EP1287107A1 - Compositions pour vaisselle - Google Patents
Compositions pour vaisselleInfo
- Publication number
- EP1287107A1 EP1287107A1 EP01933912A EP01933912A EP1287107A1 EP 1287107 A1 EP1287107 A1 EP 1287107A1 EP 01933912 A EP01933912 A EP 01933912A EP 01933912 A EP01933912 A EP 01933912A EP 1287107 A1 EP1287107 A1 EP 1287107A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- particles
- tablet according
- sodium tripolyphosphate
- sodium
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/16—Organic compounds
- C11D3/20—Organic compounds containing oxygen
- C11D3/2072—Aldehydes-ketones
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D17/00—Detergent materials or soaps characterised by their shape or physical properties
- C11D17/0047—Detergents in the form of bars or tablets
- C11D17/0065—Solid detergents containing builders
- C11D17/0073—Tablets
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D3/00—Other compounding ingredients of detergent compositions covered in group C11D1/00
- C11D3/02—Inorganic compounds ; Elemental compounds
- C11D3/04—Water-soluble compounds
- C11D3/06—Phosphates, including polyphosphates
-
- C—CHEMISTRY; METALLURGY
- C11—ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
- C11D—DETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
- C11D1/00—Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
- C11D1/02—Anionic compounds
- C11D1/12—Sulfonic acids or sulfuric acid esters; Salts thereof
- C11D1/14—Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
- C11D1/146—Sulfuric acid esters
Definitions
- the present invention is in the field of machine dishwashing. More specifically, the invention encompasses automatic dishwashing tablets .
- a re-current problem with tablets is to obtain a tablet that dissolves quickly when added to the main wash of the machine but with sufficient strength so it does not crumble on storage or handling.
- EP-A-264, 701 describe machine dishwashing tablets comprising anhydrous and hydrated metasilicates, anhydrous triphosphate, active chlorine compounds and a tabletting aid consisting of a mixture of sodium acetate and spray-dried sodium zeolite. The specification teaches in warm water at least 65% of the tablet is available for the cleaning stage of the wash.
- DE-A-4229650 describes a tablet comprising tripolyphosphate hexahydrate and water-free silicate and optional cleaning components and tabletting auxiliaries. The tablets are said to exhibit rapid dissolution.
- the technology of the present invention provides fast dissolving tablets that clean well and do not crumble.
- the present invention provides a tablet comprising:
- particles containing sodium tripolyphosphate having a water of hydration in an amount from 1% to 5% by weight and wherein at least 50% by weight of the sodium tripolyphosphate within the particles is of a phase I form;
- the tablet is for use in a machine dishwasher.
- Sodium tripolyphosphate of the present invention can be converted to the phase I form by heating to above the transition temperature at which phase II anhydrous sodium polyphosphate is transformed into the phase I form.
- a process for the manufacture of particles containing a high proportion of the phase I form of sodium tripolyphosphate by spray drying below 420°C is given in US-A-4536377.
- Suitable material is commercially available. Suppliers include Rhodia, Courbevoie, France and Albright & Wilson, Warley, West Midlands, UK.
- the sodium tripolyphosphate should be partially hydrated, but the phase I anhydrous form should also be present.
- the sodium tripolyphosphate in the particles may incorporate up to 5% (by weight of the sodium tripolyphosphate in these particles) of water of hydration.
- the extent of hydration is desirably from 1% to
- This degree of hydration in general means that the sodium tripolyphosphate is partially hydrated.
- the sodium tripolyphosphate in these particles is preferably hydrated by a process, which leads to a homogeneous distribution of the water of hydration within the tripolyphosphate .
- the particles preferably consist solely of sodium tripolyphosphate with a high content of the phase I form.
- the phase I content of the sodium tripolyphosphate being measured by X-ray diffraction, or IR.
- the particles preferably contain sodium tripolyphosphate in a porous form so as to have high surface area.
- a blowing agent that is a compound such as ammonium carbonate, which decomposes to yield a gas during the course of the spray drying. This gives the dried material a porous structure, with higher surface area than hollow beads of tripolyphosphate obtained without blowing agent.
- the bulk density of the of sodium tripolyphosphate particles is preferably 0.75 Kg/M 3 or less, more preferably from 0.52 to 0.72 Kg/M 3 .
- the particles which contain or consist of sodium tripolyphosphate preferably have a small mean particle size, such as not over 300 ⁇ m, better not over 250 ⁇ m. Small particle size can if necessary be achieved by grinding.
