EP1288880A2 - Central fire alarm receiver - Google Patents

Central fire alarm receiver Download PDF

Info

Publication number
EP1288880A2
EP1288880A2 EP02255711A EP02255711A EP1288880A2 EP 1288880 A2 EP1288880 A2 EP 1288880A2 EP 02255711 A EP02255711 A EP 02255711A EP 02255711 A EP02255711 A EP 02255711A EP 1288880 A2 EP1288880 A2 EP 1288880A2
Authority
EP
European Patent Office
Prior art keywords
brightness
light emitting
fire receiver
display
emitting means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP02255711A
Other languages
German (de)
French (fr)
Other versions
EP1288880B1 (en
EP1288880A3 (en
Inventor
Minoru Nohmi Bosai Ltd Yoshida
Munehiro Nohmi Bosai Ltd Onji
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nohmi Bosai Ltd
Original Assignee
Nohmi Bosai Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2001251238A external-priority patent/JP2003067857A/en
Priority claimed from JP2001251237A external-priority patent/JP2003067859A/en
Application filed by Nohmi Bosai Ltd filed Critical Nohmi Bosai Ltd
Publication of EP1288880A2 publication Critical patent/EP1288880A2/en
Publication of EP1288880A3 publication Critical patent/EP1288880A3/en
Application granted granted Critical
Publication of EP1288880B1 publication Critical patent/EP1288880B1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/002Generating a prealarm to the central station
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B25/00Alarm systems in which the location of the alarm condition is signalled to a central station, e.g. fire or police telegraphic systems
    • G08B25/14Central alarm receiver or annunciator arrangements

