EP1296409A1 - Microwave antenna integrated into an artillery projectile - Google Patents
Microwave antenna integrated into an artillery projectile Download PDFInfo
- Publication number
- EP1296409A1 EP1296409A1 EP02292319A EP02292319A EP1296409A1 EP 1296409 A1 EP1296409 A1 EP 1296409A1 EP 02292319 A EP02292319 A EP 02292319A EP 02292319 A EP02292319 A EP 02292319A EP 1296409 A1 EP1296409 A1 EP 1296409A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- rocket
- antenna
- microwave
- cap
- microwave antenna
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/42—Housings not intimately mechanically associated with radiating elements, e.g. radome
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q1/00—Details of, or arrangements associated with, antennas
- H01Q1/27—Adaptation for use in or on movable bodies
- H01Q1/28—Adaptation for use in or on aircraft, missiles, satellites, or balloons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q21/00—Antenna arrays or systems
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q3/00—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
- H01Q3/26—Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/0407—Substantially flat resonant element parallel to ground plane, e.g. patch antenna
Definitions
- the present invention relates to an artillery rocket comprising at least one microwave antenna.
- An artillery rocket usually has a top of ogival shape ensuring the penetration of the rocket into the air.
- This part known as the rocket's head (for type guidance) a limited volume towards the rear of the rocket for example by a equipment such as a braking device.
- the rocket In a standard rocket head the rocket is protected by a cap against mechanical aggression related to the flight of the projectile equipped with the rocket.
- the cap is made in a dielectric material which, in comparison with a metallic material, disturbs the operation of a microwave antenna placed under The hairdo.
- the head of a standard rocket has components electronic devices located in an area protected by the cap. Volume available for microwave antennas is limited by the cap and by the area reserved for electronic components.
- a standard rocket further comprises a coil of programming whose technical characteristics and position must be compatible with induction programming by means of a standard programmer that applies to the external neighborhood of the head rocket.
- the subject of the invention is an artillery rocket, comprising at least a microwave antenna characterized in that it comprises a dielectric cap, which has a longitudinal sectional plane a shape substantially in pants.
- An advantage of the invention is in particular to allow the construction of an artillery rocket with two microwave antennas operating without mutual disturbance in two distinct ranges.
- Figure 1 schematically illustrates an example of a rocket standard.
- the top of an artillery rocket has a cut which can be represented by the diagram of Figure 1.
- the part upper 1 of the rocket is limited to the bottom of Figure 1 by a equipment 2 which is for example a braking device comprising custom deployable wings whose deployed positions are perpendicular to the flight in flight of the rocket and ensure aerodynamic braking of the rocket.
- the upper part 1 of the rocket presents upwards an ogival shape protected by a cap 3.
- the cap 3 provides protection against mechanical aggression, including erosion and heating, related to the flight of a projectile equipped with the rocket.
- An area 4 delimits an internal volume at the upper part 1 of the rocket, available for the integration of electronic components of the rocket. This volume is usually cylindrical, for example with a symmetry of revolution about an axis 5, vertical in Figure 1, around which the rocket also presents a symmetry of revolution.
- the free space between the cap 3 and the outer surface of zone 4 allows the integration of antennas microwave.
- the outer surface 7 of the zone 4 is generally metallic, this which avoids radio interference between an antenna rocket microwave placed outside zone 4 and the parts metallic components of the zone 4 as example the ground plane of a printed circuit board or a component electromechanical.
- the outer metal surface of zone 4 allows define and modify the electronic components of the rocket inside of this zone by avoiding the effect of their metal parts on the radio operation of a microwave antenna of the rocket.
- a programming coil 8 is placed under the cap of the standard rocket in Figure 1 and outside Zone 4 reserved for electronic components, the coil 8 is located towards the top of the rocket between the tip 9 of the cap and the top of the outer surface of the zone 4. This coil 8 makes it possible to program a behavior of the rocket at means of a programming device, not shown in FIG. applying to the outside of the cap 3 and having a primary coil.
- the rocket shown schematically in Figure 2b has a first microwave antenna 29 plane and perpendicular to the longitudinal axis 30 rocket.
- the first microwave antenna operates at 15 GHz and allows for example a telemetry link or remote control with the ground.
- This antenna made in the form of a disc of large diameter could not be integrated into the rocket.
- Figure 2a shows the relative dimensions of a rocket standard and a known elongated rocket containing only in its internal volume a microwave antenna at 1.5 GHz.
- the long rocket has an envelope 20 whose size is greater than the envelope 21 of a standard rocket.
- the elongated rocket has a head longer than the standard rocket.
- the second antenna microwave (integrated in the volume of the rocket) has two rectangular pellets 23 and 24 diametrically opposed under a cap 25. It operates at 1.5 GHz and can be used in particular for exchanging information with the GPS system, whose abbreviation means in English Global Positionning System.
- the pellets have, for example, identical surfaces, the longer sides of each pellet presenting one end 26 towards the front of the rocket, located at the top of Figure 2b, the other end 27 being located towards the rear of the head of the rocket.
- the two pellets are mutually coupled by their field back because they are not applied on a closed metal cone.
- FIG. 3 illustrates a particular embodiment of the invention having two microwave antennas integrated into the volume of a standard rocket.
- the lower part 40 of the rocket is not detailed.
- the part upper 41 or rocket head is represented by a diagram of a longitudinal section passing through the axis of symmetry 42 of the envelope of the upper part 41.
- the headdress of the rocket has two parts: a top cap 43 at the front end of the rocket and a lower cap 44 placed between the upper cap and the lower 40 of the rocket.