- Rhodiaphos HPA 3.5 is a grade of sodium tripolyphosphate from Rhodea which has been found to be particularly suitable. It consists of porous particles of small particle size (mean size below 250 ⁇ m) with 70% phase I and prehydrated with 3.5% water of hydration.
- the said particles containing sodium tripolyphosphate with more than 50% of phase I material provide this phase I tripolyphosphate as at least 3% by weight of the tablet or region thereof . More preferably they provide sodium tripolyphosphate, including the phase I tripolyphosphate, in a quantity which is from 30% up to 40% or 60% by weight of the tablet or region thereof.
- the remainder of the tablet composition may include additional sodium tripolyphosphate.
- additional sodium tripolyphosphate This may be in any form, including anhydrous sodium tripolyphosphate with a high content of the phase II form, hydrated sodium tripolyphosphate or some combination of the two.
- the total quantity of sodium tripolyphosphate, in all forms, present in the composition of a tablet or a region thereof will generally lie in a range from 15% to 85% by weight, more preferably at al level of 30 to 75 wt%. It is especially preferable if the total level of phosphate is greater than 60-wt% of the tablet.
- An anionic surfactant is present as an essential feature of the invention.
- anionic surfactants are listed in standard texts such as Surfactants in Consumer Products; Theory, Technology and Application, J. Falbe, ed. Springer-Verlag 1987 and Handbook of Surfactants, M.R. Porter, Blackie & Son, 1991.
- Preferred anionic surfactants include the conventional Cll- C18 alkyl benzene sulfonates and primary, secondary and random alkyl sulfates, the C 8 -C 18 alkyl alkoxy sulfates and the C 8 -Ci 8 alpha-sulfonated fatty acid esters and the like.
- the sodium salt of a C ⁇ 0 -C 22 sulphate such as sodium lauryl sulphate (SLS) .
- At least 90 wt%, more preferably 95 wt%, most preferably of the anionic surfactant is in powdered form and has a particle size such that the length of the particles is at least double the width of the particles, more preferably the length of the particles is at least three times the width of the particles.
- the length of the particles of anionic surfactant is at least 1400 microns and the width is a maximum of 250 microns.
- the anionic surfactant is in powdered form and has a density at 25°C from 0.25 to 0.6 g/cm, preferably 0.4 to 0.6 g/cm.
- the anionic surfactant is present at levels from 0.5 to 10 wt% of the total composition, more preferably from 0.5 to 3 wt%.
- surfactant systems comprising surfactants selected from nonionic, cationic, ampholytic and zwitterionic surfactants and mixtures thereof may also be present in the composition at levels of 5 wt% of the total composition or less .
- Suitable low to non-foaming nonionic surfactants include any alkoxylated nonionic surface-active agent wherein the alkoxy moiety is selected from the group consisting of ethylene oxide, propylene oxide and mixtures thereof. This nonionic surfactant is used to improve the detergency.
- the level of nonionic surfactant is at least 0.1% by weight, more preferably at least 0.5% by weight.
- nonionic surfactants for use in the invention are the low- to non-foaming ethoxylated straight- chain alcohols preferred nonionic surfactants are Plurafac LF series ex BASF, the Synperonic series ex ICI; Lutensol ® LF series, ex BASF Company and the Triton ® DF series, ex Rohm & Haas Company.
- ketones of the present invention are obtained by the ketonization of C ⁇ 6 -C 2 2 carboxylic acids, carboxylic acid salts and mixtures thereof.
- the long-chain ketones may be prepared as described in US-A- 4,937,011.
- the ketones are prepared by catalytic elimination of C0 2 from higher monocarboxylic acids, more particularly relatively high molecular weight fatty acids or salts thereof.
- ketones are those obtained by the reaction of linear or branched, saturated or unsaturated carboxylic acids or carboxylic acid mixtures in which the carboxylic acids or some of them contain more than 12 carbon atoms and in particular, have a carbon chain-length of C X to C 30 and, on ketonization, react with water with elimination of carbon dioxide.
- Particularly preferred ketones are those obtained by the ketonization of C ⁇ 6 -C 2 2 carboxylic acids or carboxylic acid salts and mixtures thereof as described in US-A-4,937,011.
- Mixtures of symmetrical and asymmetrical ketones are formed in which the asymmetrical ketones, commensurate with the material used, may have chain lengths other than C i4 or C 12 provided that a relatively long-chain radical is present in the molecule so that the total number of carbon atoms on average is at least about 25.