Definitions

  • the present invention relates to a fire receiver.
  • a conventional fire receiver is normally installed in a building management office, afire control center, or the like.
  • Light emitting means such as lamps for performing various types of display are located on a surface of the fire receiver, along with a display portion which displays a variety of information such as the existence of a normal monitoring state, detector type, and occurrence of a fire.
  • the brightness in the vicinity of the fire receiver is nearly constant in the management office and in the fire control center, and monitoring of corresponding zones can be performed by looking at the lamps, the display portion, or the like.
  • the fire receiver For cases in which the fire receiver is mounted in a ship, it is often installed in the pilothouse, but the brightness within the pilothouse changes greatly between day and night. The inside of the pilothouse is maintained in a dark state so as to be able to see the outside through glass windows in the pilothouse for cases in which the ship sails during the night. If light emitting devices such as lamps on the fire receiver exist within the pilothouse, then light from the lamps and the like will be reflected by the glass windows of the pilothouse, and enter the field of vision of the ship's pilot, making navigation more difficult.
  • the brightness of the light emitting means disposed on the surface of a conventional fire receiver cannot be controlled from outside of the fire receiver, and therefore the navigation difficulties cannot be eliminated.
  • An object of the present invention is to provide a fire receiver in which the brightness of light emitting means such as a display light or an LCD display in the fire receiver can be adjusted from outside the fire receiver, and in addition, the brightness adjustment operation is easy.
  • Another object of the present invention is to provide a fire receiver in which display content of the fire receiver is easily understood by non-Japanese operators for cases in which the fire receiver is installed in an environment under which it must be operated or monitored by the non-Japanese as well as the Japanese.
  • a fire receiver comprising: light emitting means; supervisory control means for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information by causing the light emitting means to emit light; and brightness changing means for changing the brightness of the light emitting means in response to the brightness of the surrounding environment.
  • a fire receiver comprising: light emitting means; language setting means for selecting one language from among a plurality of languages set up in advance; and supervisory control means for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information in the displaying means, and in the language set by the language setting means.
  • Fig. 1 is a block diagram showing the structure of a fire receiver RE1 according to Embodiment 1 of the present invention.
  • the fire receiver RE1 has a bilingual system capable of displaying Japanese and English texts in a display portion by using an LCD 72 on the surface of the fire receiver, which is used in a ship.
  • the fire receiver RE1 performs supervisory control on an overall fire alarm equipment including a plurality of the fire detectors, and has: a CPU (central processing unit) 10; a ROM 20; a RAM 30; a Japanese character font 41; an English character font 42; a dip switch 51; a dip switch IF 52; a display content table 60; a display driver portion 70; a display light 71; an LCD 72; printer driver 81; a printer 82; and a brightness controlling manual set switch 91.
  • a CPU central processing unit
  • the fire receiver RE1 has: a first circuit control portion LC1; a second circuit control portion LC2; a third circuit control portion LC3; and a fourth circuit control portion LC4.
  • the circuit control portions LC1, LC2, LC3 and LC4 are connected to detectors S11, S21, S31 and S41 etc, respectively, through signal lines LP1, LP2, LP3 and LP4 formed in a loop circuit.
  • the CPU 10 is for controlling the overall fire receiver RE1
  • the ROM 20 is a memory in which a computer program making the CPU 10 operate the fire receiver RE1 described later is stored
  • the RAM30 is a working memory. Note that the words such as “Systems Normal”, “Fire” and “Verify”, which are described later, are stored inside the computer program.
  • the Japanese character font 41 and the English character font 42 are stored in a data storage portion not shown in the figure.
  • the circuit control portions LC1, LC2, LC3 and LC4 perform supervisory control of information regarding fires and the like from a plurality of terminal devices.
  • the display light 71 and the LCD 72 are light emitting means for displaying various types of information and located on the not-shown surface of the fire receiver RE1.
  • the display light 71 is, for example, an electric power source lamp, a fire indicating lamp, a test lamp, an abnormality indicating lamp, or the like.
  • the LCD 72 is a display capable of performing predetermined character display, and therefore displays detailed information relating to the location at which a fire has developed, and the like. Display may also be performed using symbols or marks as a substitute for the characters.
  • the display driver portion 70 drives the display light 71 and the LCD 72 in response to a pulse control signal output by the CPU 10.
  • a light emitting diode for example, is used as the display light 71.
  • a switching transistor is connected in series to the display light 71, and lighting control of the display light 71 is performed by turning the transistor on and off.
  • the LCD 72 uses a backlight method, and lighting control of the backlight is performed similarly to that of the light emitting diode discussed above.
  • the brightness controlling manual set switch 91 is a switch that directs the display light 71 and the LCD 72 to become darker, and conversely, brighter, and is located on the surface of the fire receiver RE1.
  • brightness changing means is structured by the CPU 10 and the ROM 20 in which the light emitting means such as the display light 71 and the LCD 72 are changed in brightness to have a given value.
  • the CPU 10 and the ROM 20 control the overall fire receiver RE1 in response to information on the state detected by the circuit control portions LC1, LC2, LC3 and LC4, and also structure supervisory controlling means in which state information is displayed in the LCD 72 by at least one language from among a plurality of languages.
  • the dip switch 51 forms language setting means in which at least one language from among the plurality of languages is set as a language which must be displayed in the LCD 72.
  • Fig. 2 shows the overall structure of a fire alarm system installed in a ship SP.
  • the fire receiver RE1 is installed in a pilothouse, the signal lines LP1 and LP2 are installed in a residence section, the signal line LP3 is installed in an engine room, and in addition, the signal line LP4 is installed on a vehicle deck.
  • Embodiment 1 is explained next with reference to the signal waveform diagram of Fig. 3.
  • the CPU 10 detects that the switch 91 has been turned on, and outputs a pulse control signal S1 having a duty ratio of 80% to the display driver portion 70, as shown in Fig. 3.
  • the display driver portion 70 accordingly applies a voltage V having an average voltage of 80% to the display light 71, and the display light 71 shines brightly.
  • the surrounding environment of the fire receiver RE1 becomes dark at night, and the display light 71 can be sufficiently seen even being set dark.
  • the display 71 is also made darker in order to eliminate the difficulty of seeing outside from the pilothouse due to the bright display 71 for cases in which the fire receiver RE1 is set up in the pilothouse of the ship.
  • the switch 91 is turned off.
  • the CPU 10 detects the off state of the switch 91, and outputs a pulse control signal S1 having a duty ratio of 30% to the display driver portion 70 as shown in Fig. 3.
  • the display driver portion 70 accordingly applies the voltage V having an average voltage of 30% to the display light 71 in response to the pulse control signal S1, and the display light 71 shines darkly.
  • the LCD 72 also shines brightly or darkly in response to the on / off operation of the switch 91, similar to the display light 71.
  • the brightness of the light emitting means such as the display light and the LCD in the fire receiver can be manually changed in accordance with Embodiment 1, and moreover, the operation for changing the brightness is easy.
  • the brightness of the light emitting means can be controlled by changing the duty ratio of the pulse control signal S1 in Embodiment 1, and therefore the brightness of the light emitting means can be regulated easily and in a non-stepwise manner without performing work for changing electrical components and the like.
  • two fonts are stored as font data in a data storage portion not shown in the figure, namely the Japanese character font 41 and the English character font 42, and the font to be used is set by the dip switch 51.
  • Words made using both of the fonts 41 and 42 are stored as terminal information in the display content table 60 such as terminal types like "Analog Smoke Detector", and installation location like "Guest Room Number 505", as shown in Figs. 4A to 4E. If a cause develops, which needs display, the word necessary is selected according to the font set by the dip switch 51 based on a program within the ROM 20 and displayed in the LCD 72 serving as the display means. Further, the selected word is printed by the printer 82. Similarly, for cases in which display of terminal information is necessary, a word is selected from within the display content table 60 based on the set state of the dip switch 51, and displayed in the LCD 72. Furthermore, the selected word is printed by the printer 82.
  • Figs. 4A to 4E are diagrams showing a comparison of Japanese words and English words in display examples for the LCD 72 in Embodiment 1.
  • Japanese character display is selected by the dip switch 51 in order to perform display using Japanese text. After Japanese character display is thus selected, Japanese character display will always be performed.
  • the term ", the date and time, and the like are displayed by using Japanese text during normal supervisory condition, as shown in the left side of Fig. 4A. If there is a pre-alarm, the term “ “”, the location name, the date and time, and the like are displayed by Japanese text as shown in the left side of Fig. 4B. For verification, display of the term “ “, the location name, the date and time, and the like is performed using Japanese text as shown in the left side of Fig. 4C. When there is a fire, the term “ “”, the location name, the date and time, and the like are displayed by using Japanese text, as shown in the left side of Fig. 4D. If there is no response from terminals as one of breakdowns, then display of the term " ", the location name, and the date and time are displayed by using Japanese text as shown in the left side of Fig. 4E.
  • English text display is selected by operating the dip switch 51 in order to perform display by English text when Japanese text is currently being displayed.
  • English text display is thereafter always performed after English text display has thus been selected.