- the group formed by the upper cap 43 and the lower cap 44 ensuring the protection of the content of the head of the rocket.
- the lower cap 44 is made of a dielectric material and forms the dielectric part of a first high-frequency microwave antenna frequency, operating for example at 15 GHz.
- the lower cap 44 has an outer face 45 in the shape of a truncated cone and an inner face of conical shape, the thickness of the dielectric between the internal faces and external being greater towards the front of the rocket on the side of the cap greater and less important towards the rear of the lower part 40 rocket.
- the lower cap 44 has a volume generated by a symmetry of revolution about the axis of symmetry 42 of a shaped surface of pants whose belt is on the side of the upper cap and legs extend to the lower part 40 of the rocket.
- the lower cap 44 present in a longitudinal section plane a substantially trousers.
- a metal surface 46 is in contact with the inner face of the lower cover 44 dielectric, it realizes a ground plane of the first high frequency microwave antenna.
- the metal surface 46 presents a form of revolution.
- an electric field is created in a coaxial tube 48 whose axis is common with the axis 42 of symmetry of the casing of the head of the rocket and which has a core 51 and a sheath or external conductor 52.
- the electric field is created symmetrically in roll.
- coaxial tube 48 is hollow, that is to say that its core 51 is hollow and present an internal face in the form of a cylinder of revolution around the axis of symmetry 42 defining a space 53 allowing for example the passage of a cable for electrically powering equipment, such as proximity antenna or impact detection protected under the cover 43.
- the coaxial tube 48 is full, it has a full cylindrical core.
- the core 51 passes through the dielectric material of the lower cap 44 to the top 49 of the truncated cone of the lower cap 44 at the front which has a metallized surface.
- the tube coaxial layer has a layer of internal dielectric material 54 which is example made in the dielectric material of the lower cap 44.
- the internal dielectric 54 of the coaxial tube 48 forms a continuous piece with the lower cap 44.
- the electric field created, radial and symmetrical with respect to the axis of symmetry 42, is guided by the coaxial tube 48 towards the front of the rocket up to the upper limit of the sheath 52 and then the electric field attack the dielectric of the first antenna. He spreads by turning and becoming substantially parallel to the axis of symmetry 42 and then propagating radially towards the outer surface of the lower cap 44 before change orientation again to become substantially radial and propagate in the dielectric of the lower cap 44 towards the back of the rocket.
- the field follows the dielectric whose thickness is reduced and presents a trouser leg shape to get out of the narrow bottom 50 of the leg and continue its propagation as surface current along the projectile carrying the rocket.
- the dielectric attack of the first antenna by a tube coaxial is symmetrical in roll. It has the advantage of allowing a microwave transmission at the rear of the projectile independent of the roll position of the rocket.
- the directivity of the first antenna attacked coaxial has no transmission for an included angle between zero and a few degrees around the rear axis of the projectile she has good transmission from 1.5 to 2 degrees away from the rear axle. This transmission makes it possible, for example, to issue a code Uninterrupted GPS with a gyro projectile with an angle of substantially non-zero pitch, especially when the projectile is far from its launch point.
- the first antenna with a dielectric forming a cap of the rocket has the advantage of allowing the spread of the field out of the antenna into a surface current with leaks reduced to the bottom 50 of the rocket.
- the first microwave antenna works all the better than the pants length is great.
- sheath 52 extends from its portion superior by a shape 55 of revolution and substantially conical to inside which a zone 57 is available for the integration of electronic components of the rocket.
- a ring 56 having the axis of symmetry said axis 42 is inserted inside the shape 55 at a position where the inner diameter of the revolution form 55 substantially coincides with the outer diameter of the ring 56.
- the ring 56, the inner surface of the 55 and the envelope of the lower part 40 of the rocket delimit the zone 57.
- a programming coil 58 is represented by a section longitudinal axis in FIG. 3.
- the coil has a substantially conical axis 42.
- the coil 58 is inserted inside the cone delimited by the metal surface 46 which makes a ground plane of the first antenna microwave, the coil being placed necessarily in the upper part, that is to say, the narrowest part of this cone.
- FIG. 4 represents, with the same references as on the FIG. 3, a view in developed along the axis of symmetry 42, the dielectric of the first microwave antenna with lower cap 44, the surface metal 46 of the first microwave antenna, the coil 58, the shape 55 and the ring 56. These various elements are interlocking into each other in the order of enumeration, the cap 44 protecting the whole.
- the first antenna is not attacked by a coaxial tube but by a circuit having one or more microwave pads placed at the top 49 of the truncated cone of the dielectric of the antenna forming the lower cap 44, a dielectric thickness of circuit along the axis 42 and a ground plane of the circuit perpendicular to the axis 42, the top side of the rocket.
- the pellet is for example in the form of symmetrical ring along the axis of symmetry 42.
- lozenges of substantially square shape are placed at the top 49, either two diametrically opposite pellets, or more pellets regularly distributed around the axis of symmetry.
- the number of pellets is preferably less than eight.
- the limitation of the number of pellets leads to a program presenting a variable behavior according to the roll of the rocket and the emission towards the ground is not constant.
- the circuit preferably has a ring shape which ensures the emission stable behavior despite a variable roll.
- the radial length of the pellets is limited by the radius of the top 49 of the trunk of cone.
- the pellet (s) operate either in half-wavelength with a high permittivity dielectric, in quarter-wavelength with a lower permittivity dielectric. For the first operation impedance matching is easier to achieve because the accuracy of the Position of the power supply is less critical.