- Examples are heptacosanone- 14, hentriacontanone-16, pentatriacontanone-18 , nonatriacontanone-20, triatetracontanone-22 or nonacossanone-15, tri-triacontanone-17, heptatriacontanone- 19, hentetracontanone-21 and the like.
- Ketones or ketone mixtures useful in the present invention are normally solid at room temperature and have melting points in the range from 60° to 105°C. To make them easier to process and to improve their foam-inhibiting effect, it is preferred to disperse the ketones in a liquid carrier.
- suitable liquid phases are preferably organic carriers which have a low pour point or melting point of lower than about 5°C . It is also preferable to use free-flowing carriers or carrier mixtures which have a comparatively high viscosity and contribute stabilization of the dispersions.
- the liquid carrier phase may also have a foam-inhibiting effect or may be used solely as a carrier for the foam inhibitor of the invention.
- Particularly useful organic carrier liquids which have an additional foam-inhibiting effect, are mineral oils having a boiling point above 140°C and branched alcohols containing 8 to 24 carbon atoms, such as 2-hexyl-l-decanol or 2-octyl-2- dodecanol .
- foam-inhibiting carrier liquids are liquid esters of branched or unsaturated fatty acids containing 8 to 18 carbon atoms with monohydric or polyhydric alcohols, for example glycol diesters or glycerol triesters of oleic acid, isostearic acid; esters based on branched-chain or unsaturated, liquid fatty alcohols containing 8 to 18 carbon atoms, for example isotridecyl alcohol or oleyl alcohol . Mixtures of these carriers may also be used.
- organic carriers in which the ketones are soluble at elevated temperature and precipitate in finely divided form on cooling.
- the components are heated, a solution formed and then rapidly cooled with intensive stirring.
- Stable dispersions of finely divided foam inhibitors are formed.
- dispersions may also be prepared by stirring the finely ground, wax-like ketone or ketone mixture into the liquid phase.
- the dispersions to be processed preferably contain from about 5 to about 15% by weight of the ketone or mixtures of ketones.
- the carrier/ketone combination is present in the detergent composition in an amount of from 0.1 to 2 wt.%.
- Suitable additives are, for example, magnesium stearate, calcium stearate or aluminum stearate in quantities of from about 0.3 to 3.0% by weight.
- Commercially available ketones of the type described above are available under the Dehypon Series from Henkel Medanditmaschinetechnik GmbH, Germany.
- Suitable additional builders are the carboxylate or polycarboxylate builders containing from one to four carboxy groups, particularly selected from monomeric polycarboxylates or their acid forms, homo or copolymeric polycarboxylic acids or there salts in which the polycarboxylate comprises at least two carboxylic radicals selected from each other by not more than two carbon atoms .
- Preferred carboxylates include the polycarboxylate materials described in US-A-2 , 264 , 103 , including the water-soluble alkali metal salts of mellitic acid and citric acid, dipicolinic acid, oxydisuccinic acid and alkenyl succinates.
- the water-soluble salts of polycarboxylate polymers and copolymers are also be suitable for use with the invention.
- the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, especially citric acid or its salt, particularly sodium citrate. If present it is preferable if the carboxylate builder is present at a level of at least 20-wt% of the total formulation, more preferably at a level greater than 30-wt%.
- Further soluble detergency builder salts which can be used with the present invention are poly-valent inorganic and poly-valent organic builders, or mixtures thereof.
- suitable water-soluble, inorganic alkaline detergency builder salts include the alkali metal carbonates, bicarbonates, borates, phosphates, polyphosphates, tripolyphosphates, and phosphono carboxylates.
- Specific examples of such salts include the sodium and potassium tetraborates , carbonates, bicarbonates tripolyphosphates, orthophosphates and hexametaphosphates .
- Other suitable detergency builders organic alkaline compounds such as water-soluble amino polyacetates, e.g.
- alkali metal salts of the foregoing inorganic and organic poly-valent anionic builder salts are preferred for use herein from an economic standpoint, the ammonium, alkanolammonium, e.g. triethanol- ammonium, diethanolammonium, and the like, water-soluble salts of any of the foregoing builder anions are useful herein.
- the total amount of builders in the composition including the particles containing sodium tripolyphosphate (having a water of hydration in an amount from 1% to 5% by weight and wherein at least 50% by weight of the sodium tripolyphosphate within the particles is of a phase I form) is from 30 to 80% by weight, more preferably from 40 to about 70% by weight.