  • the term "Systems Normal”, the date and time, and the like are displayed by using English text during normal supervisory condition, as shown in the right side of Fig. 4A. If there is a pre-alarm, the term “Pre-Alarm”, the location name, the date and time, and the like are displayed by English text as shown in the right side of Fig. 4B. For verification, display of the term “Verify” , the location name, the date and time, and the like is performed using English text as shown in the right side of Fig. 4C. When there is a fire, the term “Fire”, the location name, the date and time, and the like are displayed by using English text, as shown in the right side of Fig. 4D. If there is no response from terminals, then display of the term "No Answer", the location name, and the date and time are displayed by using English text as shown in the right side of Fig. 4E.
  • a term “ADDR.L3-03” denotes a terminal address which corresponds to a place where a cause is generated, which must be displayed by the fire receiver RE1.
  • "ADDR.L3-03" shows Address No. 3 of Loop No. 3, and display is performed without being dependent on the language in use, so that even if there is no terminal information, the installation location can be identified.
  • the display of state information in the fire receiver is made multi-lingual in accordance with Embodiment 1, and the state information is displayed in the language selected by the operator, and therefore response to a fire or the like can be performed immediately, even for cases in which a plurality of languages are used by the operators. This is therefore optimal if the nationality of the owners or the operators is not fixed, and for utilization in systems for ships that travel around the world.
  • the state of the dip switch 51 is referred to, and a distinction is made for which display language to use, and switching of the display language may be performed as needed. It is also possible to refer to the state of the dip switch 51 only when the power is turned on, and to store that state in the RAM 30, thus fixing the display language.
  • terminal type for the detectors and the like as terminal information is also made multi-lingual, for example " " displayed by Japanese text and "Analog Smoke Detector” displayed by English test, thus making it possible to accurately grasp the type of a device which detects a fire.
  • Embodiment 1 is also effective for cases in which the fire receiver is installed under an environment in which not only Japanese workers but also non-Japanese workers operate and supervise the fire receiver within Japan.
  • character fonts other than English character fonts may also be used as substitutes for the English character font.
  • three or more character fonts may also be prepared. It is necessary to add words corresponding to the program within the ROM 20 corresponding to the display causes or to take other measures in this case. The addition of words corresponding to the display causes can be performed easily by using a wrightable memory means such as an EEPROM as a substitute for the ROM 20. It is thus possible to transform English text to Chinese text, for example, or to German text, French text, and the like in accordance with this structure. Note that preparation is also necessary at this time for changing or adding character fonts.
  • changeover switches may be located on the surface of the fire receiver, thus realizing easy switching, when there are various languages in use by the operators who refer to the surface panel due to use mode of a ship.
  • the dip switch 51 may also be provided in a location that is not easily found within a housing in order to prevent the settings from being tampered, and to prevent easy switch over.
  • a flash memory not shown in the figures maybe prepared, and changes in the state of each type of terminal device, and operations on panel may each be stored in the flash memory chronologically as events.
  • a menu list is displayed in the LCD 72, an event log menu is selected, and in addition, event log display is selected by operation on the panel surface of the fire receiver RE1, then the most recent 100 events, for example, are displayed in the LCD 72 in chronological order. Scrolling display can also be performed by using a scroll key. Therefore, even if the event display data is large in comparison with the size of the LCD 72 display screen, the entire event can be confirmed by using the scroll key. Further, if event log printing is selected from the event log menu, then the most recent 100 events are printed consecutively from the printer 82.
  • non-display registration may be set for each event stored in the flash memory, and unnecessary event display can be inhibited.
  • the display content is thus simplified, and only the required events are displayed swiftly.
  • data for all of the events remains in the flash memory, an operator having specific operation qualifications can display all of the events by entering a password or the like, and the overall history can be reviewed.
  • a readout means such as a personal computer can be connected to a specific terminal of the fire receiver, and all of the event data within the flash memory can be read out without displaying the events on the LCD 72.
  • Operations for non-display of specific event data may be practiced when returning to a normal state after a fire has developed or a series of testing operations has been performed. Event data for the series can be made into non-display data collectively.
  • the number of events able to be displayed chronologically in the LCD 72 is not limited to 100, and can be suitably set.
  • non-volatile memory may also be used as a substitute for the flash memory.
  • Fig. 5 is a block diagram showing the structure of a fire receiver RE2 relating to Embodiment 2.
  • the fire receiver RE2 is basically the same as the fire receiver RE1 shown in Fig. 1, and differs from the fire receiver RE1 in that a brightness detecting means 92 is used as a substitute for the brightness controlling manual set switch 91, and that a ROM 21 is used as a substitute for the ROM 20.
  • the brightness detecting means 92 detects the brightness in the surrounding environment of the fire receiver RE2.
  • a computer program which makes the CPU 10 operate the fire receiver RE2 as discussed below is stored in the ROM 21.
  • the ROM 21 and the CPU 10 form a brightness controlling means for controlling the brightness of the light emitting means in response to the brightness in the surrounding environment of the fire receiver RE2 detected by the brightness detecting means 92.
  • the brightness controlling means increases the brightness of the light emitting means if the surrounding environment of the fire receiver RE2 is bright, and conversely decreases the brightness of the light emitting means if the surrounding environment of the fire receiver RE2 is dark.
  • the brightness detecting means 92 detects the brightness in the surrounding environment of the fire receiver RE2 and outputs a signal that indicates the brightness.
  • the CPU 10 determines that the surrounding environment of the fire receiver RE2 is bright from this signal, and outputs the pulse control signal S1 having an 80% duty ratio to the display driver portion 70 as shown in Fig. 3.
  • the display driver portion 70 thus applies the voltage V having an average voltage of 80% to the display light 71, and the display light 71 shines brightly.
  • the display light 71 therefore shines brightly so that display of the display light 71 can be seen even if the surrounding environment of the fire receiver RE2 is bright.
  • the CPU 10 determines that the surrounding environment of the fire receiver RE2 is dark, and outputs the pulse control signal S1 having a 30% duty ratio to the display driver portion 70 as shown in Fig. 3.
  • the display driver portion 70 thus applies the voltage V having an average voltage of 30% to the display light 71, and the display light 71 shines darkly.
  • the surrounding environment of the fire receiver RE2 is dark, and therefore the fire receiver RE2 can be seen sufficiently even if the display light 71 is dark.
  • the fire receiver RE2 is installed in a pilothouse of a ship, the difficulty in seeing outside when looking from the pilothouse due to the bright display light 71 can be eliminated.
  • the LCD 72 also shines brightly and darkly in response to the brightness of the surrounding environment of the fire receiver RE2, similar to the display light 71.
  • the brightness of the light emitting means such as the display light and the LCD display in the fire receiver can be automatically regulated in the fire receiver RE2.
  • the brightness of the light emitting means can be controlled by changing the duty ratio of the pulse control signal S1 with the fire receiver RE2, and therefore the brightness of the light emitting means can be regulated easily and in a non-stepwise manner.
  • the value of a DC voltage applied to the above light emitting means may also be changed as a substitute for adjusting the brightness of the light emitting means by changing the duty ratio of the pulse control signal S1 applied to the light emitting means in Embodiments 1 and 2.
  • a resistor having a predetermined value may be connected in series with the light emitting means, and a transistor may be connected in parallel with the resistor.
  • the value of the voltage applied to the light emitting means may be changed by turning the transistor on and off.
  • a light emitting diode or an LCD can be used as the light emitting means.
  • a detecting means for detecting fires and breakdowns is established in Embodiments 1 and 2, and a forcing means may also be formed for forcibly controlling the brightness controlling means so that the light emitting means emits light at a predetermined brightness if the detecting means detects a fire or a breakdown, even if the surrounding environment is dark. The people in charge can thus swiftly understand the display content when a fire or a breakdown develops.
  • the forcing means can be structured by the ROM 21 and the CPU 10.
  • the dark lighting is explained in each of the embodiments as being performed by applying the pulse control signal S1 having a 30% duty ratio to the display light 71, other percentages may also be employed. Furthermore, percentages other than 80% may be employed for the duty ratio of the pulse control signal S1 applied to the display means 71 when performing bright lighting, provided that the value of the duty ratio is larger than that used during dark lighting.
  • switching between bright lighting and dark lighting is performed by changing the duty ratio of the pulse control signal S1 input to the display light 71 in each embodiment, but switching between bright lighting and dark lighting may also be performed by changing the value of a voltage applied to, or an electric current made to flow in, the display light 71.
  • the distinction between bright and dark lighting is made by changing the duty ratio, the light which is turned on cannot be taken in by human eyes if the width of the pulse applied to the display light 71 becomes short, and therefore the value of the voltage or the electric current of the pulse during application may be lowered in order to achieve a darker lighting.
  • the range of possible settings is thus made wide by combining control in which only the duty ratio is changed, and control in which the value of the voltage and the value of the electric current are changed.
  • the present invention has an effect such that the brightness of the light emitting means such as the display light or the LCD display in the fire receiver can be adjusted from outside the fire receiver, and in addition, the brightness adjustment operation is easy.
  • the present invention has an effect such that display content of the fire receiver is easily understood by non-Japanese operators for cases in which the fire receiver is installed in an environment under which it must be operated or observed by the non-Japanese as well as the Japanese.