- the antenna When the power points of said driver circuit of the first antenna are in phase, the antenna has the advantage of allowing a transmission at the rear of the projectile carrying the rocket in a field angular enough wide, typically between 2 and 30 degrees to the axis of symmetry 42.
- the transmission is relatively close to that obtained with an attack by a coaxial tube.
- the transmission is essentially the rear axis of the projectile.
- This embodiment is advantageous for a remote control at the beginning of the trajectory of the projectile.
- a second microwave antenna 47 shown on the FIG. 3, operating at a lower frequency than the first antenna, by example at 1.5 GHz, is embedded in the metal surface 46 of the plane of mass of the first antenna, on the side of the inner face of the cap lower 44.
- the second microwave antenna thus placed on the face internally of the dielectric of the first microwave antenna has a reduced discomfort in the operation of this first antenna.
- the length of the second antenna measured along the axis of symmetry 42 is limited to a value slightly lower than the height of the lower cap 44, in taking care to respect this limitation the second antenna can be of type half-wavelength with a high permittivity dielectric, or of type quarter of a wavelength with a lower permittivity dielectric (the ratio of permittivity is 4).
- FIGS. 5a, 5b and 5c show three exemplary embodiments of the second antenna represented with respect to the axis of symmetry already referenced 42 in Figure 3.
- the antenna of Figure 5a has a shape of symmetrical cone with respect to the axis 42, it has a symmetry in roll ensuring a substantially constant transmission during the rotation of the projectile on itself.
- a second antenna comprising two or four pellets is shown respectively in Figures 5b and 5c.
- the number of pellets of the second antenna is preferably limited to four, this limitation ensuring an integration of the antenna in the rocket easier. Number of pastilles may be greater than four.
- the received composite signal corresponds to the emission of fields by each pellet.
- the coil 58 in FIG. 3 is placed relative to the outside of the rocket under the ground plane 46 of the first antenna which is also the one the second antenna 47.
- the operation of the antenna (s) of the rocket is not disturbed by the coil.
- the presence of metal walls (46) and the pellets of the second antenna, the thickness of which is preferably less than 150 ⁇ m and whose production is carried out for example by serigraphy on the dielectric) allows the coupling with a programming transformer with limited attenuation.
- the programming transformer is placed during the operation of programming around the rocket cap. The position and dimension of the coil allow to respect a reduced distance compared to the outer surface of the cap.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Astronomy & Astrophysics (AREA)
- Aviation & Aerospace Engineering (AREA)
- General Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Details Of Aerials (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
Description
La présente invention concerne une fusée d'artillerie comportant au moins une antenne hyperfréquence.The present invention relates to an artillery rocket comprising at least one microwave antenna.
Une fusée d'artillerie présente généralement une partie supérieure de forme ogivale assurant la pénétration de la fusée dans l'air. Cette partie appelée tête de la fusée présente éventuellement (pour des applications de type guidage) un volume limité vers l'arrière de la fusée par exemple par un équipement tel qu'un dispositif de freinage. Dans une fusée standard la tête de la fusée est protégée par une coiffe contre les agressions mécaniques liées au vol du projectile équipé de la fusée. La coiffe est réalisée dans un matériau diélectrique qui, par comparaison avec un matériau métallique, perturbe peu le fonctionnement d'une antenne hyperfréquence placée sous la coiffe. La tête d'une fusée standard comporte des composants électroniques situés dans une zone protégée par la coiffe. Le volume disponible pour des antennes hyperfréquence est limité par la coiffe et par la zone réservée aux composants électroniques.An artillery rocket usually has a top of ogival shape ensuring the penetration of the rocket into the air. This part known as the rocket's head (for type guidance) a limited volume towards the rear of the rocket for example by a equipment such as a braking device. In a standard rocket head the rocket is protected by a cap against mechanical aggression related to the flight of the projectile equipped with the rocket. The cap is made in a dielectric material which, in comparison with a metallic material, disturbs the operation of a microwave antenna placed under The hairdo. The head of a standard rocket has components electronic devices located in an area protected by the cap. Volume available for microwave antennas is limited by the cap and by the area reserved for electronic components.
Une fusée standard comporte en outre une bobine de programmation dont les caractéristiques techniques et la position doivent être compatibles d'une programmation par induction au moyen d'un programmateur standard venant s'appliquer au voisinage extérieur de la tête de la fusée.A standard rocket further comprises a coil of programming whose technical characteristics and position must be compatible with induction programming by means of a standard programmer that applies to the external neighborhood of the head rocket.
L'invention a pour objet une fusée d'artillerie, comportant au moins une antenne hyperfréquence caractérisée en ce qu'elle comporte un diélectrique faisant coiffe, lequel présente dans un plan de coupe longitudinal une forme sensiblement en pantalon.The subject of the invention is an artillery rocket, comprising at least a microwave antenna characterized in that it comprises a dielectric cap, which has a longitudinal sectional plane a shape substantially in pants.
Un avantage de l'invention est notamment de permettre la réalisation d'une fusée d'artillerie comportant deux antennes hyperfréquence fonctionnant sans perturbation mutuelle dans deux gammes distinctes. An advantage of the invention is in particular to allow the construction of an artillery rocket with two microwave antennas operating without mutual disturbance in two distinct ranges.
