressure variable which characterizes the pressure of the air supplied to the internal combustion engine, having means which monitor the operational capability of the sensor and which use an equivalent signal in the case of a defect, having means which in order to determine the equivalent signal determine a static equivalent value on the basis of variables which characterize the operating state of the internal combustion engine and which filter the static equivalent value in order to form the equivalent signal by means of a filter which has a delaying component, characterized in that means are provided which predefine the transmission behaviour of the filter as a function of operating characteristic variables.
EP01956351A 2000-08-05 2001-07-20 Method for controlling an internal combustion engine Expired - Lifetime EP1309783B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10038335A DE10038335A1 (en) 2000-08-05 2000-08-05 Method for controlling an internal combustion engine
DE10038335 2000-08-05
PCT/DE2001/002748 WO2002012699A1 (en) 2000-08-05 2001-07-20 Method for controlling an internal combustion engine

Publications (2)

Publication Number Publication Date
EP1309783A1 EP1309783A1 (en) 2003-05-14
EP1309783B1 true EP1309783B1 (en) 2006-05-17

Family

ID=7651487

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01956351A Expired - Lifetime EP1309783B1 (en) 2000-08-05 2001-07-20 Method for controlling an internal combustion engine

Country Status (7)

Country Link
US (1) US6688164B2 (en)
EP (1) EP1309783B1 (en)
JP (1) JP2004506121A (en)
KR (1) KR100786027B1 (en)
CN (1) CN1265082C (en)
DE (2) DE10038335A1 (en)
WO (1) WO2002012699A1 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10159069A1 (en) * 2001-12-01 2003-06-12 Daimler Chrysler Ag Method for operating an electronic control unit of a motor vehicle
DE10230834A1 (en) * 2002-07-09 2004-01-22 Robert Bosch Gmbh Method for operating an internal combustion engine
US7181334B2 (en) * 2003-05-14 2007-02-20 General Motors Corporation Method and apparatus to diagnose intake airflow
FR2927174B1 (en) * 2008-02-05 2010-02-12 Renault Sas METHOD FOR DETECTING ELECTRIC MICROCOUPURES AND MANAGING THE OPERATION OF AN ENGINE
US8215288B2 (en) * 2009-04-29 2012-07-10 GM Global Technology Operations LLC Control system and method for controlling an engine in response to detecting an out of range pressure signal
CA2775795A1 (en) * 2009-10-02 2011-04-07 Magna Closures Inc. Vehicular anti-pinch system with rain compensation
DE102009047400B4 (en) 2009-12-02 2022-04-28 Robert Bosch Gmbh Method for operating an internal combustion engine
US9234979B2 (en) 2009-12-08 2016-01-12 Magna Closures Inc. Wide activation angle pinch sensor section
US8942883B2 (en) * 2009-12-17 2015-01-27 GM Global Technology Operations LLC Sensor messaging systems and methods
JP5891708B2 (en) 2011-10-28 2016-03-23 セイコーエプソン株式会社 Printing device
KR101716310B1 (en) * 2015-10-30 2017-03-17 (주)모토닉 Apparatus and method for improving ignition quality of lpdi type altered vehicle
IT201800004431A1 (en) * 2018-04-12 2019-10-12 DEVICE AND METHOD OF CONTROL OF AN INTERNAL COMBUSTION ENGINE WITH COMMANDED IGNITION

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0090535B1 (en) * 1982-03-25 1986-07-02 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Electroluminescent panels and method of manufacture
DE4032451B4 (en) 1990-10-12 2005-08-11 Robert Bosch Gmbh Method for charge pressure control
DE4207541B4 (en) * 1992-03-10 2006-04-20 Robert Bosch Gmbh System for controlling an internal combustion engine
US5505179A (en) 1994-10-03 1996-04-09 Ford Motor Company Method and apparatus for inferring manifold absolute pressure in turbo-diesel engines
JPH09158775A (en) * 1995-12-06 1997-06-17 Toyota Motor Corp Abnormality detecting device of intake air pressure sensor of internal combustion engine
GB9720430D0 (en) * 1997-09-26 1997-11-26 Lucas Ind Plc Control method
DE19927674B4 (en) 1999-06-17 2010-09-02 Robert Bosch Gmbh Method and device for controlling an internal combustion engine

Also Published As

Publication number Publication date
DE10038335A1 (en) 2002-02-14
KR20020035893A (en) 2002-05-15
US20030019480A1 (en) 2003-01-30
CN1265082C (en) 2006-07-19
CN1386166A (en) 2002-12-18
US6688164B2 (en) 2004-02-10
EP1309783A1 (en) 2003-05-14
KR100786027B1 (en) 2007-12-17
DE50109824D1 (en) 2006-06-22
WO2002012699A1 (en) 2002-02-14
JP2004506121A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
DE102013021295B3 (en) Method and control device for monitoring a crankcase pressure
DE4004086C2 (en)
DE3313036C2 (en) Device for preventing knocking in internal combustion engines
DE19756896C2 (en) Throttle control device
EP1303691B1 (en) Method and device for error detection and diagnosis in a knock sensor
EP1309783B1 (en) Method for controlling an internal combustion engine
EP0468007B1 (en) System for controlling and/or regulating an internal combustion engine
DE102006006079B4 (en) Fault diagnosis method and apparatus for manifold pressure sensors
EP1309782B1 (en) Method and device for monitoring a sensor
DE102005012942A1 (en) Method and device for operating an internal combustion engine
DE60122803T2 (en) Knock detection in an internal combustion engine with ion current maximum value correction
WO2011018317A1 (en) Method and device for dynamically diagnosing an exhaust gas probe
WO2004033882A1 (en) Method, control appliance and computer program for detecting defective pressure sensors in an internal combustion engine
EP0764239B1 (en) Method and device for monitoring data measurement in an electronic vehicle-engine power-control unit, including the test of correct adressing and filing of the measured values
DE4112665A1 (en) Variable vehicle parameter monitoring appts. - detects potential across source terminals upon separation from supply to detect failure
DE4235880C2 (en) Method and device for detecting a variable size in vehicles
DE102006010542B3 (en) Fault variable-servo unit detecting method for internal combustion engine, involves comparing regulating signal with threshold value, so that defect of servo unit is recognized when regulating signal exceeds threshold value
EP1276981B1 (en) Method for adjusting adaptive programme maps of an adaptive knock control in an internal combustion engine and a method for adjusting the knock control in said engine
DE19719518B4 (en) Method and device for controlling a drive unit of a motor vehicle
EP1274931B1 (en) Method for recognizing and correcting errors
DE102006008493B4 (en) Method and device for controlling an internal combustion engine
WO1991005155A1 (en) Process and device for controlling the air supply to an internal combustion engine
DE19954535C2 (en) Method for checking the plausibility of the measured load in an internal combustion engine with variable valve lift control
EP3759326B1 (en) Diagnostic method for detecting discontinuities in a continuous measurement variable and controller for carrying out the method
DE4344633B4 (en) Load detection with diagnosis in an internal combustion engine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20030305

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

RBV Designated contracting states (corrected)

Designated state(s): DE GB SE

17Q First examination report despatched

Effective date: 20050519

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50109824

Country of ref document: DE

Date of ref document: 20060622

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060918

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070220

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090724

Year of fee payment: 9

Ref country code: SE

Payment date: 20090727

Year of fee payment: 9

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100721

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120927

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50109824

Country of ref document: DE

Effective date: 20140201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140201