EP1286313B1 - Method and device for measuring the diameters of coins - Google Patents

Method and device for measuring the diameters of coins Download PDF

Info

Publication number
EP1286313B1
EP1286313B1 EP02014680A EP02014680A EP1286313B1 EP 1286313 B1 EP1286313 B1 EP 1286313B1 EP 02014680 A EP02014680 A EP 02014680A EP 02014680 A EP02014680 A EP 02014680A EP 1286313 B1 EP1286313 B1 EP 1286313B1
Authority
EP
European Patent Office
Prior art keywords
coins
coin
diameter
time
attenuation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02014680A
Other languages
German (de)
French (fr)
Other versions
EP1286313A2 (en
EP1286313A3 (en
Inventor
Ulrich Cohrs
Wilfried Meyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Crane Payment Innovations GmbH
Original Assignee
National Rejectors Inc GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Rejectors Inc GmbH filed Critical National Rejectors Inc GmbH
Publication of EP1286313A2 publication Critical patent/EP1286313A2/en
Publication of EP1286313A3 publication Critical patent/EP1286313A3/en
Application granted granted Critical
Publication of EP1286313B1 publication Critical patent/EP1286313B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/02Testing the dimensions, e.g. thickness, diameter; Testing the deformation
    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07DHANDLING OF COINS OR VALUABLE PAPERS, e.g. TESTING, SORTING BY DENOMINATIONS, COUNTING, DISPENSING, CHANGING OR DEPOSITING
    • G07D5/00Testing specially adapted to determine the identity or genuineness of coins, e.g. for segregating coins which are unacceptable or alien to a currency
    • G07D5/08Testing the magnetic or electric properties