D'autres caractéristiques et avantages de l'invention apparaítront à l'aide de la description qui suit faite en regard de dessins annexés qui représentent :
- la figure 1, un exemple de fusée standard ;
- la figure 2, un exemple de fusée allongée comportant une antenne hyperfréquence à 1.5 GHz dans lequel la figure 2a illustre l'encombrement de la fusée allongée par rapport à une fusée standard et la figure 2b représente une coupe longitudinale de la fusée allongée ;
- la figure 3, un exemple de réalisation de l'invention ;
- la figure 4, une vue en développé comportant une première antenne hyperfréquence selon l'invention ;
- la figure 5, trois exemples d'une seconde antenne
hyperfréquence selon l'invention, une antenne anneau en
figure 5a, une antenne à 2
et 4 pastilles en figures 5b et 5c.
- Figure 1, an example of standard rocket;
- FIG. 2, an example of an elongate rocket comprising a 1.5 GHz microwave antenna in which FIG. 2a illustrates the size of the elongated rocket relative to a standard rocket and FIG. 2b shows a longitudinal section of the elongated rocket;
- Figure 3, an exemplary embodiment of the invention;
- FIG. 4, a developed view comprising a first microwave antenna according to the invention;
- FIG. 5, three examples of a second microwave antenna according to the invention, a ring antenna in FIG. 5a, an antenna with 2 and 4 pellets in FIGS. 5b and 5c.
La figure 1 illustre de façon schématique un exemple de fusée
standard. La partie supérieure d'une fusée d'artillerie présente une coupe
longitudinale qui peut être représentée par le schéma de la figure 1. La partie
supérieure 1 de la fusée est limitée vers le bas de la figure 1 par un
équipement 2 qui est par exemple un dispositif de freinage comportant des
ailettes déployables sur commande dont les positions déployées sont
perpendiculaires au déplacement en vol de la fusée et permettent d'assurer
un freinage aérodynamique de la fusée. La partie supérieure 1 de la fusée
présente vers le haut une forme ogivale protégée par une coiffe 3. La coiffe 3
assure une protection contre les agressions mécaniques, notamment
l'érosion et l'échauffement, liées au vol d'un projectile équipé de la fusée.
Une zone 4 délimite un volume interne à la partie supérieure 1 de la fusée,
disponible pour l'intégration des composants électroniques de la fusée. Ce
volume est généralement cylindrique, par exemple avec une symétrie de
révolution autour d'un axe 5, vertical sur la figure 1, autour duquel la fusée
présente également une symétrie de révolution. L'espace libre entre la coiffe
3 et la surface externe de la zone 4 permet l'intégration des antennes
hyperfréquence. Figure 1 schematically illustrates an example of a rocket
standard. The top of an artillery rocket has a cut
which can be represented by the diagram of Figure 1. The part
upper 1 of the rocket is limited to the bottom of Figure 1 by a
La surface externe 7 de la zone 4 est généralement métallique, ce
qui permet d'éviter les interférences radioélectriques entre une antenne
hyperfréquence de la fusée placée à l'extérieur de la zone 4 et les parties
métalliques des composants électroniques de ladite zone 4 comme par
exemple le plan de masse d'un circuit imprimé ou un composant
électromécanique. La surface extérieure métallique de la zone 4 permet de
définir et de modifier les composants électroniques de la fusée à l'intérieur de
cette zone en s'affranchissant de l'effet de leurs parties métalliques sur le
fonctionnement radioélectrique d'une antenne hyperfréquence de la fusée.The
Une bobine de programmation 8 est placée sous la coiffe de la
fusée standard de la figure 1 et à l'extérieur de la zone 4 réservée aux
composants électroniques, la bobine 8 est située vers le haut de la fusée
entre la pointe 9 de la coiffe et le haut de la surface extérieure de la zone 4.
Cette bobine 8 permet de programmer un comportement de la fusée au
moyen d'un dispositif de programmation, non représenté sur la figure 1,
s'appliquant à l'extérieur de la coiffe 3 et comportant une bobine primaire.A programming coil 8 is placed under the cap of the
standard rocket in Figure 1 and outside
La fusée schématisée sur la figure 2b comporte une première
antenne hyperfréquence 29 plane et perpendiculaire à l'axe longitudinal 30
de la fusée. Dans cet exemple, la première antenne hyperfréquence
fonctionne à 15 GHz et permet par exemple une liaison de télémesure ou de
télécommande avec le sol. Cette antenne réalisée sous forme d'un disque de
grand diamètre n'a pu être intégrée dans la fusée.The rocket shown schematically in Figure 2b has a
La figure 2a représente les encombrements relatifs d'une fusée
standard et d'une fusée allongée connue comportant uniquement dans son
volume interne une antenne hyperfréquence à 1.5 GHz. La fusée allongée
présente une enveloppe 20 dont l'encombrement est plus important que
l'enveloppe 21 d'une fusée standard. Selon l'axe longitudinal 22 commun sur
la figure 2a aux deux enveloppes 20, 21, la fusée allongée présente une tête
plus longue que la fusée standard.Figure 2a shows the relative dimensions of a rocket
standard and a known elongated rocket containing only in its
internal volume a microwave antenna at 1.5 GHz. The long rocket
has an
Dans l'exemple illustré par la figure 2b, la seconde antenne
hyperfréquence (intégrée dans le volume de la fusée) comporte deux
pastilles rectangulaires 23 et 24 diamétralement opposées sous une coiffe
25. Elle fonctionne à 1.5 GHz et est notamment utilisable pour échanger des
informations avec le système GPS, dont l'abréviation signifie en anglais
Global Positionning System. Les pastilles présentent par exemple des
surfaces identiques, les côtés les plus longs de chaque pastille présentant
une extrémité 26 vers l'avant de la fusée, situé en haut de la figure 2b, l'autre
extrémité 27 étant située vers l'arrière de la tête de la fusée. Dans cet
exemple, les deux pastilles sont couplées mutuellement par leur champ
arrière car elles ne sont pas appliquées sur un cône métallique fermé.In the example illustrated in FIG. 2b, the second antenna
microwave (integrated in the volume of the rocket) has two
La figure 3 illustre une réalisation particulière de l'invention comportant deux antennes hyperfréquence intégrées dans le volume d'une fusée standard.FIG. 3 illustrates a particular embodiment of the invention having two microwave antennas integrated into the volume of a standard rocket.