- Suitable forms of silica include amorphous silica, such as precipitated silica, pyrogenic silica and silica gels, such as hydrogels, xerogels and aerogels, or the pure crystal forms quartz, tridymite or crystobalite, but the amorphous forms of silica are preferred.
- Suitable silicas may readily be obtained commercially. They are sold, for example under the Registered Trade Name Gasil 200 (ex Crosfield, UK) .
- the silica is in the product in such a form that it can dissolve when added to the wash liquor. Therefore, addition of silica by way of addition anti-foam particles of silica and silicone oil is not preferred.
- the particle size of the silica material of the present invention may be of importance, especially as it is believed that any silica material that remains undissolved during the washing process, may deposit on the glass at a later stage. Therefore, it is preferred that silica material are used that have a particle size (as determined with a Malvern
- the particle size of the silica material is at least l ⁇ m, more preferably at least 2 ⁇ m, most preferably at least 5 ⁇ m.
- the primarily particle size of the silica is in general less than about 30nm, in particular less than about 25nm.
- elementary particles size are less than 20nm or even lOnm. There is no critical lower limit of the elementary particle size; the lower limit is governed by other factors such as the manner of manufacture, etc. In general commercial available silicas have elementary particle sizes of 1 nm or more.
- the silica material is present in the wash liquor at a level of at least 2.5xl0 " %, more preferably at least 12.5xl0 "4 %, most preferably at least 2.5xl0 "3 % by weight of the wash liquor and preferably at most lxl0 "1 %, more preferably at most 8xl0 "2 %, most preferably at most 5xl0 "2 % by weight of the wash liquor.
- the level of dissolved silica material in the wash liquor is at least 80 ppm, more preferably at least 100 ppm, most preferably at least 120 ppm and preferably at most
- the lower level of dissolved silica material depends on the pH value, i.e. thus at pH 6.5, the level is preferably at least 100 ppm; at pH 7.0 preferably at least 110 ppm; at pH 7.5 preferably at least 120 ppm; at pH 9.5 preferably at least 200 ppm; at pH 10 preferably at least 300 ppm; at pH 10.5 preferably at least 400ppm.
- the silica material is present in the cleaning composition at a level of at least 0.1%, more preferably at least 0.5%, most preferably at least 1% by weight of the cleaning composition and preferably at most 10%, more preferably at most 8%, most preferably at most 5% by weight of the cleaning composition.
- the composition optionally comprises alkali metal silicates.
- the alkali metal may provide pH adjusting capability and protection against corrosion of metals and against attack on dishware, including fine china and glassware benefits. If silicates are present, they are preferably included at a level of from 1% to 30%, preferably from 2% to 20%, more preferably from 3% to 10%, based on the weight of the composition.
- the alkali metal silicate is hydrous, having from 15% to 25% water, more preferably, from 17% to 20%.
- the highly alkali metasilicates can in general be employed, although the less alkaline hydrous alkali metal silicates having a Si0 2 :M 2 0 ratio of from 2.0 to 2.4 are, as noted, greatly preferred.
- Anhydrous forms of the alkali metal silicates with a Si0 2 :M 2 0 ratio of 2.0 or more are also less preferred because they tend to be significantly less soluble than the hydrous alkali metal silicates having the same ratio.
- a particularly preferred alkali metal silicate is a granular hydrous sodium silicate having a Si0 2 :Na 2 0 ratio of from 2.0 to 2.4 available from Ak30 PQ Corporation, especially preferred is Britesil H20 and Britesil H24. Most preferred is a granular hydrous sodium silicate having a Si0 2 :Na 2 0 ratio of 2.0. While typical forms, i.e. powder and granular, of hydrous silicate particles are suitable, preferred silicate particles having a mean particle size between 300 and 900 microns and less than 40% smaller than 150 microns and less than 5% larger than 1700 microns.
- compositions of the present invention having a pH of 9 or less preferably will be substantially free of alkali metal silicate.
- Enzymes may be present in the compositions of the invention.
- enzymes suitable for use in the cleaning compositions of this invention include lipases, peptidases, amylases (amylolytic enzymes) and others which degrade, alter or facilitate the degradation or alteration of biochemical soils and stains encountered in cleansing situations so as to remove more easily the soil or stain from the object being washed and to make the soil or stain more removable in a subsequent cleansing step.