Definitions

  • the invention relates to a method for measuring the diameter of coins according to claim 1.
  • the invention has for its object to provide a method for measuring the diameter of coins, in which a particularly accurate determination is possible.
  • the coins go through an electromagnetic field.
  • the coil arrangement is designed such that at least the upper region of the coins at least partially covers the field, regardless of their diameter.
  • the transmit coil is fed with a periodic transmit pulse that is short in relation to the turnaround time of the coins.
  • the maximum attenuation values are determined for the different frequencies of the transmitted pulse. Depending on the time at which a measurement is taken from the beginning of the transmission pulse, the frequency of the field changes. It will then receive maximum values, as in the DE 197 26 449 caused by the envelopes described there.
  • these attenuation measured values are extrapolated to time zero and the measured values determined thereby are compared with predetermined acceptance bands for coin diameters. If the determined value is not in a acceptance band, the coin is eliminated as a counterfeit.
  • a coin passing through a field forms a shield.
  • the extent of the shielding is however, depends on the frequency of the field. Low frequencies are mainly attenuated by the material, ie the field penetrates the material depending on its conductivity. The higher the frequency of the field, the less it penetrates the material. The induced voltage at the receiver coil is the more dependent on the coverage by the coin, the higher the frequency. At very high frequencies creates a so-called skin effect, ie the field penetrates almost no more in the material of the coin. If an infinitely high frequency were generated, the shielding effect would only depend on the size, ie the diameter of the coin. Naturally, infinitely high frequencies can not be realized. With an infinitely steep edge of an impulse, the frequency would be infinite, but technically this can not be realized. Rather, the transmission circuit requires a certain time to build up the magnetic field, about 1 microseconds with commercial components.
  • the individual frequency-dependent measuring points for the maxima of the damping can be combined to form a curve or even a straight line.
  • the shape of the curve is dependent on the proportionality of Dämp Stahlngs s one hand, and the configuration of the coil assembly on the other.
  • a coil arrangement is conceivable in which a linear relationship between damping and diameter is obtained.
  • the attenuation determined here forms a measure of the diameter. It has been found that the measurement method leads to a very favorable result with small deviations.
  • different methods can be used, for example the so-called curve fit, in order to obtain a measured value for the time zero in each case and thus for the diameter of the passed through from the measured values Coin to determine.
  • the method according to the invention can in the sense of DE 197 26 449 be moved, namely a subdivision of the transmitted pulse in a number of time steps are made.
  • a single receive or secondary coil may be provided and their output signals may be envelope shaped at the respective frequency of the transmit signal at repeated switching steps. However, this requires no pronounced formation of the envelopes, but only the determination of maximum values for the respective frequencies. The determined maximum values are then extrapolated in the manner already described to the time zero in order to determine the diameter value.
  • rectangular coils are used for the transmitting coil and the receiving coil which are relatively short in the running direction of the coins.
  • the length of the rectangular coils in the direction of travel is significantly shorter than the diameter of the smallest coin to be accepted.
  • the receiving coil in height is divided into at least an upper and a lower portion, wherein the upper portion is disposed so far above the Münzlaufbahn that it is still partially covered by the coins with the smallest diameter, during the lower section extends to the Münzlaufbahn or ends just above this.
  • the upper portion of the receiving coil can be used for the diameter measurement, as already described above.
  • the lower section is used for material determination, wherein the material determination can be done in different ways, but especially in the way in DE 197 26 449 described.
  • the lower portion of the receiving coil can be divided into two superimposed subsections, of which the lower portion is covered by the range of Bicolor coins which lies outside the core of the Bicolor coins.
  • Bicolour coins are known to be those which aur do a core of a first material and a ring arranged around the core of a further material. As you know, some euro coins are bicoloured. By subdividing the lower receiving coil section into two subsections, it is thus also possible to discriminate the coins with regard to the core and ring of a two-color coin.
  • Fig. 1 is a coin tray 10 of a coin validator, not shown, on which a bicolour coin 12 rolls along.
  • the coin moves through a coil assembly consisting of a transmitting coil 14 and a receiving coil 16.
  • the coil assemblies 14, 16 are rectangular and shorter in the direction of the coin 12 than the diameter thereof.
  • the receiving coil 16 is divided into three sections 18, 20 and 22. The subdivision is in height. It is such that the portion 18 is in any case temporarily at least partially covered by the upper portion of the coin, regardless of its diameter.
  • the coin 12 consists of an inner core 24 and a ring 26 around the core 24 (bicoloured coin).
  • the upper portion 18 is arranged so that it is normally uncovered by the core 24 as the coin passes through the coil assembly.
  • the portion 20 is designed to substantially engage the core portion of a bi-color coin.
  • the lower portion 22 substantially covers the lower portion of the rim or ring 26.
  • the section 18 for a diameter determination is primarily used. Sections 20 and 22 serve to determine the material according to a method as described in the DE 197 26 449 is described.
  • the transmitting coil 14 is periodically applied with rectangular pulses, for example, have a duration of 30 microseconds.
  • a coin through a coil assembly as in Fig. 1 is about 200 ms, the duration of the transmission signal in relation to the transit time of the coin is small.
  • Rectangular pulse is recurring also in the method of the already mentioned DE 197 26 449 used. If, according to this document, the transmission pulse is subdivided into individual time segments or switching steps, and a measurement of the signal of the receiver coil 18 is made at the individual time steps, one of the curves is obtained, for example Fig. 2 is shown. The curve with the highest maximum is one which corresponds to a maximum attenuation. Maximum attenuation or shielding is obtained at a maximum frequency.
  • this curve corresponds to the highest frequency at which measurement is made, that is, a switching step that is past the start of the transmit pulse. If recurring during the coin transit time is always measured during this time, one obtains therefore the mentioned curve with the maximum maximum. If the time steps are further away from the starting point or the rising edge of the rectangular pulse, this results in a lower frequency and thus a lower attenuation. In other words, with one and the same coin material, depending on the frequency, a different damping is obtained during the passage of the coin. The different frequency results, as mentioned, by the measuring time relative to the rising edge of the rectangular pulse.
  • the group of curves after Fig. 2 can not be achieved with a bicoloured coin, this leads to a different group of curves, as in the already mentioned DE 197 26 449 in this regard is shown.
  • the group of curves after Fig. 2 refers to a coin which is made of a homogeneous material.
  • the structure of the square-wave voltage or the rectangular pulse as a transmission signal requires a certain time, for example 1 microseconds. Since, however, the aim is to eliminate the material-dependent attenuation value, and thus to fulfill the assumption that the frequency is infinitely high, extrapolation of the curves is necessary Fig. 5 to get the attenuation value at time 0. This is in Fig. 5 hinted at essentially the curves after Fig. 3 are reproduced.
  • Fig. 4 shows the course of the curves Fig. 3 in the time frame from 0 to 1 ⁇ s. It can be seen that the range for the damping of individual materials varies with the same diameter of a coin between 367 and 357.5. This is an extremely small range sufficient to determine the diameter size sufficiently accurately.
  • Fig. 6 is a non-linear extrapolation made, as it is also known per se, such as the name Kurvenfit. While looking at the curves Fig. 3 to 5 a diameter value of 30 mm is used, the set of curves is after Fig. 6 based on a coin diameter of 18 mm.
  • Fig. 7 is a characteristic of diameter plotted against the attenuation measurements recorded for non-linear extrapolation and correction of the family of curves Fig. 3 or 5. It can be seen that the measurement points of different materials are approximately on a function approximated to a straight line, so that can be determined by the described method exactly whether a thrown coin in a given diameter range or not.
  • the nominal diameters of individual coins of a coin set can be defined by a diameter window which needs to be very small, so that coin sets with very small diameter differences can be exactly discriminated.
  • the maximum error is at least theoretically 0,115 mm. This error is sufficient to distinguish even those coins that differ in diameter only by 0.5 mm.
  • the described method can be carried out alone with the receiving coil section 18.
  • the receiving coil sections 20 and 22 can be used for material determination in a manner as shown in the DE 197 26 449 is described.
  • the envelopes are used according to Fig. 2 , which are also generated in these sections, for material determination.
  • Coins that are designed as bicolour coins can also be detected by the known method.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Coins (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Messung des Durchmessers von Münzen nach dem Patentanspruch 1.The invention relates to a method for measuring the diameter of coins according to claim 1.

Bei der Prüfung von Münzen in Münzprüfgeräten werden verschiedene Eigenschaften der eingeworfenen Münzen geprüft, damit eine zuverlässige Diskriminierung von Falschmünzen erfolgt. Zu den ermittelten Eigenschaften der Münzen gehört auch ihr Durchmesser. Es ist bekannt, den Durchmesser von Münzen mit Hilfe von zwei Lichtschranken zu messen. Mit Hilfe der Abdeckzeit der Lichtschranken und der Zeitdifferenz zwischen den Lichtschranken beim Durchlauf der Münzen wird deren Durchmesser berechnet. Diese Art der Größenmessung hat eine Messtoleranz von etwa ± 0,5 mm. Es sind jedoch Münzsätze bekannt, bei denen sich die einzelnen Münzen um nicht mehr als 0,5 mm im Durchmesser unterscheiden. Daher ist das bekannte Verfahren für eine exakte Identifikation von Falsifikaten unzureichend.When testing coins in coin validators, various properties of the inserted coins are checked to ensure reliable discrimination against counterfeit coins. Among the characteristics of the coins is their diameter. It is known to measure the diameter of coins by means of two light barriers. With the aid of the covering time of the light barriers and the time difference between the light barriers as the coins pass through, their diameters are calculated. This type of size measurement has a measurement tolerance of about ± 0.5 mm. However, coin sets are known in which the individual coins do not differ by more than 0.5 mm in diameter. Therefore, the known method for an exact identification of falsifikaten is insufficient.