La partie inférieure 40 de la fusée n'est pas détaillée. La partie
supérieure 41 ou tête de la fusée est représentée par un schéma d'une
coupe longitudinale passant par l'axe de symétrie 42 de l'enveloppe de la
partie supérieure 41.The
La coiffe de la fusée comporte deux parties : une coiffe supérieure
43 à l'extrémité avant de la fusée et une coiffe inférieure 44 placée entre la
coiffe supérieure et la partie inférieure 40 de la fusée. L'ensemble formé par
la coiffe supérieure 43 et par la coiffe inférieure 44 assurant la protection du
contenu de la tête de la fusée.The headdress of the rocket has two parts: a
La coiffe inférieure 44 est réalisée dans un matériau diélectrique et
forme la partie diélectrique d'une première antenne hyperfréquence haute
fréquence, fonctionnant par exemple à 15 GHz. La coiffe inférieure 44
présente une face externe 45 en forme de cône tronqué et une face interne
de forme conique, l'épaisseur du diélectrique entre les faces interne et
externe étant plus importante vers l'avant de la fusée du côté de la coiffe
supérieure et moins importante vers l'arrière du côté de la partie inférieure 40
de la fusée. La coiffe inférieure 44 présente un volume engendré par une
symétrie de révolution autour de l'axe de symétrie 42 d'une surface en forme
de pantalon dont la ceinture est du côté de la coiffe supérieure et les jambes
s'étendent jusqu'à la partie inférieure 40 de la fusée. La coiffe inférieure 44
présente dans un plan de coupe longitudinal une forme sensiblement en
pantalon.The
Une surface métallique 46 est en contact avec la face interne de la
coiffe inférieure 44 en diélectrique, elle réalise un plan de masse de la
première antenne hyperfréquence haute fréquence. La surface métallique 46
présente une forme de révolution.A
Dans cet exemple de réalisation, un champ électrique est créé
dans un tube coaxial 48 dont l'axe est commun avec l'axe 42 de symétrie de
l'enveloppe de la tête de la fusée et qui présente une âme 51 et une gaine ou
conducteur externe 52. Le champ électrique est créé symétriquement en
roulis. Dans la réalisation particulière de l'invention illustrée par la figure 3, le
tube coaxial 48 est creux, c'est-à-dire que son âme 51 est creuse et présente
une face interne en forme de cylindre de révolution autour de l'axe de
symétrie 42 délimitant un espace 53 permettant par exemple le passage d'un
câble pour alimenter électriquement un équipement, comme par exemple
une antenne proximètre ou une détection d'impact, protégé sous la coiffe
supérieure 43. Dans une variante de réalisation de l'invention, le tube coaxial
48 est plein, il présente une âme cylindrique pleine.In this embodiment, an electric field is created
in a
L'âme 51 traverse le matériau diélectrique de la coiffe inférieure
44 jusqu'au sommet 49 du tronc de cône de la coiffe inférieure 44 à l'avant
lequel présente une surface métallisée. Entre l'âme 51 et la gaine 52, le tube
coaxial comporte une couche de matériau diélectrique interne 54 qui est par
exemple réalisée dans le matériau diélectrique de la coiffe inférieure 44.
Dans la réalisation particulière de la figure 3, le diélectrique interne 54 du
tube coaxial 48 forme une pièce continue avec la coiffe inférieure 44.The core 51 passes through the dielectric material of the
Le champ électrique créé, radial et symétrique par rapport à l'axe
de symétrie 42, est guidé par le tube coaxial 48 vers l'avant de la fusée
jusqu'à la limite supérieure de la gaine 52, puis le champ électrique attaque
le diélectrique de la première antenne. Il s'y propage en tournant et devenant
sensiblement parallèle à l'axe de symétrie 42 puis en se propageant
radialement vers la surface externe de la coiffe inférieure 44 avant de
changer encore d'orientation pour redevenir sensiblement radial et se
propager dans le diélectrique de la coiffe inférieure 44 vers l'arrière de la
fusée. Le champ suit le diélectrique dont l'épaisseur se réduit et présente
une forme de jambe de pantalon pour sortir par le bas étroit 50 de la jambe
et poursuivre sa propagation sous forme de courant de surface le long du
projectile portant la fusée.The electric field created, radial and symmetrical with respect to the axis
of
L'attaque du diélectrique de la première antenne par un tube coaxial est symétrique en roulis. Elle présente l'avantage de permettre une transmission hyperfréquence à l'arrière du projectile indépendante de la position en roulis de la fusée. La directivité de la première antenne attaquée par coaxial présente une absence de transmission pour un angle compris entre zéro et quelques degrés autour de l'axe arrière du projectile, elle présente une bonne transmission à partir de 1,5 à 2 degrés en s'éloignant de l'axe arrière. Cette transmission permet par exemple une émission d'un code GPS sans coupure par un projectile gyroscopé présentant un angle de tangage sensiblement non nul notamment lorsque le projectile est loin de son point de lancement.The dielectric attack of the first antenna by a tube coaxial is symmetrical in roll. It has the advantage of allowing a microwave transmission at the rear of the projectile independent of the roll position of the rocket. The directivity of the first antenna attacked coaxial has no transmission for an included angle between zero and a few degrees around the rear axis of the projectile she has good transmission from 1.5 to 2 degrees away from the rear axle. This transmission makes it possible, for example, to issue a code Uninterrupted GPS with a gyro projectile with an angle of substantially non-zero pitch, especially when the projectile is far from its launch point.