Abstract

A fire receiver includes: light emitting device; supervisory control apparatus for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information by causing the light emitting device to emit light; and brightness changing device for changing the brightness of the light emitting device in response to the brightness of the surrounding environment.

Description

    BACKGROUND OF THE INVENTION Field of the Invention:
  • The present invention relates to a fire receiver.
  • Description of the Related Art:
  • A conventional fire receiver is normally installed in a building management office, afire control center, or the like. Light emitting means such as lamps for performing various types of display are located on a surface of the fire receiver, along with a display portion which displays a variety of information such as the existence of a normal monitoring state, detector type, and occurrence of a fire. The brightness in the vicinity of the fire receiver is nearly constant in the management office and in the fire control center, and monitoring of corresponding zones can be performed by looking at the lamps, the display portion, or the like.
  • For cases in which the fire receiver is mounted in a ship, it is often installed in the pilothouse, but the brightness within the pilothouse changes greatly between day and night. The inside of the pilothouse is maintained in a dark state so as to be able to see the outside through glass windows in the pilothouse for cases in which the ship sails during the night. If light emitting devices such as lamps on the fire receiver exist within the pilothouse, then light from the lamps and the like will be reflected by the glass windows of the pilothouse, and enter the field of vision of the ship's pilot, making navigation more difficult.
  • However, the brightness of the light emitting means disposed on the surface of a conventional fire receiver cannot be controlled from outside of the fire receiver, and therefore the navigation difficulties cannot be eliminated.
  • Further, it is sufficient to make the display portion of the fire receiver display in Japanese for cases in which the fire receiver is normally used within Japan. However, there is a problem for cases in which the fire receiver is installed in a ship, or the like, in that it is often difficult for non-Japanese crew members to understand the display if the display portion only displays Japanese, which is inconvenient. This problem develops similarly outside of the environment of a ship, for example, if the fire receiver is installed in a company or the like that has a large number of non-Japanese employees.
  • SUMMARY OF THE INVENTION
  • An object of the present invention is to provide a fire receiver in which the brightness of light emitting means such as a display light or an LCD display in the fire receiver can be adjusted from outside the fire receiver, and in addition, the brightness adjustment operation is easy.
  • Further, another object of the present invention is to provide a fire receiver in which display content of the fire receiver is easily understood by non-Japanese operators for cases in which the fire receiver is installed in an environment under which it must be operated or monitored by the non-Japanese as well as the Japanese.
  • According to a first aspect of the present invention, there is provided a fire receiver comprising: light emitting means; supervisory control means for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information by causing the light emitting means to emit light; and brightness changing means for changing the brightness of the light emitting means in response to the brightness of the surrounding environment.
  • According to a second aspect of the present invention, there is provided a fire receiver comprising: light emitting means; language setting means for selecting one language from among a plurality of languages set up in advance; and supervisory control means for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information in the displaying means, and in the language set by the language setting means.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Fig. 1 is a block diagram showing the structure of a fire receiver RE1 according to Embodiment 1 of the present invention;
  • Fig. 2 is a diagram showing the overall configuration of a fire alarm system installed in a ship;
  • Fig. 3 is a signal waveform diagram showing the operation of Embodiment 1;
  • Figs. 4A to 4E are diagrams showing examples of information displayed in a display portion in Embodiment 1; and
  • Fig. 5 is a block diagram showing the structure of a fire receiver RE2 according to Embodiment 2.
  • DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1:
  • Fig. 1 is a block diagram showing the structure of a fire receiver RE1 according to Embodiment 1 of the present invention. The fire receiver RE1 has a bilingual system capable of displaying Japanese and English texts in a display portion by using an LCD 72 on the surface of the fire receiver, which is used in a ship.
  • The fire receiver RE1 performs supervisory control on an overall fire alarm equipment including a plurality of the fire detectors, and has: a CPU (central processing unit) 10; a ROM 20; a RAM 30; a Japanese character font 41; an English character font 42; a dip switch 51; a dip switch IF 52; a display content table 60; a display driver portion 70; a display light 71; an LCD 72; printer driver 81; a printer 82; and a brightness controlling manual set switch 91.
  • Further, the fire receiver RE1 has: a first circuit control portion LC1; a second circuit control portion LC2; a third circuit control portion LC3; and a fourth circuit control portion LC4. The circuit control portions LC1, LC2, LC3 and LC4 are connected to detectors S11, S21, S31 and S41 etc, respectively, through signal lines LP1, LP2, LP3 and LP4 formed in a loop circuit.
  • The CPU 10 is for controlling the overall fire receiver RE1, the ROM 20 is a memory in which a computer program making the CPU 10 operate the fire receiver RE1 described later is stored, and the RAM30 is a working memory. Note that the words such as "Systems Normal", "Fire" and "Verify", which are described later, are stored inside the computer program.
  • The Japanese character font 41 and the English character font 42 are stored in a data storage portion not shown in the figure.
  • The circuit control portions LC1, LC2, LC3 and LC4 perform supervisory control of information regarding fires and the like from a plurality of terminal devices.
  • The display light 71 and the LCD 72 are light emitting means for displaying various types of information and located on the not-shown surface of the fire receiver RE1. The display light 71 is, for example, an electric power source lamp, a fire indicating lamp, a test lamp, an abnormality indicating lamp, or the like. Further, the LCD 72 is a display capable of performing predetermined character display, and therefore displays detailed information relating to the location at which a fire has developed, and the like. Display may also be performed using symbols or marks as a substitute for the characters.
  • The display driver portion 70 drives the display light 71 and the LCD 72 in response to a pulse control signal output by the CPU 10. A light emitting diode, for example, is used as the display light 71. Although not shown in detail, a switching transistor is connected in series to the display light 71, and lighting control of the display light 71 is performed by turning the transistor on and off. Further, the LCD 72 uses a backlight method, and lighting control of the backlight is performed similarly to that of the light emitting diode discussed above.
  • The brightness controlling manual set switch 91 is a switch that directs the display light 71 and the LCD 72 to become darker, and conversely, brighter, and is located on the surface of the fire receiver RE1.
  • Note that brightness changing means is structured by the CPU 10 and the ROM 20 in which the light emitting means such as the display light 71 and the LCD 72 are changed in brightness to have a given value.
  • The CPU 10 and the ROM 20 control the overall fire receiver RE1 in response to information on the state detected by the circuit control portions LC1, LC2, LC3 and LC4, and also structure supervisory controlling means in which state information is displayed in the LCD 72 by at least one language from among a plurality of languages.
  • The dip switch 51 forms language setting means in which at least one language from among the plurality of languages is set as a language which must be displayed in the LCD 72.
  • Fig. 2 shows the overall structure of a fire alarm system installed in a ship SP.
  • The fire receiver RE1 is installed in a pilothouse, the signal lines LP1 and LP2 are installed in a residence section, the signal line LP3 is installed in an engine room, and in addition, the signal line LP4 is installed on a vehicle deck.
  • The operation of Embodiment 1 is explained next with reference to the signal waveform diagram of Fig. 3.