Es ist ferner bekannt, durch Abdeckzeiten von induktiven Münzsensoren auf den Durchmesser rückzuschließen. Auch dieses Verfahren ist nicht besonders genau.It is also known to deduce by covering times of inductive coin sensors on the diameter. Again, this method is not very accurate.

Aus DE 197 26 449 ist ein Verfahren zur Prüfung von Münzen mit einer induktiv arbeitenden Sensoranordnung bekannt geworden, bei dem die Primärspule der Spulenanordnung mit einem periodischen Sendesignal gespeist wird, das Harmonische enthält. Bei dem bekannten Verfahren wird dem Sendesignal eine Anzahl von Schaltschritten zugeordnet. Aus den Werten des Empfangssignals werden bei den jeweiligen sich mit der Frequenz des Sendesignals wiederholenden Schaltschritten Hüllkurven gebildet. Eine Auswertevorrichtung bildet aus der Anzahl der zeitgleich erzeugten Hüllkurven mindestens ein Kriterium zwecks Erzeugung des Annahmeoder Rückgabesignals. Die Hüllkurven sind charakteristisch für die Beschaffenheit einer Münze und können in geeigneter Weise ausgewertet werden. So ist zum Beispiel das Verhältnis der Amplituden der Hüllkurven ein charakteristisches Maß.Out DE 197 26 449 a method has been known for testing coins with an inductively operating sensor arrangement, in which the primary coil of the coil arrangement is fed with a periodic transmission signal which contains harmonics. In the known method, the transmission signal is assigned a number of switching steps. From the values of the received signal, envelopes are formed at the respective switching steps repeating the frequency of the transmission signal. An evaluation device forms from the number of concurrently generated envelopes at least one criterion for generating the acceptance or Return signal. The envelopes are characteristic of the nature of a coin and can be suitably evaluated. For example, the ratio of the amplitudes of the envelopes is a characteristic measure.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Messung des Durchmessers von Münzen anzugeben, bei dem eine besonders genaue Bestimmung möglich ist.The invention has for its object to provide a method for measuring the diameter of coins, in which a particularly accurate determination is possible.

Diese Aufgabe wird durch die Merkmale des Patentanspruchs 1 gelöst.This object is solved by the features of patent claim 1.

Wie bei üblichen induktiven Sensoren durchlaufen die Münzen ein elektromagnetisches Feld. Die Spulenanordnung ist jedoch so ausgebildet, dass zumindest der obere Bereich der Münzen unabhängig von ihrem Durchmesser das Feld zumindest teilweise abdeckt. Wie bei dem zuletzt beschriebenen bekannten Verfahren wird die Sendespule mit einem periodischen Sendeimpuls gespeist, das im Verhältnis zur Durchlaufzeit der Münzen kurz ist. Für die verschiedenen Frequenzen des Sendeimpulses werden die maximalen Dämpfungswerte ermittelt. Je nachdem, zu welchem Zeitpunkt ab Beginn des Sendeimpulses eine Messung vorgenommen wird, ändert sich die Frequenz des Feldes. Es werden dann Maximalwerte erhalten, wie sie auch in der DE 197 26 449 durch die dort beschriebenen Hüllkurven entstehen. Bei dem erfindungsgemäßen Verfahren werden diese Dämpfungsmesswerte auf den Zeitpunkt Null extrapoliert und die dadurch ermittelten Messwerte werden mit vorgegebenen Annahmebändern für Münzdurchmesser verglichen. Liegt der ermittelte Wert nicht in einem Annahmeband, wird die Münze als Falsifikat ausgeschieden.As with conventional inductive sensors, the coins go through an electromagnetic field. However, the coil arrangement is designed such that at least the upper region of the coins at least partially covers the field, regardless of their diameter. As with the known method last described, the transmit coil is fed with a periodic transmit pulse that is short in relation to the turnaround time of the coins. The maximum attenuation values are determined for the different frequencies of the transmitted pulse. Depending on the time at which a measurement is taken from the beginning of the transmission pulse, the frequency of the field changes. It will then receive maximum values, as in the DE 197 26 449 caused by the envelopes described there. In the method according to the invention, these attenuation measured values are extrapolated to time zero and the measured values determined thereby are compared with predetermined acceptance bands for coin diameters. If the determined value is not in a acceptance band, the coin is eliminated as a counterfeit.

Das erfindungsgemäße Verfahren geht von folgender Erkenntnis aus. Eine durch ein Feld laufende Münze bildet eine Abschirmung. Das Ausmaß der Abschirmung ist jedoch von der Frequenz des Feldes abhängig. Niedrige Frequenzen werden hauptsächlich durch das Material gedämpft, d.h. das Feld durchdringt das Material in Abhängigkeit von seiner Leitfähigkeit. Je höher die Frequenz des Feldes ist, um so weniger dringt es in das Material ein. Die induzierte Spannung an der Empfängerspule ist um so stärker von der Abdeckung durch die Münze abhängig, je höher die Frequenz ist. Bei sehr hohen Frequenzen entsteht ein sogenannter Skineffekt, d.h. das Feld dringt so gut wie gar nicht mehr in das Material der Münze ein. Würde eine unendlich hohe Frequenz erzeugt werden, hinge der Abschirmeffekt nur noch von der Größe, d.h. dem Durchmesser der Münze ab. Unendlich hohe Frequenzen lassen sich naturgemäß nicht realisieren. Bei einer unendlich steilen Flanke eines Impulses würde die Frequenz zwar unendlich, technisch lässt sich dies jedoch nicht realisieren. Vielmehr benötigt die Sendeschaltung eine bestimmte Zeit, um das magnetische Feld aufzubauen, etwa 1 µsec mit handelsüblichen Bauelementen.The inventive method is based on the following finding. A coin passing through a field forms a shield. The extent of the shielding is however, depends on the frequency of the field. Low frequencies are mainly attenuated by the material, ie the field penetrates the material depending on its conductivity. The higher the frequency of the field, the less it penetrates the material. The induced voltage at the receiver coil is the more dependent on the coverage by the coin, the higher the frequency. At very high frequencies creates a so-called skin effect, ie the field penetrates almost no more in the material of the coin. If an infinitely high frequency were generated, the shielding effect would only depend on the size, ie the diameter of the coin. Naturally, infinitely high frequencies can not be realized. With an infinitely steep edge of an impulse, the frequency would be infinite, but technically this can not be realized. Rather, the transmission circuit requires a certain time to build up the magnetic field, about 1 microseconds with commercial components.