- the enzymes most commonly used in machine dishwashing compositions are amylolytic enzymes.
- the composition of the invention also contains a proteolytic enzyme . Enzymes may be present in a weight percentage amount of from 0.2 to 5% by weight.
- amylolytic enzymes the final composition will have amylolytic activity of from 10 2 to 10 ⁇ Maltose units/kg.
- proteolytic enzymes the final composition will have proteolytic enzyme activity of from 10 s to 10 9 Glycine Units/kg.
- Bleach material may optionally and preferably be incorporated in composition for use in processes according to the present invention. These materials may be incorporated in solid form or in the form of encapsulates and less preferably in dissolved form.
- the bleach material may be a chlorine- or bromine-releasing agent or a peroxygen compound. Peroxygen based bleach materials are however preferred.
- peroxyacids usable in the present invention are solid and, preferably, substantially water-insoluble compounds.
- substantially water-insoluble is meant herein a water-solubility of less than about 1% by weight at ambient temperature.
- peroxyacids containing at least about 7 carbon atoms are sufficiently insoluble in water for use herein.
- Inorganic peroxygen-generating compounds are also typically used as the bleaching material of the present invention.
- these materials are salts of monopersulphate, perborate monohydrate, perborate tetrahydrate, and percarbonate .
- Monoperoxy acids useful herein include alkyl peroxy acids and aryl peroxyacids such as peroxybenzoic acid and ring-substituted peroxybenzoic acids (e.g. peroxy-alpha- naphthoic acid) ; aliphatic and substituted aliphatic monoperoxy acids (e.g. peroxylauric acid and peroxystearic acid) ; and phthaloyl amido peroxy caproic acid (PAP) .
- alkyl peroxy acids and aryl peroxyacids such as peroxybenzoic acid and ring-substituted peroxybenzoic acids (e.g. peroxy-alpha- naphthoic acid) ; aliphatic and substituted aliphatic monoperoxy acids (e.g. peroxylauric acid and peroxystearic acid) ; and phthaloyl amido peroxy caproic acid (PAP) .
- PAP phthaloyl amido peroxy caproic
- diperoxy acids useful herein include alkyl diperoxy acids and aryldiperoxy acids, such as 1, 12-di-peroxy- dodecanedioic acid (DPDA) ; 1, 9-diperoxyazelaic acid, diperoxybrassylic acid, diperoxysebacic acid and diperoxy- isophthalic acid; and 2-decyldiperoxybutane-l, 4-dioic acid.
- DPDA 1, 12-di-peroxy- dodecanedioic acid
- 1, 9-diperoxyazelaic acid diperoxybrassylic acid, diperoxysebacic acid and diperoxy- isophthalic acid
- 2-decyldiperoxybutane-l, 4-dioic acid 2-decyldiperoxybutane-l, 4-dioic acid.
- Peroxyacid bleach precursors are well known in the art. As non-limiting examples can be named N,N,N' ,N' -tetraacetyl ethylene diamine (TAED) , sodium nonanoyloxybenzene sulphonate (SNOBS) , sodium benzoyloxybenzene sulphonate (SBOBS) and the cationic peroxyacid precursor (SPCC) as described in US-A-4 , 751, 015.
- TAED N,N,N' ,N' -tetraacetyl ethylene diamine
- SNOBS sodium nonanoyloxybenzene sulphonate
- SBOBS sodium benzoyloxybenzene sulphonate
- SPCC cationic peroxyacid precursor
- a bleach catalyst such as the manganese complex, e.g. Mn-Me TACN, as described in EP-A- 0458397, or the sulphonimines of US-A-5, 041, 232 and US-A-5 , 047 , 163 , this may be presented in the form of a second encapsulate separately from the bleach capsule or granule. Cobalt catalysts can also be used.
- suitable reactive chlorine- or bromine-oxidizing materials are heterocyclic N-bromo and N-chloro imides such as trichloroisocyanuric, tribromoisocyanuric, dibromoisocyanuric and dichloroisocyanuric acids, and salts thereof with water-solubilizing cations such as potassium and sodium.
- Hydantoin compounds such as 1, 3-dichloro-5, 5- dimethyl-hydantoin are also quite suitable.
- Particulate, water-soluble anhydrous inorganic salts are likewise suitable for use herein such as lithium, sodium or calcium hypochlorite and hypobromite.