  • First, if the surrounding environment of the fire receiver RE1 is bright in the daytime, then an operator manually turns on the brightness controlling manual set switch 91 so as to see the display of the display light 91 even though it is bright. The CPU 10 detects that the switch 91 has been turned on, and outputs a pulse control signal S1 having a duty ratio of 80% to the display driver portion 70, as shown in Fig. 3. The display driver portion 70 accordingly applies a voltage V having an average voltage of 80% to the display light 71, and the display light 71 shines brightly.
  • On the other hand, the surrounding environment of the fire receiver RE1 becomes dark at night, and the display light 71 can be sufficiently seen even being set dark. Moreover, the display 71 is also made darker in order to eliminate the difficulty of seeing outside from the pilothouse due to the bright display 71 for cases in which the fire receiver RE1 is set up in the pilothouse of the ship. In this case the switch 91 is turned off. The CPU 10 detects the off state of the switch 91, and outputs a pulse control signal S1 having a duty ratio of 30% to the display driver portion 70 as shown in Fig. 3. The display driver portion 70 accordingly applies the voltage V having an average voltage of 30% to the display light 71 in response to the pulse control signal S1, and the display light 71 shines darkly.
  • The LCD 72 also shines brightly or darkly in response to the on / off operation of the switch 91, similar to the display light 71.
  • The brightness of the light emitting means such as the display light and the LCD in the fire receiver can be manually changed in accordance with Embodiment 1, and moreover, the operation for changing the brightness is easy.
  • Further, the brightness of the light emitting means can be controlled by changing the duty ratio of the pulse control signal S1 in Embodiment 1, and therefore the brightness of the light emitting means can be regulated easily and in a non-stepwise manner without performing work for changing electrical components and the like.
  • Furthermore, two fonts are stored as font data in a data storage portion not shown in the figure, namely the Japanese character font 41 and the English character font 42, and the font to be used is set by the dip switch 51.
  • Words made using both of the fonts 41 and 42 are stored as terminal information in the display content table 60 such as terminal types like "Analog Smoke Detector", and installation location like "Guest Room Number 505", as shown in Figs. 4A to 4E. If a cause develops, which needs display, the word necessary is selected according to the font set by the dip switch 51 based on a program within the ROM 20 and displayed in the LCD 72 serving as the display means. Further, the selected word is printed by the printer 82. Similarly, for cases in which display of terminal information is necessary, a word is selected from within the display content table 60 based on the set state of the dip switch 51, and displayed in the LCD 72. Furthermore, the selected word is printed by the printer 82.
  • Figs. 4A to 4E are diagrams showing a comparison of Japanese words and English words in display examples for the LCD 72 in Embodiment 1.
  • A case of performing display in the LCD 72 using Japanese words will be explained first.
  • Japanese character display is selected by the dip switch 51 in order to perform display using Japanese text. After Japanese character display is thus selected, Japanese character display will always be performed.
  • The term "
    Figure 00070001
    ", the date and time, and the like are displayed by using Japanese text during normal supervisory condition, as shown in the left side of Fig. 4A. If there is a pre-alarm, the term "
    Figure 00080001
    Figure 00080002
    ", the location name, the date and time, and the like are displayed by Japanese text as shown in the left side of Fig. 4B. For verification, display of the term "
    Figure 00080003
    ", the location name, the date and time, and the like is performed using Japanese text as shown in the left side of Fig. 4C. When there is a fire, the term "
    Figure 00080004
    ", the location name, the date and time, and the like are displayed by using Japanese text, as shown in the left side of Fig. 4D. If there is no response from terminals as one of breakdowns, then display of the term "
    Figure 00080005
    ", the location name, and the date and time are displayed by using Japanese text as shown in the left side of Fig. 4E.
  • A case of performing display in the LCD 72 by using English words will then be explained.
  • English text display is selected by operating the dip switch 51 in order to perform display by English text when Japanese text is currently being displayed. English text display is thereafter always performed after English text display has thus been selected.
  • The term "Systems Normal", the date and time, and the like are displayed by using English text during normal supervisory condition, as shown in the right side of Fig. 4A. If there is a pre-alarm, the term "Pre-Alarm", the location name, the date and time, and the like are displayed by English text as shown in the right side of Fig. 4B. For verification, display of the term "Verify" , the location name, the date and time, and the like is performed using English text as shown in the right side of Fig. 4C. When there is a fire, the term "Fire", the location name, the date and time, and the like are displayed by using English text, as shown in the right side of Fig. 4D. If there is no response from terminals, then display of the term "No Answer", the location name, and the date and time are displayed by using English text as shown in the right side of Fig. 4E.
  • Note that, among the display content in Figs. 4B to 4E, a term "ADDR.L3-03" denotes a terminal address which corresponds to a place where a cause is generated, which must be displayed by the fire receiver RE1. In this display, "ADDR.L3-03" shows Address No. 3 of Loop No. 3, and display is performed without being dependent on the language in use, so that even if there is no terminal information, the installation location can be identified.
  • The display of state information in the fire receiver is made multi-lingual in accordance with Embodiment 1, and the state information is displayed in the language selected by the operator, and therefore response to a fire or the like can be performed immediately, even for cases in which a plurality of languages are used by the operators. This is therefore optimal if the nationality of the owners or the operators is not fixed, and for utilization in systems for ships that travel around the world.
  • Note that every time a cause that needs display develops in Embodiment 1, the state of the dip switch 51 is referred to, and a distinction is made for which display language to use, and switching of the display language may be performed as needed. It is also possible to refer to the state of the dip switch 51 only when the power is turned on, and to store that state in the RAM 30, thus fixing the display language.
  • Further, when displaying the fire location after a fire develops, display of the location of the detectors as the terminal information is made multi-lingual, with display of "
    Figure 00090001
    5 0 5
    Figure 00090002
    " in Japanese text and "Guest Room Number 505" in English text, for example. Confirmation of the location at which the fire has developed can therefore be performed accurately.
  • In addition, display of the terminal type for the detectors and the like as terminal information is also made multi-lingual, for example "
    Figure 00100001
    " displayed by Japanese text and "Analog Smoke Detector" displayed by English test, thus making it possible to accurately grasp the type of a device which detects a fire.
  • Note that Embodiment 1 is also effective for cases in which the fire receiver is installed under an environment in which not only Japanese workers but also non-Japanese workers operate and supervise the fire receiver within Japan.
  • Further, character fonts other than English character fonts may also be used as substitutes for the English character font. In addition, three or more character fonts may also be prepared. It is necessary to add words corresponding to the program within the ROM 20 corresponding to the display causes or to take other measures in this case. The addition of words corresponding to the display causes can be performed easily by using a wrightable memory means such as an EEPROM as a substitute for the ROM 20. it is thus possible to transform English text to Chinese text, for example, or to German text, French text, and the like in accordance with this structure. Note that preparation is also necessary at this time for changing or adding character fonts.