Bei dem erfindungsgemäßen Verfahren lassen sich die einzelnen frequenzabhängigen Messpunkte für die Maxima der Dämpfung zu einer Kurve oder gar zu einer Geraden verbinden. Die Gestalt der Kurve ist abhängig von der Proportionalität des Dämpfüngsverhaltens einerseits und der Ausgestaltung der Spulenanordnung andererseits. So ist eine Spulenanordnung denkbar, bei der ein lineares Verhältnis zwischen Dämpfung und Durchmesser erhalten wird.In the method according to the invention, the individual frequency-dependent measuring points for the maxima of the damping can be combined to form a curve or even a straight line. The shape of the curve is dependent on the proportionality of Dämpfüngsverhaltens one hand, and the configuration of the coil assembly on the other. Thus, a coil arrangement is conceivable in which a linear relationship between damping and diameter is obtained.

Extrapoliert man nun die gemessenen Dämpfüngswerte für die verschiedenen Meßzeitpunkte des Sendesignals auf den Zeitpunkt t=0, dann bildet die hierbei ermittelte Dämpfung ein Maß für den Durchmesser. Es hat sich herausgestellt, dass die Messmethode zu einem sehr günstigen Ergebnis mit geringen Abweichungen führt. Für die Extrapolation der Messwerte lassen sich verschiedene Verfahren anwenden, beispielsweise das sogenannte Kurvenfit, um aus den gemessenen Messwerten jeweils einen Messwert für den Zeitpunkt Null und damit für den Durchmesser der hindurchgelaufenen Münze zu bestimmen. Bei einer Ausgestaltung des erfindungsgemäßen Verfahrens kann im Sinne der DE 197 26 449 verfahren werden, nämlich eine Unterteilung des Sendeimpulses in eine Anzahl von Zeitschritten vorgenommen werden. Es kann eine einzige Empfangs- oder Sekundärspule vorgesehen werden, und deren Ausgangssignale können bei der jeweiligen Frequenz des Sendesignals bei wiederholten Schaltschritten zu Hüllkurven geformt werden. Hierbei bedarf es jedoch keiner ausgesprochenen Bildung der Hüllkurven, sondern lediglich der Ermittlung von Maximalwerten für die jeweiligen Frequenzen. Die ermittelten Maximalwerte werden dann in der bereits beschriebenen Art und Weise auf den Zeitpunkt Null hin extrapoliert zwecks Ermittlung des Durchmesserwertes.If the measured attenuation values for the different measurement times of the transmission signal are extrapolated to the time t = 0, then the attenuation determined here forms a measure of the diameter. It has been found that the measurement method leads to a very favorable result with small deviations. For the extrapolation of the measured values, different methods can be used, for example the so-called curve fit, in order to obtain a measured value for the time zero in each case and thus for the diameter of the passed through from the measured values Coin to determine. In one embodiment of the method according to the invention can in the sense of DE 197 26 449 be moved, namely a subdivision of the transmitted pulse in a number of time steps are made. A single receive or secondary coil may be provided and their output signals may be envelope shaped at the respective frequency of the transmit signal at repeated switching steps. However, this requires no pronounced formation of the envelopes, but only the determination of maximum values for the respective frequencies. The determined maximum values are then extrapolated in the manner already described to the time zero in order to determine the diameter value.

Zur Durchführung des erfindungsgemäßen Verfahrens wird erfindungsgemäß vorgesehen, dass für die Sende- und die Empfangsspule Rechteckspulen verwendet werden, die in Laufrichtung der Münzen relativ kurz sind. Vorzugsweise ist die Länge der Rechteckspulen in Laufrichtung deutlich kürzer als der Durchmesser der kleinsten anzunehmenden Münze.To carry out the method according to the invention, it is provided according to the invention that rectangular coils are used for the transmitting coil and the receiving coil which are relatively short in the running direction of the coins. Preferably, the length of the rectangular coils in the direction of travel is significantly shorter than the diameter of the smallest coin to be accepted.

Nach einer weiteren Ausgestaltung der Erfindung ist die Empfangsspule in der Höhe in mindestens einen oberen und einen unteren Abschnitt unterteilt, wobei der obere Abschnitt so weit oberhalb der Münzlaufbahn angeordnet ist, dass er von den Münzen mit dem kleinsten Durchmesser noch teilweise abgedeckt ist, während der untere Abschnitt bis an die Münzlaufbahn reicht oder kurz oberhalb von dieser endet. Der obere Abschnitt der Empfangsspule kann für die Durchmessermessung herangezogen werden, wie dies oben bereits beschrieben wurde. Der untere Abschnitt dient zur Materialbestimmung, wobei die Materialbestimmung auf unterschiedliche Art erfolgen kann, insbesondere aber auch in der Weise, wie in DE 197 26 449 beschrieben.According to a further embodiment of the invention, the receiving coil in height is divided into at least an upper and a lower portion, wherein the upper portion is disposed so far above the Münzlaufbahn that it is still partially covered by the coins with the smallest diameter, during the lower section extends to the Münzlaufbahn or ends just above this. The upper portion of the receiving coil can be used for the diameter measurement, as already described above. The lower section is used for material determination, wherein the material determination can be done in different ways, but especially in the way in DE 197 26 449 described.