- Chlorinated trisodium phosphate and chloroisocyanurates are also suitable bleaching materials.
- Encapsulation techniques are known for both peroxygen and chlorine bleaches, e.g. as described in US-A-4 , 126, 573 , US- A-4,327,151, US-A-3 , 983 , 254 , US-A-4 , 279, 764 , US-A-3 , 036 , 013 and EP-A-0,436, 971 and EP-A-0, 510 , 761.
- encapsulation techniques are particularly useful when using halogen based bleaching systems.
- Chlorine bleaches may comprise from about 0.5% to about 3% avCl (available Chlorine) .
- a suitable range are also from 0.5% to 3% AvO (available Oxygen).
- the amount of bleach material in the wash liquor is at least 12.5xl0 "4 % and at most 0.03% AvO by weight of the liquor.
- a water soluble polymeric polycarboxylic compound is advantageously present in the dish wash composition.
- these compounds are homo- or co-polymers of polycarboxylic compounds, especially co-polymeric compounds in which the acid monomer comprises two or more carboxyl groups separated by not more than two carbon atoms. Salts of these materials can also be used.
- Particularly preferred polymeric polycarboxylates are co- polymers derived from monomers of acrylic acid and maleic acid.
- the average molecular weight of these polymers in the acid form preferably ranges from 4,000 to 70,000.
- Another type of polymeric polycarboxylic compounds suitable for use in the composition of the invention are homo- polymeric polycarboxylic acid compounds with acrylic acid as the monomeric unit.
- the average weight of such homo- polymers in the acid form preferably ranges from 1,000 to 100,000 particularly from 3,000 to 10,000.
- Acrylic sulphonated polymers as described in EP 851 022 (Unilever) are also suitable.
- this polymeric material is present at a level of at least 0.1%, more preferably at levels from 1 wt% to 7 wt% of the total composition.
- a chelating agent may be present in the composition. If present it is preferable if the level of chelating agent is from 0.5 to 3 wt% of the total composition.
- Preferred chelating agents include organic phosphonates, amino carboxylates, polyfunctionally-substituted compounds, and mixtures thereof .
- Particularly preferred chelating agents are organic phosphonates such as -hydroxy-2 phenyl ethyl diphosphonate, ethylene diphosphonate, hydroxy 1, 1-hexylidene, vinylidene 1,1 diphosphonate, 1,2 dihydroxyethane 1,1 diphosphonate and hydroxy-ethylene 1,1 diphosphonate. Most preferred are hydroxy-ethylene 1,1 diphosphonate and 2 phosphono-1 , 2 , 4 butanetricarboxylic acid or salts there of.
- Anti-tarnishing Agents are examples of organic phosphonates such as -hydroxy-2 phenyl ethyl diphosphonate, ethylene diphosphonate, hydroxy 1, 1-hexylidene, vinylidene 1,1 diphosphonate, 1,2 dihydroxyethane 1,1 diphosphonate and hydroxy-ethylene 1,1 diphosphonate.
- Most preferred are hydroxy-ethylene 1,1 diphosphonate and 2 phosphono-1 , 2 , 4 butanetricarboxy
- Anti-tarnishing agents such as benzotriazole and those described in EP 723 577 (Unilever) may also be included.
- Optional ingredients are, for example, buffering agents, reducing agents, e.g., borates, alkali metal hydroxide and the well-known enzyme stabilisers such as the polyalcohols, e.g. glycerol and borax; anti-scaling agents; crystal-growth inhibitors, threshold agents; thickening agents; perfumes and dyestuffs and the like.
- buffering agents reducing agents, e.g., borates, alkali metal hydroxide and the well-known enzyme stabilisers such as the polyalcohols, e.g. glycerol and borax; anti-scaling agents; crystal-growth inhibitors, threshold agents; thickening agents; perfumes and dyestuffs and the like.
- reducing agents e.g., borates, alkali metal hydroxide
- the well-known enzyme stabilisers such as the polyalcohols, e.g. glycerol and borax
- anti-scaling agents e.
- Reducing agents may e.g. be used to prevent the appearance of an enzyme-deactivating concentration of oxidant bleach compound.
- Suitable agents include reducing sulphur-oxy acids and salts thereof.