  • Note that although language switching is performed by operating the dip switch 51 in Embodiment 1, changeover switches may be located on the surface of the fire receiver, thus realizing easy switching, when there are various languages in use by the operators who refer to the surface panel due to use mode of a ship. Furthermore, the dip switch 51 may also be provided in a location that is not easily found within a housing in order to prevent the settings from being tampered, and to prevent easy switch over.
  • Further, a flash memory not shown in the figures maybe prepared, and changes in the state of each type of terminal device, and operations on panel may each be stored in the flash memory chronologically as events.
  • If a menu list is displayed in the LCD 72, an event log menu is selected, and in addition, event log display is selected by operation on the panel surface of the fire receiver RE1, then the most recent 100 events, for example, are displayed in the LCD 72 in chronological order. Scrolling display can also be performed by using a scroll key. Therefore, even if the event display data is large in comparison with the size of the LCD 72 display screen, the entire event can be confirmed by using the scroll key. Further, if event log printing is selected from the event log menu, then the most recent 100 events are printed consecutively from the printer 82.
  • Furthermore, non-display registration may be set for each event stored in the flash memory, and unnecessary event display can be inhibited. The display content is thus simplified, and only the required events are displayed swiftly. However, data for all of the events remains in the flash memory, an operator having specific operation qualifications can display all of the events by entering a password or the like, and the overall history can be reviewed. Further, a readout means such as a personal computer can be connected to a specific terminal of the fire receiver, and all of the event data within the flash memory can be read out without displaying the events on the LCD 72.
  • Operations for non-display of specific event data may be practiced when returning to a normal state after a fire has developed or a series of testing operations has been performed. Event data for the series can be made into non-display data collectively.
  • The number of events able to be displayed chronologically in the LCD 72 is not limited to 100, and can be suitably set.
  • Further, all types of non-volatile memory may also be used as a substitute for the flash memory.
  • Embodiment 2:
  • Fig. 5 is a block diagram showing the structure of a fire receiver RE2 relating to Embodiment 2.
  • The fire receiver RE2 is basically the same as the fire receiver RE1 shown in Fig. 1, and differs from the fire receiver RE1 in that a brightness detecting means 92 is used as a substitute for the brightness controlling manual set switch 91, and that a ROM 21 is used as a substitute for the ROM 20.
  • The brightness detecting means 92 detects the brightness in the surrounding environment of the fire receiver RE2.
  • A computer program which makes the CPU 10 operate the fire receiver RE2 as discussed below is stored in the ROM 21.
  • Further, the ROM 21 and the CPU 10 form a brightness controlling means for controlling the brightness of the light emitting means in response to the brightness in the surrounding environment of the fire receiver RE2 detected by the brightness detecting means 92. The brightness controlling means increases the brightness of the light emitting means if the surrounding environment of the fire receiver RE2 is bright, and conversely decreases the brightness of the light emitting means if the surrounding environment of the fire receiver RE2 is dark.
  • Operation of the fire receiver RE2 will then be explained.
  • First, in the daytime, the brightness detecting means 92 detects the brightness in the surrounding environment of the fire receiver RE2 and outputs a signal that indicates the brightness. The CPU 10 determines that the surrounding environment of the fire receiver RE2 is bright from this signal, and outputs the pulse control signal S1 having an 80% duty ratio to the display driver portion 70 as shown in Fig. 3. The display driver portion 70 thus applies the voltage V having an average voltage of 80% to the display light 71, and the display light 71 shines brightly. The display light 71 therefore shines brightly so that display of the display light 71 can be seen even if the surrounding environment of the fire receiver RE2 is bright.
  • On the other hand, during the night, the CPU 10 determines that the surrounding environment of the fire receiver RE2 is dark, and outputs the pulse control signal S1 having a 30% duty ratio to the display driver portion 70 as shown in Fig. 3. The display driver portion 70 thus applies the voltage V having an average voltage of 30% to the display light 71, and the display light 71 shines darkly. The surrounding environment of the fire receiver RE2 is dark, and therefore the fire receiver RE2 can be seen sufficiently even if the display light 71 is dark. Moreover, even if the fire receiver RE2 is installed in a pilothouse of a ship, the difficulty in seeing outside when looking from the pilothouse due to the bright display light 71 can be eliminated.
  • The LCD 72 also shines brightly and darkly in response to the brightness of the surrounding environment of the fire receiver RE2, similar to the display light 71.
  • The brightness of the light emitting means such as the display light and the LCD display in the fire receiver can be automatically regulated in the fire receiver RE2.
  • Further, the brightness of the light emitting means can be controlled by changing the duty ratio of the pulse control signal S1 with the fire receiver RE2, and therefore the brightness of the light emitting means can be regulated easily and in a non-stepwise manner.
  • Note that the value of a DC voltage applied to the above light emitting means may also be changed as a substitute for adjusting the brightness of the light emitting means by changing the duty ratio of the pulse control signal S1 applied to the light emitting means in Embodiments 1 and 2. For example, a resistor having a predetermined value may be connected in series with the light emitting means, and a transistor may be connected in parallel with the resistor. The value of the voltage applied to the light emitting means may be changed by turning the transistor on and off.
  • Furthermore, a light emitting diode or an LCD can be used as the light emitting means.
  • In addition, a detecting means for detecting fires and breakdowns is established in Embodiments 1 and 2, and a forcing means may also be formed for forcibly controlling the brightness controlling means so that the light emitting means emits light at a predetermined brightness if the detecting means detects a fire or a breakdown, even if the surrounding environment is dark. The people in charge can thus swiftly understand the display content when a fire or a breakdown develops. The forcing means can be structured by the ROM 21 and the CPU 10.
  • Further, although the dark lighting is explained in each of the embodiments as being performed by applying the pulse control signal S1 having a 30% duty ratio to the display light 71, other percentages may also be employed. Furthermore, percentages other than 80% may be employed for the duty ratio of the pulse control signal S1 applied to the display means 71 when performing bright lighting, provided that the value of the duty ratio is larger than that used during dark lighting.
  • In addition, switching between bright lighting and dark lighting is performed by changing the duty ratio of the pulse control signal S1 input to the display light 71 in each embodiment, but switching between bright lighting and dark lighting may also be performed by changing the value of a voltage applied to, or an electric current made to flow in, the display light 71. In particular, for the cases in which the distinction between bright and dark lighting is made by changing the duty ratio, the light which is turned on cannot be taken in by human eyes if the width of the pulse applied to the display light 71 becomes short, and therefore the value of the voltage or the electric current of the pulse during application may be lowered in order to achieve a darker lighting. The range of possible settings is thus made wide by combining control in which only the duty ratio is changed, and control in which the value of the voltage and the value of the electric current are changed.
  • As described above, the present invention has an effect such that the brightness of the light emitting means such as the display light or the LCD display in the fire receiver can be adjusted from outside the fire receiver, and in addition, the brightness adjustment operation is easy.
  • Also, the present invention has an effect such that display content of the fire receiver is easily understood by non-Japanese operators for cases in which the fire receiver is installed in an environment under which it must be operated or observed by the non-Japanese as well as the Japanese.