La première antenne avec un diélectrique formant coiffe de la fusée présente l'avantage de permettre la propagation du champ hors de l'antenne en un courant de surface avec des fuites réduites au bas 50 de la fusée. La première antenne hyperfréquence fonctionne d'autant mieux que la longueur du pantalon est grande.The first antenna with a dielectric forming a cap of the rocket has the advantage of allowing the spread of the field out of the antenna into a surface current with leaks reduced to the bottom 50 of the rocket. The first microwave antenna works all the better than the pants length is great.
Sur la figure 3, la gaine 52 se prolonge à partir de sa partie
supérieure par une forme 55 de révolution et sensiblement conique à
l'intérieur de laquelle une zone 57 est disponible pour l'intégration de
composants électroniques de la fusée. Un anneau 56 ayant pour axe de
symétrie ledit axe 42 est inséré à l'intérieur de la forme 55 à une position où
le diamètre intérieur de la forme de révolution 55 coïncide sensiblement avec
le diamètre extérieur de l'anneau 56. L'anneau 56, la surface interne de la
forme 55 et l'enveloppe de la partie inférieure 40 de la fusée délimitent la
zone 57.In FIG. 3,
Une bobine de programmation 58 est représentée par une coupe
longitudinale sur la figure 3. La bobine présente une forme sensiblement
conique, d'axe 42. La bobine 58 est insérée à l'intérieur du cône délimité par
la surface métallique 46 qui réalise un plan de masse de la première antenne
hyperfréquence, la bobine étant placée obligatoirement en partie supérieure,
c'est-à-dire la partie la plus étroite, de ce cône.A
La figure 4 représente, avec les mêmes références que sur la
figure 3, une vue en développé selon l'axe de symétrie 42, le diélectrique de
la première antenne hyperfréquence faisant coiffe inférieure 44, la surface
métallique 46 de la première antenne hyperfréquence, la bobine 58, la forme
55 et l'anneau 56. Ces divers éléments s'emboítent les uns dans les autres
dans l'ordre d'énumération, la coiffe 44 protégeant le tout.FIG. 4 represents, with the same references as on the
FIG. 3, a view in developed along the axis of
Dans une variante de réalisation de l'invention, la première
antenne n'est pas attaquée par un tube coaxial mais par un circuit
comportant une ou plusieurs pastilles hyperfréquence placées au sommet 49
du tronc de cône du diélectrique de l'antenne formant la coiffe inférieure 44,
une épaisseur de diélectrique de circuit suivant l'axe 42 et un plan de masse
du circuit perpendiculaire à l'axe 42, du côté du haut de la fusée. La pastille
est par exemple en forme d'anneau symétrique selon l'axe de symétrie 42.
Dans un autre exemple des pastilles de forme sensiblement carrée sont
placées au sommet 49, soit deux pastilles diamétralement opposées, soit
des pastilles en nombre supérieur réparties régulièrement autour de l'axe de
symétrie. Le nombre de pastilles est de préférence inférieur à huit. La
limitation du nombre de pastilles conduit à une émission présentant un
comportement variable selon le roulis de la fusée et l'émission vers le sol
n'est pas constante. Le circuit présente de préférence une forme en anneau
qui assure à l'émission un comportement stable malgré un roulis variable. La
longueur radiale des pastilles est limitée par le rayon du sommet 49 du tronc
de cône. La ou les pastilles fonctionnent soit en demi-longueur d'onde avec
un diélectrique de permittivité élevé, soit en quart de longueur d'onde avec
un diélectrique de permittivité plus faible. Pour le premier fonctionnement
l'adaptation d'impédance est plus facile à réaliser car la précision de la
position de l'alimentation est moins critique.In an alternative embodiment of the invention, the first
antenna is not attacked by a coaxial tube but by a circuit
having one or more microwave pads placed at the top 49
of the truncated cone of the dielectric of the antenna forming the
Lorsque les points d'alimentation dudit circuit d'attaque de la
première antenne sont en phase, l'antenne présente l'avantage de permettre
une transmission à l'arrière du projectile portant la fusée dans un champ
angulaire assez large, typiquement entre 2 et 30 degrés par rapport à l'axe
de symétrie 42. La transmission est relativement proche de celle obtenue
avec une attaque par un tube coaxial.When the power points of said driver circuit of the
first antenna are in phase, the antenna has the advantage of allowing
a transmission at the rear of the projectile carrying the rocket in a field
angular enough wide, typically between 2 and 30 degrees to the axis
of
Lorsque les points d'alimentation dudit circuit d'attaque de la première antenne sont en déphasage, par exemple une alimentation de deux pastilles déphasées de 180 degrés, la transmission est essentiellement dans l'axe arrière du projectile. Cette réalisation est avantageuse pour une télécommande en début de trajectoire du projectile. When the power points of said driver circuit of the first antenna are out of phase, for example a power supply of two 180-degree phase-shifted pellets, the transmission is essentially the rear axis of the projectile. This embodiment is advantageous for a remote control at the beginning of the trajectory of the projectile.