- Most preferred for reasons of availability, low cost, and high performance are the alkali metal and ammonium salts of sulphuroxy acids including ammonium sulphite ((NH 4 ) 2 S0 3 ), sodium sulphite (Na 2 S0 3 ) , sodium bisulphite (NaHS0 3 ) , sodium metabisulphite (Na 2 S 2 0 3 ) , potassium metabisulphite (K 2 S 2 0 5 ) , lithium hydrosulphite (Li 2 S 2 0 4 ) , etc., sodium sulphite being particularly preferred.
- Another useful reducing agent is ascorbic acid.
- the amount of reducing agents to be used may vary from case to case depending on the type of bleach and the form it is in, but normally a range of about 0.01% to about 1.0% by weight, preferably from about 0.02% to about 0.5% by weight, will be sufficient. pH of wash liquor
- the invention relates to washing processes in mechanical dish washing machines in which the pH of the wash liquor is preferably higher than about 8, more preferably 9 or higher, most preferably 10 or higher. Preferably the pH is lower than about 12. The most advantageous pH range is from 9.5 to 11.
- the present invention preferably relates to processes of mechanically washing soiled articles with a wash liquor at a temperature of at least 40°C, more preferably at least 50 °C, most preferably at least 55°C.
- SLS sodium lauryl sulphate
- PA 25 CL is a polyacrylate
- - Dehypon 2429 is a long chain ketone in a fatty alcohol carrier.
- the strength of the tablet was on a MTS Synergie 100. This machine uses a loadcell of 500 N maximum capacity. The initial -and secondary crosshead speeds are set at 25 mm/min, with a deformation limit of 200%. Break-sensitivity is 10%. The tablet is broken standing upright with its small side surfaces between the upper and lower plates
- the dissolution time was measured in a Bauknecht GSF 1161
- Table 2 shows that the tablets of the invention are stronger than the comparative tablet.
- Both tablets were made with a press force of 8 newtons If the SLS is in the form of needles, that is if the length of the particles is at least 1400 microns and the width is a maximum of 250 microns, the disintegration time of the tablet is decreased as shown in the table below.
- Table 3 shows the time taken for 100 % of the tablet to disintegrate. (Both tablets pressed using 6 tons) .
- the tablet strength is increased if a solvent such as polybutylene diol is included.
- Press force used to manufacture the tablets is 6 Tonnes.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Emergency Medicine (AREA)
- Detergent Compositions (AREA)
- Table Devices Or Equipment (AREA)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP01933912A EP1287107B1 (fr) | 2000-06-02 | 2001-05-01 | Compositions pour vaisselle |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00304700 | 2000-06-02 | ||
EP00304700 | 2000-06-02 | ||
PCT/EP2001/004877 WO2001094522A1 (fr) | 2000-06-02 | 2001-05-01 | Compositions pour vaisselle |
EP01933912A EP1287107B1 (fr) | 2000-06-02 | 2001-05-01 | Compositions pour vaisselle |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1287107A1 true EP1287107A1 (fr) | 2003-03-05 |
EP1287107B1 EP1287107B1 (fr) | 2005-08-24 |
Family
ID=8173040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP01933912A Expired - Lifetime EP1287107B1 (fr) | 2000-06-02 | 2001-05-01 | Compositions pour vaisselle |
Country Status (7)
Country | Link |
---|---|
EP (1) | EP1287107B1 (fr) |
AT (1) | ATE302841T1 (fr) |
AU (1) | AU2001260269A1 (fr) |
DE (1) | DE60112925T2 (fr) |
PT (1) | PT1287107E (fr) |
WO (1) | WO2001094522A1 (fr) |
ZA (1) | ZA200208352B (fr) |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3800483A1 (de) * | 1988-01-11 | 1989-07-20 | Henkel Kgaa | Chlorstabile entschaeumer fuer aktivchlor enthaltende reinigungsmittel, insbesondere geschirreinigungsmittel |
US5705465A (en) * | 1995-10-06 | 1998-01-06 | Lever Brothers Company, Division Of Conopco, Inc. | Anti-foam system for automatic dishwashing compositions |
US5695575A (en) * | 1995-10-06 | 1997-12-09 | Lever Brothers Company, Division Of Conopco, Inc. | Anti-form system based on hydrocarbon polymers and hydrophobic particulate solids |
EP1021520B1 (fr) * | 1995-11-13 | 2003-09-17 | JohnsonDiversey, Inc. | Bloc detergent solide |
PL335883A1 (en) * | 1997-03-24 | 2000-05-22 | Unilever Nv | Detergent composition |
US5981456A (en) * | 1997-07-23 | 1999-11-09 | Lever Brothers Company | Automatic dishwashing compositions containing water soluble cationic or amphoteric polymers |
-
2001
- 2001-05-01 AU AU2001260269A patent/AU2001260269A1/en not_active Abandoned
- 2001-05-01 WO PCT/EP2001/004877 patent/WO2001094522A1/fr active IP Right Grant