Claims (11)

  1. A fire receiver comprising:
    light emitting means;
    supervisory control means for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information by causing the light emitting means to emit light; and
    brightness changing means for changing the brightness of the light emitting means in response to the brightness of the surrounding environment.
  2. A fire receiver according to claim 1 wherein the brightness changing means contains a manual set switch, the brightness of the light emitting means being changed by operating the manual set switch.
  3. A fire receiver according to claim 1 wherein the brightness changing means comprises:
    a brightness detecting means for detecting the brightness of the surrounding environment; and
    a brightness controlling means for controlling the light emitting means to have a predetermined brightness in response to the brightness detected by the brightness detecting means.
  4. A fire receiver according to claim 1 further comprising:
    a detecting means for detecting abnormality group consisting of at least either a fire or a breakdown; and
    a forcing means for forcibly controlling the brightness changing means such that the light emitting means emits light at a predetermined brightness if the detecting means detects an abnormality, regardless of the brightness of the surrounding environment.
  5. A fire receiver according to claim 1 wherein the brightness changing means changes the brightness of the light emitting means by changing the duty ratio of a pulse control signal used for driving the light emitting means.
  6. A fire receiver according to claim 1 wherein the brightness changing means changes the brightness of the light emitting means by changing the value of a DC voltage used for driving the light emitting means.
  7. A fire receiver according to claim 1 wherein the light emitting means is a light emitting diode.
  8. A fire receiver according to claim 1 wherein the light emitting means is a backlight.
  9. A fire receiver according to claim 1 further comprising a surface panel to which the light emitting means is attached.
  10. A fire receiver comprising:
    light emitting means;
    language setting means for selecting one language from among a plurality of languages set up in advance; and
    supervisory control means for performing supervisory control based on information from a plurality of terminal devices such as fire detectors, and for displaying the information in the displaying means with the language set by the language setting means.
  11. A fire receiver according to claim 10 further comprising a display content table in which state information showing the state of the plurality of terminal devices is stored in each of the plurality of languages, the supervisory control means reading out the state information from the display content table to display the state information in the displaying means.
EP02255711.0A 2001-08-22 2002-08-15 Central fire alarm receiver Expired - Fee Related EP1288880B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2001251238A JP2003067857A (en) 2001-08-22 2001-08-22 Fire alarm receiver
JP2001251237 2001-08-22
JP2001251238 2001-08-22
JP2001251237A JP2003067859A (en) 2001-08-22 2001-08-22 Fire alarm receiver

Publications (3)

Publication Number Publication Date
EP1288880A2 true EP1288880A2 (en) 2003-03-05
EP1288880A3 EP1288880A3 (en) 2003-10-29
EP1288880B1 EP1288880B1 (en) 2014-07-16

Family

ID=26620771

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02255711.0A Expired - Fee Related EP1288880B1 (en) 2001-08-22 2002-08-15 Central fire alarm receiver

Country Status (5)

Country Link
US (1) US6958700B2 (en)
EP (1) EP1288880B1 (en)
KR (1) KR100601072B1 (en)
CN (1) CN1407514A (en)
NO (1) NO331056B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8319625B2 (en) * 2005-09-01 2012-11-27 Simplexgrinnell Lp Fire alarm textual notification related application
JP4740744B2 (en) * 2006-01-12 2011-08-03 能美防災株式会社 Disaster prevention system
US8330625B2 (en) * 2007-03-30 2012-12-11 Honeywell International Inc. Aircraft systems with flight management systems that display reports
JP2009086713A (en) * 2007-09-27 2009-04-23 Brother Ind Ltd Apparatus for reading mobile wireless tag information
US20100090856A1 (en) * 2008-10-10 2010-04-15 Juei-Chao Chen Emergency alarming apparatus
JP5896847B2 (en) * 2012-07-05 2016-03-30 能美防災株式会社 Fire receiver
US9728052B2 (en) 2013-04-22 2017-08-08 Electronics And Telecommunications Research Institute Digital signage system and emergency alerting method using same
CA3148692C (en) 2013-10-07 2023-09-26 Google Llc Smart-home hazard detector providing context specific features and/or pre-alarm configurations
KR102248897B1 (en) 2020-07-14 2021-05-04 정종현 Seismic fire receive panel with vibration detection function
KR102353417B1 (en) 2021-06-11 2022-01-20 주식회사 에스앤와이시스템 Vibration detection smart seismic isolator
KR102428219B1 (en) 2021-07-05 2022-08-02 김경수 System for AIoT fire receiver
KR20230066916A (en) 2021-11-08 2023-05-16 현대인프라코어 주식회사 Signal receiving apparatus for fire monitoring with hybrid communication module
KR102537673B1 (en) 2022-06-20 2023-05-30 주식회사 에스앤와이시스템 Vibration detection smart seismic isolator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929936A (en) 1988-03-21 1990-05-29 Home Security Systems, Inc. LED illuminated sign
US5057818A (en) 1991-04-29 1991-10-15 Stellar Systems Incorporated Security map display and alarm monitor
EP0716401A1 (en) 1994-12-05 1996-06-12 Motorola, Inc. Data processing system and method therefor
JPH11136723A (en) 1997-10-27 1999-05-21 Nec Shizuoka Ltd Radio selection call receiver
GB2341033A (en) 1998-06-29 2000-03-01 Lg Electronics Inc Auto_adjustment of colour temperature and brightness of a display