Schließlich kann nach einer weiteren Ausgestaltung der Erfindung der untere Abschnitt der Empfangsspule in zwei übereinander angeordnete Unterabschnitte unterteilt sein, von denen der untere Abschnitt von dem Bereich von Bicolormünzen abgedeckt wird, der außerhalb des Kerns der Bicolormünzen liegt. Bicolormünzen sind bekanntlich solche, die einen Kern aus einem ersten Material und einen um den Kern herum angeordneten Ring aus einem weiteren Material aurweisen. Bekanntlich sind einige Euro-Münzen als Bicolormünzen ausgebildet. Durch die Unterteilung des unteren Empfangsspulenabschnitts in zwei Unterabschnitte lässt sich mithin auch eine Diskriminierung der Münzen im Hinblick auf Kern und Ring einer Bicolormünze vornehmen.Finally, according to a further embodiment of the invention, the lower portion of the receiving coil can be divided into two superimposed subsections, of which the lower portion is covered by the range of Bicolor coins which lies outside the core of the Bicolor coins. Bicolour coins are known to be those which aurweisen a core of a first material and a ring arranged around the core of a further material. As you know, some euro coins are bicoloured. By subdividing the lower receiving coil section into two subsections, it is thus also possible to discriminate the coins with regard to the core and ring of a two-color coin.

Die Erfindung wird nachfolgend anhand von Zeichnungen näher erläutert.

Fig. 1
zeigt einen schematischen Aufbau einer Vorrichtung zur Durchführung des Verfahrens nach der Erfindung.
Fig. 2
zeigt die Dämpfungskennlinien etwa für eine Anordnung nach Fig. 1 beim Durchlaufen von Münzen unterschiedlichen Materials.
Fig. 3
zeigt ein Kennlinienfeld von Maximalwerten der Dämpfung für verschiedene Münzmaterialien einschließlich ihrer Extrapolation zu 0.
Fig. 4
zeigt vergrößert einen Ausschnitt aus Fig. 4 mit der Extrapolation zu 0.
Fig. 5
zeigt ein ähnliches Kennlinienfeld wie Fig. 3, jedoch mit einer Korrektur der linearen Extrapolation.
Fig. 6
zeigt ein Kennlinienfeld ähnlich wie Fig. 3, jedoch bei nicht linearer Extrapolation.
Fig. 7
zeigt eine Kennlinie für verschiedene Durchmesser und Materialien bei nicht linearer Extrapolation und Korrektur.
The invention will be explained in more detail with reference to drawings.
Fig. 1
shows a schematic structure of an apparatus for carrying out the method according to the invention.
Fig. 2
shows the attenuation characteristics for about an arrangement Fig. 1 when passing through coins of different material.
Fig. 3
shows a family of maximum attenuation values for different coin materials including their extrapolation to 0.
Fig. 4
shows enlarged a section of Fig. 4 with the extrapolation to 0.
Fig. 5
shows a similar characteristic field as Fig. 3 , but with a correction of the linear extrapolation.
Fig. 6
shows a characteristic field similar to Fig. 3 but with non-linear extrapolation.
Fig. 7
shows a characteristic curve for different diameters and materials for non-linear extrapolation and correction.

In Fig. 1 ist eine Münzlaufbahn 10 eines nicht weiter dargestellten Münzprüfers zu erkennen, auf der eine Bicolormünze 12 entlangrollt. Die Münze bewegt sich durch eine Spulenanordnung, bestehend aus einer Sendespule 14 und einer Empfangsspule 16. Die Spulenanordnungen 14, 16 sind rechteckig und in Laufrichtung der Münze 12 kürzer als deren Durchmesser. Die Empfangsspule 16 ist in drei Abschnitte 18, 20 und 22 unterteilt. Die Unterteilung erfolgt in der Höhe. Sie ist derart, dass der Abschnitt 18 in jedem Fall vom oberen Bereich der Münze vorübergehend zumindest teilweise abgedeckt ist, unabhängig von deren Durchmesser. Die Münze 12 besteht aus einem inneren Kern 24 und einem Ring 26 um den Kern 24 herum (Bicolormünze). Der obere Abschnitt 18 ist so angeordnet, dass er normalerweise von dem Kern 24 nicht abgedeckt ist, wenn die Münze durch die Spulenanordnung hindurchläuft. Der Abschnitt 20 ist so ausgelegt, dass er im Wesentlichen den Kernbereich einer Bicolormünze erfasst. Der untere Abschnitt 22 deckt im Wesentlichen den unteren Bereich des Randes oder des Rings 26 ab. Für die noch zu beschreibende Messung wird in erster Linie der Abschnitt 18 für eine Durchmesserbestimmung herangezogen. Die Abschnitte 20 und 22 dienen der Werkstoffbestimmung nach einem Verfahren, wie es in der DE 197 26 449 beschrieben ist.In Fig. 1 is a coin tray 10 of a coin validator, not shown, on which a bicolour coin 12 rolls along. The coin moves through a coil assembly consisting of a transmitting coil 14 and a receiving coil 16. The coil assemblies 14, 16 are rectangular and shorter in the direction of the coin 12 than the diameter thereof. The receiving coil 16 is divided into three sections 18, 20 and 22. The subdivision is in height. It is such that the portion 18 is in any case temporarily at least partially covered by the upper portion of the coin, regardless of its diameter. The coin 12 consists of an inner core 24 and a ring 26 around the core 24 (bicoloured coin). The upper portion 18 is arranged so that it is normally uncovered by the core 24 as the coin passes through the coil assembly. The portion 20 is designed to substantially engage the core portion of a bi-color coin. The lower portion 22 substantially covers the lower portion of the rim or ring 26. For the measurement to be described, the section 18 for a diameter determination is primarily used. Sections 20 and 22 serve to determine the material according to a method as described in the DE 197 26 449 is described.