Une seconde antenne hyperfréquence 47, représentée sur la
figure 3, fonctionnant en fréquence plus basse que la première antenne, par
exemple à 1.5 GHz, est incrustée dans la surface métallique 46 du plan de
masse de la première antenne, du côté de la face interne de la coiffe
inférieure 44. La seconde antenne hyperfréquence ainsi placée sur la face
interne du diélectrique de la première antenne hyperfréquence présente une
gêne réduite dans le fonctionnement de cette première antenne. La longueur
de la seconde antenne mesurée le long de l'axe de symétrie 42 est limitée à
une valeur légèrement inférieure à la hauteur de la coiffe inférieure 44, en
veillant à respecter cette limitation la seconde antenne peut être de type
demi-longueur d'onde avec un diélectrique de permittivité élevée, ou de type
quart de longueur d'onde avec un diélectrique de permittivité plus faible (le
rapport des permittivité est de 4).A
Les figures 5a, 5b et 5c représentent trois exemples de réalisation
de la seconde antenne représentée par rapport à l'axe de symétrie déjà
référencé 42 dans la figure 3. L'antenne de la figure 5a présente une forme
de cône symétrique par rapport à l'axe 42, elle présente une symétrie en
roulis assurant une transmission sensiblement constante lors de la rotation
du projectile sur lui-même.FIGS. 5a, 5b and 5c show three exemplary embodiments
of the second antenna represented with respect to the axis of symmetry already
referenced 42 in Figure 3. The antenna of Figure 5a has a shape
of symmetrical cone with respect to the
Une seconde antenne comportant deux ou quatre pastilles est représentée respectivement sur les figures 5b et 5c. Le nombre de pastilles de la seconde antenne est de préférence limité à quatre, cette limitation assurant une intégration de l'antenne dans la fusée plus aisée. Le nombre de pastilles peut être supérieur à quatre.A second antenna comprising two or four pellets is shown respectively in Figures 5b and 5c. The number of pellets of the second antenna is preferably limited to four, this limitation ensuring an integration of the antenna in the rocket easier. Number of pastilles may be greater than four.
Il est possible d'alimenter l'antenne avec une entrée unique pour toutes les pastilles et une répartition symétrique des lignes d'alimentation. Le signal composite reçu (signal GPS) correspond ainsi à l'émission des champs par chaque pastille.It is possible to feed the antenna with a single input for all the pellets and a symmetrical distribution of the supply lines. The received composite signal (GPS signal) corresponds to the emission of fields by each pellet.
Il est encore possible d'utiliser les pastilles de façon indépendante, en couplant par exemple chaque pastille à une voie de réception. Cette configuration permet notamment de recevoir correctement des signaux de satellites « côté ciel » sur une pastille alors que la pastille opposée est en vision avec le sol et peut être saturée par un brouilleur. Un brouilleur au sol ne peut transmettre que vers une antenne dirigée vers lui car à cette fréquence les antennes sont relativement directives. Ce type de configuration optimale d'intégration des antennes dans une fusée d'artillerie possède donc aussi une immunité au brouillage GPS sol, le plus probable au plan opérationnel de l'artillerie.It is still possible to use the pellets independently, for example by coupling each chip to a reception channel. This configuration allows in particular to correctly receive signals from satellites "sky side" on a pellet while the opposite pellet is in vision with the ground and can be saturated by a jammer. A jammer on the ground can only transmit to an antenna directed towards him because at this frequency antennas are relatively directive. This type of configuration optimal integration of antennas in an artillery rocket therefore has also an immunity to ground GPS jamming, the most likely to operational artillery.
La bobine 58 sur la figure 3 est placée par rapport à l'extérieur de
la fusée sous le plan de masse 46 de la première antenne qui est aussi celui
de la seconde antenne 47. Le fonctionnement de la ou des antennes de la
fusée n'est pas perturbé par la bobine. La présence des parois métalliques
fines (46 et les pastilles de la seconde antenne, dont l'épaisseur est de
préférence inférieure à 150 µm et dont la réalisation s'effectue par exemple
par sérigraphie sur le diélectrique) autorise le couplage avec un
transformateur de programmation avec une atténuation limitée. Le
transformateur de programmation est placé pendant l'opération de
programmation autour de la coiffe de la fusée. La position et la dimension de
la bobine permettent de respecter une distance réduite par rapport à la
surface externe de la coiffe.The
Claims (9)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0112221A FR2830130B1 (en) | 2001-09-21 | 2001-09-21 | INTEGRATION OF HYPERFREQUENCY ANTENNA IN A ARTILLERY ROCKET |
FR0112221 | 2001-09-21 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1296409A1 true EP1296409A1 (en) | 2003-03-26 |
EP1296409B1 EP1296409B1 (en) | 2007-08-15 |
Family
ID=8867520
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP02292319A Expired - Lifetime EP1296409B1 (en) | 2001-09-21 | 2002-09-20 | Microwave antenna integrated into an artillery projectile |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1296409B1 (en) |
AT (1) | ATE370526T1 (en) |
DE (1) | DE60221765T2 (en) |
ES (1) | ES2291426T3 (en) |
FR (1) | FR2830130B1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959657A (en) * | 1986-07-04 | 1990-09-25 | Nec Corporation | Omnidirectional antenna assembly |
US5392053A (en) * | 1988-10-19 | 1995-02-21 | Toyo Communication Equipment Co., Ltd. | Array antenna and system |
US5400040A (en) * | 1993-04-28 | 1995-03-21 | Raytheon Company | Microstrip patch antenna |
US5404145A (en) * | 1993-08-24 | 1995-04-04 | Raytheon Company | Patch coupled aperature array antenna |