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3651511A (en) * 1968-02-05 1972-03-21 Stewart Warner Corp Traveling message display
JPS5683895U (en) * 1979-12-01 1981-07-06
JPS6157814A (en) * 1984-08-29 1986-03-24 Hitachi Ltd Electronic instrument board
CN87213226U (en) 1987-09-06 1988-03-30 周云正 Automatic brightness-adjustable desk lamp
KR940001567B1 (en) * 1991-09-18 1994-02-24 삼성전자 주식회사 Phrase information indicating device
JPH06196272A (en) * 1992-12-25 1994-07-15 Kuroi Electric Ind Co Guidfe lamp device
JPH07309171A (en) * 1994-05-16 1995-11-28 Zexel Corp Lighting control device of operation panel for vehicle
US5760760A (en) * 1995-07-17 1998-06-02 Dell Usa, L.P. Intelligent LCD brightness control system
US5933130A (en) * 1996-07-26 1999-08-03 Wagner; Roger Anti-eye strain apparatus and method
US6471087B1 (en) * 1997-07-31 2002-10-29 Larry Shusterman Remote patient monitoring system with garment and automated medication dispenser
US6243068B1 (en) * 1998-05-29 2001-06-05 Silicon Graphics, Inc. Liquid crystal flat panel display with enhanced backlight brightness and specially selected light sources
CN2382076Y (en) 1998-11-27 2000-06-07 营口报警设备总厂 Fire alarm linking controller
US6259981B1 (en) * 1999-06-17 2001-07-10 Thomas J. Wilcosky Caution/warning system for displaying system malfunctions/faults in a night-time viewing mode
KR200171993Y1 (en) * 1999-09-03 2000-03-15 로얄정보기술주식회사 An integrated control system for measuring an environment in a tunnel and watching an occurrence of a fire and lighting control

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4929936A (en) 1988-03-21 1990-05-29 Home Security Systems, Inc. LED illuminated sign
US5057818A (en) 1991-04-29 1991-10-15 Stellar Systems Incorporated Security map display and alarm monitor
EP0716401A1 (en) 1994-12-05 1996-06-12 Motorola, Inc. Data processing system and method therefor
JPH11136723A (en) 1997-10-27 1999-05-21 Nec Shizuoka Ltd Radio selection call receiver
GB2341033A (en) 1998-06-29 2000-03-01 Lg Electronics Inc Auto_adjustment of colour temperature and brightness of a display

Also Published As

Publication number Publication date
US6958700B2 (en) 2005-10-25
CN1407514A (en) 2003-04-02
US20030038726A1 (en) 2003-02-27
KR20030017338A (en) 2003-03-03
NO20023936L (en) 2003-02-24
KR100601072B1 (en) 2006-07-19
NO331056B1 (en) 2011-09-26
NO20023936D0 (en) 2002-08-19
EP1288880B1 (en) 2014-07-16
EP1288880A3 (en) 2003-10-29

Similar Documents

Publication Publication Date Title
EP1288880B1 (en) Central fire alarm receiver
EP3498647B1 (en) Method and system for detecting elevator car operating panel condition
JP3053758B2 (en) Elevator car operation panel
KR102245401B1 (en) Electric scooter
US10832557B2 (en) Operating a fire alarm system
US10636390B2 (en) Display integrity system for ICA monitoring and annunciation for certified aeronautical applications running on a commercial device
KR102237862B1 (en) Display board safety module that monitors the current consumption to prevent fire and induce safe operation of large LED display system
CN213935450U (en) Dynamic and/or adaptive escape path indicating system
WO2021094189A1 (en) Dynamic and/or adaptive signposting system
US8255067B2 (en) Plant operation system
CN105404029B (en) The method for predicting the measure and control device liquid crystal display panel service life
KR101963793B1 (en) LED display board system setting pixel display method and scanning method by automatic pixel scan
JP2003345325A (en) Operation display device
US9830863B1 (en) Content-based selectable area brightness control for displays
KR20220056263A (en) Active road sign and control method thereof
KR102517479B1 (en) Display device in switchboard and switchboard
DE102020100045A1 (en) Method and vehicle for adapting representations on displays in vehicles
JP2000112521A (en) Warning display device
CN211240216U (en) Vehicle-mounted indicator lamp circuit and vehicle
CN112135087A (en) Screen information monitoring method and device, network camera and storage medium
JP2003067859A (en) Fire alarm receiver
WO2020208819A1 (en) Sign display device and sign display switching method
DE202022100265U1 (en) safety light
Misiewicz Design requirements for hazardous gas alarm systems
GB2426366A (en) Call point for an alarm system

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 08B 5/36 B

Ipc: 7G 08B 25/14 B

Ipc: 7G 08B 17/00 A

17P Request for examination filed

Effective date: 20040220

AKX Designation fees paid

Designated state(s): DE FR GB SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G08B 25/00 20060101ALI20140114BHEP

Ipc: G08B 25/14 20060101ALI20140114BHEP

Ipc: G08B 17/00 20060101AFI20140114BHEP

INTG Intention to grant announced

Effective date: 20140130

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60246436

Country of ref document: DE

Effective date: 20140821

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140813

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140813

Year of fee payment: 13

Ref country code: FR

Payment date: 20140808

Year of fee payment: 13

Ref country code: SE

Payment date: 20140826

Year of fee payment: 13

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60246436

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20150417

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60246436

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150816

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150815

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831