Die Sendespule 14 wird periodisch mit Rechteckimpulsen beaufschlagt, die zum Beispiel eine Dauer von 30 µs haben. Da der Durchlauf einer Münze durch eine Spulenanordnung, wie sie in Fig. 1 dargestellt ist, etwa 200 ms beträgt, ist die Dauer des Sendesignals im Verhältnis zur Durchlaufzeit der Münze klein. Ein derartiger Rechteckimpuls wird wiederkehrend auch bei dem Verfahren nach der bereits erwähnten DE 197 26 449 eingesetzt. Wird nun gemäß dieser Druckschrift der Sendeimpuls in einzelne Zeitabschnitte oder Schaltschritte unterteilt und wird eine Messung des Signals der Empfangsspule 18 zu den einzelnen Zeitschritten vorgenommen, wird zum Beispiel eine der Kurven erhalten, die in Fig. 2 dargestellt ist. Die Kurve mit dem höchsten Maximum ist eine solche, welche einer maximalen Dämpfung entspricht. Eine maximale Dämpfung oder Abschirmung wird bei einer maximalen Frequenz erhalten. Deshalb entspricht diese Kurve der höchsten Frequenz, bei der gemessen wird, d.h. bei einem Schaltschritt, der hinter dem Start des Sendeimpulses liegt. Wird wiederkehrend während der Münzdurchlaufzeit immer während dieses Zeitpunkts gemessen, erhält man mithin die erwähnte Kurve mit dem maximalen Maximum. Liegen die Zeitschritte weiter vom Startpunkt oder der Anstiegsflanke des Rechteckimpulses ab, hat dies eine kleinere Frequenz zur Folge und somit eine geringere Dämpfung. Mit anderen Worten, bei ein und demselben Münzmaterial wird abhängig von der Frequenz eine unterschiedliche Dämpfung beim Durchlauf der Münze erhalten. Die unterschiedliche Frequenz ergibt sich, wie erwähnt, durch den Messzeitpunkt relativ zur Anstiegsflanke des Rechteckimpulses.The transmitting coil 14 is periodically applied with rectangular pulses, for example, have a duration of 30 microseconds. As the passage of a coin through a coil assembly, as in Fig. 1 is about 200 ms, the duration of the transmission signal in relation to the transit time of the coin is small. Such a Rectangular pulse is recurring also in the method of the already mentioned DE 197 26 449 used. If, according to this document, the transmission pulse is subdivided into individual time segments or switching steps, and a measurement of the signal of the receiver coil 18 is made at the individual time steps, one of the curves is obtained, for example Fig. 2 is shown. The curve with the highest maximum is one which corresponds to a maximum attenuation. Maximum attenuation or shielding is obtained at a maximum frequency. Therefore, this curve corresponds to the highest frequency at which measurement is made, that is, a switching step that is past the start of the transmit pulse. If recurring during the coin transit time is always measured during this time, one obtains therefore the mentioned curve with the maximum maximum. If the time steps are further away from the starting point or the rising edge of the rectangular pulse, this results in a lower frequency and thus a lower attenuation. In other words, with one and the same coin material, depending on the frequency, a different damping is obtained during the passage of the coin. The different frequency results, as mentioned, by the measuring time relative to the rising edge of the rectangular pulse.

Nebenbei sei erwähnt, dass die Kurvenschar nach Fig. 2 nicht mit einer Bicolormünze erreicht werden kann, diese führt zu einer anderen Kurvenschar, wie sie in der bereits erwähnten DE 197 26 449 diesbezüglich dargestellt ist. Die Kurvenschar nach Fig. 2 bezieht sich hingegen auf eine Münze, die homogen aus einem bestimmten Material gefertigt ist.Incidentally, it should be mentioned that the group of curves after Fig. 2 can not be achieved with a bicoloured coin, this leads to a different group of curves, as in the already mentioned DE 197 26 449 in this regard is shown. The group of curves after Fig. 2 refers to a coin which is made of a homogeneous material.

Verbindet man nun die Maxima der Kurvenschar nach Fig. 2 zu einer Kurve, so ergibt sich zum Beispiel der Kurvenverlauf 30 in Fig. 5. Die einzelnen Messpunkte auf der Kurve 30 entsprechen unterschiedlichen Frequenzen, die mithin eine unterschiedliche Dämpfung zur Folge haben. Nimmt man ein anderes Material, ergeben sich andere Kurvenverläufe, wie in Fig. 5 dargestellt. Die Zuordnung der Kurven zu den Materialien ergibt sich aus der Legende in Fig. 5 rechts.If you now connect the maxima of the group of curves Fig. 2 to a curve, the result is, for example, the curve 30 in FIG Fig. 5 , The individual measuring points on the curve 30 correspond to different frequencies, which consequently result in a different attenuation. If you take another material, surrender other curves, like in Fig. 5 shown. The assignment of the curves to the materials results from the legend in Fig. 5 right.