- 2001-05-01 EP EP01933912A patent/EP1287107B1/fr not_active Expired - Lifetime
- 2001-05-01 DE DE60112925T patent/DE60112925T2/de not_active Expired - Fee Related
- 2001-05-01 PT PT01933912T patent/PT1287107E/pt unknown
- 2001-05-01 AT AT01933912T patent/ATE302841T1/de not_active IP Right Cessation
-
2002
- 2002-10-16 ZA ZA200208352A patent/ZA200208352B/en unknown
Non-Patent Citations (1)
Title |
---|
See references of WO0194522A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2001094522A1 (fr) | 2001-12-13 |
EP1287107B1 (fr) | 2005-08-24 |
AU2001260269A1 (en) | 2001-12-17 |
DE60112925T2 (de) | 2006-06-08 |
DE60112925D1 (de) | 2005-09-29 |
ATE302841T1 (de) | 2005-09-15 |
ZA200208352B (en) | 2003-10-16 |
PT1287107E (pt) | 2005-11-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2245129B1 (fr) | Compositions de détergent pour machine à laver la vaisselle | |
US5900399A (en) | Tablet containing builders | |
JP2628812B2 (ja) | 洗剤組成物 | |
EP0770121B1 (fr) | Procede et composition de lavage | |
EP1721962A1 (fr) | Compositions detergentes pour lave vaisselle et procédé pour nettoyer la vaiselle | |
AU6925996A (en) | Anti-foam system for automatic dishwashing compositions | |
EP0451893B1 (fr) | Composition détergente blanchissante sous forme de particules | |
WO2000046341A1 (fr) | Ensemble pour lave-vaisselle | |
WO2001038479A1 (fr) | Compositions de detergent | |
EP0692018B1 (fr) | Produits liquides de nettoyage | |
EP1287107B1 (fr) | Compositions pour vaisselle | |
EP1328613B1 (fr) | Compositions pour laver la vaisselle | |
EP1149144A1 (fr) | Procede utilise pour laver la vaisselle et compositions connexes | |
EP1239026B1 (fr) | Pastilles détergentes | |
EP1159391B1 (fr) | Pastilles detergentes | |
WO2004027006A1 (fr) | Compositions de detergent | |
US6310023B1 (en) | Machine dish wash compositions | |
WO2001002524A1 (fr) | Composition pour lave-vaisselle | |
EP1328611B1 (fr) | Compositions pour lave-vaisselle | |
EP1133548B2 (fr) | Compositions detergentes sous forme de comprimes | |
WO2001000766A1 (fr) | Procede de lavage de vaisselle en machine et compositions a cet effet | |
US20040058841A1 (en) | Detergent Compositions | |
ZA200105695B (en) | Dish washing process and compolsitions relating thereto. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20021016 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
AX | Request for extension of the european patent |
Extension state: AL LT LV MK RO SI |
|
17Q | First examination report despatched |
Effective date: 20040401 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REF | Corresponds to: |
Ref document number: 60112925 Country of ref document: DE Date of ref document: 20050929 Kind code of ref document: P |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051124 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051124 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20051205 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20060420 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060501 |
|
ET | Fr: translation filed | ||
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20060530 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20060531 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20060531 Year of fee payment: 6 Ref country code: LU Payment date: 20060531 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20060630 Year of fee payment: 6 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20060526 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: UNILEVER N.V. Free format text: UNILEVER N.V.#WEENA 455#3013 AL ROTTERDAM (NL) -TRANSFER TO- UNILEVER N.V.#WEENA 455#3013 AL ROTTERDAM (NL) |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: MM4A Free format text: LAPSE DUE TO NON-PAYMENT OF FEES Effective date: 20071102 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071102 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20071201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20050824 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20070501 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20110607 Year of fee payment: 11 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110530 Year of fee payment: 11 Ref country code: GB Payment date: 20110525 Year of fee payment: 11 Ref country code: NL Payment date: 20110531 Year of fee payment: 11 |
|
BERE | Be: lapsed |
Owner name: *UNILEVER N.V. Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20121201 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20120501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130131 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120501 Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120531 |