WO2001059877A1 (en) * | 2000-02-10 | 2001-08-16 | Koninklijke Philips Electronics N.V. | Portable device antenna |
-
2001
- 2001-09-21 FR FR0112221A patent/FR2830130B1/en not_active Expired - Lifetime
-
2002
- 2002-09-20 EP EP02292319A patent/EP1296409B1/en not_active Expired - Lifetime
- 2002-09-20 AT AT02292319T patent/ATE370526T1/en active
- 2002-09-20 DE DE60221765T patent/DE60221765T2/en not_active Expired - Lifetime
- 2002-09-20 ES ES02292319T patent/ES2291426T3/en not_active Expired - Lifetime
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4959657A (en) * | 1986-07-04 | 1990-09-25 | Nec Corporation | Omnidirectional antenna assembly |
US5392053A (en) * | 1988-10-19 | 1995-02-21 | Toyo Communication Equipment Co., Ltd. | Array antenna and system |
US5400040A (en) * | 1993-04-28 | 1995-03-21 | Raytheon Company | Microstrip patch antenna |
US5404145A (en) * | 1993-08-24 | 1995-04-04 | Raytheon Company | Patch coupled aperature array antenna |
WO2001059877A1 (en) * | 2000-02-10 | 2001-08-16 | Koninklijke Philips Electronics N.V. | Portable device antenna |
Also Published As
Publication number | Publication date |
---|---|
ES2291426T3 (en) | 2008-03-01 |
DE60221765T2 (en) | 2008-06-05 |
EP1296409B1 (en) | 2007-08-15 |
FR2830130B1 (en) | 2005-05-06 |
ATE370526T1 (en) | 2007-09-15 |
FR2830130A1 (en) | 2003-03-28 |
DE60221765D1 (en) | 2007-09-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3171451B1 (en) | Spatial power combiner | |
EP3725002B1 (en) | Dual detector with transverse coils | |
WO2005036697A1 (en) | Low volume internal antenna | |
EP3109941B1 (en) | Microwave antenna with dual reflector | |
EP2422403A1 (en) | Low-profile broadband multiple antenna | |
EP2416449A1 (en) | Parabolic-reflector antenna | |
FR2903234A1 (en) | PARASITE ELEMENT FOR HELICOIDAL ANTENNA. | |
EP1296409B1 (en) | Microwave antenna integrated into an artillery projectile | |
FR2760131A1 (en) | SET OF CONCENTRIC ANTENNAS FOR MICROWAVE WAVES | |
EP3724679B1 (en) | Dual detector with transverse coils | |
CA2800952A1 (en) | Very thin linear orthogonal dual-polarised wide band compact antenna operating in v/uhf bands | |
EP1350285B1 (en) | Electromagnetic probe | |
Hinostroza | Design of wideband arrays of spiral antennas. | |
EP0860894B1 (en) | Miniature resonant antenna in the form of annular microstrips | |
FR2760133A1 (en) | RESONANT ANTENNA FOR THE TRANSMISSION OR RECEPTION OF POLARIZED WAVES | |
EP3692598B1 (en) | Antenna with partially saturated dispersive ferromagnetic substrate | |
EP2946435B1 (en) | Antenna having a miniaturised waveguide | |
EP3266064B1 (en) | Omnidirectional wideband antenna structure | |
CA2800949C (en) | Linear dual-polarised wide band compact antenna | |
EP0047684A1 (en) | Missile antenna and missile provided with such an antenna | |
WO2011000703A1 (en) | Omnidirectional, broadband compact antenna system comprising two highly decoupled separate transmission and reception access lines | |
EP3942649B1 (en) | Compact directional antenna, device comprising such an antenna | |
FR2699268A1 (en) | Detector arrangement for ammunition. | |
EP0778632A1 (en) | Radio altimeter protected against various detections | |
FR2522884A1 (en) | Rotating joint for HF transmission to antenna - comprises rectangular waveguide on rotating unit with slot for insertion or fixed coupling element |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17P | Request for examination filed |
Effective date: 20030918 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: THALES MUNITRONICS & MICROTECHNICS SAS |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: MC Payment date: 20070828 Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REF | Corresponds to: |
Ref document number: 60221765 Country of ref document: DE Date of ref document: 20070927 Kind code of ref document: P |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20071121 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071115 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20070903 Year of fee payment: 6 |
|
NLV1 | Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act | ||
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2291426 Country of ref document: ES Kind code of ref document: T3 |
|
BERE | Be: lapsed |
Owner name: THALES MUNITRONICS & MICROTECHNICS SAS Effective date: 20070930 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FD4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20071116 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20080115 Ref country code: IE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20070829 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20080516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070930 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20080930 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20080930 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071001 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20070815 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20200917 Year of fee payment: 19 Ref country code: DE Payment date: 20200909 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20200825 Year of fee payment: 19 Ref country code: SE Payment date: 20200910 Year of fee payment: 19 Ref country code: IT Payment date: 20200827 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20201015 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 60221765 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 370526 Country of ref document: AT Kind code of ref document: T Effective date: 20210920 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20210920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210921 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210920 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220401 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210920 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20221028 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210920 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20210921 |