Der Aufbau der Rechteckspannung bzw. des Rechteckimpulses als Sendesignal bedarf einer gewissen Zeit, z.B. 1 µs. Da aber angestrebt ist, den materialabhängigen Dämpfungswert auszuschalten, mithin die Annahme zu erfüllen, dass die Frequenz unendlich hoch ist, bedarf es der Extrapolation der Kurven nach Fig. 5, um den Dämpfungswert zur Zeit 0 zu erhalten. Dies ist in Fig. 5 angedeutet, bei der im Wesentlichen die Kurven nach Fig. 3 wiedergegeben sind.The structure of the square-wave voltage or the rectangular pulse as a transmission signal requires a certain time, for example 1 microseconds. Since, however, the aim is to eliminate the material-dependent attenuation value, and thus to fulfill the assumption that the frequency is infinitely high, extrapolation of the curves is necessary Fig. 5 to get the attenuation value at time 0. This is in Fig. 5 hinted at essentially the curves after Fig. 3 are reproduced.

Fig. 4 zeigt den Verlauf der Kurven nach Fig. 3 im Zeitrahmen von 0 bis 1 µs. Man erkennt, dass der Bereich für die Dämpfung bei einzelnen Materialien bei gleichem Durchmesser einer Münze zwischen 367 und 357,5 schwankt. Dies ist ein außerordentlich kleiner Bereich, der ausreicht, die Durchmessergröße ausreichend genau zu ermitteln. Fig. 4 shows the course of the curves Fig. 3 in the time frame from 0 to 1 μs. It can be seen that the range for the damping of individual materials varies with the same diameter of a coin between 367 and 357.5. This is an extremely small range sufficient to determine the diameter size sufficiently accurately.

In Fig. 6 ist eine nicht lineare Extrapolation vorgenommen, wie sie ebenfalls an sich bekannt ist, etwa unter der Bezeichnung Kurvenfit. Während bei den Kurven nach Fig. 3 bis 5 ein Durchmesserwert von 30 mm verwendet wird, liegt der Kurvenschar nach Fig. 6 ein Münzdurchmesser von 18 mm zugrunde.In Fig. 6 is a non-linear extrapolation made, as it is also known per se, such as the name Kurvenfit. While looking at the curves Fig. 3 to 5 a diameter value of 30 mm is used, the set of curves is after Fig. 6 based on a coin diameter of 18 mm.

In Fig. 7 ist eine Kennlinie des Durchmessers über die Dämpfungsmesswerte aufgezeichnet für eine nicht lineare Extrapolation und Korrektur der Kurvenschar nach Fig. 3 bzw. 5. Man erkennt, dass die Messpunkte von unterschiedlichen Materialien annähernd auf einer einer Geraden angenäherten Funktion liegen, sodass sich durch das beschriebene Verfahren exakt feststellen lässt, ob eine eingeworfene Münze in einem vorgegebenen Durchmesserbereich liegt oder nicht. Die Soll-Durchmesser einzelner Münzen eines Münzensatzes können durch ein Durchmesserfenster definiert werden, das sehr klein zu sein braucht, sodass auch Münzsätze mit sehr kleinen Durchmesserunterschieden exakt diskriminiert werden können. Der maximale Fehler liegt zumindest theoretisch bei 0,115 mm. Dieser Fehler reicht aus, auch solche Münzen voneinander zu unterscheiden, die im Durchmesser nur um 0,5 mm unterschiedlich sind.In Fig. 7 is a characteristic of diameter plotted against the attenuation measurements recorded for non-linear extrapolation and correction of the family of curves Fig. 3 or 5. It can be seen that the measurement points of different materials are approximately on a function approximated to a straight line, so that can be determined by the described method exactly whether a thrown coin in a given diameter range or not. The nominal diameters of individual coins of a coin set can be defined by a diameter window which needs to be very small, so that coin sets with very small diameter differences can be exactly discriminated. The maximum error is at least theoretically 0,115 mm. This error is sufficient to distinguish even those coins that differ in diameter only by 0.5 mm.

Wie schon erwähnt, kann das beschriebene Verfahren allein mit dem Empfangsspulenabschnitt 18 durchgeführt werden. Die Empfangsspulenabschnitte 20 und 22 können zur Materialbestimmung herangezogen werden in einer Art und Weise, wie dies in der DE 197 26 449 beschrieben ist. In diesem Fall dienen die Hüllkurven gemäß Fig. 2, die in diesen Abschnitten ebenfalls erzeugt werden, zur Materialbestimmung. Münzen, die als Bicolormünzen gestaltet sind, können ebenfalls nach dem bekannten Verfahren erfasst werden.As already mentioned, the described method can be carried out alone with the receiving coil section 18. The receiving coil sections 20 and 22 can be used for material determination in a manner as shown in the DE 197 26 449 is described. In this case, the envelopes are used according to Fig. 2 , which are also generated in these sections, for material determination. Coins that are designed as bicolour coins can also be detected by the known method.

Claims (2)

  1. A method for measuring coins in coin validators, comprising the following steps:
    - the coins traverse an electromagnetic field which is formed between at least one transmitter coil and one receiver coil
    - a short transmission pulse is periodically transmitted to the transmitter coil, the duration of the transmission pulse is small as compared to the time of coin passage,
    characterised in that for the measuring for the diameter of the coins
    - the electromagnetic field is formed such as to partially hide the field at least by the upper portion of the coins
    - the attenuation values are measured for different times of periodically repeated transmission pulses, and a attenuation curve over the time is formed by the maximum attenuation values at the said times of the transmission pulses
    - the curve is extrapolated to the time zero of the transmission pulse and the attenuation value to time zero is determined and
    - the attenuation value determined to time by extrapolation is compared with a pre-determined acceptance band or a pre-determined characteristic line, respectively for the coined diameter for comparison with a stored desired value.
  2. The method as claimed in claim 1, characterized in that a periodically recurring portion of the transmission pulse has associated therewith a number of switching steps, envelope curves are formed from the values of the reception signal of the receiver coil during the respective switching steps repeating at the frequency of the transmission pulse, and an evaluation device determines the respective maxima from the number of the isochronously produced envelope curves.
EP02014680A 2001-08-16 2002-07-03 Method and device for measuring the diameters of coins Expired - Lifetime EP1286313B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10140225 2001-08-16
DE10140225A DE10140225C2 (en) 2001-08-16 2001-08-16 Method and device for measuring the diameter of coins

Publications (3)

Publication Number Publication Date
EP1286313A2 EP1286313A2 (en) 2003-02-26
EP1286313A3 EP1286313A3 (en) 2004-05-06
EP1286313B1 true EP1286313B1 (en) 2008-03-19

Family

ID=7695646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02014680A Expired - Lifetime EP1286313B1 (en) 2001-08-16 2002-07-03 Method and device for measuring the diameters of coins

Country Status (4)

Country Link
US (1) US7104384B2 (en)
EP (1) EP1286313B1 (en)
DE (2) DE10140225C2 (en)
ES (1) ES2299541T3 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20216785U1 (en) * 2002-10-31 2003-01-09 Nat Rejectors Gmbh Coil arrangement for coin validators
DE102004020159A1 (en) * 2004-04-24 2005-11-17 National Rejectors, Inc. Gmbh Method for checking coins
DE102007046390B3 (en) * 2007-09-20 2008-11-27 National Rejectors, Inc. Gmbh Method for checking coins
JP5608898B2 (en) * 2010-07-09 2014-10-22 旭精工株式会社 Coin identification device
JP6425878B2 (en) * 2013-10-18 2018-11-21 株式会社日本コンラックス Coin handling device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8303587D0 (en) * 1983-02-09 1983-03-16 Chapman Cash Processing Ltd Coin discriminating apparatus
US4705154A (en) * 1985-05-17 1987-11-10 Matsushita Electric Industrial Co. Ltd. Coin selection apparatus
GB8717494D0 (en) * 1987-07-23 1987-08-26 Scan Coin Ab Coin discriminator
JP2567654B2 (en) * 1988-03-31 1996-12-25 株式会社 日本コンラックス Coin sorting method and device
US4998610A (en) * 1988-09-19 1991-03-12 Said Adil S Coin detector and counter
US6520308B1 (en) * 1996-06-28 2003-02-18 Coinstar, Inc. Coin discrimination apparatus and method
DE19702986C2 (en) * 1997-01-28 1999-06-02 Nat Rejectors Gmbh Coin validator
GB2323199B (en) * 1997-02-24 2000-12-20 Mars Inc Method and apparatus for validating coins
DE19726449C2 (en) * 1997-06-21 1999-04-15 Nat Rejectors Gmbh Method and circuit arrangement for checking coins

Also Published As

Publication number Publication date
DE10140225A1 (en) 2003-03-06
US20030034223A1 (en) 2003-02-20
EP1286313A2 (en) 2003-02-26
DE50211909D1 (en) 2008-04-30
US7104384B2 (en) 2006-09-12
DE10140225C2 (en) 2003-08-07
EP1286313A3 (en) 2004-05-06
ES2299541T3 (en) 2008-06-01

Similar Documents

Publication Publication Date Title
DE3235114C2 (en)
DE2350990C2 (en)
DE2654472A1 (en) COIN INSPECTION DEVICE
WO1987000662A1 (en) Device for verifying coins
DD297271A5 (en) coin acceptor
DE3347052A1 (en) METHOD AND DEVICE FOR INCREASING THE MEASURING SENSITIVITY OF CONTACT-FREE WORKING SENSORS
DE60109548T2 (en) Noise-proof electronic presence detector
EP2513676A1 (en) Detection device for a belt conveyor and method for detecting electrically conductive foreign bodies in the material being transported on a belt conveyor
EP1286313B1 (en) Method and device for measuring the diameters of coins
EP2040227B1 (en) Method for inspecting coins
DE4339419C2 (en) Devices and methods for the detection of metal objects
DE2107113A1 (en) Paper intended for printing banknotes in the form of a ribbon or sheet with a security structure and a detector system to identify this security structure
DE19726449C2 (en) Method and circuit arrangement for checking coins
EP1589493B1 (en) Method for validation of coins
DE3802121C2 (en) Method and device for determining the height of a stack of coins in a coin tube
EP0698866A1 (en) Test apparatus and method of testing documents in processing machines
WO1996030879A1 (en) Method and devices for checking security documents
EP1416445B1 (en) Coil arrangement for coin validator
EP0862147B1 (en) Coin checking device
DE19548233C2 (en) Electronic coin validator
EP1233380B1 (en) Method of detecting the actuation of a coin return mechanism in a coin testing arrangement
DE69930750T2 (en) OSCILLATORS
WO1997035286A1 (en) Coin-checking arrangement
DE102004013286B4 (en) Device for checking coins
DE102009003993A1 (en) Inductive measuring system for free-fall coins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO SI

RIC1 Information provided on ipc code assigned before grant

Ipc: 7G 07D 5/08 B

Ipc: 7G 07D 5/02 A

17P Request for examination filed

Effective date: 20040914

AKX Designation fees paid

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 20050120

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50211909

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080413

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2299541

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081222

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090626

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100726

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100802

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110703

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160613

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160628

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20170720

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50211909

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180201

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20181105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180703